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Safety-Critical Geometric Control for Systems on
Manifolds Subject to Time-Varying Constraints

Guofan Wu and Koushil Sreenath

Abstract—We address the safety-critical control problem for
systems whose dynamics evolve on manifolds using the concepts of
control Lyapunov functions (CLFs) and control Barrier functions
(CBFs). We first extend the concepts of CLFs and CBFs from
Cartesian spaces to manifolds, resulting in geometric CLFs and
CBFs. We then formulate a state-dependent online quadratic
program (QP) that imposes the constraints of the geometric CLF
and geometric CBF to compute the control input. The resulting
geometric CBF-CLF-QP controller trades-off between tracking
stability and critical safety. We test the controller’s performance,
with both time invariant and time-varying safety constraints, on
simple mechanical systems such as, a 3D moving point mass, a
spherical pendulum, and a 3D pendulum.

Keywords—Geometric Control Lyapunov Function, Geometric
Control Barrier Function, Time-varying Safety Critical Control.

I. INTRODUCTION

EVERY robotic system has inherent constraints that need
to be explicitly considered both in the design as well as

implementation of controllers. These constraints could either
be (a) imposed by limits of physical hardware systems, such as
work-space constraints, joint position and velocity constraints,
and input constraints; or (b) imposed by the controller for safe
operation of the system, such as collision constraints, contact
force constraints, range constraints, etc. These constraints typ-
ically manifest themselves as a combination of constraints on
the inputs and states, and their enforcement becomes critically
necessary for maintaining safety of the system.

Designing controllers that provide guarantees of enforcing
safety-critical constraints is challenging. Further adding to
the challenge is the fact that a significant number of robotic
systems have dynamics that evolve on non-Euclidean spaces,
whose configuration spaces are nonlinear manifolds. Most
control design is carried out on local parametrizations of these
nonlinear spaces, resulting in local results of stability and
local constraint enforcement. Designing controllers directly
on nonlinear manifolds to obtain global results of stability
while enforcing constraints globally is challenging. Compli-
cating matters even further is the fact that several of these
safety-critical constraints are typically time-varying, presenting
further challenges for control design.

G. Wu and K. Sreenath are with the Department of Mechanical
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, email:
{gwu,koushils}@andrew.cmu.edu.

This work is supported in part by the Google Faculty Research Award and
in part by NSF grants IIS-1464337, CMMI-1538869, IIS-1526515.

A. Background
Over the past few decades, there have been several ap-

proaches towards solving the constrained control problem.
Model predictive control (MPC) is a popular technique for
constrained control problems that solves an online optimal
control problem over a finite-horizon to handle input and state
constraints in control design [10], [36], [33], with sufficient
conditions for the stability presented in [23], [13]. However,
MPC performance is determined by the size of the finite-
horizon and the cost function for optimization, and choosing
good candidates for these is challenging. Moreover, for high-
dimensional systems with fast dynamics, solving a nonlinear
programming problem at real-time speeds is not always fea-
sible leading to latency issues that could lead to instability.
Typical solutions to this involve simplifying the dynamics by
considering a linear approximation.

Another approach to address constraints point-wise in time
is to adjust the reference command using a pre-filter called
reference governor [5]. However this typically requires online
forward integration of the dynamics which is computationally
expensive. Recent results in reduced-order reference governors
[14] decompose the states into slow and fast dynamics and
implement the reference governor based only on the slow states
variables thereby reducing computational complexity, however,
this comes at the cost of a smaller domain of attraction.

The safety-critical control problem has also been addressed
through reachability analysis, wherein an unsafe region is
propagated backwards in time based on a worst case analysis
with model uncertainty considered as a two-player differential
game [4], [22], [24], [1]. The evolving dynamics of this
unsafe region is determined by a time-invariant Hamilton-
Jacobi-Issacs (HJI) partial differential equation [22]. While the
method of reachability analysis provides formal guarantees, its
computationally expensive and does not scale well for high-
dimensional systems with fast dynamics.

Motivated by the idea of forward invariance in stability
theory, the concept of barrier functions (BF) has been estab-
lished to realize safety-critical control [27], [37], [32], [31],
[17], [16], wherein the unsafe set is outside a level set of the
barrier function. Logarithmic barrier functions have also been
considered in [21], [32] to handle input and output constraints,
alongside safety constraints. Barrier functions have also been
used to re-target the pose of satellites subject to cone inclusion
and exclusion constraints [34], [16], [17]. Barrier functions
have also been added to the objective functions to handle
constrained MPC problems [36]. However, the concept of the
barrier function considered here is limited since the imposed
condition, on the time-derivative of the barrier function be-
ing non-negative, does not allow the state to transverse the
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boundary of a level set of the barrier function. This results
in an extremely conservative trajectory for the corresponding
closed-loop system, even when the system state is far away
from the unsafe region. Furthermore, finding a barrier function
for a particular safe set is challenging.

The search for a barrier function with desirable properties
on its time-derivative is simplified by the introduction of the
concept of a control Barrier function (CBF), where the control
inputs explicitly appear in the derivative of the barrier function
[35]. Furthermore, to alleviate the conservative condition of the
time-derivative of the barrier function being non-negative, [3]
relaxes and proposes a new condition for the time-derivative of
the barrier function to be negative while still guaranteeing the
enforcement of the safety constraint. Similar to the concept of
Control Lyapunov Function (CLF) in [29], [9], we are able to
generate the control input which can account for the safety
constraints through CBF-based optimization. [28] proposes
the concept of Control Lyapunov Barrier Function (CLBF)
which accounts for both safety constraints and tracking goal
at the same time. [3] imposes the conditions of CLF and CBF
separately as the constraints of a state-dependent quadratic
programming (QP) through relaxation of the CLF condition
allowing the reference trajectory to be tracked to be unsafe.

Furthermore, several typical mechanical systems have dy-
namics that evolve on non-Euclidean manifolds. Traditional
dynamical models and controllers for such systems are con-
structed using local parametrizations, such as Euler angles,
resulting in dynamics with singularities and controllers that are
not valid globally [8]. To circumvent this dilemma, geometric
control methods have been introduced to obtain almost-global
controllers on manifolds [7], [19], [18], [20], [30]. Geometric
controllers have been widely applied to fully actuated mechani-
cal systems [7] and even underactuated system such as quadro-
tors [19], [20], [30]. However, these geometric controllers
typically do not take into account input, state, or safety-critical
constraints. Recent results in [15], [12] address geometric
constraints on SO(3) using geometric reference governors and
model predictive control. However, these methods require the
discretization of the system and variation integration of the
discrete dynamics, which are hard for high-dimensional or
coupled nonlinear systems.

Having presented a brief overview of prior related work, we
next tabulate the main contributions of our paper.

B. Contributions
Our paper is inspired by the recent work in CLFs and CBFs

[3], [9], [2], [26] and builds off our preliminary results in [38].
The control architecture is based on a state-dependent online
QP that enforces constraints of both CLFs and CBFs to make
a trade-off between safety constraints and tracking goal. The
major contributions of this paper are listed below:
● We extend the concept of CBFs to general Riemannian

manifolds using coordinate-free formulations for the dy-
namics on manifolds and associated configuration errors
and transport maps.

● The concept of a time-varying CBF is introduced for
fully actuated, simple mechanical systems to allow en-

forcing time-varying safety constraints on Riemannian
manifolds.

● We formulate a general method to construct CBF can-
didates based on time-varying safety regions in the
configuration space, which result in geometric safety
constraints with relative-degree 2.

● A geometric CBF-CLF-QP based controller is proposed
to realize safety-critical trajectory tracking for fully-
actuated simple mechanical systems at real-time speeds.
Numerical validations are presented for the following
three systems: a 3D-moving point mass, a spherical
pendulum, and a 3D pendulum, with both time-invariant
and time-varying safety constraints. The corresponding
configuration spaces are R3,S2, SO(3), ranging from
flat Cartesian space to non-flat Lie group.

C. Organization
The remainder of this paper is organized as follows: Sec-

tion II introduces the necessary concepts about CLF, CBF
and geometric control. Section III describes a general control
design method on simple mechanical systems whose config-
uration space is Riemann manifold. Note that the method
provided here handles both the time-invariant and time-varying
constraints. Section IV, VI and V present simulation results
of this control method on three typical systems mentioned
previously. Section VII summarizes the overall content.

II. MATHEMATICAL PRELIMINARY

This section gives a detailed introduction on the relevant
concepts in geometric control. Basic knowledge of differential
geometry is assumed. Some intuitive examples are provided
to help better understand these concepts. We refer to [11] for
more details on differential geometry, [7] for more details on
geometric control, and [2], [3] for a more details on control
Lyapunov and control Barrier functions. Table I summarizes
all the symbols used in this paper.

A. Fundamentals of Geometric Control
Given a mechanical system which evolves on a sufficiently

smooth manifold M , we denote its configuration variable as q,
the tangent space at q as TqM and the tangent bundle as TM =
∪TqM . Then the state space representation of this system is
given by (q, q̇) ∈ TM .

Further, a vector field is a mapping from each point q ∈M
to a vector in the corresponding TqM . While, an one form
ω ∶ TqM → R defines a mapping from the tangent space at
each point q ∈M to the real number. A common one form is
the differential of a smooth function f ∶M → R given by

⟨df,X⟩q = lim
t→0

f(α(t)) − f(q)
t

,

where the curve α ∶ [−1,1] → M satisfies α(0) = q ∈
M,α′(0) =X ∈ TqM .

Suppose we define a smooth function on the unit sphere
S2 ⊂ R3 as f(q) = q ⋅ n, q ∈ S2. Then, from multi-variate
calculus, its differential with a tangent vector q̇ ∈ TqM is given
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TABLE I: NOMENCLATURE

Riemannian Geometry Concepts

M A Riemannian manifold representing configuration space.

m The dimension of M

TqM The tangent space at the point q ∈M .

T ∗qM The cotangent space at the point q ∈M .

TM The tangent bundle of M representing state space as
∪q∈MTqM .

T ∗M The cotangent bundle of M defined as ∪q∈MT ∗qM .

dig An one-form in M representing the differential of g with
respect to the ith argument where i ∈ {1,2}.

didjg A two form in M which is the exterior derivative of djg
with respect to the ith argument where i, j ∈ {1,2}.

X,Y Smooth vector fields defined on M .

⟨dig,X⟩q The value of one-form dgi of the vector X at point q.

⟪⋅, ⋅⟫q A Riemannian metric which introduces an inner product to
the tangent space TqM at each q ∈M .

∇XY A Riemannian connection of X,Y which is uniquely de-
termined by the Riemannian metric ⟪⋅, ⋅⟫q .

Geometric Control Concepts

Mq The inertia tensor of a mechanical systems which maps from
TqM to T ∗qM .

⟪q̇1, q̇2⟫q A Riemannian metric induced by the inertia Mq , i.e,
⟪q̇1, q̇2⟫ = ⟨Mq q̇1, q̇2⟩, which is also called the inertia
metric.

∇q̇ q̇ The acceleration term on M defined by the inertia metric.

Ψ(q, qd) The configuration error of manifold M .

eq The position error which is the differential of Ψ as d1Ψ.

Tq,qd
The transport map which maps between tangent spaces of
TqM and Tqd

M .

eq̇ The velocity error which is a tangent vector in TqM .

Vq The potential function of a fully actuated simple mechanical
system.

Fi The external forces treated as a set of independent one-
forms.

ui The ith control input.

u The control input vector defined as [u1, u2,⋯, um]T .

CLF and CBF Relevant Concepts

k The number of safety constraints given.

gi(t, q) A smooth function in [0,∞) ×M which defines a time-
varying region in M .

Bi,t The time-varying safety region {q ∈M ∶ gi(q) ≥ 0} in the
configuration space.

hi(t, q, q̇) A smooth function in [0,∞) × TM which is constructed
based on gi to enforce safety.

Ci,t The expanded safety region {(q, q̇) ∈ TM ∶ hi(q) ≥ 0}
in the state space.

Bi(hi) Time-varying geometric Control Barrier Function for the
region Ci.

DB
i,t The singularity set with respect to the CBF Bi.

V (t, q, q̇) Time-varying geometric Control Lyapunov Function for the
reference (qd, q̇d).

DV
t The singularity set with respect to the CLF V .

by ⟨df, q̇⟩q = q̇ ⋅ n. Here we denote the differential of f as df
and the value of the one form with tangent vector q̇ at point
q as ⟨ω, q̇⟩q . Based on the notion of the one form, we are
able to define a two form which is the exterior derivative of
the one form. Similarly, we are able to get a two form from
the differential of a function, which reflects the second order
derivative of this function on a manifold. In particular, when
a smooth function f ∶ M1 ×M2 → R is multivariate, we will
denote its second order differential as:

didjf = di(djf), i, j ∈ {1,2} (1)

where the first di is the exterior derivative of djf with respect
to Mi.

Since mechanical systems are governed by Newton’s law
whose dynamics are represented as second order differential
equations, we need a way to describe how q̇ will evolve
along the system trajectory, namely the acceleration term on
a manifold. This requires the introduction of the notions of
a Riemannian metric and a Riemannian connection. A Rie-
mannian metric ⟪⋅, ⋅⟫q ∶ TqM ×TqM → R is an inner product,
defined on the tangent space TqM , which changes smoothly as
the tangent space is shifted from one point to another. Through
this metric, every linear functional of the tangent space TqM
could be uniquely identified with an element in TqM by the
Riesz representation theorem. Intuitively, due to this metric,
we can treat every vector in TqM as either a tangent vector
or a linear functional. We denote this linear functional space
of TqM as T ∗qM .

For example, consider a point mass with mass Mq > 0 in
M = R3, then a candidate metric could be given as

⟪q̇1, q̇2⟫q = (Mq q̇1) ⋅ q̇2, q̇1, q̇2 ∈ TqM.

From another perspective, the mass Mq actually maps a
vector in TqM to a linear functional in T ∗qM . Based on
this metric, we are able to generate a Riemannian connection
which is compatible with it and torsion-free. Intuitively, given
two smooth vector fields X,Y , the connection ∇XY in M
describes how the vector of Y at q would change if we move
the point q along the direction of X . Given a Riemannian
metric, a torsion-free, compatible connection could be uniquely
determined, which we call the Riemannian connection.

Remark 1. For simplicity of notation, we will drop the explicit
dependence of ⟪⋅, ⋅⟫q on q ∈ M by dropping the subscript q
to obtain ⟪⋅, ⋅⟫, with the expectation that the tangent vectors
provides this information.

Now we are able to describe a simple, fully actuated
mechanical system and the corresponding geometric control
law. If the configuration manifold M admits the following
structure:

1) The total inertia represented by a metric Mq ∶ TqM →
T ∗qM which represents the kinetic energy by ⟪q̇, q̇⟫ =
⟨Mq q̇, q̇⟩.

2) A connection ∇ which is compatible with Mq that
serves to describe how a tangent vector or the velocity
q̇ changes along the manifold M .
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3) A collection of one forms Fi ∶ TqM → R represent-
ing the external force applied on the system, where
i ∈ {1,2,⋯,m}. The span of these one forms is the
entire cotangent space T ∗qM at each point q.

4) A smooth function Vq ∶M → R describing the potential
energy.

5) A configuration error Ψ ∶M ×M → [0,∞) that serves
as a measure of distance between the two points q, qd ∈
M . We also require Ψ(q, qd) to be quadratic as defined
in [7]. Denote the differential of the configuration error
with respect to the ith argument as diΨ (i = 1,2), and
define the position error as eq = d1Ψ.

6) A transport map T(q,qd) ∶ TqdM → TqM which maps
a tangent vector at qd to one at q with the compatible
condition,

d2Ψ = −T ∗
(q,qd)d1Ψ, (2)

where T ∗
(q,qd) is the dual map of T(q,qd). In this way,

we are able to compare tangent vectors in different
tangent spaces as

eq̇ = q̇ −T(q,qd)q̇d.

Then, a system evolving on M with the above structure is
called a simple mechanical system with dynamics given by
[6],

∇q̇ q̇ =M−1
q (−dVq(q) +

m

∑
i=1

Fi(q, q̇)ui), (3)

where ui ∈ R.
For this type of system, a general PD-type feedback law

could be set up which guarantees exponential stability. In
order to track a dynamically feasible smooth reference qd(t) ∶
[0,∞)→M , a geometric control input could be expressed as

u = uff
°

feedforward term

+ ufb
°

feedback term

,

where ufb is a linear combination of the position and velocity
errors, eq and eq̇ , and serves as a generalization of a PD control
on the manifold M .

To get an exponentially stable controller, a general Lyapunov
function candidate V for the closed-loop system could be
expressed as:

V = αΨ(q, qd) +
1

2
⟪eq̇, eq̇⟫ + ε⟨eq, eq̇⟩, (4)

where the value of ε and α are specifically chosen to make V
locally quadratic in terms of the error eq, eq̇ .

For use later, we also define the hat map ∧ ∶ R3 → so(3) as
a bijective mapping from a three dimensional vector to a skew
symmetric matrix as:

x̂ =
⎡⎢⎢⎢⎢⎣

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤⎥⎥⎥⎥⎦
,

where x = [x1, x2, x3]T and the vee map ∨ ∶ so(3) → R3 as
the inverse of hat map.

B. Time-varying Exponentially Stabilizing Control Lyapunov
Function (CLF)

In the sections below, we will introduce the concepts of con-
trol Lyapunov functions (CLFs) and control Barrier functions
(CBFs). Though originally introduced for systems in Cartesian
spaces, these concepts have been generalized to the case of
simple mechanical systems (3) on manifolds, as studied in [38].
Consider a control affine system in Rn of the form,

ẋ = f(x) + g(x)u, x(t0) = x0, (5)

where x ∈ Rn and u ∈ Rm.
For system (5), a continuously differentiable function V ∶

[0,∞)×Rn → R is called Exponentially Stabilizing Lyapunov
Function (ES-CLF) if there exist constants c1, c2, η > 0 such
that,

c1∣∣x∣∣2 ≤ V (t, x) ≤ c2∣∣x∣∣2,

inf
u∈Rm

{∂V
∂t

+LfV +LgV u + ηV } ≤ 0,

holds for every (t, x) ∈ [0,∞)×Rn where LfV = ∂V
∂x
f, LgV =

∂V
∂x
g are the Lie derivatives of V with respect to f and g.

Remark 2. CLFs give a qualitative analysis of the stability
of the origin. If such a function exists, we could determine
the control input analytically through the Sontag control or
the min-norm control, or directly through a state-based opti-
mization pointwise in time. For many control applications, a
closed-loop Lyapunov function could be directly employed as
a candidate CLF.

C. Geometric Control Lyapunov Function
We consider the problem of tracking a desired reference

state (qd, q̇d) ∈ TM .

Definition 1. A smooth function V ∶ [0,∞) × TM → R is
called a geometric ES-CLF for the system in (3) if there exist
constants c1, c2, η > 0 such that

V (t, q, q̇) ≥ c1(Ψ(q, qd) + ⟪eq̇, eq̇⟫),
V (t, q, q̇) ≤ c2(Ψ(q, qd) + ⟪eq̇, eq̇⟫),
infu∈Rm{∂V

∂t
+ ⟨d1V, q̇⟩ − ⟨d2V,M

−1
q dVq⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
equivalent to LfV

+∑mi=1⟨d2V,M
−1
q Fi⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
equivalent to Lgi

V

ui + ηV } ≤ 0,

(6)

holds for all (t, q, q̇) ∈ [0,∞) × TM where eq̇ = q̇ −T(q,qd)q̇d
and u = [u1, u2,⋯, um]T is the vector containing all control
inputs.

Note that the CLF V (t, q, q̇) depends on the reference
trajectory qd(t), q̇d(t) implicitly through the time t. Also, this
generalized definition coincides with the previous one if the
manifold is chosen to be R2n and the reference point is chosen
to be (0,0). The concept of geometric CLF is specifically
useful for control design for systems whose configuration
spaces are nonlinear manifolds, with dynamics given by (3).
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D. Time-varying Control Barrier Function (CBF)
Control Barrier functions (CBFs) are defined with respect

to a region in the state space. For the control affine system
(5), suppose we have a continuously differentiable function
h ∶ [0,∞) × Rn → R with its super level set Ct = {x ∈ Rn ∶
h(t, x) ≥ 0}. If this set admits a non-empty interior at each
time in [0,∞), then a smooth function B ∶ [0,∞) × Rn →
R ∪ {±∞} is called a CBF of Ct if there exist two class K
function α1, α2 and µ > 0 such that

1

α1(h(x))
≤ B(t, x) ≤ 1

α2(h(x))
,

inf
u∈Rm

{∂B
∂t

+LfB +LgBu −
µ

B
} ≤ 0, (7)

holds for any t ∈ [0,∞) and any x ∈ C○t which is the interior
of Ct.
Remark 3. The idea of a CBF is based on invariance analysis
of a set for a dynamic system. To stay safe, the system
trajectory should always remain within the safe set, Ct, which
entails that the safe set should be forward invariant for the
closed loop system. By imposing condition (7), we are able
to set up a positive lower bound for the value of h(t, x) that
holds globally, which means that safety is guaranteed. Note
that, the range of the CBF is chosen to be the extended real
line which allows for the Barrier B(t, x) to go to infinity as
h(t, x) goes to zero.

E. Geometric Control Barrier Function
Similar to the case of CLF, we extend the concept of CBF to

simple mechanical systems (3) evolving on manifolds. Because
we can only analyze a set with respect to a specific topology,
the topology on the configuration manifold M is considered to
be the relative topology with respect to the smallest Cartesian
space in which M can be embedded smoothly.

Definition 2. Suppose there exist a smooth function h ∶
[0,∞) × TM → R such that the safety region is defined by
Ct = {(q, q̇) ∈ TM ∶ h(t, q, q̇) ≥ 0} which has nonempty
interior for any t ∈ [0,∞). Then a smooth function B ∶
[0,∞) × R → R ∪ {±∞} is called a geometric CBF of Ct if
there exist two class K functions α1, α2 and a constant µ > 0
such that

1
α1(h(t,q,q̇)) ≤ B(h(t, q, q̇)) ≤ 1

α2(h(t,q,q̇)) ,

infu∈Rm{∂B
∂t

+B′(h) (⟨d1h, q̇⟩ − ⟨d2h,M
−1
q dVq⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
equivalent to LfB

+B′(h) (∑mi=1⟨d2h,M
−1
q Fi⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
equivalent to Lgi

B

ui − µ
B
} ≤ 0,

(8)

for any t ∈ [0,∞) and x ∈ C○t .

Remark 4. Note that the time-varying CBF, as a scalar
function, is purely based on the region function h. Both time
and system state are implicitly contained within the CBF

through the scalar function h. Thus, to design a CBF in this
type, we just need to choose a suitable shape of this scalar
function.

The following Lemma provides a formal guarantee of safety.

Lemma 1. (Safety Guarantee of Time-varying Geometric CBF
in (8)) For the system (5), if the control input u satisfies the
condition (8) at each time t ∈ [0,∞), then the set {x ∈ Rn ∶
h(t, x) > 0} is forward invariant, i.e, the system trajectory
(q(t), q̇(t)) would always remain within C○t if (q(0), q̇(0)) ∈
C○t=0.

Proof: See Appendix. A.
Based on the concepts of geometric CLF and CBFs, we

are able to propose a general method to construct CLF and
CBF for system (3) in the next section. Table I summarizes
the meanings of each symbol for further reference.

III. SAFETY CRITICAL CONTROL DESIGN ON
RIEMMANIAN MANIFOLD

In this section, we will propose a general method to extend
configuration constraints, given in terms of only the con-
figuration variable q, to the whole state space (q, q̇) so as
to enforce the configuration constraints thereby maintaining
safety. Following this, a candidate geometric CBF will be
constructed and combined with a candidate geometric CLF.
Based on the combination of the geometric CBF and CLF, we
will propose a feedback controller through a state-dependent
quadratic program that is solved point-wise in time.

A. Control Problem Formulation
Given a fully actuated simple mechanical system (3) and a

list of time-varying safety constraints in terms of the config-
uration variables q, written as gi(t, q) ≥ 0 for i ∈ {1,2,⋯, k},
where

gi(t, q) ∶= (−1)δi(bi(t) −Ψ(q, qi(t))), (9)

with δi ∈ {0,1}, bi(t) > 0 representing the radius, qi(t) ∈ M
representing the center and Ψ(q, qi(t)) being the configuration
error between the current configuration q. We can then define
a time-varying safe set,

Bi,t ∶= {(q, q̇) ∈ TM ∶ gi(t, q) ≥ 0, qi ∈M}, (10)

satisfying the condition that

(∩ki=1Bi,t)○ =∶ (Bt)○ = B○t ≠ ∅ (11)

where the set Bi,t is the safety region for constraint gi, and B○t
denotes the interior of the set Bt with respect to the topology
of the manifold M .

Remark 5. The constraints presented here are in terms of the
configuration error. The value of δi is to indicate whether the
inside or outside of the region Bi,t is safe or not. The center
point qi ∶ [0,∞)→M and the radius bi ∶ [0,∞)→ (0,∞) are
both sufficiently smooth. In real applications, these regions
could be constructed through methods in computational ge-
ometry. By picking specific configuration errors, we are able
to approximate the actual safe region in a proper way. For
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example, level sets of L2, L1, L∞ norms on R2 could be a
circle or squares with different orientations. We can choose a
specific norm that could best fit the actual safe region through
optimization.

The above compatible condition in (11) is to ensure that
the set of all specified constraints can be satisfied at the same
time. The geometric intuition is that the corresponding free
space is nonempty.

With the above definitions, we are now in a position to state
the control problem as follows.
Geometric constrained control problem: Given a smooth refer-
ence curve qd(t) ∈ B○t for any t ∈ [0,∞), design the feedback
control input u = u(t, q, q̇) so that the following conditions are
satisfied:

q(t) ∈ Bt, ∀t ∈ [0,∞) (Safety Constraints)
q(t)→ qd(t) ∈ Bt as t→ +∞ (Stability Constraints)

(12)

B. Geometric CBF Candidate
Having formulated the control problem, we now construct

a geometric CBF to enforce safety. In particular, based on
the configuration constraint functions gi in (9), we propose
a general method which can expand the safety region in
configuration space M to the state space TM . We choose
a smooth class K function β ∶ [0,∞) → R and define a new
constraint function in terms of t and (q, q̇) as:

hi(t, q, q̇) = γiβ(gi(t, q)) + ⟨d1gi, q̇⟩ +
∂gi
∂t
. (13)

Note that hi is well-defined since dgi is an one-form on M
and thus it’s a linear functional of the tangent space at each
point q, and by the Chain rule, additional partial derivatives
with respect to time can be expressed as:

∂gi
∂t

= (−1)δi(ḃi − ⟨d2Ψq,qi , q̇i⟩).

Here, we have rewritten the configuration error Ψ(q, qi) as
Ψq,qi for symbolic simplicity.

We can then define a new expanded safety region in TM
as:

Ct ∶= ∩mi Ci,t ∶= ∩mi {(q, q̇) ∈ TM ∶ hi(t, q, q̇) ≥ 0} (14)

where the parameters γi and β(⋅) are chosen to make sure the
interior of Ct nonempty.

Question arises as whether the construction of Ct is mean-
ingful or not. To be more precise, we expect the set Ct to be
a nonempty set with some good properties for future analysis.
We have listed the properties of Ct in the following lemmas.

Lemma 2. (Nonemptyness of Ct for the General Case)
Suppose that the free space Bt is nonempty for each time

t ≥ 0. Also, there exist parameters c1, c2,⋯, ck > 0 such that
cigi(t, q) ≥ ∣∂tgi(t, q)∣ for each t ≥ 0 and each q ∈ Bt,
then there exist a Class K function β(⋅) and parameters
γ1, γ2,⋯, γk > 0 in Eq. (13) which makes the corresponding
Ct nonempty.

Proof: See Appendix B.
Lemma. 2 provides a sufficient condition for the derivatives

of ḃi in order to make the set Ct nonempty. In particular, for
the case when bi is a constant, the condition of Lemma. 2 is
automatically satisfied, and thus we have created a nonempty
set Ct to work on. Moreover, from this lemma, we know that
for each q ∈ Bt, all the feasible tangent vectors q̇ form a
polyhedron in the linear space TqM , which is based on the
linear constraint in Eq. (31). The following lemma is about
the relationship between the connectedness of Bt and Ct. In
particular, we will be focused on the time-invariant case for
simplicity.

Lemma 3. (Connectedness of Ct for the Static Case)
If the following conditions are satisfied:
● There exist parameters γi and function β(⋅) such that Ct

is nonempty.
● Both qi and bi are time-invariant.
● The set Bt has nonempty interior B○t , and B○t is path

connected.
Then a subset CBt of Ct, defined as {(q, q̇) ∈ Ct ∶ q ∈ B○t} is
also path connected.

Proof: See Appendix C.
The previous lemma establishes a relationship between the

connectedness of the original constraint set Bt and part of the
expanded set denoted as CBt . In summary, the previous two
lemmas justify the construction method of Ct in Eq. (13). The
argument provided does not include the general time-varying
case, but sheds some light on the construction of the set Ct.
The previous argument has set up some relationship between
Bt and Ct only from the perspective of manifold. As already
noticed in the proof, when (q, q̇) ∈ Ct, it’s possible that g(q)
could be negative and consequently q ∉ Bt. Moreover, taking
the dynamics into account, we could infer the safety properties
of Bt and Ct in the lemma below.

Proposition 1. (Forward Invariance Preservation of the Fea-
sible Region Bt)

Suppose the region Ct is forward invariant for the system (3),
then the region Bt is also forward invariant whenever initially
q0 ∈ Bt=0 and (q0, q̇0) ∈ Ct=0.

Proof: See Appendix. D.

Remark 6. This proposition guarantees that if we could en-
force the forward invariance of region Ct, the safety constraints
(gi(t, q, q̇) ≥ 0) are satisfied automatically. Equivalently, the
previous constrained control problem (12) could be converted
to a new problem below:

(q(t), q̇(t)) ∈ Ct, ∀t ∈ [0,∞)
(q(t), q̇(t))→ (qd(t), q̇(t)) ∈ Ct as t→ +∞

Based on the new region Ci,t in (14), we propose the
following CBF candidate for each constraint in terms of hi:

Bi(q, q̇) =
1

hi(t, q, q̇)
, (q, q̇) ∈ C○t
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Differentiating each Bi with respect to time yields,

Ḃi(t, q, q̇) = − 1

h2
i

ḣi(q, q̇)

= − 1

h2
(γiβ′(gi)⟨d1gi, q̇⟩ + ⟨∇q̇d1gi, q̇⟩)

+ 1

h2
⟨d1gi,M

−1
q dVq⟩ −

1

h2

m

∑
i=1

⟨d1gi,M
−1
q Fi⟩ui

+ (−1)δi+1

h2
(b̈i − d1d2Ψq,qi(q̇, q̇i)

− d2d2Ψq,qi(q̇i, q̇i) − ⟨d2Ψq,qi ,∇q̇i q̇i⟩).
where Mq is the inertia metric, d1d2Ψ is the differential 2-
form as introduced in (1), and the last term is the equivalent
of second derivative of ∂h/∂t on the manifold.

In order to make sure each Bi is a CBF, the following
condition should be satisfied:

inf
u∈Rm

{Ḃi −
µi
Bi

} ≤ 0, ∀(q, q̇) ∈ Ct, ∀j ∈ {1,2,⋯, k}

which is equivalent to

inf
u∈Rm

{−ḣi − µih3
i } ≤ 0, ∀(q, q̇) ∈ Ct, ∀j ∈ {1,2,⋯, k} (15)

where µi > 0 is the increasing rate of the value of Bi as the
state moves closer to the boundary.

This condition would fail when the m dimensional vector

[⟨dgi,M−1
q F1⟩, ⟨dgi,M−1

q F2⟩,⋯, ⟨dgi,M−1
q Fm⟩]T

is a zero vector in Cartesian space because otherwise, we could
always use a nonzero control input to cancel out all the other
terms in 15. Using the fact that system (3) is fully-actuated and
that the inertia metric Mq is non-degenerate, the condition is
equivalent to that dgi = (−1)δi+1eq(q, qi) = 0 in the cotangent
space.

By the definition of the position error eq , the set DBi,t =
{(q, q̇) ∈ Ct ∶ eq(q, qi) = 0} has measure zero in M for any
t ∈ [0,∞). Then by sub-additivity of measure, it follows that

DBt ∶= ∪mi=1DBi,t ⇒ µL(DBt ) ≤
m

∑
i=1

µL(DBi,t) = 0, (16)

where µL(T ) is the Lebesgue measure of a measurable set T .
Hence, the CBFs defined here hold everywhere except for

a set with measure zero. So the candidate function proposed
is an almost globally valid CBF.

Remark 7. Although we haven’t given a rigorous definition of
Lebesgue measure on manifolds, it can be roughly treated as
an estimation of the area of the manifold under study. Thus it
is intuitive that any lower dimensional compact submanifold
should have measure 0 since we could cover it using a strip
with infinitesimal area. In fact, if we want to sample points
uniformly from the configuration manifold, the probability of
getting points on the lower dimensional compact submanifold
is always zero. We refer to [25] for a more formal introduction.

In order to present the feedback controller in a more concise
manner, we denote the terms in ḣi which multiply u as

φi0(t, q, q̇) = [⟨dgi,M−1
q F1⟩,⋯, ⟨dgi,M−1

q Fm⟩]T ,

and the terms in ḣi which are independent of u as φi1(t, q, q̇).
In this way, the condition (15) which the CBF must satisfy
could be reformulated as finding a control input u s.t.,

− (φi0 ⋅ u + φi1 + µih3
i ) ≤ 0, i ∈ {1,2,⋯, k}. (17)

C. Geometric CLF Candidate

From Section II, a candidate CLF has the expression as:

V (t, q, q̇) = αΨ(q, qd) +
1

2
⟪eq̇, eq̇⟫ + ε⟨eq, eq̇⟩

where the coefficients α, ε > 0 are chosen specifically to make
V quadratic in terms of eq and eq̇ .

Differentiating it with respect to t gives us an expression
which includes the control input explicitly as:

V̇ =α⟨d1Ψ, eq̇⟩ − ⟪eq̇, [
d

dt
∣
q fixed

(T q̇d) + (∇q̇T )q̇d]⟫

+ ε[⟨∇eq̇(eq), eq̇⟩ − ⟨d1Ψ, ((∇eq̇T )eq̇)⟩]

− ε⟨eq, [
d

dt
∣
q fixed

(T q̇d) + (∇q̇T )q̇d]⟩

− [ε⟨d1Ψ,M−1
q dVq⟩ + ⟪eq̇,M−1

q dVq⟫]

+
m

∑
i=1

[ε⟨d1Ψ,M−1
q Fiu

i⟩ + ⟪eq̇,M−1
q Fiu

i⟫]

Applying a similar argument to this CLF candidate, as we
did for the geometric CBF, we have that only when the vector

ψ0(t, q, q̇) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[ε⟨eq,M−1
q F1⟩ + ⟪eq̇,M−1

q F1⟫]
[ε⟨eq,M−1

q F2⟩ + ⟪eq̇,M−1
q F2⟫]

⋮
[ε⟨eq,M−1

q Fn⟩ + ⟪eq̇,M−1
q Fm⟫]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

becomes zero, the CLF condition (6) fails to hold. By the
definition of the position and velocity errors, eq, eq̇ , the region

DVt = {(q, q̇) ∈ Ct ∶ ψ0(q, q̇) = 0} (18)

has measure zero for any t ∈ [0,∞). Hence almost global
property also holds for this type of CLF. By denoting the net
term which doesn’t depend on u as ψ1(t, q, q̇), the condition
imposed by this CLF could be written as:

ψ0 ⋅ u + ψ1 + ηV ≤ 0 (19)

where η > 0 indicates the convergent rate of CLF.
So far we know the condition of CLF and CBF would only

fail to be satisfied for the set Dt = DBt ∪DVt , with DBt ,DVt
as defined in (16), (18), where at least one of the vectors φi0
in (17), ψ0 in (19) become zero. We call it singularity set of
Ψ which depends on the specific configuration error chosen.
Note that the singularity here isn’t referring to that of the local
coordinate, but rather it is related to the specific properties of
CBF and CLF.



8

D. CBF-CLF-QP Control Design for Fully Actuated, Simple
Mechanical Systems

The previous subsections have introduced geometric CBFs
and CLFs for the general mechanical systems which hold
almost globally. Now we are able to combine them together
in the control design using optimization.

First, decompose the total control input into two parts, the
feed-forward and feedback components:

u = uff + ufb
where the feed-forward term is directly computed as the
solution of the linear equation below

∑uiffFi = dVq(q) +Mq[
d

dt
∣
q fixed

(T q̇d) + (∇q̇T )q̇d]

which comes from [6] in geometric control.
Then compute the feedback term uifb based on the following

state-dependent optimization problem.
(CBF-CLF-QP Control Design):
Formulate the feedback control problem based on a state
dependent Quadratic Programming (QP):

[ufb, δ∗] = argmin
v∈Rm,δ∈R

1

2
vTHv + 1

2
λδ2

s.t. ψ0 ⋅ v + [ψ0 ⋅ uff + ψ1 + ηV ] ≤ δ, (20)
− (φi0 ⋅ v + φi0 ⋅ uff + φi1 + µih3

i ) ≤ 0,

where the weight matrix H ∈ Rm×m is positive definite, and
λ > 0 is the penalty weight for the relaxation parameter δ.

Remark 8. As discussed in [3], the constraints imposed by
CBFs are treated as Hard Constraints that must be satisfied
during the whole control process, while the constraint imposed
by the CLF is a Soft Constraint with the relaxation parameter
δ. The hard constraints are the safety-critical constraints. Also
recall that α, ε, η > 0 are scalars that are relevant to the CLF
V while β ∶ R → R, γi, µi > 0 are function and parameters
that are relevant to each CBF Bi. These parameters can be
tuned to improve the controller’s performance in numerical
implementations.

Remark 9. In order to guarantee the existence and uniqueness
of system trajectory, we require the control input should be
at least piecewise continuous. We refer to [39], [26] for
detailed discussion on the continuity of the solution of state
dependent QPs. The solution is guaranteed to be Lipschitz
continuous under certain conditions, which can be satisfied
for our problem.

The proposition below shows the safety guarantee of CBF-
CLF-QP controller.

Proposition 2. (Safety Property of CBF-CLF-QP Controller)
If the following conditions are satisfied:
● There exist proper parameters for both V and Bi, i ∈

{1,2,⋯, k} such that the initial condition (q0, q̇0) stays
within the expanded safety region C○t .

● The singularity set Dt where CBF or CLF fail has
measure zero.

● The online QP (20) has feasible solution for the set
Ct/Dt.

then the trajectory of the closed loop system (3) is safe for all
t ∈ [0,∞).

Proof: See Appendix E.
Having presented the general safety-critical control design

using geometric CBFs and geometric CLFs, we next specialize
the controller to some simple mechanical systems and present
numerical results.

IV. SAFETY CRITICAL CONTROL FOR A 3D POINT MASS

We begin by specializing the general construction presented
in the previous section to a 3D-moving point mass in R3

by developing the associated geometric CLF and CBF, and
presenting numerical results for both time-invariant and time-
varying safety-critical constraints. In subsequent sections, this
formulation is extended to a spherical pendulum in S2 and a
3D pendulum in SO(3).

Consider a single 3D point mass, with configuration space
Q = R3 with Cartesian position q = [x, y, z]T ∈ Q, velocity
q̇ ∈ TqQ = R3, input u = [u1, u2, u3]T ∈ R3, and mass m,
such that the system dynamics is q̈ = m−1u with Riemannian
metric ⟪q̇1, q̇2⟫ =mq̇1 ⋅ q̇2. Given a smooth reference trajectory
qd ∈ R3, the configuration error can be written as,

Ψ(q, qd) = ∣∣q − qd∣∣2 = (q − qd) ⋅ (q − qd),

which is equipped with the differential,

eq = d1Ψ(q, qd) = q − qd, d2Ψ(q, qd) = −(q − qd).

The compatible transport map satisfying (2) is given by,

T(q,qd)q̇d = q̇d Ô⇒ eq̇ = q̇ − q̇d,

since we can directly compare two tangent vectors in R3.
Next, consider a list of safety constraints gi(q) =

(−1)δi (bi −Ψ(q, qi)) ≥ 0 with i ∈ {1,2,⋯, k}, bi > 0, wherein
with our chosen configuration error Ψ, each constraint gi(q)
represents the safe set as either a sphere centered at qi or
its complement, depending on the choice of δi ∈ {0,1}
respectively. The corresponding CLF and CBF candidates can
be respectively constructed as:

V = 1

2
m(q̇ − q̇d) ⋅ (q̇ − q̇d) +

α

2
(∣∣q − qd∣∣2) (21)

+ ε(q − qd) ⋅ (q̇ − q̇d),
hi = γigi + (−1)δi[ḃi − 2(q − qi) ⋅ (q̇ − q̇i)],
Bi = 1/hi,

where α > 0 and γi > 0. Note that the feedforward input is
given by uff =mq̈d. We incorporate the above into the online
QP in (20). Also, using the definitions in (16) and (18), we
can specify the singular sets as

DVt = {(q, q̇) ∈ R6 ∶meq̇ + εeq = 0},
DBt = ∪ki=1 {(q, q̇) ∈ R6 ∶ q = qi},

which are the union of several curves in TQ ≃ R6 and thus
have measure zero.
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(a) Min-Norm (b) Geometric Control (c) CBF-CLF-QP

Fig. 1: (3D Point Mass with Time-Invariant Safety Con-
straints): Simulation of various controllers on the point mass
system on R3, which is required to track a desired trajectory
while being restricted to move within the region between two
spheres. As can be seen for (a) min-norm, and (b) geometric
control, the system trajectory exits the outer sphere as well
as enters the inner sphere, violating critical safety region
constraints. However, for (c) CLF-CBF-QP controller, the
critical safety constraint is enforced while still following the
desired trajectory.
A. 3D Point Mass with Time-Invariant Safety Constraints

Based on the previous discussion, we present numerical
validation our proposed controller. We consider a point mass
with m = 2.5kg moving strictly inside a large safety region
(g1(q) ≥ 0) and avoiding a small spherical obstacle inside the
safety region (g2(q) ≥ 0) while tracking a desired reference
trajectory qd(t), which in the extreme case, passes directly
through the obstacle (see red dashed line in Fig. 1). These
safety constraints are

g1 = (−1)0(2.52 −Ψ(q, [0,0,0]T )) ≥ 0,

g2 = (−1)1(0.852 −Ψ(q, [0,0,0.5]T )) ≥ 0, (22)

while the reference trajectory is qd(t) =
[−0.5 sin 1.5t,1.25 cos(1.25t + π/4),0.75 cos(0.75t + π/6)]T .

We compare the performance of three different controllers,
a geometric CLF min-norm controller, traditional geometric
controller from [6], and our proposed geometric CBF-CLF-
QP controller. The results in Fig. 1 show that the CBF-CLF-
QP controller keeps the point mass away from boundary of the
unsafe regions to strictly enforce the safety constraints encoded
by the non-negativity of g1, g2 as seen in Fig. 2. We also plot
the geometric CLF in Fig. 2 while highlighting the durations
when the reference becomes unsafe. It can be seen that the
actual trajectory exponentially tracks the reference when the
reference is safe.

B. 3D Point Mass with Time-Varying Safety Constraints
We next consider time-varying safety constraints by intro-

ducing time-varying obstacles that the point-mass needs to
avoid. In particular, we consider a desired reference trajectory
qd(t) = [− sin 1.25t, cos 1.25t,0]T , which is a circle in the
XY plane centered at the origin. We require the point mass
to stay within a safety region given by a ball of radius r0(t) ≡
3.0 centered at the origin (large transparent outer sphere in
Fig.3) while avoiding the two sphere-shaped obstacles of radii

Fig. 2: (3D Point Mass with Time-Invariant Safety Con-
straints): Plots of the constraint functions gi and the geometric
CLF V . The proposed controller ensures gi ≥ 0. Durations
when the reference trajectory is unsafe are highlighted in red,
during which the CLF could increase due to the relaxation δ
in (20).

r1(t) = r2(t) ≡ 0.15 (two small spheres in Fig.3) that move
along the circular reference trajectory in opposite directions
with angular velocities ω1 = 0.5, ω2 = 0.8. To be precise, the
corresponding safety constraints are given below as:

g1 = (−1)0(r2
0 −Ψ(q,0)) ≥ 0,

g2 = (−1)1(r2
1 −Ψ(q, q1(t))) ≥ 0,

g3 = (−1)1(r2
2 −Ψ(q, q2(t))) ≥ 0, (23)

where q1(t) = [cos(ω1t), sin(ω1t),0]T , q2(t) =
[sin(ω2t), cos(ω2t),0]T .

Fig.3 illustrates snapshots in time, wherein the motion of
the obstacles are depicted through shaded regions and time is
conveyed through change in transparency from light to dark.
As can be seen, the actual trajectory (black solid) avoids the
moving obstacles while trying to follow the desired trajectory
(red dashed). The values of each constraint function gi and
the geometric CLF are plotted in Fig. 4. As can be seen,
the controller ensures the non-negativity of the constraints.
The periodic fluctuation is due to the reference trajectory
encountering a moving obstacle every three seconds. When the
reference trajectory becomes unsafe (indicated by red shared
region), the controller relaxes tracking while ensuring safety.

Remark 10. As can be seen from Fig. 4, the value of the
CLF could potentially increase in the red shaded regions,
where the reference is unsafe. This is natural, since to remain
safe we have to keep the system state away from the unsafe
reference. Typically this is realized either through re-planning
of the desired reference or through switched control schemes
which are turned on when the actual state is close to the
unsafe region. In contrast, due to the existence of the relaxation
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(a) t = 0 (b) t = 4s (c) t = 8s

(d) t = 12s (e) t = 16s (f) t = 20s

Fig. 3: (3D Point Mass with Time-Varying Safety Constraints):
Snapshots of a 3D moving point mass subject to following a
desired trajectory while avoiding dynamic obstacles are shown.
Each snapshot illustrates the past four seconds of the actual
trajectory of the point-mass (black solid) and the desired
trajectory (red dashed), with start and end positions marked by
small circle and square markers respectively. Increasing time
is conveyed by a change in transparency from light to dark. An
animation video is available at https://youtu.be/IwY7fvF1SFk.

parameter δ in the online QP (20), we are able smoothly
mediate between stable tracking of the reference and staying
safe when the reference is unsafe.

V. SAFETY CRITICAL CONTROL FOR A SPHERICAL
PENDULUM

We next consider a spherical pendulum system that com-
prises of a point mass connected to a pivot through a mass-
less rod as shown in Fig. 5. The configuration of this system is
given by the unit sphere S2. Using the directional vector q ∈ S2

corresponding to the unit vector from the pendulum pivot to
the point mass, we have the dynamical equation given as,

q̇ = ω × q,
ω̇ = q × ( F

ml
− g
l
e3),

or q̈ + (q̇ ⋅ q̇)q = −q̂2( F
ml

− g
l
e3),

which is a fully-actuated simple mechanical system since the
tangential force could span the tangent space at each point on
the sphere.

Denote a normalized force u ∶= (F /ml−g/le3) and thus the
system dynamics could be simplified as:

q̈ + (q̇ ⋅ q̇)q = −q̂2u, (24)

where there are no mass parameters. Here the hat map ⋅̂ ∶
R3 → so(3) converts a three-dimensional vector to a skew-
symmetric real matrix. For this system, the Riemmanian metric

Fig. 4: (3D Point Mass with Time-Varying Safety Constraints):
Plots of constraint functions gi and the geometric CLF V .
The proposed controller ensures gi ≥ 0. Durations when the
reference trajectory is unsafe are highlighted in red.

Fig. 5: Diagram of the spherical and 3D pendulums.

degenerates to the normal inner product ⟪q̇1, q̇2⟫ = q̇1 ⋅ q̇2. The
configuration error can be defined as:

Ψ(q, qd) = 1 − q ⋅ qd, eq = d1Ψ = q̂2qd, d2Ψ = q̂2
dq.

The compatible transport map and velocity error are given by:

T(q,qd)q̇d = (qd × q̇d) × q Ô⇒ eq̇ = q̇ − (qd × q̇d) × q.

Next, given a smooth reference trajectory qd ∈ S2 and a list
of constraints gi = (−1)δi(bi−Ψ(q, qi)) ≥ 0 where bi ∈ (−1,1),

https://youtu.be/IwY7fvF1SFk
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the corresponding CLF and CBF are given as

V = 1

2
eq̇ ⋅ eq̇ +

1

2
α(1 − q ⋅ qd) + εeq ⋅ eq̇, (25)

hi = γigi + (−1)δi(qi ⋅ q̇ + q̇i ⋅ q̇ − ḃi),
Bi = 1/hi,

where δi ∈ {0,1}, and γi > 0.
The constraint defined here could be visualized as a cone

centered at qi bounded by the radius bi. Depending on the
value of δi, the cone is treated as either unsafe or safe region.
The corresponding feedforward input is uff = (qd × q̈d) × q −
q̂2(qd × q̇d) × q̇, which is used by the controller (20).

In order to analyze the singularity set Dt, we write out the
vectors in (16) and (18) explicitly as

φi0 = (−1)δiqi, ψi0 = (eq̇ + εeq).

The corresponding singularity set for the spherical pendulum
could be defined as:

DVt = {(q, q̇) ∈ TS2 ∶ eq̇ + εeq = 0},
DBt = ∪ki=1 {(q, q̇) ∈ TS2 ∶ q = ±qi},

which also has measure zero in the state space.

A. Spherical Pendulum with Time-Invariant Safety Constraints
Using the above formulations for the spherical pendulum,

we compare the performance of the geometric min-norm,
geometric controller in [6], and the proposed geometric CBF-
CLF-QP controller for the normalized system (24). In this
scenario, the safety region is defined to be the difference of
two cone regions on the unit sphere S2. The corresponding
safety constraints are given as:

g1 = (−1)0(cos(π/12) + 1 −Ψ(q, qn)) ≥ 0,

g2 = (−1)1(cos(π/4) + 1 −Ψ(q, qn)) ≥ 0, (26)

which represent the outer and inner cones respectively in
Fig. 6, with the static center point given by qn = [0,0,−1]T .

The results in Fig. 6 illustrate that our proposed controller is
able to keep the pendulum outside the inner (red) unsafe cone
and inside the outer (blue) safe cone, thereby guaranteeing the
safety constraints encoded by the non-negativity of g1, g2 as
seen in Fig. 7. The tracking convergence is illustrated by the
CLF plot in Fig. 7.

B. Spherical Pendulum with Time-Varying Safety Constraints
We next consider time-varying safety constraints on S2 by

introducing two time-varying cone constraints, where the cone
axis is specified through time-varying trigonometric functions
with the cone radii held constant. In particular, the safety
constraints are given as:

g1 = (−1)0(cos(π/12) + 1 −Ψ(q, qn(t))) ≥ 0,

g2 = (−1)1(cos(π/4) + 1 −Ψ(q, qn(t))) ≥ 0, (27)

which represent the outer cone and inner cone sepa-
rately, with the time-varying axis given by qn(t) =
[sin(π/5) cos(0.25t), sin(π/5) sin(0.25t),− cos(π/5)]T .

(a) Min-Norm (b) Geometric Control (c) CBF-CLF-QP

Fig. 6: (Spherical Pendulum with Time-Invariant Safety Con-
straints): Simulation of various controllers on the spherical
pendulum system on S2, restricted to remain between two
cones in a unit sphere. The inner (magenta) cone represents
the unsafe region while the outer (blue) cone represents the
safe region. For (a) min-norm, and (b) geometric control, the
system trajectory enters the unsafe inner cone area, whereas for
(c) CBF-CLF-QP, the controller ensures the trajectory remains
within the safe set while converging to the desired trajectory.

Fig. 7: (Spherical Pendulum with Time-Invariant Safety Con-
straints): Plots of constraint functions gi and the geometric
CLF V . The proposed controller ensures gi ≥ 0.

Fig. 8 illustrates snapshots in time, where in the motion
of the cones are depicted through shaded regions and time is
conveyed through change in transparency from light to dark.
The outer (blue) cone is safe, while the inner (red) cone is
unsafe. The reference trajectory for the spherical pendulum is
shown in red dashed line while the actual trajectory is drawn
in black solid line. As seen in Fig. 9, the controller enforces
the safety constraints while tracking the desired trajectory by
maintaining the non-negativity of g1, g2. Fig. 9 also shows the
plot of geometric CLF for the spherical pendulum. As can be
seen, the value of CLF keeps decreasing when the reference is
in the safe region and potentially increases when the reference
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(a) t = 0s (b) t = 9.6s (c) t = 19.2s

(d) t = 28.8s (e) t = 38.4s (f) t = 48s

Fig. 8: (Spherical Pendulum with Time-Varying Safety Con-
straints): Snapshots of a single spherical pendulum subject
to two time-varying cone constraints are shown. The inner
(red) cone is an obstacle which should be avoided while the
outer (blue) cone is the safe region that the pendulum should
remain within. The black solid line is the actual trajectory of
the pendulum’s point mass and the red dashed line represents
the reference trajectory. The first snapshot shows the initial
position and shape of the safety set. The rest of the snapshots
show the inner and outer cones with changing transparency to
indicate the progress of time. Each snapshot also shows the
boundary of the cones at the ending time. An animation video
is available at https://youtu.be/IwY7fvF1SFk.

is unsafe (highlighted by red region).

VI. SAFETY CRITICAL CONTROL FOR A 3D PENDULUM

Having studied the evaluation of our controller on R3,S2, we
next consider a 3D pendulum, as shown in Fig. 5, that evolves
on SO(3). The 3D pendulum comprises of a rigid body
suspended at a pivot, with the orientation of the rigid body
controlled by a torque exerted at the pivot. To be consistent
with symbolic annotation in prior work, we use R and Ω
to represent the orientation and angular velocity of the 3D
pendulum, instead of q, q̇ as used for the spherical pendulum.
The system dynamics is given in [18] as:

Ṙ =RΩ̂, JΩ̇ = JΩ ×Ω + τ,

where τ represents the torque at the pivot.
The configuration space SO(3) is a Lie group and is a

smooth Riemannian manifold. As a group, the manifold allows
for multiplication and the existence of an identity. The tangent
space at identity is called Lie algebra which can be identified
with the tangent space at any point through left and right
multiplication. More information about the properties of a Lie
group can be found in [7]. The metric between two elements

Fig. 9: (Spherical Pendulum with Time-Varying Safety Con-
straints): Plots of constraint functions gi and geometric CLF
V . The proposed controller ensures gi ≥ 0.

R,Rd ∈ SO(3) here is given by the right attitude error as:

Ψ(R,Rd) =
1

2
Tr(I −RTdR).

To represent the tangent vector at R, we use the body-fixed
angular velocity Ω that’s related to Ṙ through the equation
Ṙ = RΩ̂. In this representation of body angular velocity, the
corresponding position error could be given by:

eR = d1Ψ(R,Rd) =
1

2
(RTdR −RTRd)∨, d2Ψ(R,Rd) = −eR.

Note that the vector eR is an element of the cotangent
space. A compatible transport map is given by T(R,Rd)(Ωd) =
RTRdΩd where Ωd = (RTd Ṙd)∨, which is the desired angular
velocity. Thus the velocity error has the expression eΩ =
Ω −RTRdΩd.

Then, given a smooth reference trajectory Rd(t) ∈ SO(3)
and a list of constraints gi = (−1)δi(bi −Tr(I −RTi R)/2) ≥ 0,
the corresponding geometric CLF and CBF candidates are:

V = 1

2
eTΩJeΩ + 1

2
α ⋅ Tr(I −RTdR) + εeR ⋅ eΩ, (28)

hi = γigi + (−1)δi[1

2
vi ⋅ (Ω −Ωi) + ḃi],

Bi = 1/hi,

where

vi =
⎡⎢⎢⎢⎢⎢⎣

(RTi R)23 − (RTi R)32

(RTi R)31 − (RTi R)13

(RTi R)12 − (RTi R)21

⎤⎥⎥⎥⎥⎥⎦
, Ωi = (RTi Ṙi)∨, bi ∈ (0,2),

and the feedforward term is given as:

τff = Ω × JΩ + J(−Ω̂RTRdΩd +RTRdΩ̇d).

https://youtu.be/IwY7fvF1SFk


13

(a) Min-Norm (b) Geometric Control (c) CBF-CLF-QP

Fig. 10: (3D Pendulum with Time-Invariant Safety Con-
straints): Comparison between various controllers for the 3D
pendulum on SO(3). The trajectories of all three directional
vectors are plotted out on a sphere for better visualization.
Here we use the dashed line to illustrate the static reference
Rd and set up a safe region as Ψ(R, I) ≤ 0.75. As can be seen
for (a) min-norm, and (b) geometric control, the actual rotation
matrix would tend to desired one. However, for (c) CBF-CLF-
QP controller, the actual rotation is forced a distance away
from it due to the imposed safety constraint.

Following a similar derivation as in S2, we have the singu-
larity set Dt on SO(3) as below:

DVt = {(R,Ω) ∈ TSO(3) ∶ JeΩ + εeR = 0},
DBt = ∪ki=1 {(R,Ω) ∈ TSO(3) ∶ vi = 0},

which is also the union of several curves in the state space
TSO(3) and thus has measure 0.

A. 3D Pendulum with Time-Invariant Safety Constraints

We next consider numerical validation of our proposed
controller on the 3D pendulum system. We consider a 3D
pendulum, with inertia matrix J = diag(0.1,0.2,0.5), and
require it to track a goal orientation Rd(t) ≡ exp(ξ̂), where
ξ = [0.5,1.5,0]T , while enforcing a safety constraint given by

g = (−1)0 (0.75 − 1

2
Tr(I −R)) ≥ 0. (29)

As before, we compare the performance of the min-norm,
geometric, and geometric CBF-CLF-QP controllers. Fig. 10
illustrates the results of the comparison, wherein we depict
the trajectories of each unit vector of the 3-axis rotation frame
on a unit sphere S2. The circles on the sphere indicate the
initial positions of each axis of the actual trajectory R(t)
while the squares represent the goal positions of each axis
of the reference Rd. From the plot of the constraint function
g in Fig. 11, we see that both the CLF-minnorm controller
and the geometric controller violate the safety constraint (29),
while the proposed CBF-CLF-QP controller on a Lie group
ensures safety as seen by g being positive. Fig. 11 also
illustrates the geometric CLF V . Since the goal is always
in the unsafe region, the entire V plot is highlighted in red.
Consequently, the controller decreases V to a nonzero constant,
which indicates that the actual trajectory reaches a point which
is the minimum of CLF in the safe region.

Fig. 11: (3D Pendulum with Time-Invariant Safety Con-
straints): Plots of the constraint function g and the geometric
CLF V . The values of g for both CLF-minnorm and geometric
controllers are also plotted to illustrate the violation of safety
for these controllers, while the proposed controller ensures
g ≥ 0.

B. 3D Pendulum with Time-Varying Safety Constraints

For SO(3), considering time-varying constraints is of par-
ticular importance due to various applications in aerospace
engineering. For instance, spacecraft have to constantly have
sensitive instruments such as telescopes and radio antennae
pointed around a particular axial frame towards a reference
sensing object, while also making sure they are not pointed
along another axial frame, at bright stars. These constraints can
naturally be encoded through our CBFs on TSO(3). More-
over, since the spacecraft and reference objects are relatively
moving, this results in a time-varying safety constraint.

In this scenario, we test our CBF-CLF-QP controller’s
performance on attitude reorientation of a spacecraft subject
to a single time-varying safety constraint that is specified by,

g = (−1)1 (b(t) −Ψ(R,Rn(t))) ≥ 0, (30)

where Rn(t) = exp(ω̂t), ω = [1/2,0,
√

3/2]T and b(t) = 0.8+
0.4 cos 2t. Note that the safety constraint is constructed around
a point rotating at a constant body-fixed angular velocity with
a periodically changing size. The reference trajectory is given
by:

Rd(t) ≡
⎡⎢⎢⎢⎢⎣

0 0 1
0 1 0
−1 0 0

⎤⎥⎥⎥⎥⎦
.

which is selected so as to switch between being in the safe
and unsafe regions.

Fig. 12 illustrates simulation results of our proposed con-
troller. Fig. 12(a) shows the configuration error between the
current orientation R and the center Rn and plots this along
with b. From (30), to remain safe, the configuration error Ψ
can never be larger than b at any time. As can be seen from
the plot, the controller never violates safety. The corresponding
value of g and the geometric CLF V are shown in Fig. 12(b),
where the unsafe regions are highlighted in red. This shows
that our CBF-CLF-QP controller can track the reference in a
safety-critical way.
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(a) Plot illustrating the configuration error Ψ(R(t),Rn(t)) ≤ b(t).

(b) Plots of the constraint function g and the geometric CLF V . The
proposed controller ensures g ≥ 0.

Fig. 12: (3D Pendulum with Time-Varying Safety Constraints):
Plots of configuration error, safety constraing, and geometric
Lyapunov function. Durations when the reference is unsafe are
highlighted in red.

VII. CONCLUSION AND FUTURE WORK

We have considered the problem of safety-critical control
of fully actuated simple mechanical systems. By extending
the concepts of CLFs and CBFs to the configuration space
of simple mechanical systems, we are able to develop the
concepts of geometric CLFs and CBFs, which are coordinate
free, and thus don’t depend on the choice of local coordinates.
A geometric CLF expression is given based on well-developed
geometric control theory. We also propose a general method for
constructing geometric CBFs, based on constraints given only
in terms of configuration errors on various manifolds. Based
on these CLF and CBF candidates, a CBF-CLF-QP controller
is proposed to mediate between stability and safety. We have
verified its performance both theoretically and based on several
simulation tests on simple mechanical systems on R3,S2, and
SO(3).

APPENDIX

A. Proof of Lemma 1
From condition (8) and Chain rule, the time derivative of B

could be expressed as:

Ḃ = B′(h) ⋅ ḣ ≤ µ

B

Hence, by Lemma. 1 in [3], the set {(q, q̇) ∈ TM ∶
B(t, q, q̇) > 0} is forward invariant, which is C○

t by the first
condition of CBF.

B. Proof of Lemma 2
We will first select the candidate function to be β(x) = x and

choose any parameters γi such that γi ≥ ci for i = 1,2,⋯, k.
Then a candidate Ct is constructed.

Expanding out the expression of each hi yields

hi = (−1)δi(ḃi − ⟨d1Ψq,qi , q̇⟩ − ⟨d2Ψq,qi , q̇i⟩) + γigi
where the first bracket is evaluated at q, and the second is
evaluated at qi. Plugging in the property of transport map in
(2), we have

hi = (−1)δi+1⟨dΨq,qi , q̇ −Tq,qi q̇i⟩ + γigi + (−1)δi ḃi
Fix a time t ≥ 0, since Bt is nonempty, it must contain a

particular point q ∈ Bt. Then for each q ∈ Bt, if we want to
find a tangent vector q̇ ∈ TqM such that (q, q̇) ∈ Ct, it must
satisfy the conditions below for each i = 1,2,⋯, k:

(−1)δi+1⟨dΨq,qi , q̇ −Tq,qi q̇i⟩ + γigi + (−1)δi ḃi ≥ 0 (31)

From the condition given, it holds that γigi ≥ cigi ≥ ∣ḃi∣ ≥
−(−1)δi ḃi, which implies γigi + (−1)δi ḃi ≥ 0. Hence, by
inspecting Eq. (31), we have (q,Tq,qi q̇i) ∈ Ct for each q ∈ Bt
which makes Ct nonempty.

C. Proof of Lemma 3
Note that a set is path connected if every set of points in the

set are connected by a piecewise continuously differentiable
trajectory. To prove path connectedness of CBt , we construct
a path between any two points in CBt using geodesics and
path-connectedness of B○t . In particular, we want to propagate
the initial state and the end state through geodesic flows and
connect the geodesics together through the path connectedness
of B○t .

Given two states (q, q̇), (q̂, ˙̂q) ∈ CBt . We want to construct
a piecewise smooth path Φ ∶ [−1,1] → CBt such that Φ(−1) =
(q, q̇), Φ(1) = (q̂, ˙̂q). Since the constraint function gi is time-
invariant, for any pair (q, q̇) ∈ CBt , it holds that

hi = (−1)δi+1⟨dΨq,qi , q̇⟩ + γigi > 0, (32)

For the case when q = q̂, we know that both q̇, ˙̂q belong to
the same tangent space TqM , which satisfy the condition (32).
Since TqM is a Hilbert space equipped with the Riemannian
metric, the collection of tangent vectors satisfying (32) is an
open convex polygon. Thus a straight line can connect them
together as Φ(t) = (q, 1

2
(tq̇ + (1 − t) ˙̂q)) where t ∈ [−1,1].
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For the case when q ≠ q̂, a candidate path can be constructed
in the following two steps. Since both q, q̂ ∈ B○t , there
exist two open neighborhoods U1, U2 around q, q̂ such that
U1, U2 ⊂ B○t . Using the fact that M is a Riemannian manifold,
there exists a unique geodesics passing through q, denoted as
ϕ1 ∶ [−1,1] →M , which satisfies that ϕ1(0) = q, ϕ′1(0) = q̇.
Similarly, there’s another geodesics ϕ2 ∶ [−1,1] →M passing
through q̂ which satisfies ϕ2(0) = q̂, ϕ′2(0) = ˙̂q. Also,
since both U1, U2 are both nonempty open sets, they both
contain closed subsets. Hence, there exist δ1, δ2 > 0 such
that ϕ1([−δ1, δ1]) ⊂ U1, ϕ2([−δ2, δ2]) ⊂ U2. Considering the
segments of geodesics ϕ1([−δ1, δ1]), ϕ2([−δ2, δ2]) ⊂ B○t , we
want to truncate these two geodesics to make sure the truncated
parts with their derivatives are also contained in CBt . Let T1 =
sup0≤s≤δ1{hi(ϕ1(s), ϕ′1(s)) > 0 for every i = 1,2,⋯, k},
T2 = inf−δ2≤s≤0{hi(ϕ2(s), ϕ′2(s)) > 0 for every i =
1,2,⋯, k}. Since the functions hi(ϕ1(s), ϕ′1(s)) are smooth
functions defined on [−δ1, δ1], then it holds that T1 > 0. Or oth-
erwise, for each i, we could find a sequence {tn}→ 0 such that
hi(ϕ1(tn), ϕ′1(tn)) = 0 which would imply that hi(q, q̇) = 0.
This leads to a contradiction and that T1 > 0. Applying a sim-
ilar argument to ϕ2 yields that T2 < 0. Also, by the definition
of T1, T2, we have the subset {(ϕ1(t), ϕ′1(t)) ∈ TM ∶ 0 ≤ t ≤
T1/2}, {(ϕ2(t), ϕ′2(t)) ∈ TM ∶ T2/2 ≤ t ≤ 0} ⊂ CBt . Since
both ϕ1(T1/2), ϕ2(T2/2) ∈ B○t , using the path connectedness
of B○t , there exists a piecewise smooth path ϕ3 ∶ [−1,1]→ B○t
which satisfies ϕ3(−1) = ϕ1(T1/2), ϕ3(1) = ϕ2(T2/2).

The next step is to scale the path ϕ3 to make sure its
derivative satisfies the condition (32) all the time. Define a
new path as ψ(t) = ϕ3(t/K) whose derivative is given by
ψ′(t) = ϕ′3(t/K)/K where K > 0. Note that for the scaled
trajectory ψ, it is defined on [−K,K]. In order to make sure
(ψ(t), ψ′(t)) ∈ CBt for every t ∈ [−K,K], the following
inequality should hold

1

K
(−1)δi+1⟨dΨϕ3(t/K),qi , ϕ

′
3(t/K)⟩ + γigi(ϕ3(t/K)) > 0

which can be converted to the inequality below,

K ≥
(−1)δi⟨dΨϕ3(u),qi , ϕ

′
3(u)⟩

γigi(ϕ3(u))
= si(u) (33)

for every i = 1,2,⋯, k and every u ∈ [−1,1].
Since ϕ3(u) ∈ B○t , by definition gi(ϕ3(u)) > 0 for ev-

ery u ∈ [−1,1]. Hence, function si(u) on the right hand
side of (33) is well-defined and piecewise continuous over
the interval [−1,1]. Because there are only finite jumps of
si in the whole interval [−1,1], it has a maximum value
over the compact interval [−1,1] for each i. Let K0 =
maxi=1,2,⋯,k supu∈[−1,1] si(u) which is finite. Then, pick a
value K >K0 and we could make sure that (ψ(t), ψ′(t)) ∈ CBt
for all t ∈ [−K,K].

Now assemble the final path together as
Φ(t) = (ϕ1(t), ϕ′1(t)) when 0 ≤ t ≤ T1

2
; Φ(t) =

(ϕ1(T1

2
), 2(T1−t)

T1
ϕ′1(T1

2
) + 2t−T1

T1
ψ′(−K)) when T1

2
≤ t ≤ T1;

Φ(t) = (ψ(t − T1), ψ′(t − T1)) when T1 ≤ t ≤ T1 + 2K;
Φ(t) = (ϕ2(T2

2
), 2(T1+2K−T2/2−t)

−T2
ψ′(K)+ 2(T1+2K−t)

T2
ϕ′2(T2

2
))

when T1 + 2K ≤ t ≤ T1 + 2K − T2/2; Φ(t) =

(ϕ2(t + T2 − T1 − 2K), ϕ′2(t + T2 − T1 − 2K)) when
T1+2K−T2/2 ≤ t ≤ T1+2K−T2. Note from the construction,
the overall trajectory Φ(t) is continuous and piecewise
smooth. Also, using the properties of ϕ1, ϕ2, ψ, it holds
that Φ([0, T1 − T2 + 2K]) ∈ CBt which connects any pair of
(q, q̇), (q̂, ˙̂q). Thus, the set CBt is path connected.

D. Proof of Proposition 1
Since (q0, q̇0) ∈ C0, by forward invariance, it holds that

(q(t), q̇(t)) ∈ Ct which is equivalent to

γiβ(gi(q(t))) + ⟨dgi, q̇(t)⟩ +
∂gi
∂t

∣t,q(t) ≥ 0 (34)

for any i ∈ {1,2,⋯, k} and t ∈ [0,∞)
Consider the extreme case when the system trajectory

reaches the boundary of Bt at t1 > 0, then there exists
j ∈ {1,2,⋯, k} such that gj(t1, t1, q(t1)) = 0. By Chain rule
and the previous inequality (34), it follows that

dgj

dt
∣
t=t1

= ⟨dgj , q̇(t1)⟩ +
∂gj

∂t
∣t1,q(t1) ≥ 0,

which means that the value of gj would never decrease below
zeros.

The previous argument indicates that the system trajectory
would never escape Bj,t when it reaches the boundary of Bi,t.
This implies that the system trajectory would never escape the
safety region Bt, namely, Bt is forward invariant.

E. Proof of Proposition 2
Consider the quadratic programming in (20) with positive

definite coefficient matrix Q > 0. Then if a solution exists for
this QP which is strictly convex, this solution is unique accord-
ing to proposition in convex optimization. So by assumption
this control input is well-defined.

Since the set D has measure zero, it has an empty interior.
Hence, the system’s trajectory can only traverse it at discrete
time points. For the time period (t1, t2) when (q, q̇) ∈ C/D, all
the hard constraints are satisfied by the controller. Applying
Theorem 2 in [3] yields that system trajectory would never
escape C/D. When (q, q̇) ∈ D, a solution might not exist but
the current state lies in C○ since D ∈ C○. For both cases,
the system state always stay within C. Thus it’s forward-
invariant for system (3). Using Proposition (1), it follows that
the feasible region B is also forward-invariant.
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