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Robust Safety-Critical Control for Dynamic
Robotics

Quan Nguyen and Koushil Sreenath

Abstract—We present a novel method of optimal robust control
through quadratic programs that offers tracking stability while
subject to input and state-based constraints as well as safety-
critical constraints for nonlinear dynamical robotic systems
in the presence of model uncertainty. The proposed method
formulates robust control Lyapunov and barrier functions to
provide guarantees of stability and safety in the presence of model
uncertainty. We evaluate our proposed control design on dynamic
walking of a five-link planar bipedal robot subject to contact
force constraints as well as safety-critical precise foot placements
on stepping stones, all while subject to model uncertainty. We
conduct preliminary experimental validation of the proposed
controller on a rectilinear spring-cart system under different
types of model uncertainty and perturbations.

I. INTRODUCTION

Designing controllers for complex robotic systems with
nonlinear and hybrid dynamics for achieving stable high-
speed tracking of reference trajectories while simultaneously
guaranteeing input, state, and safety-critical constraints is
challenging. Constraints on robotic systems arise as limits of
the physical hardware (such as work-space constraints, joint
position and velocity constraints, and motor torque constraints)
as well as constraints imposed by controllers for safe operation
of the system (such as collision constraints, range constraints,
connectivity constraints, contact force constraints, etc.) Fur-
ther, adding to the challenges of stable constrained control is
the presence of high-levels of uncertainty in the dynamical
model of the robot. The goal of this paper is to address the
problem of designing stabilizing controllers for systems with
strict constraints in the presence of model uncertainty.

A. Background

Lyapunov functions and control Lyapunov functions (CLFs)
are a classical tool for design and analysis of feedback control
that stabilize the closed-loop dynamics of both linear and
nonlinear dynamical systems, see [1]. Traditional CLF-based
controllers involve closed-form control expressions such as
the min-norm and the Sontag controllers [2]. Recently, a
novel approach of expressing CLF-based controllers via online
quadratic programs (QPs) in [3] opened an effective way for
dealing with stability while also enabling the incorporation of
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additional constraints, such as input constraints. In [3], the
CLF-based controller is expressed in the QP as an inequality
constraint on the time-derivative of the CLF, which easily
enables adding additional constraints such as input saturation
through the relaxation of the CLF inequality condition. The
QP can be executed online at 1kHz in real-time as a state-
dependent feedback controller. However, this work did not
handle model uncertainty or safety-critical constraints.

In addition to CLFs, we also draw inspiration from recent
methods of control barrier functions (CBFs) that can be
incorporated with control Lyapunov function based quadratic
programs to result in the CBF-CLF-QP, as introduced in [4].
This framework enables handling safety-critical constraints
effectively in real-time. Experimental validation of this type
of controller for the problem of Adaptive Cruise Control was
presented in [5]. This framework has also been extended to
various interesting application domains, such as safety-critical
geometric control for quadrotor systems [6] and safety-critical
dynamic walking for bipedal robots [7], [8]. Although this
work can handle safety-critical constraints, however a precise
model of the system is required to enforce the constraints.

Moreover, as presented in [9], preliminary robustness anal-
ysis of the CBFs indicate that the safety-critical constraint
will be violated in the presence of model uncertainty, with
the amount of violation being bounded by the value of the
upper bound of the model uncertainty. In particular, model
uncertainty leads to constraint violation of the safety-critical
constraints. Recent efforts to improve the robustness of CBFs
using learning-based approaches such Gaussian process re-
gression have been introduced in [? 10, 11, 12, 13] which
use data to estimate the uncertainty. However, this typically
requires large amounts of quality data for high-dimensional
systems. Moreover, we note that in [? 11, 12], the authors
assume uncertainty only in the drift vector field term of a
control affine system and assume the input vector field to be
known precisely. Nonetheless, with learning-based approaches,
better and more accurate state-dependent bounds for the un-
certainty can be learnt which could result in less conservative
approaches than what is typically possible through robust
control. However, on the other hand, such learning-based ap-
proaches need to assume various distributions to be Gaussian
and do not computationally scale well with state-dimension.
In this paper, we seek a method to simultaneously handle
robust stability, robust input-based constraints and robust state-
dependent constraint in the presence of model uncertainty. We
will do this through robust control formulations of the CLF,
CBF, and constraints.The framework can be easily achieved by
extending the nominal CBF-CLF-QP controller while improv-
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ing significantly the robustness of the entire approach with a
provable stability and safety guarantee.

QP based controllers for robotic systems have been increas-
ingly used in recent years. Especially, the DARPA Robotics
Challenge inspired several new methods in this direction
[14], [15], wherein QP controllers are used to formulate
inverse kinematic and inverse dynamic control problems while
minimizing tracking of desired accelerations. While these QP
controllers enforce tracking performance and constraints at
each time step, our method uses CLF and CBF condition to
guarantee stability and safety constraints for future time.

For control of constrained systems, Model Predictive Con-
trol (MPC) has been widely used in many industrial applica-
tions [16]. However, the method is computationally expensive.
Firstly, for nonlinear systems, MPC typically linearizes the
model and the constraints. Next, even with a linear model and
polyhedral constraints, the traditional approach can require a
solving time from tens of milliseconds and higher even with
recent advances [17]. For nonlinear control affine systems,
CBF constraints are linear inequalities on the input and can be
quickly enforced through quadratic programs that are solved
point-wise in time in under 1 ms.

Robust control is an extensively studied topic. We have
established methods, such as H∞-based robust control and
linear quadratic Guassian (LQG) based robust control [18, 19]
for robust control of linear systems. For robust control of
nonlinear systems, input-to-state stability (ISS) and sliding
mode control (SMC) are two main methods. The ISS technique
(see [20, 21, 22]) can be used to both analyze the robustness of
nonlinear systems as well as design robust controllers based on
control Lyapunov functions. However, a primary disadvantage
of ISS based controllers is that the resulting controller only
maintains the system errors in a sufficiently small neigh-
borhood of the origin, resulting in non-zero tracking errors.
In recent years, there has been work on robust control of
hybrid systems based on the ISS technique, for instance see
[23, 24, 25]. In contrast, sliding mode control techniques
can deal with a wide range of uncertainties and drive the
system to follow a given sliding surface, thereby driving
outputs to desired values without any tracking errors (see
[26, 27, 28, 29]). However, the primary disadvantage of SMC
is the chattering phenomenon caused by discrete switching for
keeping the system attracted to the sliding surface.

Robust control techniques have also been extensively ap-
plied to robotic manipulator arms, see [30, 31], however ma-
nipulator arms do not have challenges such as underactuation
and unilateral ground contact forces making their control
easier. Robust control techniques have also been applied
to bipedal walking. For instance, the work in [32] extends
adaptive robust control of manipulator arms to bipedal robots,
the work in [33] considers a simple 2D inverted-pendulum
model and pre-computes a control policy through offline
nonlinear optimization to prevent falls under the assumption
of bounded disturbances. Similarly, recent results on robust
feedback motion planning for the problem of UAVs avoiding
obstacles in [34] also precomputed a library of “funnels” via
convex optimization that represents different maneuvers of the
system under bounded disturbances. A real-time planner then

composes motion trajectories based on the resulting funnel
library. Recent work in reachability-based analysis has been
extended to enforce safety-constraints with model uncertainty
by safe trajectory synthesis [35, 36]. Offline optimization
for stabilization of walking and running with robustness to
discrete-time uncertainties such as terrain perturbations has
been carried out in [37, 38]. Our method, in contrast, is
based on real-time feedback controller to guarantee robust
stability as well as robust safety of robotic systems through an
online optimization without the need of precomputed motion
plans. Additional robust planning and control techniques exist
for legged robots where the robustness is with respect to
stochastic uncertainty in the model / terrain, for instance see
[39, 40, 41, 42].

B. Contributions

The main contributions of this paper with respect to prior
work are as follows:
• Introduction of a new technique that optimally introduces

robust control via quadratic programs to handle stability,
input-based constraints and state-dependent constraints
under high levels of model uncertainty.

• Robust stability and robust safety-critical constraints
achieved through a min-max inequality constraint on
the time-derivative of a control Lyapunov function and
control barrier function respectively.

• Theoretical stability analysis for the QP controllers with
relaxed CLF inequality.

• Numerical validation of the proposed controller on dif-
ferent problems:

– Dynamic walking of a bipedal robot while carrying
an unknown load and subject to contact force con-
straints; and

– Dynamic walking of a bipedal robot while carrying
an unknown load, subject to contact force constraints
and precise foot-step location constraints.

• Experimental validation of the proposed control method
on a rectilinear spring-cart system.

Note that preliminary results of this work were presented
in [43, 44]. In contrast to the preliminary results, this paper
presents (a) an entirely new min-max formulation of the
proposed controller, (b) additional numerical examples for
control of a bipedal robot, (c) experimental validations of the
proposed controller on a rectilinear spring-cart system and (d)
detailed stability and safety analysis for QP controllers with
relaxed CLF inequality and the proposed robust CBF-CLF-QP
controller.

C. Organization

The rest of the paper is organized as follows. Section
II revisits control barrier functions and control Lyapunov
functions based quadratic programs (CBF-CLF-QPs). Section
III presents the stability analysis for the QP controllers with
relaxed CLF inequality. Section IV discusses the adverse
effects of uncertainty and then presents the proposed optimal
robust control and formulates as a QP. Section V presents
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numerical and experimental validation on different dynamical
robotic systems. Section VI provides concluding remarks.

II. CONTROL LYAPUNOV FUNCTIONS AND CONTROL
BARRIER FUNCTION BASED QUADRATIC PROGRAMS

REVISITED

A. Model and Input-Output Linearizing Control

Consider a nonlinear control affine hybrid model

H :

{
ẋ = f(x) + g(x)u, x /∈ S
x+ = ∆(x−), x ∈ S

(1)

y = y(x),

where x ∈ Rn is the system state, u ∈ Rm is the control input,
S is the switching surface, and y ∈ Rm is a set of outputs.

While our approach is can be applied for a general high
relative-degree system, we focus on the most common case
to mechanical systems with relative-degree 2 control output.
If the control output y(x) has relative degree 2, then the
time-derivative ẏ(x) will be a function of the state x and not
dependent on the control input u. Considering the second time-
derivative ÿ, we have:

ÿ =
∂ẏ

∂x
ẋ = L2

fy(x) + LgLfy(x)u, (2)

where L represents the Lie derivatives. To be more specific:

L2
fy(x) ,

∂ẏ

∂x
f(x), LgLfy(x) ,

∂ẏ

∂x
g(x). (3)

If the decoupling matrix LgLfy(x) is invertible, then

u(x, µ) = uff (x) + (LgLfy(x))−1µ, (4)

with the feed-forward control input

uff (x) = −(LgLfy(x))−1L2
fy(x), (5)

input-output linearizes the system. The dynamics of the sys-
tem (1) can then be described in terms of dynamics of the
transverse variables, η ∈ R2m, and the coordinates z ∈ Z
with Z being the co-dimension 2m manifold

Z = {x ∈ Rn | η(x) ≡ 0}. (6)

One choice for the transverse variables is,

η =

[
y(x)
ẏ(x)

]
. (7)

The input-output linearized hybrid system then is,

HIO :


η̇ = f̄(η) + ḡ(η)µ,

ż = p(η, z), (η, z) /∈ S,
η+ = ∆η(η−, z−),

z+ = ∆Z(η−, z−), (η−, z−) ∈ S.

(8)

y = y(η),

where z represents uncontrolled states [45], and

f̄(η) = Fη, ḡ(η) = G, (9)

with,

F =

[
O I
O O

]
and G =

[
O
I

]
. (10)

The linear system in (9) is in controllable canonical form,
and a linear controller such as µ = −Kη can be designed
such that the following closed-loop system is stable

η̇ = (F −GK)η = Aclη. (11)

A corresponding quadratic Lyapunov function V (η) = ηTPη,
with P being a symmetric positive definite matrix, can then
be established through the solution of the Lyapunov equation:

ATclP + PAcl +Q = 0, (12)

for Q being any symmetric positive definite matrix.

B. Control Lyapunov Function based Quadratic Programs

1) CLF-QP: Instead of a linear control design µ = −Kη in
(4), an alternative control design is through a control Lyapunov
function V (η), wherein a control is chosen pointwise in
time such that the time deriviative of the Lyapunov function
V̇ (η, µ) ≤ 0, resulting in stability in the sense of Lyapunov,
or V̇ (η, µ) < 0 for asymptotic stability, or V̇ (η, µ)+λV (η) ≤
0, λ > 0 for exponential stability.

To enable directly controlling the rate of convergence,
we use a rapidly exponentially stabilizing control Lyapunov
function (RES-CLF), introduced in [45]. RES-CLFs provide
guarantees of rapid exponential stability for the transverse
variables η. In particular, a function Vε(η) is a RES-CLF for
the system (1) if there exist positive constants c1, c2, c3 > 0
such that for all 0 < ε < 1 and all states (η, z) it holds that

c1‖η‖2 ≤ Vε(η) ≤ c2
ε2
‖η‖2, (13)

V̇ε(η, µ) +
c3
ε
Vε(η) ≤ 0. (14)

The RES-CLF will take the form:

Vε(η) = ηT
[

1
εI 0
0 I

]
P

[
1
εI 0
0 I

]
η =: ηTPεη, (15)

where P satisfies the Lyapunov equation (12) and the time
derivative of the RES-CLF (15) is computed as

V̇ε(η, µ) =
∂Vε
∂η

η̇ = Lf̄Vε(η) + LḡVε(η)µ, (16)

where

Lf̄Vε(η) =
∂Vε
∂η

f̄(η) = ηT (FTPε + PεF )η,

LḡVε(η) =
∂Vε
∂η

ḡ(η) = 2ηTPεG. (17)

It can be show that for any Lipschitz continuous feedback
control law µ that satisfies (14), it holds that

V (η) ≤ e−
c3
ε tV (η(0)), ‖η(t)‖ ≤ 1

ε

√
c2
c1
e−

c3
2ε t‖η(0)‖, (18)

i.e. the rate of exponential convergence can be directly con-
trolled with the constant ε through c3

ε . One such controller is
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the CLF-based quadratic program (CLF-QP)-based controller,
introduced in [3], where µ is directly selected through an
online quadratic program to satisfy (14):

CLF-QP:

u∗(x) = argmin
u,µ

µTµ (19)

s.t. V̇ε(η, µ) +
c3
ε
Vε(η) ≤ 0, (CLF)

u = uff (x) + (LgLfy(x))−1µ. (IO)

The above minimization problem is a quadratic program
since the ineqality constraint on the time-derivative of the Lya-
punov function can be written as a linear ineqality constraint

Aclf µ ≤ bclf , (20)

where

Aclf = LḡVε(η); bclf = −Lf̄Vε(η)− c3
ε
Vε(η). (21)

Moreover, the IO equality constraint is linear in u, µ, and can
be written as:

AIO

[
u
µ

]
= bIO, (22)

where

AIO =
[
I −(LgLfy(x))−1

]
, bIO = uff (x). (23)

This optimization is solved pointwise in time using efficient
quadratic program solvers, such as CVXGEN [46], at real-time
speeds over 1 kHz.

Remark 1: Note that the solution of the above QP has been
shown to be Lipschitz continuous in [47].

2) CLF-QP with Constraints: Formulating the control
problem as a quadratic program now enables us to incorporate
constraints into the optimization. These constraints could be
input constraints for input saturation or state-based constraints
such as friction constraints, contact force constraints, etc.,
for robotic locomotion and manipulation. These types of
constraints can be expressed in a general form as

Ac(x)u ≤ bc(x). (24)

The CLF-QP based controller with additional constraints
then takes the form,

CLF-QP with Constraints:

u∗(x) =argmin
u,µ,δ

µTµ+ pδ2 (25)

s.t. V̇ε(η, µ) +
c3
ε
Vε(η) ≤ δ, (CLF)

Ac(x)u ≤ bc(x), (Constraints)

u = uff (x) + (LgLfy(x))−1µ, (IO)

where p is a large positive number that represents the penalty
of relaxing the CLF inequality, which is necessary to keep the
QP feasible when the constraints conflict with each other.

The constraints above could be input saturation constraints
expressed as,

u∗(x) =argmin
u,µ,δ

µTµ+ pδ2 (26)

s.t. V̇ε(η, µ) +
c3
ε
Vε(η) ≤ δ, (CLF)

umin ≤ u ≤ umax, (Input Saturation)

u = uff (x) + (LgLfy(x))−1µ. (IO)

Note that, similar to (20), the CLF inequality condition in
the above CLF-QPs is affine in µ, ensuring that these are
actually quadratic programs.

This formulation opened a novel method to guarantee stabil-
ity of nonlinear systems with respect to additional constraints
such as torque saturation [3], wherein experimental demon-
stration of bipedal walking with strict input constraints was
demonstrated, and in enabling the application of L1 adaptive
control for bipedal robots [48].

Remark 2: (Stability of CLF-QP with relaxed CLF in-
equality.) In subsequent sections of this paper, we develop
different types of controllers based on the relaxed CLF-QP
(25). Allowing the violation of the RES-CLF condition (14)
enables us to incorporate various other input and state con-
straints as we saw in (25). Additionally, the relaxed RES-CLF
condition also enables incorporating safety constraints through
barriers (see Section II-C), as well as enabling modification
of the controller to increase the robustness of the closed-loop
system (see Section IV). However, it must be noted that the
relaxation of the RES-CLF condition could lead to potential
instability. In Section III, we establish sufficient conditions
under which the relaxed CLF-QP controller can still retain the
exponential stability of the hybrid periodic orbit.

Having revisited control Lyapunov function based quadratic
programs, we will next revisit control Barrier functions.

C. Control Barrier Function

We begin with the control affine system (1) with the goal
to design a controller to keep the state x in the safe set

C = {x ∈ Rn : h(x) ≥ 0} , (27)

where h : Rn → R is a continuously differentiable function.
Then a function B : C → R is a Control Barrier Function
(CBF) [4] if there exists class K function α1 and α2 such
that, for all x ∈ Int(C) = {x ∈ Rn : h(x) > 0},

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
, (28)

Ḃ(x, u) ≤ γ

B(x)
, (29)

where γ > 0 and

Ḃ(x, u) =
∂B

∂x
ẋ = LfB(x) + LgB(x)u, (30)

with the Lie derivatives computed as,

LfB(x) =
∂B

∂x
f(x), LgB(x) =

∂B

∂x
g(x). (31)
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Thus, if there exists a Barrier function B(x) that satisfies the
CBF condition in (29), then C is forward invariant, or in other
words, if x(0) = x0 ∈ C, i.e., h(x0) ≥ 0, then x = x(t) ∈
C,∀t, i.e., h(x(t)) ≥ 0,∀t. Note that, as mentioned in [4], this
notion of a CBF is stricter than standard notions of CBFs in
prior literature that only require Ḃ ≤ 0.

In this paper, we will use the following reciprocal control
Barrier candidate function:

B(x) =
1

h(x)
. (32)

Incorporating the CBF condition (29) into the CLF-
QP, we have the following CBF-CLF-QP based controllers:

CBF-CLF-QP:

u∗(x) =argmin
u,µ,δ

µTµ+ p δ2 (33)

s.t. V̇ε(η, µ) +
c3
ε
Vε(η) ≤ δ, (CLF)

Ḃ(x, u)− γ

B(x)
≤ 0, (CBF)

Ac(x)u ≤ bc(x), (Constraints)

u = uff (x) + (LgLfy(x))−1µ. (IO)

Remark 3: Note that, similar to (20), for any nonlinear
affine system and nonlinear state-dependent constraint, the
CBF condition (29) is scalar and affine in u, ensuring a
compact quadratic program that can be solved in 1 kHz. More
importantly, the satisfaction of this instantaneous condition at
each time guarantees the state dependent constraint h(x) ≥ 0
for all t ≥ t0.

Having presented control Lyapunov functions, control Bar-
rier functions, and their incorporation into a quadratic program
with constraints, we now prove the stability of the QP con-
troller with relaxed CLF inequality.

III. SUFFICIENT CONDITIONS FOR THE STABILITY OF CLF
WITH RELAXED INEQUALITY

In this Section, we will present two theorems and their proof
about the stability of CLF based controller with relaxed RES-
CLF condition for both continuous-time and hybrid systems.
We recall that as discussed in Section II-B2 and Remark 2,
relaxing the CLF inequality constraint is necessary to keep the
QP feasible when additional potentially conflicting constraints
are added to the QP. However, in this case, we could have
a potential loss in stability guarantees if a certain sufficient
condition, that is established next, is not satisfied.

We begin with the standard RES-CLF that guarantees the
following inequality,

V̇ε(η, µ) +
c3
ε
Vε(η) ≤ 0. (34)

The CLF-QP with the relaxed inequality takes the form,

V̇ε(η, µ) +
c3
ε
Vε(η) ≤ dε, (35)

where dε(t) ≥ 0 represents the time-varying relaxation of the
RES-CLF condition. We define

wε(t) =

∫ t

0

dε(τ)

Vε
dτ. (36)

to represent a scaled version of the total relaxation up to time
t. In the following subsections, we make use of this quantity
to establish exponential stability under certain conditions for
both continuous-time and hybrid systems. In Section III-A
we will look at continuous-time systems where we will need
exponential stability (ε = 1 in the above formulations), while
in Section III-B we will look at hybrid systems where we need
rapid exponential stability (ε < 1).

A. Stability of the Relaxed CLF-QP Controller for
Continuous-Time Systems

Consider a control affine system

η̇ = f̄(η) + ḡ(η)µ, (37)
ż = p(η, z),

where η is the controlled (or output) state, and z is the
uncontrolled state. Let OZ be an exponentially stable periodic
orbit for the zero dynamics ż = p(0, z). Let O = ι0(OZ) be a
periodic orbit for the full-order dynamics corresponding to the
periodic orbit of the zero dynamics, OZ , through the canonical
embedding ι0 : Z → X×Z given by ι0(z) = (0, z). As stated
in [45, Theorem 1], for all control inputs µ(η, z) that guarantee
enforcing the ES-CLF condition (with ε = 1) (34), we have
that O = ι0(OZ) is an exponentially stable periodic orbit of
(37). Then, for the relaxed CLF-QP condition (35) (dε 6≡ 0),
the following theorem establishes sufficient conditions under
which the exponential stability of the periodic orbit still holds.

Theorem 1: Consider a nonlinear control affine system
(37). Let OZ be an exponentially stable periodic orbit for
the zero dynamics ż = p(0, z). Then O = ι0(OZ) is an
exponentially stable periodic orbit of (37), if

w̄ε := sup
t≥0

wε(t) (38)

is a finite number.
Proof: Note that if dε(t) ≡ 0, i.e., there is no violation on

the RES-CLF condition, we will have conventional exponential
stability as stated in [45]. Here, we will extend the proof of
exponential stability to the case of relaxation of the control
Lyapunov function condition when w̄ε is finite.

We begin by noting that since dε(t) ≥ 0, we have

wε(t) ≤ w̄ε, ∀t ≥ 0. (39)

Next, from (35), we have

dVε
dt
≤ −c3

ε
Vε + dε(t),

⇒ dVε
Vε
≤ −c3

ε
dt+

dε(t)

Vε
dt,

⇒ ln

(
Vε(t)

Vε(0)

)
≤ −c3

ε
t+

∫ t

0

dε(τ)

Vε
dτ,

⇒ Vε(t) ≤ e−
c3
ε t+wε(t)Vε(0). (40)
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This, in combination with the inequality in (13), then
implies that

‖η(t)‖ ≤
√
c2
c1

1

ε
e−

c3
2ε t+

1
2wε(t)‖η(0)‖. (41)

Moreover, from the inequality in (39), we have

‖η(t)‖ ≤
√
c2
c1

1

ε
e−

c3
2ε t+

1
2 w̄ε‖η(0)‖,

=

(√
c2
c1

1

ε
e

1
2 w̄ε

)
e−

c3
2ε t‖η(0)‖. (42)

Therefore, if w̄ε is finite, the control output η= 0 will still
be exponentially stable under the relaxed CLF condition
(35). Therefore, from [45, Theorem 1], O = ι0(OZ) is an
exponentially stable periodic orbit of (37).

Remark 4: It must be noted that the CLF Vε no longer pro-
vides a guarantee of exponential stability due to the relaxation
in (35). However due to the inequality established in (42), and
by the converse Lyapunov function theorems [49], there exists
another CLF Ṽε that satisfies c̃1||η||2 ≤ Ṽε(η) ≤ c̃2

ε2 ||η||
2, and

˙̃Vε(η, µ)+ c̃3
ε Ṽε(η) ≤ 0, for some positive constants c̃1, c̃2, c̃3,

and guarantees exponential stability.

In the next section, we consider the hybrid system with
impulse effects, wherein we will need to take into account the
impact time or the switching time that signifies the end of the
continuous-time phase and involves a discrete-time jump in
the state.

B. Stability of the Relaxed CLF-QP Controller for Hybrid
Systems

Here we look at the stability of the relaxed CLF-QP
controller for hybrid systems of the form as defined in (8)
without the restriction on the vector fields as in (9). Similar
to the stability analysis for continuous-time systems in the
previous section, we also use here the notions of dε(t) (35),
the relaxation of the CLF condition, and wε(t) (36), the scaled
version of the total relaxation up to time t.

We also define T εI (η, z) to be the time-to-impact or time
taken to go from the state (η, z) to the switching surface
S. Then, intuitively, wε(T εI (η, z)) indicates a scaled version
of the total violation of the RES-CLF bound in (34) over
one complete step. If wε(T

ε
I (η, z)) ≤ 0, it implies that

Vε(T
ε
I (η, z)) is less than or equal to what would have resulted

if the RES-CLF bound had not been violated at all. As we
will see in the following theorem, we will in fact only require
wε(T

ε
I (η, z)) to be upper bounded by a positive constant for

exponential stability.
We first define the hybrid zero dynamics as the hybrid

dynamics (8) restricted to the surface Z in (6), i.e.,

HZ :

{
ż = p(0, z), z /∈ S ∩ Z,
z+ = ∆z(0, z

−), z− ∈ S ∩ Z.
(43)

We then have the following theorem:
Theorem 2: Let OZ be an exponentially stable hybrid pe-

riodic orbit of the hybrid zero dynamics H |Z (43) transverse
to S∩Z and the continuous dynamics of H (8) controlled by

Notations Model types
f, g true (unknown) nonlinear model

f̃ , g̃ nominal nonlinear model

f̄ , ḡ true (unknown) I-O linearized model
˜̄f, ˜̄g nominal I-O linearized model

TABLE I: A list of notations for different models used in
this paper. A true model represents the actual (possibly not
perfectly known) model of the physical system, while the
nominal model represents the model that the controller uses.
While most controllers assume the true model is known, the
robust controllers in this paper use the nominal models and
offer robustness guarantees to the uncertainty between the two
models.

a CLF-QP with relaxed inequality (25). Then there exists an
ε > 0 and an w̄ε ≥ 0 such that for each 0 < ε < ε, if the solu-
tion µε(η, z) of the CLF-QP (25) satisfies wε(T εI (η, z)) ≤ w̄ε,
then O = ι0(OZ) is an exponentially stable hybrid periodic
orbit of H .

Proof: See Appendix A.
Having presented the stability analysis for the QP controller

with relaxed CLF inequality, in the next Section, we will
explore the effects of model uncertainty and propose robust
QP controllers to guarantee stability, safety and constraints
under model uncertainty.

IV. PROPOSED ROBUST CONTROL BASED QUADRATIC
PROGRAMS

The controllers presented in Section II provide means of
an optimal control scheme that balances conflicting require-
ments between stability, state-based constraints and energy
consumption. It is a powerful method that has been deployed
successfully for different applications, for example Adaptive
Cruise Control [5], quadrotor flight [6], and dynamic walking
for bipedal robots [7], [8].

However, a primary disadvantage of the CBF-CLF-QP
controller is that it requires the knowledge of an accurate
dynamical model of the plant to make guarantees on stability
as well as safety. In particular, enforcing the CLF and CBF
conditions in the QP (33) requires the accurate knowledge
of the nonlinear dynamics f(x), g(x) to compute the Lie
derivatives in (3), (17) and (31). Therefore, model uncertainty
that is usually present in physical systems can potentially
cause poor quality of control leading to tracking errors, and
lead to instability [43], as well as violation of the safety-
critical constraints [9]. In this section, we will explore the
effect of uncertainty on the CLF-QP controller, input and state
constraints, and safety constraints enforced by the CBF-QP
controller and then proposed robust controllers based quadratic
programs to address those effects. Firstly, we will analyze the
effects of model uncertainty on the CLF condition.

A. Adverse Effects of Uncertainty on the CLF-QP controller

In order to analyze the effects of model uncertainty in our
controllers, we assume that the vector fields, f(x), g(x) of the
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real dynamics (1), are unknown. We therefore have to design
our controller based on the nominal vector fields f̃(x), g̃(x).
Then, the pre-control law (4) get’s reformulated as

u(x) = ũff (x) + (Lg̃Lf̃y(x))−1µ, (44)

with
ũff (x) := −(Lg̃Lf̃y(x))−1L2

f̃
y(x), (45)

where we have used the nominal model rather than the
unknown real dynamics.

Substituting u(x) from (44) into (2), the input-output lin-
earized system then becomes

ÿ = µ+ ∆1 + ∆2µ, (46)

where ∆1 ∈ Rm,∆2 ∈ Rm×m, are given by,

∆1 := L2
fy(x)− LgLfy(x)(Lg̃Lf̃y(x))−1L2

f̃
y(x),

∆2 := LgLfy(x)(Lg̃Lf̃y(x))−1 − I. (47)

Remark 5: In the definitions of ∆1,∆2, note that when
there is no model uncertainty, i.e., f̃ = f, g̃ = g, then ∆1 =
∆2 = 0.

Using F and G as in (10), the closed-loop system now takes
the form

η̇ = ˜̄f(η) + ˜̄g(η)µ, (48)

where

˜̄f(η) = Fη +

[
O
∆1

]
, ˜̄g(η) = G+

[
O
∆2

]
. (49)

In fact for ∆1 6= 0, the closed-loop system does not have an
equilibrium, and for ∆2 6= 0, the controller could potentially
destabilize the system (see [50]). This raises the question of
whether it’s possible for controllers to account for this model
uncertainty, and if so, how do we design such a controller.
In particular, the time-derivative of the CLF in (16) becomes
more complex and dependent on ∆1,∆2.

Again, because our controller can only use the nominal
model ˜̄f, ˜̄g in (48) and not the true model f̄ , ḡ as defined in (9)
(see Table I for different types of models), the Lie derivatives
of Vε with respect to the nominal model ˜̄f, ˜̄g will be as follows:

L ˜̄f
Vε = ηT (FTPε + PεF )η, (50)

L˜̄gVε = 2ηTPεG. (51)

Then, the true time-derivative of the CLF defined in (15) is:

V̇ε = Lf̄Vε + LḡVεµ

= L ˜̄f
Vε + 2ηTPε

[
0

∆1

]
︸ ︷︷ ︸

∆v
1

+L˜̄gVεµ︸ ︷︷ ︸
µv

+L˜̄gVε∆2µ︸ ︷︷ ︸
∆v

2µv

= L ˜̄f
Vε + ∆v

1 + (1 + ∆v
2)µv, (52)

where we have defined the following new scalar variables:
uncertainty ∆v

1 ∈ R, virtual control input µv ∈ R, and
uncertainty ∆v

2 ∈ R.

B. Robust CLF-QP

Having discussed the effect of model uncertainty on the
control Lyapunov function based controllers, we now develop
a robust controller that can guarantee tracking and stability
in the presence of bounded uncertainty. As we will see, both
stability and tracking performance (rate of convergence and
errors going to zero) are still retained for all uncertainty within
a particular bound. For uncertainty that exceeds the specified
bound, there is graceful degradation in performance.

With the presence of model uncertainty, the CLF condition
(14) now becomes:

V̇ε(η,∆
v
1,∆

v
2, µv) +

c3
ε
Vε ≤ 0. (53)

In general, we can not satisfy this inequality for all possible
unknown ∆v

1,∆
v
2 . To address this, we assume the uncertainty

is bounded as follows

|∆v
1| ≤ ∆v

1,max, |∆v
2| ≤ ∆v

2,max. (54)

Under this assumption, we have the following robust CLF
condition:

V̇ε(η,∆
v
1,∆

v
2, µv) +

c3
ε
Vε ≤ 0,

∀|∆v
1| ≤ ∆v

1,max, ∀|∆v
2| ≤ ∆v

2,max

⇔ max
|∆v

1 |≤∆v
1,max

|∆2|≤∆v
2,max

V̇ε(η,∆
v
1,∆

v
2, µv) +

c3
ε
Vε ≤ 0. (55)

It means that choosing µ that satisfies (55) implies (18)
for every ∆v

1,∆
v
2 satisfying |∆v

1| ≤ ∆v
1,max, |∆v

2| ≤
∆v

2,max. Then, our optimal robust control can
be expressed as the following min-max problem:

Robust CLF:

u∗(x) =argmin
u,µ,µv

µTµ (56)

s.t. max
|∆v

1 |≤∆v
1,max

|∆v
2 |≤∆v

2,max

V̇ε(η,∆
v
1,∆

v
2, µv) +

c3
ε
Vε ≤ 0

µv = L˜̄gVεµ (Robust CLF)

u = ũff (x) + (Lg̃Lf̃y(x))−1µ. (IO)

Note that, one advantage of CLF based control is to convert
the problem of driving a vector output η → 0 to the problem
of driving a scalar Vε(η)→ 0. Therefore, since Vε is a scalar,
we always have µv,∆

v
1,∆

v
2 in (52) being scalars. Then the

min-max optimization problem (56) can be expressed as a
quadratic program as follows:

max
|∆v

1 |≤∆v
1,max

|∆2|≤∆v
2,max

V̇ε(η,∆
v
1,∆

v
2, µv) +

c3
ε
Vε ≤ 0

⇔ max
|∆v

1 |≤∆v
1,max

|∆2|≤∆v
2,max

L ˜̄f
Vε + ∆v

1 + (1 + ∆v
2)µv +

c3
ε
Vε ≤ 0, (57)

and the above robust CLF condition holds if{
Ψmax

0 + Ψp
1µv ≤ 0

Ψmax
0 + Ψn

1µv ≤ 0
, (58)
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where

Ψmax
0 = L ˜̄f

V ε +
c3
ε
Vε + ∆v

1,max

Ψp
1 = 1 + ∆v

2,max,

Ψn
1 = 1−∆v

2,max. (59)

Thus the robust optimal CLF in (56) can be satisfied
using the following quadratic program based controller:

Robust CLF-QP:

u∗ =argmin
u,µ,µv

µTµ (60)

s.t. Ψmax
0 (η,∆v

1,max) + Ψp
1(∆v

2,max) µv ≤ 0,

Ψmax
0 (η,∆v

1,max) + Ψn
1 (∆v

2,max) µv ≤ 0,

µv = L˜̄gVεµ, (Robust CLF)

u = ũff (x) + (Lg̃Lf̃y(x))−1µ. (IO)

Remark 6: Note that since V (η) is a local CLF for the
nonlinear system (1) and the fact that V̇ depends continuously
on ∆v

1,∆
v
2 , there always exists µ satisfying (55) for a local

region around η = 0,∆v
1 = 0,∆v

2 = 0. Moreover, if
∆v

1,max,∆
v
2,max are chosen to be within this region, then the

above QP is guaranteed to be feasible. For QPs with additional
constraints we assume point-wise feasibility.

Remark 7: Note that ∆v
1,max,∆

v
2,max are design param-

eters for control design, and can be easily changed online.
While we do not present a principled way of choosing these
parameters, it must be noted that ∆v

1,max,∆
v
2,max can be

chosen based on knowledge of the expected uncertainty the
controller is to be designed to handle.

Having developed the robust version of the CLF-QP based
controller, we now incorporate constraints into the robust
control formulation. We note that this first formulation is for
non-robust constraints, i.e., these constraints are only evaluated
on the nominal model available to the controller. Thus this
control is valid and makes sense for only those constraints
that are not dependent on the true model.

The incorporation of constraints into the CLF-QP con-
troller required relaxation of the CLF condition (see [51]).
Similarly, here we relax the robust CLF condition to obtain,

Robust CLF-QP with Constraints:

u∗(x) = argmin
u,µ,µv,δ1,δ2

µTµ+ p1δ
2
1 + p2δ

2
2 (61)

s.t. Ψmax
0 (η,∆v

1,max) + Ψp
1(∆v

2,max) µv ≤ δ1,
Ψmax

0 (η,∆v
1,max) + Ψn

1 (∆v
2,max) µv ≤ δ2,

µv = L˜̄gVεµ, (Robust CLF)
Ac(x)u ≤ bc(x), (Constraints)

u = uff (x) + (LgLfy(x))−1µ. (IO)

Remark 8: It’s critical to note that the additional con-
straints in (61) are not robust, and that this method is only

applicable for constraints that are invariant to model uncer-
tainty. Constraints such as torque saturation, like in (26), are
invariant to model uncertainty since the control inputs are
computed directly from the nominal model f̃(x), g̃(x), and do
not depend on the real model f(x), g(x). However, constraints
that are invariant to the model uncertainty are not common,
and we will have to explicitly address and capture the effect
of uncertainty on constraints. We will address this in Section
IV-D.

C. Robust CBF

Following the same approach we use for the robust CLF,
we now analyze the effect of model uncertainty on the CBF
condition and then present our robust CBF controller.

Similar to what we have seen about the effect of uncertainty
on CLFs, we will now see the effect of uncertainty on CBFs.
We note that the time-derivative of the Barrier function in (32)
depends on the real model. Therefore we need to enforce the
following constraint given by (29):

Ḃ(x, f, g, u) = LfB(x) + LgB(x)u ≤ γ

B(x)
(62)

where ẋ = f(x) + g(x)u is the real system dynamic. As seen
in the case of control Lyapunov functions and constraints,
naively enforcing this barrier constraint using the nominal
model results in,

Ḃ(x, f̃ , g̃, u) = Lf̃B(x) + Lg̃B(x)u ≤ γ

B(x)
(63)

where ẋ = f̃(x) + g̃(x)u is the nominal system dynamics
known by the controller. Clearly due to model uncertainty,
or the difference between (f(x), g(x)) and (f̃(x), g̃(x)), the
constraint in (63) is different from the one in (62). In fact, as
analyzed in [9], this results in violation of the safety-critical
constraint established by the Barrier function.

We then define a virtual control input µb ∈ R such that the
time derivative of the CBF is

Ḃ(x, f̃ , g̃, u) = Lf̃B(x) + Lg̃B(x)u =: µb. (64)

We call this virtual input-output linearization (VIOL). The
CBF now takes the form of a linear system, Ḃ = µb, and
therefore the effect of uncertainty can be easily addressed
by using the same approach as with the robust CLF-QP. In
particular, similar to what we have done with CLF in Section
IV-A, the effect of model uncertainty on CBF transforms (62)
into the following form:

Ḃ(x,∆b
1,∆

b
2, µb) = LfB(x) + LgB(x)u

= µb + ∆b
1 + ∆b

2µb, (65)

with ∆b
1,∆

b
2 ∈ R and µb is defined based on the nominal

model f̃ , g̃:

µb = Lf̃B(x) + Lg̃B(x)u. (66)

The CBF condition (62) under model uncertainty becomes

Ḃ(x,∆b
1,∆

b
2, µb)−

γ

B(x)
≤ 0. (67)
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Because we developed the CLF and CBF having the similar
form of I-O linearized system, we now have a systematic way
to develop the Robust CBF-CLF-QP. Again, we will assume
that our model uncertainty is bounded, i.e.,

|∆b
1| ≤ ∆b

1,max, |∆b
2| ≤ ∆b

2,max. (68)

Then, we will have the robust CBF condition based on this
assumption as,

max
|∆b

1|≤∆b
1,max

|∆b
2|≤∆b

2,max

Ḃ(x,∆b
1,∆

b
2, µb)−

γ

B(x)
≤ 0. (69)

Note that choosing µb that satisfies (69) implies x ∈ C or
B(x) ≥ 0 for every ∆b

1,∆
b
2 satisfying |∆b

1| ≤ ∆b
1,max, |∆b

2| ≤
∆b

2,max. Here, C is as defined in (27) and B(x) is as defined
in (32). Note that the robust CBF condition in (69) is affine
in µb and can be expressed as

max
|∆b

1|≤∆b
1,max

|∆b
2|≤∆b

2,max

Ψb
0 + Ψb

1µb ≤ 0 (70)

where “b” refers to the CBF constraint, and

Ψb
0(x,∆b

1) := ∆b
1 −

γ

B(x)
,

Ψb
1(x,∆b

2) := 1 + ∆b
2, (71)

where the above arises due to the time-derivative of the CBF
from (65). Since Ψb

0, Ψb
1 are affine with respect to ∆b

1, ∆b
2,

and with the assumptions on the bounds on the uncertainty in
(68), the robust CBF condition (70) will hold if the following
two inequalities hold

Ψb
0,max(x) + Ψb

1,p(x)µb ≤ 0,

Ψb
0,max(x) + Ψb

1,n(x)µb ≤ 0. (72)

where

Ψb
0,max := ∆b

1,max −
γ

B(x)
, (73)

Ψb
1,p := 1 + ∆b

2,max, (74)

Ψb
1,n := 1−∆b

2,max, (75)

We then can incorporate the above robust CBF conditions
into the robust CLF-QP (61) resulting in a quadratic program.

Remark 9: While we use reciprocal control barrier function
(32) in this paper, our proposed approach on robust CBF does
not depend on the choice of barrier function. To be more
specific, the virtual control input µb (64) and the effect of
model uncertainty on CBF (65) are defined for a general
nonlinear function B(x).

Having robustified CLFs and CBFs, we will now apply this
to obtain robust constraints.

D. Robust Constraints

As developed in Section II, the input and state constraints
can be expressed as (24). These constraints depend on the

model explicitly and are constraints on the real system dy-
namics. We can thus rewrite the constraints showing explicit
model dependence as,

Ac(x, f, g)u ≤ bc(x, f, g). (76)

If a controller naively enforces these constraints using the
nominal model available to the controller, the controller will
enforce the constraint

Ac(x, f̃ , g̃)u ≤ bc(x, f̃ , g̃). (77)

Clearly, the constraint in (77) is different from the desired
constraint we want to enforce on the real model (76). For
instance, to enforce a contact force constraint, if the controller
computes and enforces the contact force constraint using the
nominal model, there is absolutely no guarantee that the actual
contact force on the real system satisfies the constraint.

Remark 10: As noted earlier, certain constraints do not de-
pend on the model at all. In such cases, model uncertainty does
not affect the constraint. One example of such a constraint is
a pure input constraint, such as u(x) ≤ umax. Expressing this
constraint in the form of (76) results in Ac = I, bc = umax,
which clearly is not dependent on the model.

To robustify the “constraints”, we can use a similar method
as we did for the control barrier functions. We start by
reformulating the constraints (76) by using Virtual Input-
Output Linearization (VIOL) for to obtain,

Ac,i(x, f, g)u− bc,i(x, f, g) =: µc,i, (78)

and then enforce
µc,i ≤ 0, (79)

where the index i indicates the ith constraints in (76).
With model uncertainty, we now have,

Ac,i(x, f, g)u− bc,i(x, f, g) = µc,i + ∆c,i
1 + ∆c,i

2 µc,i

=: µ̄c,i(µc,i,∆
c,i
1 ,∆c,i

2 ), (80)

with ∆c,i
1 ,∆c,i

2 ∈ R and the virtual input µc,i is now defined
based on the nominal model f̃ , g̃:

µc,i = Ac,i(x, f̃ , g̃)u− bc,i(x, f̃ , g̃). (81)

The robust constraint now becomes

µ̄c,i(µc,i,∆
c,i
1 ,∆c,i

2 ) ≤ 0. (82)

Once again, we make the assumption on bounded uncer-
tainty,

|∆c,i
1 | ≤ ∆c,i

1,max, |∆c,i
2 | ≤ ∆c,i

2,max, (83)

such that the robust constraint condition becomes,

max
|∆c,i

1 |≤∆c,i
1,max

|∆c,i
2 |≤∆c,i

2,max

µ̄c,i(µc,i,∆
c,i
1 ,∆c,i

2 ) ≤ 0. (84)

Similar to robust CLF and robust CBF, the above robust
constraints condition is affine in µc,i and can be expressed as

max
|∆c,i

1 |≤∆c,i
1,max

|∆c,i
2 |≤∆c,i

2,max

Ψc,i
0 + Ψc,i

1 µc,i ≤ 0 (85)
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where “(c, i)” refers to the ith constraint, and

Ψc,i
0 (x,∆c,i

1 ) := ∆c,i
1 ,

Ψc,i
1 (x,∆c,i

2 ) := 1 + ∆c,i
2 , (86)

where the above arises due to the form of the constraints in
(80). The same procedure used for the robust CBF in the
previous section can be applied for the robust constraints as
well to show how the max inequality gets converted to a set of
linear inequalities that are enforced by a quadratic program.

E. Robust CBF-CLF-QP with Robust Constraints

We finally can unify the robust CLF for stability, robust CBF
for safety enforcement, and the robust constraints under model
uncertainty to obtain the following unified robust controller.

Robust CBF-CLF-QP with Robust Constraints:

u∗(x) = (87)

argmin
u,µ,µv,µb,µc,δ

µTµ+ pδ2

s.t. max
|∆v

1 |≤∆v
1,max

|∆v
2 |≤∆v

2,max

V̇ε(η,∆
v
1,∆

v
2, µv) +

c3
ε
Vε ≤ δ,

L˜̄gVεµ = µv, (Robust CLF)

max
|∆b

1|≤∆b
1,max

|∆b
2|≤∆b

2,max

Ḃ(x,∆b
1,∆

b
2, µb)−

γ

B(x)
≤ 0,

Lf̃B(x) + Lg̃B(x)u = µb, (Robust CBF)

max
|∆c

1|≤∆c
1,max

|∆c
2|≤∆c

2,max

µ̄c(µc,∆
c
1,∆

c
2) ≤ 0,

Ac(x)µ− bc(x) = µc,
(Robust Constraints)

u = ũff (x) + (Lg̃Lf̃y(x))−1µ. (IO)

Having presented our proposed optimal robust controller
that can address stability and strictly enforce constraints under
model uncertainty, we now validate our controller in simula-
tions on a bipedal robot and experiments on a spring cart.

V. SIMULATION AND EXPERIMENTAL VALIDATION

A. RABBIT Bipedal Robot

To demonstrate the effectiveness of the proposed robust
CBF-CLF-QP controller, we will conduct numerical simula-
tions on the model of RABBIT, a planar five-link bipedal
robot. Further description of RABBIT and the associated
mathematical model can be found in [52, 53].

We consider model uncertainty in bipedal robotic walking
by adding an unknown heavy load to the torso of the RABBIT
robot to validate the performance of our proposed robust
controllers. We will also require enforcement of contact force
constraints (state constraints) and foot-step location constraints
(safety constraints) in the presence of the model uncertainty.

In the following simulations, we run an offline optimization
process to generate a walking gait for the nominal system.

This results in a set of outputs (virtual constraints) that need
to be regulated to zero by the controller. Although the offline
optimization is on the nominal system, as we will see, the
robust controller is able to guarantee enforcement of the
virtual constraints on the true model while subject to input
constraints, contact force constraints, safety constraints, and
model uncertainty.

1) Dynamic Walking of Bipedal Robot while Carrying
Unknown Load, subject to Contact Force Constraints: The
problem of contact force constraints is very important for
robotic walking, as any violation of contact constraints would
cause the robot to slip and fall. We design our nominal walking
gait so as to satisfy contact constraints. However, we cannot
guarantee this constraint once there is a perturbation from the
nominal walking gait. Although the feedback controller (for
example CLF-QP), will drive any error back to the periodic
gait, however there is no way to enforce the contact force
constraint. In our simulation, in addition to model uncertainty,
we will introduce a small perturbation in initial configuration
of the robot , resulting in an initial CLF V0 = ηT0 Pη0 = 5.8
(see Fig.(1)). We will compare three different controllers,

I: CLF-QP
II: CLF-QP with Constraints (Contact Force Constraints)
III: Robust CLF-QP with Robust Constraints

(88)

We also enforce input saturation constraints for all three
controller in (88). However, since this constraint doesn’t
depend on the system model, a robust version for the constraint
is not necessary.

Three simulation cases with different loads carried on the
torso of the robot are conducted:

Case 1: mload = 0 [kg]
Case 2: mload = 5 [kg] (16%)
Case 3: mload = 15 [kg] (47%)

(89)

We consider contact force constraints as follows. Let Fhst
and F vst be the horizontal and vertical contact force between
the stance foot and the ground, in order to avoid slipping
during walking, we will have to guarantee:

F vst(x) ≥ δN > 0 (90)∣∣∣∣Fhst(x)

F vst(x)

∣∣∣∣ ≤ kf (91)

where δN is a positive threshold for the vertical contact force,
and kf is the friction coefficient. In our simulation, we picked
δN = 0.1mrobot and kf = 0.8, with mrobot = 32[kg] being
the weight of the robot.

As we can see from Fig.1, although we just generate a
small initial perturbation, the controller I (CLF-QP) without
considering contact force constraints still violated the friction
constraint with |F/N |max ' 2.4, while the controller II (CLF-
QP with constraints) can handle this case well. However, with
a small model uncertainty (adding mload = 5[kg] to the torso),
the controller B fails with the friction coefficient |F/N |max '
1.1. Interestingly, in this case the robust CLF-QP with robust
contact force constraints controller not only guarantees a
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Case 2: mload = 5 [kg]
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Case 3: mload = 15 [kg]

Time (s)
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CLF-QP CLF-QP with Constraints Robust CLF-QP with Robust Constraints

Fig. 1: Three steps of walking of a bipedal robot while carrying an unknown load with contact force constraints. The figure
illustrates the tracking performance directly through the CLF (column 1), norm of the control inputs (column 2), non-negative
vertical ground reaction force constraint (column 3) and friction cone constraints of being less than 0.8 (column 4). Even in the
nominal case of NO uncertainty, the CLF-QP controller fails (the robot slips) due to violation of the contact force constraints
(as seen in the rightmost figure of Case 1). The CLF-QP with Constraints (Contact Force Constraints) works well with perfect
model but fails with only 5 kg of load (as seen in the violation of the friction constraints in the rightmost figure of Case 2).
The Robust CLF-QP with Robust Constraints maintains both good tracking performance and contact force constraints under
up to 15 kg of load (47% of the robot weight). The other two controllers are unstable in this case.

very good friction constraints with |F/N |max ' 0.3, but
also has better tracking performance. With mload = 15[kg],
while the two controllers I (CLF-QP) and II (CLF-QP with
constraints) become unstable and fail in the first walking step,
the controller III (Robust CLF-QP with robust constraints)
still works well with |k|max ' 0.4. Especially, we can notice
from the figures of ‖u‖ that the proposed robust CLF-QP with
robust constraints has a much better performance in both cases,
its range of control inputs is nearly the same with those of the
rest two controllers. In summary, we can conclude that the
proposed robust QP offers a novel method that can increase
the robustness of both stability and constraints while using
the same range of control inputs with prior controllers. These
properties will be further strengthened in the next interesting
application for bipedal robotic walking with safety-critical
constraints.

2) Dynamic Walking of Bipedal Robot while Carrying Un-
known Load, subject to Contact Force Constraints and Foot-
Step Location Constraints: For validating our proposed con-
troller, we will also test with the problem of footstep location
constraints when the robot carries an unknown load on the
torso. The control methodology for this problem with perfect

model can be found in [7]. We will run 100 simulations.
For each simulation, the unknown load was chosen randomly
between 5-15 kg, the desired footstep locations for 10 steps
were chosen randomly between 0.35-0.55 m (the nominal
walking gait has a step length of 0.45 m). Because the CLF-QP
cannot handle footstep location constraints, the four following
controllers will be compared:


I :CBF-CLF-QP (Foot-Step Placement)
II: CBF-CLF-QP with Constraints (Friction Constraints)
III: Robust CBF-CLF-QP
IV: Robust CBF-CLF-QP with Robust Constraints

(92)

As you can see from Fig.2, the performance of our proposed
robust CBF-CLF-QP dominates that of the CBF-CLF-QP
(97% of success in comparision with 2%). This result not only
strengthens the effectiveness of the proposed controller, but it
also emphasizes the importance of considering robust control
for safety constraints because a small model uncertainty can
cause violations of such constraints and thereby no longer
guaranteeing safety.
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Fig. 2: Dynamic Walking of Bipedal Robot while Carrying
Unknown Load, subject to Contact Force Constraints and
Foot-Step Location Constraints. 100 random simulations were
tested. For each simulation, the unknown load was choose
randomly between 5-15 kg, the desired footstep locations
for 10 steps were choose randomly between 0.35-0.55 m.
The same set of random parameters was tested on the four
controllers, where the four controller was specified in (92).

Fig. 3: Dynamic bipdal walking while carrying unknown load,
subject to torque saturation constraints (input constraints), con-
tact force constraints (state constraints), and foot-step location
constraints (safety constraints). Simulation of the Robust CBF-
CLF-QP with Robust Constraints controller for walking over
10 discrete foot holds is shown, subject to model uncertainty
of 15 Kg (47 %). A video of the simulation is available at
http://youtu.be/tT0xE1XlyDI.

Figures 3, 4, 5, illustrate one of the runs where the max-
imum load of 15 Kg (47% of robot mass) was considered.
Stick figure plot, CBF constraints, vertical contact force, and
friction constraint plots are shown. Note that, the simulations
were artificially limited to 10 steps, to enable fast execution
of 100 runs for each controller. Simulations for larger number
of steps were also successful as well, but are not presented
here due to space constraints.

Time (s)
0 1 2 3 4 5 6
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0.8

1

h1(x) h2(x)

Fig. 4: Dynamic walking of bipedal robot while carrying un-
known load of 15 Kg (47 %). The CBF constraints, h1(x) ≥ 0
and h2(x) ≥ 0 defined in [7], guarantee precise foot-step
locations. The figure depicts data for 10 steps of walking.
As can be clearly seen, the constraints are strictly enforced
despite the large model uncertainty.
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(a) Vertical Contact Force: N(x) > δN , (δN = 0.1mg).
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(b) Friction Constraint: |F/N | ≤ kf , (kf = 0.8)

Fig. 5: Dynamic walking of bipedal robot while carrying
unknown load of 15 Kg (47 %). (a) Vertical contact force
constraint and (b) friction constraint are shown for 10 steps
walking. As is evident, both constraints are strictly enforced
despite the large model uncertainty.
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Fig. 6: Schematic of experiment setup for the spring-cart
system.

B. Experimental Results on Spring-Cart System

Having presented numerical results of our proposed control
method for bipedal robots, we next present experimental
validation for the method on a rectilinear spring-cart system,
as shown in Fig. 7. It must be noted that the experiments on a
rectilinear spring-cart system are connected to the simulations
with a bipedal robot. Since our simulations consider nonlinear

http://youtu.be/tT0xE1XlyDI
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Fig. 7: Experimental results on the spring-mass system. The goal is to drive the cart to the target location of 2 cm, while
enforcing the safety constraint that the cart does not cross 1 cm. The controller just uses the nominal model as illustrated
in Case 1 for all the 6 different cases. Model uncertainty is introduced for Cases 2 in the form of an added unknown mass.
Additionally for Case 3, a perturbation is introduced in the form of shaking the table. For Case 4, in addition to the unknown
mass, an unkown dynamics is introduced in the form of another cart that is connected through a spring. Additionally for Cases
5 and 6, perturbations are introduced in the form of manually shaking the table and shaking the second cart respectively. In
all cases, the proposed robust controller still enforces the strict safety-critical constraint and maintains the cart position under
1 cm. A video of the experiment is available at https://youtu.be/g1UewP4R8L4.

systems with IO linearization controllers and safety-constraints
with relative-degree two, our preliminary experiments are thus
with linear systems with relative-degree two safety-constraints.
Furthermore, with this experimental result, we will perturb
the system with different types of model uncertainties (see
Fig. 7). It therefore can represent model uncertainty in the IO
linearized system discussed in Section IV. Future work will
consider experiments with bipedal systems.

For this experiment, our control problem is to track desired
set-point (x → xd = 2 [cm]) by using a CLF, and guarantee
state-dependent constraint (x ≤ xmax = 1 [cm]) by using a
CBF, where x is the position of Cart 1.

The experimental setup of the rectilinear spring-cart system
(ECP Model 210) is described in Fig 6. Our controller is
implemented using LabVIEW, wherein we call a custom-
generated C++ code that implements a fast QP solver. This
QP solver code is autogenerated using CVXGEN [46]. The
controller runs at 100 Hz on a LabVIEW PXI DAQ and
outputs the control input to the ECP system. In particular,
the control input is sent to a FPGA board in the PXI DAQ,
which then generates and outputs an analog driving voltage
(through a 16-bit Digital-to-Analog Converter) to the current
amplifier in the ECP system. This amplifier generates the
required current to drive the motor which in turn produces
a torque. For rectilinear systems this torque is converted to
a linear force through a rack and pinion mechanism. The
motion of the moving cart is measured by an encoder and
this information in encoder counts is acquired by the FPGA
board in the PXI DAQ and sent to our controller via the host
LabVIEW software.

Fig.7 compares the performance of two controllers CBF-

CLF-QP (dotted blue line) and Robust CBF-CLF-QP (red line)
under six different cases. Experimental setup for each case
and corresponding result are shown in Fig.7. Note that the
two controllers were designed based on the nominal model
indicated in case 1 (a single cart) and we generated model
uncertainty from case 2-6 by adding masses, shaking table,
adding spring and another cart, etc.

From Fig.7, we can observe clearly that while in case 1
(without model uncertainty), the two controllers have almost
the same performance, from Cases 2-6, our proposed robust
CBF-CLF-QP outperformed the nominal CBF-CLF-QP. To be
more specific, the robust CBF-CLF-QP controller maintains
the constraint (x ≤ 1(cm)) very well, the nominal CBF-CLF-
QP fails in all last 5 cases.

C. Discussion

The proposed controller has a few shortcomings. Since
we are solving for the control input under the worst-case
(bounded) model uncertainty assumption, the control could be
aggressive. This is a typical drawback of robust controllers.
Moreover, as mentioned in Remark 6, we only have local fea-
sibility of the QP. In particular, if we increase the bounds of the
uncertainty significantly, i.e., large values of ∆max

1 ,∆max
2 , the

optimization solves for the control input for the worst case, and
could potentially lead to infeasibility of the QP. Thus, there is
a trade-off between robustness and feasibility of the controller.
If we choose a small bound on the model uncertainty, it could
lead to poor tracking stability and potential violation of the
safety constraint under mild model uncertainty that exceeds
the bounds. In contrast, if we assume the bound of model
uncertainty being too large the QP could become infeasible.

https://youtu.be/g1UewP4R8L4
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Therefore, in the future, a more formal design of the bounded
uncertainty assumption should be explored.

VI. CONCLUSION

We have presented a novel Optimal Robust Control tech-
nique that uses control Lyapunov and barrier functions to suc-
cessfully handle significantly high model uncertainty for both
stability, input-based constraints, state-dependent constraints,
and safety-critical constraints. We validated our proposed con-
troller on different problems both numerically and experimen-
tally, which show the same property: under model uncertainty,
our Robust Control based QP, has much better tracking per-
formance and guarantees desired constraints while other types
of QP controllers using Lyapunov and barrier functions not
only have large tracking errors but also violate the constraints
with even a small model uncertainty. We show numerical
validations on dynamically walking of bipedal robots while
subject to torque saturation and contact force constraints in the
presence of model uncertainty, and dynamically walking with
precise foot placements over a terrain of stepping stones while
subject to model uncertainty. We also experimentally validate
our controller on a spring-cart system subject to significant
model uncertainty and perturbations. Future directions involve
experimental validations on bipedal robots and other dynamic
robotic systems.

APPENDIX A
PROOF OF THEOREM 2

In this Appendix, we will present a detailed proof of
Theorem 2 about the stability of CLF based controller with
relaxed RES-CLF condition for hybrid systems.

A large part of this proof directly follows from results and
proofs in [45], that is used to prove the stability of the hybrid
system under the RES-CLF condition. In our case of relaxed
CLF, we will state the additional condition under which the
proof is still valid.

Let ε > 0 be fixed and select a Lipschitz continuous
feedback uε of the relaxed CLF-QP controller (25). From [45,
(56)], we have T εI (η, z) is continuous (since it is Lipschitz)
and therefore there exists δ > 0 and ∆T > 0 such that for all
(η, z) ∈ Bδ(0, 0) ∩ S,

T ∗ −∆T ≤ T εI (η, z) ≤ T ∗ + ∆T, (93)

where T ∗ is the period of the orbit OZ .
In order to make use of the proof of the exponential stability

for the standard RES-CLF controller in [45], we will present
the condition for bounding the system states η(t) at the time-
to-impact T εI (η, z) in the following lemma.

Lemma 1: Let OZ be an exponentially stable periodic orbit
of the hybrid zero dynamics H |Z (43) transverse to S∩Z and
the continuous dynamics of H (8) controlled by a CLF-QP
with relaxed inequality (25). Then for each ∆T > 0 and ε > 0,
there exists an w̄ε ≥ 0 such that, if the solution uε(η, z) of the
CLF-QP with relaxed inequality (25) satisfies wε(T εI (η, z)) ≤
w̄ε, then

‖η(t)‖
∣∣∣∣
t=T ε

I (η,z)

≤
√
c2
c1

2e−1

(T ∗ −∆T )c3
‖η(0)‖. (94)

Proof: From (41) and because wε(T
ε
I (η, z)) ≤ w̄ε, it

implies that

‖η(t)‖
∣∣∣∣
t=T ε

I (η,z)

≤
√
c2
c1

1

ε
e−

c3
2εT

ε
I (η,z)+ 1

2wε(T ε
I (η,z))‖η(0)‖

≤
√
c2
c1

1

ε
e−

c3
2εT

ε
I (η,z)+ 1

2 w̄ε‖η(0)‖ (95)

Then, from (93), we have,

‖η(t)‖
∣∣∣∣
t=T ε

I (η,z)

≤
√
c2
c1

1

ε
e−

c3
2ε (T∗−∆T )+ 1

2 w̄ε‖η(0)‖. (96)

Furthermore, because e−α ≤ e−1/α,∀α ≥ 0, we have:

1

ε
e−

c3
2ε (T∗−∆T ) ≤ 2e−1

(T ∗ −∆T )c3
. (97)

Then it implies that there exists a c̄3 ≤ c3 such that:

1

ε
e−

c3
2ε (T∗−∆T ) ≤ 1

ε
e−

c̄3
2ε (T∗−∆T ) ≤ 2e−1

(T ∗ −∆T )c3
. (98)

The above inequality follows by the fact that 1
εe
− c3

2ε (T∗−∆T )

is a monotonically decreasing function of c3, and that for any
real numbers a ≤ b, there always exists a number c ∈ [a : b]
such that a ≤ c ≤ b. To be more specific, let c̄a3 be the solution
of:

1

ε
e−

c̄a3
2ε (T∗−∆T ) =

2e−1

(T ∗ −∆T )c3
, (99)

then any c̄3 ∈ [c̄a3 : c3] will satisfy (98).
We can then define

w̄ε :=
c3 − c̄3
ε

(T ∗ −∆T ) ≥ 0, (100)

⇒− c3
2ε

(T ∗ −∆T ) +
1

2
w̄ε = − c̄3

2ε
(T ∗ −∆T ). (101)

Next, plugging (101) into (96), we have,

‖η(t)‖
∣∣∣∣
t=T ε

I (η,z)

≤
√
c2
c1

1

ε
e−

c̄3
2ε (T∗−∆T )‖η(0)‖, (102)

Vε(η(t))
∣∣
t=T ε

I (η,z)
≤ e−

c̄3
ε (T∗−∆T )Vε(η(0)). (103)

We now complete the proof of Lemma 1 by substituting (98)
into (102) to obtain (94). The solution of w̄ε can be found in
(100).

Using Lemma 1, we then can follow the same protocol of
the proof in [45, Theorem 2] until equation [45, (64)].

We then define β1(ε) = c2
ε2L

2
∆X

e−
c3
ε (T∗−∆T ) and β̄1(ε) =

c2
ε2L

2
∆X

e−
c̄3
ε (T∗−∆T ) where L∆X

, defined after [45, (59)],
is the Lipschitz constant for ∆X . Because β1(0+) :=
limε↘0 β1(ε) = 0, then there exists an ε such that

β1(ε) < c1 ∀ 0 < ε < ε. (104)

and for each ε, if we define c̄b3 be the solution of

c2
ε2
L2

∆X
e−

c̄b3
ε (T∗−∆T ) = c1, (105)

then for c̄3 ∈ (c̄b3 : c3], we have,

β1(ε) ≤ β̄1(ε) < c1. (106)
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However, as presented in proof of Lemma 1, c̄3 also needs to
satisfy (98). Therefore, in order to guarantee the satisfaction
of both (98) and (106), c̄3 needs to be chosen in the following
set

c̄3 ∈ {[c̄a3 : c3] ∩ (c̄b3 : c3]}, (107)

where c̄a3 and c̄b3 are defined in (99) and (105) respectively.
The rest of the proof follows from the proof of [45, Theorem

2] using β̄1 instead of β1. We finish our proof with the value
of w̄ε determined via (100), in which the feasible set of c̄3 is
defined in (107).
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