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Abstract. Dynamical bipedal walking subject to precise footstep place-
ments is crucial for navigating real world terrain with discrete footholds
such as stepping stones, especially as the spacing between the stone loca-
tions significantly vary with each step. Here, we present a novel method-
ology that combines a gait library approach along with control barrier
functions to enforce strict constraints on footstep placement. We nu-
merically validate our proposed method on a planar dynamical walking
model of MARLO, an underactuated bipedal robot. We show successful
single-step transitions from a periodic walking gait with a step length
of 10 (cm) to a stepping stone with a 100 (cm) separation (10x step
length change), while simultaneously enforcing motor torque saturation
and ground contact force constraints. The efficacy of our method is fur-
ther demonstrated through dynamic walking over a randomly generated
set of stepping stones requiring single-step step length changes in the
range of [10:100] (cm) with a foot placement precision of 2 (cm).

1 Introduction

An important advantage of robotic systems employing legged locomotion is the
ability to traverse terrain with discrete footholds, such as “stepping stones.”
Current approaches to handling this form of terrain primarily rely on simplis-
tic methods, both at the level of models of bipedal robots (e.g., linear inverted
pendulum) and control (e.g., ZMP) to achieve the desired foot placements. The
overarching goal of this work is to create a formal framework that will enable
bipedal humanoid robots to achieve dynamic and rapid locomotion over a ran-
domly placed, widely varying, set of stepping stones.

Footstep placement control for fully actuated legged robots initially relied on
quasi-static walking and resulted in slow walking speeds [13], [14], [5]. Impressive
results in footstep planning and placements in obstacle filled environments with
vision-based sensing have been carried out in [15], [4]. The DARPA Robotics
Challenge inspired several new methods, some based on mixed-integer quadratic



programs [7]. However, as mentioned in [8, Chap. 4], mixed-integer-based foot-
step planning does not offer dynamic feasibility even on a simplified model. These
methods therefore are not applicable for dynamic walking with faster walking
gaits. The approach developed in [24] allows aperiodic gaits with varying step
lengths designed on a complete dynamical model, but requires the a priori de-
sign of controllers that realize precise transitions between each pair of elements
of the gait library, resulting in exponential (factorial) growth in the number of
pre-designed controllers.

Instead of relying on kinematics of quasi-static motion planning of simplified
dynamical models, such as a linear inverted pendulum with massless legs [9], [22],
this paper presents a novel control strategy based on the full nonlinear hybrid
dynamic model of the robot to achieve precise foot placement with guarantees on
stability and constraint enforcement. We do this by combining a pre-computed li-
brary of walking gaits [6] with control barrier function-based quadratic programs
(CBF-QPs) for enforcing stepping stone constraints [17], [2]. The gait library is
populated with a small number of asymptotically stable periodic walking gaits
with pre-determined fixed step lengths, satisfying torque limits, ground reaction
forces and other key constraints. Instead of pre-computing transition gaits be-
tween discrete elements of the gait library, the gait library is linearly interpolated
online to obtain a nominal gait with a desired step length in steady state. To en-
sure precise foot placement during transients associated with varying distances
between stepping stones, the CBF-QP based controller relaxes the tracking be-
havior of the nominal gait and strictly enforces a set of state-dependent safety
constraints that guide the swing foot trajectory to the discrete footholds. Our
method enables dealing with a continuum of widely varying desired foothold sep-
arations, while achieving foot placement on small footholds. This work builds
off our recent work on gait libraries in [6] and precise footstep placement using
CBFs in [17]. In this paper, we will use exponential control barrier functions
(ECBFs) [18] to handle safety constraints. In comparison to our prior work, this
paper makes the following additional contributions:

– We present gait optimization and a gait-library-interpolation approach for
achieving underactuated dynamic bipedal walking with a continuum of de-
sired step lengths in steady state.

– We incorporate exponential control barrier functions and control Lyapunov
functions to achieve precise transient footstep placement.

– We significantly enlarge the range of variation on step length that can be
handled.

– We provide a way to handle sustained step length perturbations.
– Through our QP-based real-time controller, we address simultaneously foot-

step placement, foot scuffing avoidance, friction constraints and input satu-
ration.

The remainder of the paper is organized as follows. Section 2 presents the
hybrid dynamical model of 2D MARLO, an underactuated planar bipedal robot.
Section 3 presents gait optimization and a gait library interpolation strategy.
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Fig. 1: (a) The problem of dynamically walking over a randomly generated set of
discrete footholds. Simulation video: https://youtu.be/udpxZUXBi s. (b) The
coordinates of the biped are illustrated with the torso world frame pitch angle
denoted by qT , and the body coordinates denoted by (q1, q2).

Section 4 presents the proposed ECBF-CLF-QP based feedback controller for
enforcing precise footstep placement for dynamic walking. Section 5 presents
numerical validation of the controller on MARLO. Finally, Section 6 provides
concluding remarks.

2 Dynamical Model for Walking

The bipedal robot shown in Fig. 1b is a planar representation of MARLO. Its
total mass is 63 kg, with approximately 50% of the mass in the hips, 40% in the
torso, and with light legs formed by a four-bar linkage. The robot is approxi-
mately left-right symmetric.

The configuration variables for the system can be defined as q := (qT , q1R, q2R,
q1L, q2L) ∈ R5. The variable qT corresponds to the world frame pitch angle of
the torso, while the variables (q1R, q2R, q1L, q2L) refer to the local coordinates
for the linkages. Each of the four linkages are actuated by a DC motor behind
a 50:1 gear ratio harmonic drive, with the robot having one degree of under-
actuation. The four-bar linkage mechanism comprising of the leg coordinates
(q1, q2) map to the leg angle and knee angle (qLA, qKA), as qLA := 1

2 (q1 + q2)
and qKA := q2− q1. With the state x = (q, q̇) denoting the generalized positions
and velocities of the robot and u denoting the joint torques, a hybrid model of
walking can be expressed as{

ẋ = f(x) + g(x) u, x− /∈ S
x+ = ∆(x−), x− ∈ S, (1)

where S is the impact surface and ∆ is the reset or impact map. A more complete
description of the robot and a derivation of its model is given in [21].

https://youtu.be/udpxZUXBi_s


3 Optimization and Gait library

Having described the dynamical model of MARLO, we will now present a model-
based approach for designing a continuum of stable periodic walking gaits that
satisfy physical constraints arising from the robot and its environment. The
method combines virtual constraints, parameter optimization, and an interpo-
lation strategy for creating a continuum of gaits from a finite library of gaits.

3.1 Gait Design Using Virtual Constraints

The nominal feedback controller is based on the virtual constraints framework
presented in [23]. Virtual constraints are kinematic relations that synchronize
the evolution of the robot’s coordinates via continuous-time feedback control.
One virtual constraint in the form of a parametrized spline can be imposed for
each (independent) actuator. Parameter optimization is used to find the spline
coefficients so as to create a periodic orbit satisfying a desired step length, while
respecting physical constraints on torque, motor velocity, and friction cone. The
optimization method used here is the direct collocation code from [12], although
other methods, such as [11] or fmincon can be used as well.

The virtual constraints are expressed as an output vector

y = y0(q)− yd(s(q), α), (2)

to be asymptotically zeroed by a feedback controller. Here, y0(q) specifies the
quantities to be controlled

y0(q) =


qstLA
qstKA
qswLA
qswKA

 , (3)

where st and sw designate the stance and swing legs, respectively, and yd(s, α)
is a 4-vector of Beziér polynomials in the parameters α specifying the desired
evolution of y0(q), where s is a gait phasing variable defined as

s :=
θ − θinit

θfinal − θinit
, (4)

with θ = qT + qstLA being the absolute stance leg angle and θinit, θfinal being the
values of θ at the beginning and end of the gait respectively.

The cost function and constraints for the optimization are formulated as in
[23] [Chap. 6.6.2], with the optimization constraints given in Table 1 and the
cost taken as integral of squared torques over step length:

J =
1

Lstep

∫ T

0

||u(t)||22 dt. (5)

Having presented an optimization approach to create an individual walking
gait, we will next discuss the design of a finite set of gaits and a means to create
from it a continuum of gaits, called the gait library.



Table 1: Optimization constraints

Motor Toque |u| ≤ 5 Nm

Impact Impulse Fe ≤ 15 Ns

Friction Cone µf ≤ 0.4

Vertical Ground Reaction Force F v
st ≥ 200 N

Mid-step Swing Foot Clearance hf |s=0.5 ≥ 0.1 m

Dynamic Constraints Eq. (1)

3.2 Gait Library and Interpolation

The optimization problem posed in the previous section is used to generate five
gaits having step lengths Lstep = {0.08, 0.24, 0.40, 0.56, 0.72} meters1. For values
of step length between the discrete values, Lstep,i, 1 ≤ i ≤ 5, define the Beziér
coefficients α in (2) by linear interpolation of the coefficients αi for the five
nominal step lengths. In particular, define,

ζ(Lstep) =
Lstep − Lstep,i

Lstep,i+1 − Lstep,i
, 1 ≤ i ≤ 4 (6)

α(Lstep) = (1− ζ(Lstep))αi + ζ(Lstep)αi+1. (7)

For step lengths longer than 0.72, linear extrapolation is used. As in [6, Eqn. (8,9)],
this defines a continuum of gaits, called the gait library

A = {α(Lstep) | 0.08 ≤ Lstep ≤ 0.72}. (8)

The update resets the periodic orbit to adapt the step length, while respecting
the physical constraints and approximately optimizing the cost on the periodic
orbit. During steady-state, there is no theoretical guarantee that the interpolated
gait results in exactly the desired step length. However, due to continuity of each
pre-defined gait in the library, the interpolated gait will result in a step length
that is close enough to the desired step length. On the other hand, during a
transient following a change in commanded step length, the footstep placement
and optimization constraints shown in Table.1 are not guaranteed to be satisfied.
In the next Section, we will introduce the method of control barrier functions
to handle transients in the form of real-time constraints on footstep placement,
scuffing avoidance, friction cone, and input saturation.

1 The number of gaits is arbitrary. A finer grid did not change the results. A coarser
grid was not tried.
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Fig. 2: Diagram of the controller structure integrating the gait library and CBF
based controller. Solid lines indicate signals in continuous time representing a
within-stride controller; dashed lines indicate signals in discrete time represent-
ing a stride-to-stride controller.

4 Control Barrier Function based controller for stepping
stones

Having presented the creation of a library of gaits for a small set of step lengths
and an associated switching controller, we now discuss the low-level continuous-
time controller design that uses control Lyapunov functions for driving the out-
puts in (2) to zero and control barrier functions for strictly enforcing foot place-
ment constraints. We will incorporate both features through a quadratic program
that will also be used to enforce torque saturation, ground contact force and fric-
tion cone constraints. The control diagram for the combination of gait library
and CBF based controller is shown in Fig.2.

4.1 Control Lyapunov Function based Quadratic Programs
Revisited

In this section we will review recent innovations in control Lyapunov functions
for hybrid systems and control Lyapunov function based quadratic programs,
introduced in [3] and [10] respectively.

Input-output linearization Consider the control output vector y(q) defined
in (2) with vector relative degree 2, then the second derivative takes the form

ÿ = L2
fy(x) + LgLfy(x) u. (9)

We can then apply the following pre-control law

u(x) = u∗(x) + (LgLfy(x))−1 µ, (10)

where

u∗(x) := −(LgLfy(x))−1L2
fy(x), (11)



and µ is a stabilizing control to be chosen. Defining transverse variables η =
[y, ẏ]T , and using the IO linearization controller above with the pre-control law
(10), we have, [

ẏ
ÿ

]
= η̇ = f̄(x) + ḡ(x)µ, (12)

where

f̄(x) = Fη, ḡ(x) = G, with F =

[
0 I
0 0

]
, G =

[
0
I

]
. (13)

CLF-based Quadratic Programs A control approach based on control Lya-
punov functions, introduced in [3], provides guarantees of exponential stability
for the traverse variables η. In particular, a function V (η) is an exponentially
stabilizing control Lyapunov function (ES-CLF) for the system (12) if there exist
positive constants c1, c2, λ > 0 such that

c1‖η‖2 ≤ V (η) ≤ c2‖η‖2, (14)

V̇ (x, µ) + λV (η) ≤ 0. (15)

In our problem, we chose a CLF candidate as follows

V (η) = ηTPη, (16)

where P is the solution of the Lyapunov equation ATP + PA = −Q (with A
being a Hurwitz matrix such that η̇ = Aη is exponentially stable, and Q being
any symmetric positive-definite matrix). The time derivative of the CLF (16) is
computed as

V̇ (x, µ) = Lf̄V (x) + LḡV (x)µ, (17)

where

Lf̄V (x) = ηT (FTP + PF )η; LḡV (x) = 2ηTPG. (18)

The CLF condition in (15) then takes the form

Lf̄V (x) + LḡV (x)µ+ λV (η) ≤ 0. (19)

If this inequality holds, then it implies that the output η will be exponentially
driven to zero by the controller. The following CLF-QP based controller, initially
presented in [10], takes the form:

CLF-QP:

µ∗(x) =argmin
µ,d1

µTµ+ p1 d
2
1

s.t. V̇ (x, µ) + λV (η) ≤ d1, (CLF)

AAC(x) µ ≤ bAC(x), (Constraints)

(20)



where p1 is a large positive number that represents the penalty of relaxing
the CLF condition (15) and AAC , bAC represent additional constraints such
as torque constraints, contact force constraints, friction constraints and joint
limit constraints. This formulation opened a novel method to guarantee stabil-
ity of the nonlinear system with respect to additional constraints, such as torque
saturation in [10] and L1 adaptive control in [16].

Having presented control Lyapunov function based quadratic programs, we
will next introduce control barrier functions and control barrier function based
quadratic programs.

4.2 Exponential Control Barrier Function based Quadratic
Programs

Consider the affine control system shown in the continuous dynamics of (1), with
the goal to design a controller to keep the state x in the set

C = {x ∈ Rn : h(x) ≥ 0} , (21)

where h : Rn → R is a continuously differentiable function.

In order to systematically design safety-critical controllers for higher order
relative degree constraints, we will use “Exponential Control Barrier Functions”
(ECBFs), introduced in [18].

With application to precise footstep placement, our constraints will be po-
sition based, h(q) ≥ 0, which has relative degree 2. For this problem, we can
design an Exponential CBF as follows:

B(x) = ḣ(x) + γ1h(q), (22)

and the Exponential CBF condition will be simply defined as:

Ḃ(x, u) + γB(x) ≥ 0, (23)

where γ1 > 0, γ > 0 play the role of pole locations for the constraint dynamics
ḧ(x, u) (see [18]). Enforcing (23) will then enforce B(x) ≥ 0 for all time, provided
B(x(0)) ≥ 0. It then follows that h(x) ≥ 0 for all time, provided h(q(0)) ≥ 0.

Combination of ECBF and CLF-QP We have the exponential CBF con-
straint B(x) as a real-valued function with relative degree one, i.e,

Ḃ(x, u) = LfB(x) + LgB(x) u, (24)

where LgB 6= 0. Substituting for the pre-control law (10), we can rewrite the

above in terms of the control input µ, i.e., Ḃ(x, µ). We then have the following
QP based controller:



ECBF-CLF-QP:

µ∗(x) =argmin
µ,d1

µTµ+ p1 d
2
1

s.t. V̇ (x, µ) + λV (η) ≤ d1, (CLF)

Ḃ(x, µ) + γB(x) ≥ 0, (ECBF)

umin ≤ u(x, µ) ≤ umax, (Input Saturation)

(25)

where B(x) is constructed based on the safety constraint h(x) in (22).
Having revisited control barrier function based quadratic programs, we will

now formulate our controller to achieve dynamic walking with precise footstep
placements.

4.3 Safety-Critical Control for Dynamical Bipedal Walking with
Precise Footstep Placement

Fig. 3: Geometric explanation of CBF constraints for the problem of bipedal
walking over discrete footholds. If we can guarantee the trajectory of the swing
foot F (the red line) to be limited in the blue domain, we will force our robot
to step onto a discrete foothold position (thick red range on the ground). This
approach therefore also provides a safety guarantee against foot scuffing or swing
foot being always above the ground prior to contact.

Constraints on Footstep Placement If we want to force the robot to step
onto a specific position (see Fig. 1a), we need to guarantee that the step length
when the robot swing foot hits the ground is bounded within a given range
[lmin; lmax]. Let hf (q) be the height of the swing foot to the ground and lf (q)



be the horizontal distance between the stance and swing feet. We define the step
length at impact as,

ls := lf (q)|hf (q)=0,ḣf (q,q̇)<0. (26)

The discrete foothold constraint to be enforced then becomes,

lmin ≤ ls ≤ lmax. (27)

However, in order to guarantee this final impact-time constraint, we construct
a state-based constraint for the evolution of the swing foot during the whole step,
so that at impact the swing foot satisfies the discrete foothold constraint (27).
We now offer a solution for this issue. The geometric explanation for this is
presented in Fig. 3. If we can guarantee the trajectory of the swing foot, F ,
to be bounded between the domain of the two circles O1 and O2, it will imply
that the step length when the swing foot hits the ground is bounded within
[lmin; lmax]. These two constraints can be represented as:

O1F ≤ R1 + lmax; O2F ≥

√
R2

2 +

(
lmin + l0

2

)2

.

When the swing foot hits the ground at the end of the step, the step length is
ls (see (26)), implying the discrete foothold constraint (27).

Remark 1. The gait library provides gaits that enforce constraints during steady-
state but not during transients that occur when the gait is switched. The CBF
controller guarantees constraints during transients, thereby preventing a combi-
natorial explosion of pre-computed transient gaits. The combination of the gait
library and the CBF controller is then able to handle constraints during both
steady-state and transient phases. The typical failure mode of the gait library is
foot scuffing of the swing foot during gait switches. Using a CBF to maintain the
swing foot position to be outside the circle O2, guarantees both the lower bound
constraint on step length (ls ≥ lmin) and foot scuffing avoidance simultaneously.
The choice of R2 in Fig. 3 can be designed based on the desired mid-step swing
foot clearance.

We now define the two barrier constraints based on this approach, through
the position constraints

h1(q) = R1 + lmax −O1F ≥ 0,

h2(q) = O2F −
√
R2

2 + (
lmin + l0

2
)2 ≥ 0. (28)

We can then apply the ECBF-CLF-QP based controller (25) for the above con-
straints. This involves creating two barriers B1, B2 for the corresponding position
functions h1, h2 respectively.



Constraints on Friction Cone In bipedal robotic walking, contact force con-
straints are very important for the problem of robotic walking. Any violation of
these constraints will result in the leg slipping and the robot potentially falling.
Although walking gait optimization is usually designed to respect these con-
straints, we cannot guarantee these constraints when switching between different
walking gaits. In particular, we consider, Fhst(x, u) and F vst(x, u), the horizontal
and vertical contact force between the stance foot and the ground (or the fric-
tion force and the normal ground reaction force). Then, the constraints to avoid
slipping during walking are,

F vst(x, u) ≥ δN > 0,

|Fhst(x, u)|
|F vst(x, u)|

≤ kf . (29)

where δN is a positive threshold for the vertical contact force, and kf is the
friction coefficient. We enforce the above ground contact constraints with δN =
150(N), kf = 0.6.

Remark 2. Note that since the gait optimization is performed offline, we enforce
stricter constraints (ground reaction force F vst ≥ 200(N) and friction cone µ ≤
0.4) (see Table 1), allowing for a margin of safety. These constraints hold only
for the gaits in the gait library and not for the transient steps generated by the
gait library controller. Our ECBF-CLF-QP controller enforces the constraints
F vst ≥ 150(N) and friction cone µ ≤ 0.6 in real-time for the transient steps.

We then have the following ECBF-CLF-QP based controller that can handle
simultaneously footstep placement, scuffing avoidance, friction constraint and
input saturation:

µ∗(x) =argmin
µ,d1

µTµ+ p1 d
2
1

s.t. V̇ (x, µ) + λV (η) ≤ d1 (CLF)

Ḃ1(x, µ) + γB1(x) ≥ 0 (ECBF on ls ≤ lmax)
Ḃ2(x, µ) + γB2(x) ≥ 0 (ECBF on ls ≥ lmin

& Foot Scuffing)

F vst(x, u(x, µ)) ≥ δN > 0 (Normal Force)

|Fhst(x, u(x, µ))|
|F vst(x, u(x, µ))|

≤ kf (Friction Cone)

umin ≤ u(x, µ) ≤ umax (Input Saturation)

(30)

Remark 3. Note that all the constraints are affine in µ and thus the above op-
timization problem is still a quadratic program that can be solved in real-time.

Remark 4. The gait library approach offers a switching strategy under a wide
range of step lengths. Based on the desired step length, the interpolation between



different gaits in the library will result in a new walking gait for the next step. If
the system state is on or close enough to the periodic orbit, it will converge to the
desired step length while maintaining physical constraints mentioned in Table.1.
However, in our problem, we want the robot to be able to switch between two
gaits with very different step lengths, the initial condition is basically very far
from the periodic orbit of the next step. Therefore, the transition to the new
gait is not guaranteed to satisfy constraints such as friction constraints as well
as scuffing avoidance. In the simulation, these two main reasons make the gait
library approach fail almost all the time.

Note that the CBF-CLF-QP controller in [17] is only based on one nominal
gait and tries to adjust the control inputs so as to enforce the footstep placement
constraint, friction constraints and input saturation while following the nominal
gait. Due to the limitation of having only one walking gait, the working range
of step length is therefore limited.

In this paper, we attempt to combine the advantages of each method and
develop the ECBF-CLF-QP controller with foot scuffing constraints and combine
it with the gait library approach (see Fig.2). Given a desired step length, the
gait library assigns an interpolated gait for the next walking step and the ECBF-
CLF-QP controller tracks the outputs corresponding to this gait by solving a
quadratic program in real-time to find the control input that follows this new gait
while maintaining all above constraints (footstep placement, friction constraints,
scuffing avoidance and input saturation).

In the next Section, we present numerical validation of our proposed controller
on the dynamical model of the bipedal robot MARLO.

5 Numerical Validation

In this Section, we will demonstrate the effectiveness of the proposed method
by conducting numerical simulations on the model of MARLO. We validate
the performance of our proposed approach through dynamic bipedal walking
on MARLO, while simultaneously enforcing foot placement, scuffing avoidance,
ground contact force constraints and input saturation. Furthermore, in order to
demonstrate the effectiveness of the method, we compare three controllers on
different ranges of desired step lengths:

I: Gait Library

II: CBF (with nominal step length of 56 cm)

III: CBF & Gait Library

(31)

For each range of step length (see Table 2), we randomly generated 100
problem sets, where each set has 10 randomly placed “stepping stones” with a
stone size of 5 (cm) (see Fig. 1a). The controller is considered successful for a
trial run if the bipedal robot is able to walk over this terrain without violation of
foot placement, ground contact, friction, and input constraints. The percentage



Table 2: (Main Result) Percentage of successful tests of three controllers (see
(31)) with different ranges of desired step length.

Step Length Range (cm) Gait Library CBF Gait Library & CBF

[50:60] 6% 100% 100%

[40:70] 1% 44% 100%

[30:80] 1% 17% 100%

[25:85] 1% 12% 100%

[20:90] 1% 3% 97%

[15:95] 1% 0% 92%

[10:100] 0% 0% 78%

of successful tests for each of the three controllers is tabulated in Table 2 for
various ranges of step lengths. The approach based on the combination of CBF
and Gait Library outperforms the approaches that rely on only the CBF or only
the Gait Library. For example, with the step length range of [20:90] (cm), the
percentage of successful tests on controller III (CBF and Gait Library) is 97
%, while that of controller II (CBF only) and controller I (Gait Library only)
are just 3% and 1% respectively. Thus the proposed controller not only achieves
dynamic walking over discrete footholds, it also dramatically increases the range
of step lengths that are handled compared to our prior work in [17].

We show here one simulation of MARLO walking over 20 stepping stones with
desired step lengths randomly generated in the range of [10 : 100] (cm), where
the stone size is smaller, i.e., lmax−lmin = 2 (cm). Fig. 4 shows the satisfaction of
foot step placement constraints as well as CBF constraints, without a violation
of the friction cone or input saturation (see Fig. 5). Furthermore, in order to
illustrate how aggressively our proposed method can traverse a set of stepping
stones, Fig. 6 shows a simulation where the robot has to switch between very a
large step length (95 cm) and a very small step length (15 cm).

Remark 5. Potential reasons of the gait library and CBF controller not reaching
100% success in the last three cases include (a) the QP (30) becoming feasible;
and (b) the gait library being limited to a pre-computed gait at 72 (cm) (see
Section 3.2), which is extrapolated by 25-39% to reach step lengths of 90-
100 (cm). Including a pre-computed gait with a step length of 100 (cm) could
potentially improve performance.

6 Conclusion

We have presented a model-based control framework that allows transition among
widely and randomly varying stepping stones, without an exponential explosion
in the number of pre-computed motion primitives. The control design begins
with model-based optimization producing a small number of periodic walking
gaits that meet desired physical constraints and span a range of step lengths.
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Fig. 4: (a) Footstep placement constraint: lmin ≤ ls ≤ lmax, where the step
length ls is the value of the distance between swing and stance feet lf at impact
(see (26)). (b) CBF constraints: h1(x) ≥ 0, h2(x) ≥ 0 (see (28)).
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Fig. 5: (a) Ground reaction force: F vst ≥ 150(N). (b) Friction cone: |Fhst/F vst| ≤
0.6. (c) Control inputs are saturated at 5 (Nm) (|u| ≤ 5); recall the 50:1 gear
ratio from the motors to the links.

Fig. 6: Simulation of MARLO walking over stepping stones with desired
step lengths of {95, 15, 95, 15, 15, 15, 95, 95, 95, 15, 15, 15}(cm) and stone size of
2 (cm). For clarity of visualization, the rear links of the 4-bar are suppressed.
Simulation video: https://youtu.be/udpxZUXBi s.

https://youtu.be/udpxZUXBi_s


In an outer-loop, a gait library is formed by interpolating this set of walking
gaits to provide controllers that realize a continuum of step lengths. In an inner-
loop, a quadratic program mediates safety, interpreted as landing the swing
foot on a stepping stone, and performance, which involves joint-level tracking
commands, friction cone, scuffing avoidance and torque bounds. The resulting
controller achieved dynamic walking while enforcing strict constraints on foot
step placement at impact, resulting in dynamic walking over stepping stones.
Numerical illustration of the proposed method on MARLO, an underactuated
bipedal robot, included the robot handling random step length variations that
are between [10 : 100] (cm) with a foot placement precision of 2 (cm).

The proposed method, however, still possesses some disadvantages. Since, we
swap between different gaits passively, we usually start with an initial condition
that is far away from the orbit or the desired gait, requiring the robot to have
high torque right after the impact (see Fig. 5c) to be able to converge back to the
desired trajectory. This aggressive behavior may cause infeasibility for the QP.
Having a better switching policy to handle transitions would be an interesting
future direction.

In the future, the proposed method using CBFs and gait library will be
extended to 3D robots so that the stepping-stone course in the W-Prize, [1],
can be attempted. In addition to the challenges of 3D locomotion, the heights
of the stepping stones vary over the course and the stepping stones could topple
over. Our preliminary results towards this include CBF-based controller for 3D
dynamic walking on stepping stones, [20], and robust CBF-based controllers to
handle constraints under model uncertainty [19].
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