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Rapidly Exponentially Stabilizing Control Lyapunov
Functions and Hybrid Zero Dynamics

Aaron D. Ames, Kevin Galloway, J. W. Grizzle, and Koushil Sreenath

Abstract—This paper addresses the problem of exponentially
stabilizing periodic orbits in a special class of hybrid models—
systems with impulse effects—through control Lyapunov func-
tions. The periodic orbit is assumed to lie in a C1 submanifold
Z that is contained in the zero set of an output function and
is invariant under both the continuous and discrete dynamics;
the associated restriction dynamics are termed the hybrid zero
dynamics. The orbit is furthermore assumed to be exponentially
stable within the hybrid zero dynamics. Prior results on the
stabilization of such periodic orbits with respect to the full-
order dynamics of the system with impulse effects have relied
on input-output linearization of the dynamics transverse to the
zero dynamics manifold. The principal result of this paper
demonstrates that a variant of control Lyapunov functions that
enforce rapid exponential convergence to the zero dynamics
surface, Z, can be used to achieve exponential stability of the
periodic orbit in the full-order dynamics, thereby significantly
extending the class of stabilizing controllers. The main result
is illustrated on a hybrid model of a bipedal walking robot
through simulations and is utilized to experimentally achieve
bipedal locomotion via control Lyapunov functions.

I. INTRODUCTION AND MOTIVATION

For finite-dimensional nonlinear systems, exhibiting a Lya-
punov function has been the gold standard for establishing sta-
bility properties of equilibrium points. Indeed, under mild con-
ditions, the existence of a Lyapunov function with particular
properties is equivalent to stability in the sense of Lyapunov,
asymptotic stability, or exponential stability of an equilibrium
point [26], [44]. Moreover, once a Lyapunov function has
been found, a region of attraction can be estimated; albeit,
the estimate is often very conservative. Lyapunov functions
have also been used to define and characterize input-to-state
stability [45], [46]. Recently, Lyapunov functions have seen a
further surge of interest in the nonlinear systems community
through powerful tools for obtaining them as sum of squares
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[31], [50]. All of this points to the power of Lyapunov
functions in understanding nonlinear systems.

In the context of nonlinear control systems, since the
ground-breaking work of Sontag [42], [43] and Artstein [5]
control Lyapunov functions (CLF) have become central to
feedback design. Roughly speaking, given a nonlinear control
system with equilibrium point at the origin,

ẋ = f(x, u),

a positive definite function V (x) is a control Lyapunov func-
tion if, for each x 6= 0 in the state space, there exists u such
that

V̇ (x, u) = grad V (x)f(x, u) < 0.

Domains of application include nonlinear adaptive control
[27], robust nonlinear feedback design [38], receding horizon
control of nonlinear systems [24], and stabilization of hybrid
systems [36], to name only a few. An important aspect of
using the control Lyapunov approach is that the designer is
free to choose among an infinite number of feedback control
laws that render the time derivative of the Lyapunov function
negative definite. Of particular interest is the so-called “point-
wise minimum norm” controller [12], [33], which at each
instant of time selects the control value of minimum norm
among all values rendering “V̇ ” negative definite. If the set
where the control takes values is convex, then it can be shown
that this controller is also Lipschitz continuous [12]. The point-
wise minimum norm controller is optimal with respect to
a cost function [12]; therefore, control Lyapunov functions
not only establish proofs of stability for nonlinear control
systems through the generation of a family of controllers, but
simultaneously have a direct relationship with optimality.

The primary goal of this paper is to extend the control
Lyapunov methodology to a class of hybrid systems that
includes bipedal robots. The work is motivated by the practical
problem of enlarging the class of feedback controllers that can
create exponentially stable periodic walking gaits; such gaits
correspond to exponentially stable periodic orbits in a class of
systems with impulse effects. In the context of the overarching
goal, and motivated by the application of robotic locomotion,
this work presents three main novel results: extending control
Lyapunov functions to allow direct control over the rate of
exponential convergence to a (hybrid) zero dynamics surface;
proving that exponentially stabilizing control Lyapunov func-
tions allow for the extension of the stable periodic orbits in
the (hybrid) zero dynamics to stable periodic orbits in the full-
order dynamics; and finally demonstrating these concepts both
in simulation and experimentally on bipedal walking robots.
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In order to put these results in context, it is necessary to
review hybrid zero dynamics and the current paradigm for con-
structing controllers relative to the zero dynamics manifold.
The notion of hybrid zero dynamics (HZD) was introduced
in [52] as a feedback design method that could accommodate
underactuation in bipedal robots and thereby move beyond
quasi-static, flat-footed walking gaits. At its most basic level,
the hybrid zero dynamics is an extension of the Byrnes-Isidori
notion of zero dynamics [23], [22] to a hybrid setting, with the
additional requirement that the invariant manifolds on which
the zero dynamics is defined must also be invariant under
the discrete reset maps. Outputs satisfying a vector relative
degree [22] condition are designed for each phase of a hybrid
model with the objective of creating an exponentially stable
periodic orbit in the hybrid zero dynamics [52], [53], [54],
[48]. The feedback design is completed by rendering the zero
dynamics manifold sufficiently rapidly exponentially attractive
[29], [54], [28]. The motivation for assuring a sufficiently fast
rate of exponential convergence is that the reset maps can be
(and in practice, often are) “expansive”, taking a solution that
does not lie in the zero dynamics manifold and “pushing” it
“further away” from the manifold. Hence, the convergence of
the continuous dynamics to the manifold must be sufficiently
“attractive" to overcome the “repulsion” of the reset map.

To date, the design of the controller assuring convergence
to the zero dynamics manifold has been approached in three
ways. In [16], Hölder continuous feedbacks based on [8] were
used to assure finite-time convergence. In [39], [40], specially
selected variables transverse to the zero dynamics manifold are
Jacobian linearized and an exponentially stabilizing feedback
is computed on the basis of LQR for periodic systems (see also
[7] and [41]). In [1], [2], [3], [28], [29], [54] (to only name a
few), the transverse dynamics were input-output linearized and
a high-gain time-invariant linear feedback was then employed;
for example, when the outputs have vector relative degree
2, after creating a linear relationship between the inputs and
outputs, the feedback is chosen to be

u = − 1

ε2
KP y −

1

ε
KDẏ.

Therefore, the vast body of work that utilizes hybrid zero dy-
namics for controller design essentially considers PD control
on the outputs.

The objective of the present paper is to significantly expand
the set of feedback controllers that can be used to render
the zero dynamics sufficiently rapidly attractive to expo-
nentially stabilize the periodic orbit in the full-dimensional
hybrid model. A control Lyapunov function approach is taken,
starting with a review of CLFs for periodic orbits of non-
hybrid systems in Sect. II. Sect. III then revisits input-output
linearization from a Lyapunov perspective and subsequently
presents a CLF approach to obtaining exponential convergence
bounds similar to the linear case. This section culminates with
the derivation of the control (38), which is based on Sontag’s
construction. In Sect. IV we address the more general setting
of affine control systems with an invariant zero dynamics
surface. The goal is to analyze the full system dynamics
in terms of the reduced system dynamics coupled with a

CLF which converges sufficiently rapidly in the transverse
dynamics. Such a CLF can be used in conjunction with the
pointwise min-norm control described in (45). The main result
of this paper, presented in Sect. V and proved in Sect. VI,
applies the CLF approach in the context of hybrid systems. In
particular, we show that for a CLF that is rapidly exponentially
stabilizing, the existence of an exponentially stable periodic
orbit in the hybrid zero dynamics implies the existence of
a feedback rendering the periodic orbit exponentially stable
in the full dynamics. The key difference with [36] is that
asymptotic stability of the zero dynamics is not strong enough
to achieve stability of the closed-loop system with the type of
reset maps encountered in bipedal locomotion. Finally, Sect.
VII describes simulation results for the CLF-based controllers
implemented on a five-link bipedal walker model and Sect.
VIII reports on experimental results.

The results presented in this paper were initially reported
in [4]. The present paper adds to the original contribution in
the following important ways: the non-hybrid case is fully
developed through Theorem 1; the proof of the main result—
Theorem 2—is carried out in full while it was omitted from
[4]; and the theoretical results are verified experimentally.
These factors combine to create a complete exposition on
the application of control Lyapunov functions to hybrid zero
dynamics with application to bipedal robotic locomotion.

II. EXPONENTIALLY STABILIZING CLFS AND PERIODIC
ORBITS

The goal of this section is to provide conditions for es-
tablishing the exponential stability of a periodic orbit of
a system on the basis of two lower-dimensional problems,
specifically, establishing the exponential stability of a periodic
orbit contained in an invariant submanifold and constructing a
control Lyapunov function for the dynamics transverse to the
submanifold. The problem of stabilizing a periodic orbit was
first posed in these terms in [19]. We begin by considering an
affine control system of the form

ẋ = f(x, z) + g(x, z)u (1)
ż = q(x, z),

where, x ∈ X are the controlled (or output) states, z ∈ Z are
the uncontrolled states, U is the set of admissible control val-
ues for u, and X , Z, and U are open subsets of appropriately
dimensioned Euclidean spaces. The vector fields f , g, and q
are assumed to be locally Lipschitz continuous. In addition,
we assume that f(0, z) = 0, so that the surface Z defined by
x = 0 with dynamics ż = q(0, z) is invariant.

Because systems having the form of (1) naturally arise in
the study of systems with zero dynamics [22], Z will be
referred to as the zero dynamics manifold and the reduced
system as the zero dynamics. The x-dynamics are sometimes
called the transverse dynamics. Models having the form of (1)
also arise in the study of underactuated mechanical systems
(i.e., fewer inputs than degrees of freedom) [47], [34], [18],
where the configuration variables are split into “actuated” and
“unactuated” coordinates. Moreover, the actuated configura-
tion variables can be interpreted as a set of outputs with vector
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relative degree 2 [22], meaning the inputs show up in the
second derivative of the outputs, and the matrix multiplying
the inputs, called the decoupling matrix, is square and full
rank in a neighborhood of interest. In this case, the unactuated
configuration variables and their first derivatives constitute
the zero dynamics and the actuated variables and their first
derivatives constitute the transverse dynamics.

Definition 1: (Based on [9] for continuous-time systems
and [25], [56] for discrete-time systems.) For the system (1),
a continuously differentiable function V : X → R is an
exponentially stabilizing control Lyapunov function (ES-
CLF) if there exists positive constants c1, c2, c3 > 0 such that

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2 (2)
inf
u∈U

[LfV (x, z) + LgV (x, z)u+ c3V (x)] ≤ 0 (3)

for all (x, z) ∈ X × Z.

We are interested in how the zero dynamics and an ES-
CLF allow us to understand the stability of periodic orbits. To
make the discussion precise, some elementary definitions and
notation are recalled.

Motivated by the constructions in [12], [33], we define the
set

K(x, z) = {u ∈ U : LfV (x, z) + LgV (x, z)u + c3V (x) ≤ 0}
(4)

consisting of the control values that result in V̇ (x, z, u) ≤
−c3V (x). When V is an ES-CLF, it is easy to see that for
any locally Lipschitz continuous feedback control law u(x, z)
such that u(x, z) ∈ K(x, z) for all x ∈ X × Z, the solutions
of the closed-loop system

ẋ = f(x, z) + g(x, z)u(x, z) (5)
ż = q(x, z)

satisfy

‖x(t)‖ ≤
√
c2
c1
e−

c3
2 t‖x(0)‖.

Let φt(x, z) be the flow of (5) with initial condition
(x, z) ∈ X × Z. The flow φt is periodic with period T > 0
and fixed point (x∗, z∗) if φT (x∗, z∗) = (x∗, z∗). Associated
with a periodic flow is a periodic orbit O = {φt(x∗, z∗) ∈
X × Z : 0 ≤ t ≤ T}. Similarly, we denote the flow of the
zero dynamics ż = q(0, z) by φzt and for a periodic flow we
denote the corresponding periodic orbit by OZ ⊂ Z. Due to
the assumption that the zero dynamics surface Z is invariant,
a periodic orbit for the zero dynamics, OZ , corresponds to
a periodic orbit for the full-order dynamics, O = ι0(OZ),
through the canonical embedding ι0 : Z → X × Z given by
ι0(z) = (0, z).

Without loss of generality, we can assume that the norm on
X × Z is constructed from norms on X and Z respectively
by ‖(x, z)‖ = ‖x‖+ ‖z‖. The distance of a point (x, z) from
a periodic orbit O then satisfies

‖(x, z)‖O := inf
(x′,z′)∈O

‖(x, z)− (x′, z′)‖

= inf
z′∈O

‖z − z′‖+ ‖x‖. (6)

A periodic orbit O is exponentially stable if there exist
δ,M, β > 0 such that if (x, z) ∈ Bδ(O) = {(x, z) ∈
X × Z : ‖(x, z)‖O < δ} it follows that ‖φt(x, z)‖O ≤
Me−βt‖(x, z)‖O . The exponential stability of a periodic orbit
OZ in Z can be similarly defined.

Theorem 1: (based on [19, Thm. 2, part (iv)]) For the
system (1), let OZ be an exponentially stable periodic orbit
for the zero dynamics ż = q(0, z). If there exists an ES-CLF
V , then for all locally Lipschitz continuous feedbacks u(x, z)
taking values in K(x, z), O = ι0(OZ) is an exponentially
stable periodic orbit of (5).

The proof is given in Appendix A, along with a result in
Appendix B that highlights the connections between this part
of the paper and Sect. V.

Theorem 1 provides conditions under which the exponential
stability of a periodic orbit of a system can be determined from
two lower-dimensional problems, specifically, establishing the
exponential stability of a periodic orbit contained in a zero
dynamics submanifold and constructing an ES-CLF for the
dynamics transverse to the submanifold. The primary goal of
this paper is to establish a similar result for a class of hybrid
systems, where the zero dynamics will be replaced with the
hybrid zero dynamics [54]. In the hybrid context, a stronger
notion of convergence is needed for the transverse dynamics
because the reset map in a hybrid system may act as a
persistent disturbance1 and may push solutions away from the
desired orbit [28]. The need for a stronger form of convergence
to counter the action of the reset map will lead to the
notion of a rapidly exponentially stabilizing control Lyapunov
function. Rather than directly introducing this notion, we will
first motivate it by revisiting input/output linearization in the
context of Lyapunov functions.

III. INPUT-OUTPUT LINEARIZATION—A LYAPUNOV
PERSPECTIVE

A. Input-Output Linearization Revisited

To motivate later constructions, we consider an affine con-
trol system modeling a mechanical system (with configuration
space Θ and (local) coordinates θ ∈ Θ) given by

[
θ̇

θ̈

]
= fθ(θ, θ̇) + gθ(θ, θ̇)u (7)

for (θ, θ̇) ∈ TΘ. Suppose that for (7) there is an associated
output y(θ) of vector relative degree 2 on a region of interest.
(See [37], [22] for a definition and more detailed exposition).
This results in

ÿ = L2
fθ
y(θ, θ̇) + LgθLfθy(θ, θ̇)u (8)

where LgθLfθy(θ, θ̇) is the decoupling matrix, which is invert-
ible due to the vector relative degree assumption. Application
of an input-output linearizing controller of the form

u(θ, θ̇) = −(LgθLfθy(θ, θ̇))−1

(
L2
fθ
y(θ, θ̇) +

1

ε2
KP y +

1

ε
KD ẏ

)
,

1The reader may wish to scan Sect. VII for a specific example of this
phenomenon; in particular, see Fig. 3.
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where 0 < ε < 1 and

A :=

[
0 I
−KP −KD

]
(9)

is Hurwitz, yields the linear system on the outputs

ÿ = − 1

ε2
KP y −

1

ε
KDẏ.

The parameter ε allows the real and imaginary parts of the
roots of the characteristic equation to be scaled proportionally
by 1/ε, and hence 0 < ε < 1 has the effect of speeding
up the rate of convergence while leaving the “damping ratio”
unchanged.

Choosing the state variables

ηε :=

[
1
εy
ẏ

]
(10)

results in
ε
d

dt
ηε(t) = Aηε(t), (11)

and performing a change of time scale τ = t
ε yields

d

dτ
ηε(τ) = Aηε(τ). (12)

Due to the Hurwitz assumption, for any Q = QT > 0 there
exists P = PT > 0 such that the Lyapunov equation is
satisfied

ATP + PA = −Q. (13)

Letting

γ :=
λmin(Q)

λmax(P )
> 0, (14)

where λmax(·) and λmin(·) denote (respectively) the maximum
and minimum eigenvalues of a given symmetric matrix, we
apply the Rayleigh-Ritz inequality [35] to obtain

Q ≥ γP, (15)

that is,
ATP + PA+ γP ≤ 0. (16)

Then defining the Lyapunov function

V (ηε) = ηTε Pηε, (17)

it follows from (16) that along trajectories of (12) we have

dV (ηε(τ))

dτ
≤ −γV (ηε(τ)). (18)

Therefore in the original time-scale (i.e. along trajectories of
(11)) we have

V̇ (ηε(t)) ≤ −
γ

ε
V (ηε(t)), (19)

from which it follows that

V (ηε(t)) ≤ e−γt/εV (ηε(0)). (20)

Once again employing the Rayleigh-Ritz inequality, from (20)
we obtain

‖ηε(t)‖ ≤

√
λmax(P )

λmin(P )
e−

γ
2ε t ‖ηε(0)‖, (21)

which leads to
∣∣∣∣∣

∣∣∣∣∣
y(t)

ẏ(t)

∣∣∣∣∣

∣∣∣∣∣ ≤
1

ε

√
λmax(P )

λmin(P )
e−

γ
2ε t

∣∣∣∣∣

∣∣∣∣∣
y(0)

ẏ(0)

∣∣∣∣∣

∣∣∣∣∣ . (22)

Hence, the norm of (y(t), ẏ(t)) converges to zero at an
exponential rate inversely proportional to ε, and (y(t), ẏ(t))
can be made to converge to zero arbitrarily rapidly by choosing
ε > 0 sufficiently small.

Remark 1: In the coordinates ηε = [y/ε, ẏ]T , V satisfies

λmin(P ) ||ηε||22 ≤ V (ηε) ≤ λmax(P ) ||ηε||22,

while in the coordinates η = [y, ẏ]T , we have

λmin(P ) ||η||22 ≤ Vε(η) ≤ 1

ε2
λmax(P ) ||η||22,

where

Vε(η) = ηT
[

1
εI 0
0 I

]
P

[
1
εI 0
0 I

]
η =: ηTPεη. (23)

This illustrates an important point: the Lyapunov function V
can be constructed in terms of a state that is dependent on ε,
while V itself is independent of ε, or V can be viewed as a
function of ε with the state independent of ε. In what follows,
we will state definitions and results in terms of the latter, i.e.
the CLF will be modeled on (23).

B. CLF’s from Lyapunov Equations

The convergence bounds of the previous section are based
on input-output linearization. The objective here is to obtain
similar bounds on convergence through control Lyapunov
functions, with the specific goal of obtaining an inequality
similar to (19) without having to make a specific choice of
controller.

Returning to (8), suppose that a preliminary feedback con-
troller is applied that renders the zero dynamics surface

Z = {(θ, θ̇) ∈ TΘ | y(θ) = 0, Lfθy(θ, θ̇) = 0} (24)

invariant. An example of such a control law is given by

u(θ, θ̇) = −(LgθLfθy(θ, θ̇))−1L2
fθ
y(θ, θ̇) + µ, (25)

yielding
ÿ = LgθLfθy(θ, θ̇)µ =: `(y, ẏ, z)µ, (26)

where z ∈ Z represent the uncontrolled states and ` is the
decoupling matrix expressed in terms of y, ẏ and z.

Using the coordinates

η = [η1, η2]T := [y, ẏ]T , (27)

the dynamics become
[
η̇1

η̇2

]
=

[
η2

0

]
+

[
0

`(η1, η2, z)µ

]
, (28)

and writing

F =

[
0 I
0 0

]
, G =

[
0
I

]
, (29)

we obtain the “standard” form for a partially linearized system

η̇ = Fη +G`(η, z)µ := f(η, z) + g(η, z)µ, (30)
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where clearly (F,G) is controllable.
We will demonstrate that, subject to the decoupling matrix

being invertible, there exists a positive definite differentiable
function Vε(η) and a constant c > 0, such that for all ε > 0
and for all (η, z), there exists µ such that

LfVε(η, z) + LgVε(η, z)µ+
c

ε
Vε(η) ≤ 0. (31)

In particular, let µ be given by the input-output linearization
control law

µ(η, z) = −`(η, z)−1K(ε)η, (32)

with K(ε) =
[

1
ε2KP

1
εKD

]
so that (30) becomes

η̇ = f(η, z) + g(η, z)µ(η, z) =

[
0 I

− 1
ε2KP − 1

εKD

]
η, (33)

which is equivalent to (11). Then defining Vε(η) as in (23)
(which is equivalent to (17)), it follows from (19) that

V̇ε(η, z) = LfVε(η, z) + LgVε(η, z)µ(η, z) ≤ −γ
ε
Vε(η),

(34)

with

LfVε(η, z) = ηT (FTPε + PεF )η,

LgVε(η, z) = 2ηTPεG`(η, z), (35)

and therefore (31) is satisfied with c = γ. More generally, this
shows that

inf
µ

[
LfVε(η, z) + LgVε(η, z)µ+

γ

ε
Vε(η)

]
≤ 0, (36)

since we have produced a specific example of µ that satisfies
this condition. Therefore, Vε is a control Lyapunov function;
moreover, it is a specific example of a stronger form of CLF—
a rapidly exponentially stabilizing control Lyapunov function.
(A precise definition will be given in Sect. IV.)

While (32) is one example of a control law satisfying (31),
there exist many other control laws which also satisfy the
bound. For example, if we define

ψ0,ε(η, z) = LfVε(η, z) +
γ

ε
Vε(η)

ψ1,ε(η, z) = LgVε(η, z)
T , (37)

in terms of (23) and (35), then the “universal” construction of
Sontag [43] yields a control law which satisfies (31), given by

µ(η, z) =

{
Υ(η, z) if ψ1,ε(η, z) 6= 0
0 if ψ1,ε(η, z) = 0,

(38)

where

Υ(η, z) =

[
−ψ0,ε(η, z)

ψ1,ε(η, z)Tψ1,ε(η, z)

−
√

(ψ0,ε(η, z))2 + (ψ1,ε(η, z)Tψ1,ε(η, z))2

ψ1,ε(η, z)Tψ1,ε(η, z)

]
ψ1,ε(η, z).

IV. RAPIDLY EXPONENTIALLY STABILIZING CLF

Motivated by Sect. III, we return to systems of the form
given in (1) and consider a particular class of control Lyapunov
functions which will satisfy the type of bound given by (36).

A. RES-CLF

Def. 1 is now extended to provide a means of adjusting the
rate of convergence to be “sufficiently rapid”. Once again,
this will be important in the case of hybrid systems for
which a controller for the continuous dynamics must provide
adequate contraction to overcome the repulsion of the discrete
dynamics.

Definition 2: For the system (1), a one-parameter family of
continuously differentiable functions Vε : X → R is said to be
a rapidly exponentially stabilizing control Lyapunov function
(RES-CLF) if there exist positive constants c1, c2, c3 > 0 such
that for all 0 < ε < 1 and for all (x, z) ∈ X × Z,

c1‖x‖2 ≤ Vε(x) ≤ c2
ε2
‖x‖2 (39)

inf
u∈U

[
LfVε(x, z) + LgVε(x, z)u+

c3
ε
Vε(x)

]
≤ 0. (40)

In the context of RES-CLF, the set K introduced in (4)
becomes

Kε(x, z) = {u ∈ U : LfVε(x, z) + LgVε(x, z)u +
c3

ε
Vε(x) ≤ 0}

consisting of the control values that result in V̇ε(x, z, u) ≤
− c3ε Vε(x). Just as in Sect. III, for any Lipschitz continuous
feedback control law uε(x, z) with values in Kε(x, z), (39)
and (40) imply that the solutions of the closed-loop system

ẋ = f(x, z) + g(x, z)uε(x, z) (41)
ż = q(x, z),

satisfy
Vε(x(t)) ≤ e−

c3
ε tVε(x(0)) (42)

and

‖x(t)‖ ≤ 1

ε

√
c2
c1
e−

c3
2ε t‖x(0)‖. (43)

The rate of exponential convergence can therefore be directly
controlled with the constant ε through c3

ε .

B. Remarks on inverse optimality

In practical applications, it can be interesting to select the
control value of minimum norm in Kε(x, z)

m(x, z) = argmin{‖u‖ : u ∈ Kε(x, z)},

termed the pointwise min-norm control law [12], [9], [33]. For
a system of the form (1) with Vε a RES-CLF, define

ψ0,ε(x, z) = LfVε(x, z) +
c3
ε
Vε(x)

ψ1,ε(x, z) = LgVε(x, z)
T . (44)

In this case, the pointwise min-norm control law is given by

mε(x, z) =

{
− ψ0,ε(x,z)ψ1,ε(x,z)
ψ1,ε(x,z)Tψ1,ε(x,z)

if ψ0,ε(x, z) > 0

0 if ψ0,ε(x, z) ≤ 0,

(45)

and is locally Lipschitz continuous [12].
In the previous section, a specific example of a RES-CLF

was given by (23), with c1 = λmin(P ), c2 = λmax(P ), and
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c3 = γ. Picking µε(η, z) = mε(η, z), with ψ0,ε and ψ1,ε

defined in (37), results in the pointwise min-norm control law
such that (31) is satisfied.

It is important to note (see [12]) that the pointwise min-
norm control law is actually optimal with respect to some
cost function

J(x, z, u) =

∫ ∞

0

L(x, z, u)dt,

and hence it exponentially stabilizes x to 0 in an “optimal”
manner, although the functional L can be difficult to compute
in closed form and may or may not be physically meaningful
for a given choice of Vε. With an eye toward optimality, the
algebraic Riccati equation can be used to construct a RES-
CLF when the transverse dynamics is feedback linearizable,
as in (26). For example, let F and G be defined as in (29)
and let P be the solution to the Riccati equation

FTP + PF − PGGTP +Q = 0 (46)

for some Q = QT > 0. It again follows that γP ≤ Q, where γ

is defined as in (14), and letting Pε =

[
1
εI 0
0 I

]
P

[
1
εI 0
0 I

]
=:

MεPMε as in (23), one can show that (46) implies

FTPε + PεF −
1

ε
PεGG

TPε +
1

ε
MεQMε = 0. (47)

Then defining η as in (27) with dynamics (30) and letting
Vε(η) = ηTPεη, we have

V̇ε(η, z, µ) +
γ

ε
Vε(η) ≤ ηTPεG(

1

ε
GTPεη + 2`(η, z)µ),

from which it follows that

inf
µ∈U

[
V̇ε(η, z, µ) +

γ

ε
Vε(η)

]
≤ 0. (48)

Vε(ηε) is therefore a RES-CLF with c1 = λmin(P ), c2 =
λmax(P ), and c3 = γ, and for any feedback control law
µε(η, z) taking values in Kε(η, z), we obtain the bounds on
‖η(t)‖ given in (22). Note that the pointwise min-norm control
law µε(η, z) = mε(η, z) in (45) is a specific example of such
a control law, where in this case ψ0,ε and ψ1,ε are exactly as
in (44) except P is now the solution of (46).

V. CLF’S AND HYBRID SYSTEMS

This section considers control Lyapunov functions in the
context of hybrid systems. Analogous to the case of non-hybrid
systems in (1), we will begin with the assumption that the
hybrid system already has a hybrid zero dynamics ([52], [28]),
which is a manifold that is invariant under both the continuous
and the discrete dynamics of the hybrid system. The goal is
to provide conditions for establishing the local exponential
stability of a periodic orbit of a hybrid system on the basis
of two lower-dimensional problems, namely, establishing the
exponential stability of a periodic orbit contained in the hybrid
zero dynamics and constructing a RES-CLF for the dynamics
transverse to the submanifold.

A. Hybrid systems and zero dynamics

Consider a hybrid control system of the form of a system
with impulse effects [6], [55], [20]

H C =





ẋ = f(x, z) + g(x, z)u if (x, z) ∈ D\S
ż = q(x, z)

x+ = ∆X(x−, z−) if (x−, z−) ∈ S
z+ = ∆Z(x−, z−)

(49)

where x ∈ X , z ∈ Z, u ∈ U are defined as in (1), the domain
D is a closed subset of X ×Z, the functions f, g, q,∆X ,∆Z

are locally Lipschitz in their arguments, and the guard or
switching surface S ⊂ D is a co-dimension one submanifold
of D. We assume furthermore that the domain and switching
surfaces are given by

D = {(x, z) ∈ X × Z : h(x, z) ≥ 0} (50)

S = {(x, z) ∈ X × Z : h(x, z) = 0 and ḣ(x, z) < 0},

for some continuously differentiable function h : X ×Z → R
for which Lgh = 0. For simplicity of notation, we write
∆(x, z) = (∆X(x, z),∆Z(x, z)) which is the reset map
representing the discrete dynamics of the hybrid system.

As previously mentioned, it is assumed that H C has
a hybrid zero dynamics. More specifically, we assume that
f(0, z) = 0, so that the surface Z is invariant for the
continuous dynamics, and that ∆X(0, z) = 0, so that the
surface Z is invariant for the discrete dynamics. The hybrid
zero dynamics is then the hybrid system

H |Z =

{
ż = q(0, z) if z ∈ Z\(S ∩ Z)

z+ = ∆Z(0, z−) if z− ∈ S ∩ Z. (51)

For a hybrid system of the form (49) and a RES-CLF Vε(x),
we can again consider locally Lipschitz continuous control
laws uε(x, z) ∈ Kε(x, z). Applying such a control results in
the closed-loop hybrid system

Hε =


ẋ = f(x, z) + g(x, z)uε(x, z) if (x, z) ∈ D\S
ż = q(x, z)

x+

= ∆(x−, z−) if (x−, z−) ∈ S.
z+

(52)

Because uε(x, z) ∈ Kε(x, z) implies uε(0, z) = 0, the hybrid
zero dynamics H |Z is preserved.

B. Solutions, periodic orbits, and the Poincaré map

In the context of hybrid systems, one can define solutions in
many ways [55], [20], [54], [15]. Because we focus on periodic
orbits and solutions that evolve in a neighborhood of such
orbits, we are primarily interested in the Poincaré map, which
can be defined rather easily for the hybrid systems considered
here. Therefore, in the interest of brevity and simplicity, we
will forgo a full description of solutions of hybrid systems.

For the hybrid system Hε, let φεt (x, z) be a flow of the
continuous dynamics of (52) (i.e. the dynamics given by (41)).
For (x∗, z∗) ∈ S, we say that φεt is hybrid periodic with period
T > 0 if φεT (∆(x∗, z∗)) = (x∗, z∗). (Note that here we are
assuming that the fixed point is in the switching surface S;
more general definitions are possible [17], [51], but the one
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(x−, z−)(x+, z+)

∆ (x−, z−)

φǫ
t

(
∆(x−, z−)

)

S
∆(S)

Z

Fig. 1: Trajectories of the hybrid system (52) lying in the zero
dynamics, where Z is the zero dynamics surface and S is the
switching surface (50). The reset map ∆ maps an initial point
(x−, z−) ∈ S to (x+, z+) ∈ ∆(S), which then serves as the
initial condition for φεt , the flow of the continuous dynamics
in (49). The thicker trajectory denotes a hybrid periodic orbit
lying in Z.

introduced here simplifies the presentation without sacrificing
any generality.) A set O is a hybrid periodic orbit if O =
{φεt (∆(x∗, z∗)) : 0 ≤ t ≤ T} for a hybrid periodic flow
φεt . Fig. 1 depicts two solutions lying in the zero dynamics
manifold, one of which is periodic.

Taking S as a Poincaré section, associated with a hybrid
periodic orbit is a Poincaré map P ε : S → S which is a
partial function

P ε(x, z) = φεT εI (x,z)(∆(x, z)),

where T εI : S → D is the time-to-impact function defined by

T εI (x, z) = inf{t ≥ 0 : φεt (∆(x, z)) ∈ S}

and obtained through the Implicit Function Theorem [26]
by considering the function H(t, x, z) = h(φεt (∆(x, z)))
for which H(T, x∗, z∗) = 0. Since, by assumption on S,
∂H
∂t (T, x∗, z∗) < 0, the Implicit Function Theorem implies

that T εI is well-defined in a neighborhood of (x∗, z∗). There-
fore, T εI (x∗, z∗) = T and so P ε(x∗, z∗) = (x∗, z∗). Also, we
note that H(t, x, z) is Lipschitz continuous since it is differ-
entiable in t, h is assumed to be continuously differentiable,
and φεt (∆(x, z)) is Lipschitz continuous, and therefore T εI is
also Lipschitz [49].

A hybrid periodic orbit, OZ , of H |Z can be similarly
defined, in which case the corresponding Poincaré map ρ :
S ∩ Z → S ∩ Z (which is again a partial function) is termed
the restricted Poincaré map [29]. In this case,

ρ(z) = φzTρ(z)(∆Z(0, z)),

where φz is the flow of ż = q(0, z) and Tρ(z) is the
restricted time-to-impact function which is simply given by
Tρ(z) := T εI (0, z). Due to the assumption that the zero
dynamics surface is invariant, a periodic orbit for the zero
dynamics, OZ , corresponds to a periodic orbit for the full-
order dynamics, O = ι0(OZ), through the canonical embed-
ding ι0 : Z → X × Z given by ι0(z) = (0, z). It follows
that we can assume that x∗ = 0. Moreover, without loss of
generality, we assume that z∗ = 0 as well.

As with non-hybrid dynamical systems, the stability of the
Poincaré map determines the stability of the hybrid periodic

orbit O . Specifically, the Poincaré map is (locally) exponen-
tially stable (as a discrete time system with (xk+1, zk+1) =
P ε(xk, zk)) at the fixed point (x∗, z∗) if and only if the hybrid
periodic orbit O is exponentially stable2 [29]. It is this fact
that we will utilize in proving the main result of the paper.
Similarly, the stability of a periodic orbit OZ in the hybrid
zero dynamics is determined by the restricted Poincaré map.

C. Main result

With the notation of the previous section in hand, we now
present the main result of this paper.

Theorem 2: Let OZ be an exponentially stable periodic
orbit of the hybrid zero dynamics H |Z transverse to S ∩ Z
and assume there exists a RES-CLF Vε for the continuous
dynamics (1) of H C . Then there exists an ε > 0 such
that for all 0 < ε < ε and for all Lipschitz continuous
uε(x, z) ∈ Kε(x, z), O = ι0(OZ) is an exponentially stable
hybrid periodic orbit of Hε.

VI. PROOF OF MAIN RESULT

Using the equivalency of the exponential stability of a
hybrid periodic orbit and the exponential stability of the
corresponding fixed point of the Poincaré map, the proof seeks
a Lyapunov function VPε , defined locally about (x∗, z∗) =
(0, 0) ∈ S, for the Poincaré map P ε; that is, it seeks
a (local) Lyapunov function for the discrete-time system
(xk+1, zk+1) = P ε(xk, zk) with equilibrium point (0, 0).
Roughly speaking, VPε |S∩Z will be constructed on the basis
of the restricted Poincaré map ρ : S ∩ Z → S ∩ Z with
ρ(z∗) = z∗, while the “transversal” component will be
constructed from the RES-CLF Vε restricted to S.

Before proving Theorem 2, we first state and prove a lemma
establishing a bound on the Poincaré map in terms of the
restricted Poincaré map and a bound on the time-to-impact
function T εI (x, z) in terms of Tρ(z). In the following, Bδ(r)
denotes an open ball of radius δ > 0 centered on the point r,
and P εz (x, z) is the z-component of P ε(x, z).

Lemma 1: Let OZ be a periodic orbit of the hybrid zero
dynamics H |Z transverse to S ∩Z and assume there exists a
RES-CLF Vε for the continuous dynamics (1) of H C . Then
there exist finite constants LTI and A1 (both independent of
ε) such that for all ε > 0 and for all Lipschitz continuous
uε(x, z) ∈ Kε(x, z) there exists a δ > 0 such that for all
(x, z) ∈ Bδ(0, 0) ∩ S,

‖T εI (x, z)− Tρ(z)‖ ≤ LTI‖x‖, (53)
‖P εz (x, z)− ρ(z)‖ ≤ A1‖x‖. (54)

Proof: In the first step of the proof, we construct an aux-
iliary time-to-impact function TB that is Lipschitz continuous
and independent of ε and then relate it to T εI .

Recall that h(x, z) is the guard. Let µ1 ∈ Rnx and µ2 ∈ Rnz
be constant vectors and let φzt (∆(0, z0)) be the solution of

2While Theorem 1 in [29] assumes the hybrid model is C1, its proof only
requires that f and ∆ are Lipschitz continuous.
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ż = q(0, z) with z(0) = ∆Z(0, z0). Define

TB(µ1, µ2, z) = inf{t ≥ 0 : h(µ1, φ
z
t (∆(0, z)) + µ2) = 0},

wherein it follows that TB(0, 0, z) = Tρ(z). By construction,
TB is independent of ε and (by the same argument used
for T εI (x, z)) is Lipschitz continuous. Hence, in the norm
‖(µ1, µ2, z)‖ := ‖µ1‖+ ‖µ2‖+ ‖z‖,

|TB(µ1, µ2, z)− Tρ(z)| ≤ LB (‖µ1‖+ ‖µ2‖) , (55)

where LB is the (local) Lipschitz constant.
Let ε > 0 be fixed and select a Lipschitz continuous

feedback uε ∈ Kε(x, z). We note that T εI (x, z) is continuous
(since it is Lipschitz) and therefore there exists δ > 0 such
that for all (x, z) ∈ Bδ(0, 0) ∩ S

0.9T ∗ ≤ T εI (x, z) ≤ 1.1T ∗, (56)

where T ∗ = Tρ(0) is the period of the orbit OZ . Let
(x1(t), z1(t)) satisfy ż1(t) = q(x1(t), z1(t)) with x1(0) =
∆X(x, z) and z1(0) = ∆Z(x, z), and similarly, let z2(t)
satisfy ż2(t) = q(0, z2(t)) with z2(0) = ∆Z(0, z).

Defining

µ1 = x1(t)|t=T εI (x,z)

µ2 = z1(t)|t=T εI (x,z) − z2(t)|t=T εI (x,z) , (57)

results in
TB(µ1, µ2, z) = T εI (x, z) (58)

because T εI and TB are locally unique solutions where the
guard vanishes (follows from the Implicit Function Theorem).
We will establish (53) by bounding µ1 and µ2 and substituting
into (55) by virtue of (58), as follows.

Using the fact that Vε is rapidly exponentially stabilizing,
we have the bound from (43) given by

‖x1(t)‖ ≤
√
c2
c1

1

ε
e−

c3
2ε t‖x1(0)‖. (59)

Note that ∆X(0, z) = 0 and therefore ‖x1(0)‖ = ‖∆X(x, z)−
∆X(0, z)‖ ≤ L∆X

‖x‖. Then making use of (56), we have

‖µ1‖ = ‖x1(t)‖t=T εI (x,z)

≤
√
c2
c1

1

ε
e−

c3
2ε 0.9T∗L∆X

‖x‖

≤ 2e−1

0.9T ∗c3

√
c2
c1
L∆X

‖x‖.

The next step is to bound ‖µ2‖ using a Gronwall-Bellman
[26] argument. We first note that

z1(t)− z2(t) = z1(0)− z2(0) +

∫ t

0
q(x1(τ), z1(τ))− q(0, z2(τ))dτ

and thus

‖z1(t)− z2(t)‖ ≤ L∆Z ‖x‖+

∫ t

0
Lq (‖x1(τ)‖+ ‖z1(τ)− z2(τ)‖) dτ

≤ L∆Z ‖x‖+
2

c3

√
c2

c1
LqL∆X ‖x‖

+

∫ t

0
Lq (‖z1(τ)− z2(τ)‖) dτ,

where (59) has been substituted, integrated, and bounded.
Hence, by the Gronwall-Bellman inequality,

‖z1(t)− z2(t)‖ ≤
(
L∆Z

+
2

c3

√
c2
c1
LqL∆X

)
‖x‖eLqt, (60)

and therefore ‖µ2‖ ≤ C1e
1.1LqT

∗‖x‖, where C1 is the term
in parentheses in (60). The proof of (53) is then completed
by substituting the bounds for ‖µ1‖ and ‖µ2‖ into (55) and
grouping terms.

To establish (54), we first define

C2 = max
.9T∗≤t≤1.1T∗

‖q(0, z2(t))‖.

It then follows from (53), (56) and (60) that

‖P εz (x, z)− ρ(z)‖
≤ ‖z1(0)− z2(0)‖

+

∫ T εI (x,z)

0

‖q(x1(τ), z1(τ))− q(0, z2(τ))‖dτ

+

∣∣∣∣∣

∫ Tρ(z)

T εI (x,z)

‖q(0, z2(τ))‖dτ

∣∣∣∣∣

≤
(
C1e

1.1LqT
∗

+ C2LTI

)
‖x‖,

which establishes (54).

We now have the necessary framework in which to prove
Theorem 2.

Proof: [of Theorem 2] The results of Lemma 1 and the
exponential stability of OZ imply that there exists a δ > 0
such that ρ : Bδ(0) ∩ (S ∩ Z) → Bδ(0) ∩ (S ∩ Z) is well-
defined for all z ∈ Bδ(0) ∩ (S ∩ Z) and zk+1 = ρ(zk) is
(locally) exponentially stable, i.e., ‖zk‖ ≤ Nαk‖z0‖ for some
N > 0, 0 < α < 1 and all k ≥ 0. Therefore, by the converse
Lyapunov theorem for discrete-time systems [26, p.194], there
exists a Lyapunov function Vρ, defined on Bδ(0) ∩ (S ∩ Z)
for some δ > 0 (possibly smaller than the previously defined
δ), and positive constants r1, r2, r3, r4 satisfying

r1‖z‖2 ≤ Vρ(z) ≤ r2‖z‖2,
Vρ(ρ(z))− Vρ(z) ≤ −r3‖z‖2, (61)

|Vρ(z)− Vρ(z′)| ≤ r4‖z − z′‖(‖z‖+ ‖z′‖).

For the RES-CLF Vε, denote its restriction to the switching
surface S by Vε,X = Vε|S . With these two Lyapunov functions
(motivated by the construction from [26] for singularly per-
turbed systems) we define the following candidate Lyapunov
function

VPε(x, z) = Vρ(z) + σVε,X(x)

defined on Bδ(0, 0) ⊂ S, where σ > 0 is any constant such
that σ > σ > 0. (We will define σ explicitly later.) By (39)
and (61), it is clear that

min{σc1, r1}‖(x, z)‖2 ≤ VPε(x, z) ≤ max{σ c2
ε2
, r2}‖(x, z)‖2.

Noting that ‖(x, z)‖2 = ‖x‖2 + ‖z‖2 + 2‖x‖‖z‖ ≥ ‖x‖2 +
‖z‖2, in order to establish exponential stability of the origin
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for the discrete-time system (xk+1, zk+1) = P ε(xk, zk), it is
sufficient to establish that

VPε(P
ε(x, z))− VPε(x, z) ≤ −κ(‖x‖2 + ‖z‖2), (62)

for some κ > 0. Since P ε(x, z) ∈ S ⊂ X × Z, we denote
the X and Z components of P ε by P εx(x, z) and P εz (x, z),
respectively. With this notation,

VPε
(
P ε(x, z)

)
− VPε(x, z) = Vρ

(
P εz (x, z)

)
− Vρ(z)

+ σ
(
Vε,X(P εx(x, z))− Vε,X(x)

)
.

(63)

We begin by noting that, because Vε is a RES-
CLF and uε(x, z) ∈ Kε(x, z), and since P εx(x, z) =(
φεT εI (x,z)(∆(x, z))

)
x

, it follows from (39) and (42) that

Vε,X(P εx(x, z)) ≤ c2
ε2
e−

c3
ε T

ε
I (x,z)‖∆X(x, z)‖2

≤ c2
ε2
L2

∆X
e−

c3
ε T

ε
I (x,z)‖x‖2, (64)

where the last inequality follows from the fact that ∆X(0, z) =
0 and therefore

‖∆X(x, z)‖2 = ‖∆X(x, z)−∆X(0, z)‖2 ≤ L2
∆X
‖x‖2,

with L∆X
the Lipschitz constant for ∆X . Defining β1(ε) =

c2
ε2L

2
∆X

e−
c3
ε .9T

∗
(with T ∗ defined as in the proof of Lemma

1), we have established that

σ
(
Vε,X(P εx(x, z))− Vε,X(x)

)
≤ σ(β1(ε)− c1)‖x‖2, (65)

where, clearly, β1(0+) := limε↘0 β1(ε) = 0. Therefore, there
exists an ε such that

β1(ε) < c1 ∀ 0 < ε < ε. (66)

As a result of Lemma 1 and the assumption that the origin
is an exponentially stable equilibrium for zk+1 = ρ(zk), we
have the following inequalities:

‖P εz (x, z)− ρ(z)‖ ≤ A1‖x‖,
‖P εz (x, z)‖ = ‖P εz (x, z)− ρ(z) + ρ(z)− ρ(0)‖

≤ A1‖x‖+ Lρ‖z‖,
‖ρ(z)‖ ≤ Nα‖z‖,

where Lρ is the Lipschitz constant for ρ. Thus, using (61),

Vρ(P
ε
z (x, z))− Vρ(ρ(z)) ≤ r4A

2
1‖x‖2

+ r4A1(Lρ +Nα)‖x‖‖z‖.

Setting β2 = r4A
2
1 and β3 = r4A1(Lρ + Nα) for notational

simplicity, it follows that

Vρ(P
ε
z (x, z))− Vρ(z) = Vρ(P

ε
z (x, z))− Vρ(ρ(z))

+ Vρ(ρ(z))− Vρ(z)
≤ β2‖x‖2 + β3‖x‖‖z‖ − r3‖z‖2.

(67)

Therefore, combining (63), (65), and (67), we have

VPε(P
ε(x, z))− VPε(x, z) ≤ (β2 + σ(β1(ε)− c1))‖x‖2

+ β3‖x‖‖z‖ − r3‖z‖2

= −
[
‖z‖ ‖x‖

]
Λ(ε)

[
‖z‖
‖x‖

]
,

(a) RABBIT

q1

q2

q3

q4

q5

(b) Coordinate system

Fig. 2: RABBIT, a planar five-link bipedal robot, with the
associated coordinate model. The simulation results of Sect.
VII are based on this robot.

with

Λ(ε) =

[
r3 − 1

2β3

− 1
2β3 σ(c1 − β1(ε))− β2

]
.

We proceed by choosing σ > 0 such that for σ > σ̄ and
for ε > 0 sufficiently small, Λ(ε) is positive definite (i.e.
det(Λ(ε)) > 0). Noting that

det(Λ(ε)) = σr3(c1 − β1(ε))− r3β2 −
β2

3

4
,

we choose

σ :=
4r3β2 + β2

3

4r3(c1 − β1(ε))
,

and by (66) we have σ > 0 for all 0 < ε < ε. Then choosing
κ in (62) as κ = λmin(Λ(ε)), the smallest eigenvalue of Λ(ε),
establishes the local exponential stability of O .

VII. APPLICATION TO BIPEDAL WALKING

In this section we apply the main result of this paper in
simulation with the model of a planar five-link bipedal robot
which has a torso and two legs with revolute knees. The
particular model we use is based on RABBIT (see Fig. 2),
a robotic testbed developed at Laboratoire D’Automatique de
Grenoble to explore fundamental issues in dynamic walking
[53] and running [30]. RABBIT has four actuators to control
hip and knee angles, and is connected to a rotating boom
which constrains the robot to walk in a circle, approximat-
ing planar motion in the sagittal plane. MATLAB code for
generating the equations of motion for RABBIT is available
at http://web.eecs.umich.edu/~grizzle/biped_book_web/.

Detailed descriptions of RABBIT and the associated math-
ematical model can be found in [10], [53]; we briefly summa-
rize the model construction as follows. In the stance phase, a
suitable set of coordinates is given by q := (q1, q2, q3, q4, q5)
as illustrated in Fig. 2, where q1 and q2 are the femur angles
(referenced to the torso), q3 and q4 are the knee angles, and
q5 is the absolute angle of the torso. The method of Lagrange
yields the standard second order system

D(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u, (68)
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which is easily rearranged into the form
[
q̇
q̈

]
= f(q, q̇) + g(q, q̇)u, (69)

analogous to (7). (Note that u denotes the input torques pro-
vided by the four actuators.) To implement the control designs
of Sect. III-B and Sect. IV-B, we define output functions

y(q) := H0q − yd(θ(q)), (70)

where θ(q) := cq for some 1 × 5 row vector c and H0 is a
4× 5 matrix satisfying

rank
(
H0

c

)
= 5

(i.e. full rank). Our goal is to drive the controlled variables
H0q to match yd, which is the desired trajectory of the
controlled variables as a function of θ(q), thereby imposing
virtual constraints on the system. As is described in [48], we
parametrize yd as a Bezier polynomial. Also, note that y(q)
has vector relative degree 2.

The impulsive nature of walking renders this a hybrid
system, with the switching surface S defined by the conditions
under which the swing leg impacts the ground in front of the
stance leg, i.e., in (50), h is the height of the foot. In particular,
defining η as in (27) results in a hybrid control system H C
that can be expressed in the form of (49) (see [54] for the
specific construction). In this case, ∆ describes the change in
velocity due to foot strike [16].

As described in Chapter 6 of [54], selection of the pa-
rameters for the Bezier polynomial yd can be accomplished
by numerical solution of a constrained nonlinear optimization
problem. By incorporating appropriate constraints into the
optimization problem, we ensure that the selected parameters
render the zero dynamics surface Z (i.e. (24)) invariant and
that the zero dynamics surface contains an exponentially stable
periodic orbit OZ transverse to the switching surface. There-
fore, by design, the assumptions of Theorem 2 are satisfied. In
order to render this orbit exponentially stable for the full-order
dynamics, we first obtain a symmetric positive-definite matrix
P by either solving the Lyapunov function (13) (with the A
matrix appropriately defined through choice of KP and KD)
or the Riccati equation (46), and then define Pε as in (23).
Then employing the RES-CLF Vε(η) = ηTPεη and applying
either the Sontag control law (38) or the pointwise min-norm
control law (45) results in a closed-loop hybrid system Hε.
Moreover, in both cases Theorem 2 implies that the periodic
orbit O is exponentially stable for ε sufficiently small.

The control approach described here was tested with com-
puter simulations of four walking steps of the biped model.
Plots of the associated CLF function Vε(η) for various values
of ε are depicted for the Sontag controller (38) in Fig. 3a
and for the pointwise min-norm controller (45) in Fig. 3b. In
each case, the matrix P was generated using the Lyapunov
equation (13). The middle graph in each figure shows slow
convergence for one choice of ε; smaller ε values result
in faster convergence (top graphs), and ε values which are
too large result in instability (bottom graphs). In Fig. 4, we
illustrate convergence to the periodic orbit for the coordinate
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Fig. 3: Evolution of the CLF Vε(η(t)) = ηT (t)Pεη(t) (solid
line) along with the associated nominal bound (42) (dashed
line) over four steps under: (Fig. 3a) the Sontag controller
(38), and (Fig. 3b) the pointwise min-norm controller (45),
in each case normalized so that Vε(η(0)) = 1. Here Pε is
based on the Lyapunov equation (13), and the values for ε
were chosen to demonstrate various rates of convergence (top
and middle graphs) as well as instability (bottom graph). Note
that for the pointwise min-norm controller, Vε closely follows
the nominal bound as expected, only deviating in cases where
zero added control (i.e. µ(η, z) = 0) yields performance which
is better than the bound.

q1 for an extended version (16 steps) of the simulation depicted
in the middle plot of Fig. 3a. Note that saturation was not
implemented on the commanded control torques for any of
the simulations, and peak torques were in the range of 60
Nm for the min-norm controller and 100 Nm for the Sontag
controller. (See Sect. VIII for an experimental implementation
in which saturations are applied.)

VIII. EXPERIMENTAL RESULTS

Having demonstrated the effectiveness of the CLF con-
trollers in simulation, we now describe experimental results
from implementation on the robotic testbed MABEL [32],
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Fig. 4: Phase plot of (q1, q̇1) for an extended version (16
steps) of the simulation depicted in the middle plot of Fig. 3a.
The solid dot marks (q1, q̇1) at the beginning of the simulation.

[48], a planar five-link bipedal robot similar to RABBIT,
having a torso, two legs with revolute knees, and four ac-
tuators. (See Fig. 5.) However, unlike RABBIT, MABEL has
large springs in series with two of its actuators for improving
energy efficiency and agility, resulting in a system model that
is compliant and has a higher degree of underactuation. In
the experiments on MABEL, the model used in the estimation
of the derivative of the Lyapunov function, and hence in the
computation of the CLF-based control law, is of course an
approximation of the dynamics of the true system [32]. In
addition, the angular measurements are made with encoders
that have finite precision and the angular rates are estimated
numerically [11]. Finally, the motors have torque limits. It
is shown that the CLF-based controller nevertheless achieves
a stable walking gait with MABEL and that the min-norm
controller in particular reduces undesirable oscillations or
“chatter” of the motor torques.

A. Control laws

As noted, MABEL has compliance and additional degrees
of underactuation. However, we can still employ the same
modeling and control approach based on virtual constraints,
as described in Sect. VII. Thus our system model again takes
the form (69), with q coordinate labeling as described in [48]
and depicted in Fig. 5b, and with output functions of the form
(70). For the experimental implementation, we apply the pre-
control law

u(q, q̇) = −(LgLfy(q, q̇))−1L2
fy(q, q̇) + (LgLfy(q, q̇))−1µ,

(71)

which is a variation of the pre-control given by (25). Then
transforming to the variables η = [y, ẏ]T as in (27), we have
the dynamics for the transverse variables

η̇ = Fη +Gµ := f̄(η, z) + ḡ(η, z)µ, (72)

where F and G are defined as in (29).

(a) MABEL experimental setup

−q
Tor

q
LA

q
LS

Virtual

Compliant Leg
−θ

(b) Coordinates

Fig. 5: Experimental setup of the bipedal testbed MABEL and
associated coordinates. (From [48].)

In what follows, we present experimental results for a
CLF controller based on the pointwise min-norm controller
described in Sect. IV, and compare with experimental results
based on an input-output linearizing controller with PD. The
input-output linearizing controller has been employed in pre-
vious experiments with MABEL (see [48]) and takes the form
(71) with µ given by

µε(η, z) = µZD(η, z, ε) := −K(ε)η (73)

which is equivalent to the version given in (32). For the ex-
periment with the input-output linearizing controller presented
here, we set ε = 0.5 and

K(ε) =
[

1
ε2KP

1
εKD

]
,
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KP =




2211 0 0 0
0 947 0 0
0 0 2211 0
0 0 0 947


 ,

KD =




55.29 0 0 0
0 8.29 0 0
0 0 55.29 0
0 0 0 8.29


 .

For the CLF controller, we begin by choosing

P =

[
1.45556I .5I
.5I .555556I

]
, (74)

which is the solution to the Lyapunov equation (13) where Q
is the 8×8 identity matrix and A is given by (9) with KP = I
and KD = 1.8I . (Here I is the 4 × 4 identity matrix.) Then
defining our CLF Vε(η) as in (23), it follows that

Lf̄Vε(η, z) = ηT (FTPε + PεF )η,

LḡVε(η, z) = 2ηTPεG, (75)

and letting γ = λmin(Q)
λmax(P ) = 0.595863, we define

ψ0,ε(η, z) = Lf̄Vε(η, z) +
γ

ε
Vε(η, z)

ψ1,ε(η, z) = LḡVε(η, z)
T . (76)

Then our CLF controller is given by (71) with

µε(η, z) = mε(η, z), (77)

where mε(ηε, z) is the pointwise min-norm control law given
by (45) in terms of (76). In the experiment with the CLF
controller presented here, we set ε = .04545.

B. Description of experiments and results

Two experiments were conducted for the purpose of com-
paring the controllers just described. In Exp. 1, we employed
the input-output linearizing controller (73) with gains set as
described above, and obtained 85 steps of walking. For Exp.
2, we started the robot under the same input-output linearizing
controller but then transitioned to the pointwise min-norm
controller (77) after 28 steps. The robot then walked for an
additional 77 steps under CLF control, as can be seen in the
video in [13].

In Fig. 6 we display the motor torques for the stance and
swing legs for 4 consecutive steps of walking under the input-
output linearizing controller in Exp. 1, and the CLF controller
in Exp. 2 respectively. (Torque saturation constraints were
active in both experiments, as can be observed in Fig. 6. The
torque saturation for the leg shape was inadvertently raised
from 10 to 12 Nm between the experiments, but the affect
on experiment comparison is negligible.) Note the reduced
motor torque oscillations for the controller based on the
CLF approach. Fig. 7 illustrates the desired and achieved
virtual constraints for the stance leg under the two controllers,
displaying very close tracking of the virtual constraints by the
input-output linearizing controller and rather loose tracking
of the virtual constraints by the CLF-based controller. In
fact, this should be expected, since the CLF-based controller

0

20

40

60

27.2 27.4 27.6 27.8 28 28.2 28.4 28.6 28.8

0

500

 

 

V
ε

V̇
ε

Time (s)

V̇ε-offline
V̇ε-online

CLF Vε

Fig. 8: Plots of the Lyapunov function and its time derivative
for 4 consecutive steps of walking. (Vertical dotted lines
delineate data for individual steps.) Note that the increase in
Vε during the initial part of the gait is most likely due to torque
saturation (see Fig. 6b) and model uncertainty. In the plot for
V̇ε, the thin black line depicts the derivative calculated in terms
of the partially linearized dynamics (72) (without accounting
for control saturation), which always satisfies the desired RES-
CLF bound V̇ε ≤ −γεVε. The thick red line illustrates an
offline calculation of V̇ε along trajectories of the full dynamics,
which incorporates torque saturation.

always uses the minimum torque required to meet the RES-
CLF convergence bound (42), essentially trading off tracking
performance for control efficiency as long as the required
convergence bound is satisfied.

In Fig. 8, we display plots of the Lyapunov function Vε and
its calculated derivative V̇ε for 4 consecutive steps of walking
under CLF control in Exp. 2. The thin black line on the bottom
plot (denoted V̇ε-online) depicts the online calculation of V̇ε
along trajectories of the partially linearized system (72) (in
terms of (75)), and does not factor in the torque saturations
which are later applied to the full control (71)3. The thick
red line on the same plot (denoted V̇ε-offline) was calculated
offline along trajectories of the full system dynamics (69) with
the saturated versions of the control (71) with (77). The effects
of these saturation constraints, along with model uncertainty,
are the most likely reason that Vε does not exactly follow the
theoretical bound (42).

IX. CONCLUSION

This paper presented a method for enlarging the class of
controllers that exponentially stabilize periodic orbits in hybrid
systems. Beginning with (hybrid) zero dynamics that contain
an exponentially stable periodic orbit, we presented a control
Lyapunov function approach to designing controllers that
stabilize the orbit in the full order dynamics. This was achieved
by introducing a notion of control Lyapunov functions that
allows for direct control of the rate of convergence to the
(hybrid) zero dynamics surface: RES-CLF. Explicit motivation
for this formulation was given, and an explicit means of
constructing control Lyapunov functions of this form was

3The authors have also achieved experimental results [14] with a CLF-based
control approach that does appropriately incorporate saturation constraints into
the control calculation, making use of an online convex optimization routine.
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Fig. 6: Motor torques for the stance and swing legs for 4 consecutive steps of walking for (a) input-output linearizing controller
in Exp. 1, and (b) CLF-based controller in Exp. 2. Note the reduced oscillations for the CLF-based controller.
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Fig. 7: Tracking for the stance-leg virtual constraints for (a) input-output linearizing controller in Exp. 1, and (b) CLF-based
controller in Exp. 2. The tracking for the input-output linearizing controller is quite good, whereas the CLF-based controller
always uses the minimum torque required to meet the RES-CLF convergence bound (42) and therefore does not track the
virtual constraints as closely.

presented. The culmination of the ideas presented in the paper
was given in the main result which states that given an
exponentially stable periodic orbit in a hybrid zero dynamics,
the existence of a RES-CLF implies that this periodic orbit
is exponentially stabilizable in the full-order dynamics. Since
the theoretical results presented were originally motivated by
bipedal robotic walking, they were applied in simulation to
a model of the robot RABBIT. To provide further evidence
of the practicality of the theoretical results, they were also
applied experimentally to MABEL. The end result is that CLFs
provide an interesting alternative to previous control methods,
and that the CLF methodology presents a systematic approach
for constructing stabilizing control laws for systems of this
type. In a separate publication [14], it will be shown how
the results of the paper allow control bounds to be explicitly
incorporated into an online implementation of a RES-CLF
controller.

APPENDIX A
PROOF OF THEOREM 1

Theorem 2, part (iv), of [19] is equivalent to Theorem 1,
but the provided proof is incomplete. As given, the proof
establishes asymptotic stability of the periodic orbit in the

full-order system instead of exponential stability. The proof
of exponential stability is completed here in the notation of
[19]. Then, an alternative proof is given using the notation of
the current paper.

A. Minor addition to result in [19]

On page 93 of [19], suppose that V1(z) satisfies

c1‖z‖2γ ≤ V1(z) ≤ c1‖z‖2γ ,

for some c1 > 0 and c2 > 0. Then there exist α > 0 and
β > 0, such that

α‖z‖2γ + α‖ξ‖ ≤ V (z, ξ) ≤ β‖z‖2γ + β‖ξ‖.

From the last line of the proof in [19],

V̇ (z, ξ) ≤ −k1‖z‖2γ − k2‖ξ‖,

for k1 > 0 and k2 > 0. Hence,

V̇ (z, ξ) ≤ −k1

c2
V1(z)− k2√

m2

√
V2(ξ)

≤ −µV (z, ξ),



14

for µ = k2√
m2

1
2k and

k > max{Mm1

m3
,

1

2

k2

k1

c2√
m2
}.

Therefore,
V (z(t), ξ(t)) ≤ e−µtV (z0, ξ0),

and thus

α‖z(t)‖2γ + α‖ξ(t)‖ ≤ e−µtV (z0, ξ0).

It follows that

‖z(t)‖γ ≤
√

1

α
e−µtV (z0, ξ0),

and

‖ξ(t)‖ ≤ 1

α
e−µtV (z0, ξ0).

Exponential stability is established.

B. Alternative proof

Proof: It was shown in [21] that, since OZ is an expo-
nentially stable periodic orbit in Z, there exists a Lyapunov
function VZ : Z → R≥0 such that in a neighborhood Bδ(OZ)
of OZ

k1‖z‖2OZ ≤ VZ(z) ≤ k2‖z‖2OZ
V̇Z(z) ≤ −k3‖z‖2OZ∥∥∂VZ

∂z

∥∥ ≤ k4‖z‖OZ .

Denote the ES-CLF V by VX and (motivated by the construc-
tion from [26] for singularly perturbed systems) define the
following Lyapunov function candidate

V (x, z) = VZ(z) +
1

ε
VX(x) (78)

in a neighborhood Bδ(O) of O (where we pick δ > 0 to be
the same δ for which VZ was defined). It will be shown that
this function is a Lyapunov function for the orbit O for all ε
sufficiently small, i.e., that there exists an ε̄ > 0 such that for
all 0 < ε < ε̄, V is a Lyapunov function for O . We begin by
noting that

V (x, z) ≤ k2‖z‖2OZ +
c2
ε
‖x‖2

≤ max{k2,
c2
ε
}(‖z‖2OZ + ‖x‖2)

≤ max{k2,
c2
ε
}‖(x, z)‖2O ,

where the last inequality follows from the fact that O =
ι0(OZ) ⊂ Z. That is, ‖(x, z)‖2O = ‖x‖2 + ‖z‖2OZ . Similarly,

V (x, z) ≥ min{k1,
c1
ε
}‖(x, z)‖2O .

Therefore, we need only establish that V̇ (x, z) ≤
−κ3‖(x, z)‖2O for some κ3 > 0. Using the fact that q(x, z) =

q(0, z) + (q(x, z)− q(0, z)) we have

V̇ (x, z) = V̇Z

∣∣∣
Z

(z) +
∂VZ

∂z
(q(x, z)− q(0, z)) +

1

ε
V̇X(x)

≤ −k3‖z‖2OZ +

∥∥∥∥∂VZ

∂z

∥∥∥∥ ‖q(x, z)− q(0, z)‖ − c3

ε
VX(x)

≤ −k3‖z‖2OZ + k4Lq‖z‖OZ‖x‖ −
c3

ε
c1‖x‖2

= −
[
‖z‖OZ ‖x‖

]
Λ

[
‖z‖OZ
‖x‖

]
,

with Lq the Lipschitz constant for q and

Λ =

[
k3 − 1

2k4Lq
− 1

2k4Lq
c3
ε c1

]
.

Therefore, it is necessary to pick ε > 0 such that Λ is
symmetric positive definite. In particular, Λ > 0 if det(Λ) > 0,
that is,

c1c3k3

ε
>

1

4
L2
qk

2
4,

which is satisfied if

ε <
4c1c3k3

L2
qk

2
4

=: ε,

wherein it follows that κ3 = λmin(Λ) and we have established
that V is a Lyapunov function for the periodic orbit O .

APPENDIX B
RELATIONSHIP BETWEEN THEOREM 1 AND THEOREM 2

A natural consequence of Theorem 2 is a variant of Theorem
1. That is, we can conceptually consider the control system
(1) as a hybrid control system with a trivial reset map4.

Corollary 1: For the system (1), let OZ be an exponentially
stable periodic orbit for the zero dynamics ż = q(0, z) and
assume there exists a RES-CLF Vε : X → R. Then there
exists an ε > 0 such that for all 0 < ε < ε and for all
Lipschitz continuous uε(x, z) ∈ Kε(x, z), O = ι0(OZ) is an
exponentially stable hybrid periodic orbit of (41).

Remark 2: It is important to note that Corollary 1 uti-
lizes RES-CLF rather than ES-CLF. However, the Lyapunov
function (78) utilized in the proof of Theorem 1 includes a
1/ε scale factor to weight the ES-CLF, and therefore both
approaches rely on ε to “control” the convergence to the zero
dynamics surface, i.e., ensure that it is fast enough to guarantee
stability of the entire system.

We finally note that the techniques used to prove Theorem
1 and Theorem 2, while similar in many respects, are actually
quite different. This difference lies in the fact that for Theorem
2 a Lyapunov function on the Poincaré section is used,
while for Theorem 1 a Lyapunov function for the continuous
dynamics (and the periodic orbit) is utilized. Extending the
proof considered in the continuous case to the hybrid case
is an interesting problem for future research since it would
allow for a better estimate of the domain of attraction over

4The rough idea is the following: in the proof of Theorem 2, let S be a
local Poincaré section for the periodic orbit of the non-hybrid system and
take the reset map, ∆, to be the identity. That is, the non-hybrid system is
conceptually viewed as a “trivial” hybrid system. With this setup, the proof
of Theorem 2 establishes Corollary 1.
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the entire continuous dynamics rather than just the Poincaré
section. Doing so would require an extension of the results in
[21] to hybrid systems.

REFERENCES

[1] A. D. Ames. First steps toward automatically generating bipedal robotic
walking from human data. In Robotic Motion and Control, volume 422
of LNICS, pages 89–116. Springer, 2012.

[2] A. D. Ames. First steps toward underactuated human-inspired bipedal
robotic walking. Proc. IEEE International Conference on Robotics and
Automation, pages 1011–1017, 2012.

[3] A. D. Ames, E. A. Cousineau, and M. J. Powell. Dynamically stable
robotic walking with NAO via human-inspired hybrid zero dynamics.
Proc. of the 15th ACM Conf. on Hybrid Systems: Computation and
Control, pages 135–144, 2012.

[4] A. D. Ames, K. Galloway, and J. W. Grizzle. Control Lyapunov
Functions and Hybrid Zero Dynamics. Proc. 51st IEEE Conf. Decision
and Control, pages 6837–6842, 2012.

[5] Z. Artstein. Stabilization with relaxed controls. Nonlinear Anal. Theory
Methods Applic., 7(11):1163–1173, 1983.

[6] D.D. Bainov and P.S. Simeonov. Systems with Impulse Effects : Stability,
Theory and Applications. Ellis Horwood Limited, Chichester, 1989.

[7] A. Banaszuk and J. Hauser. Feedback linearization of transverse dynam-
ics for periodic orbits. In Proceedings of the 33rd IEEE Conference on
Decision and Control, volume 2, pages 1639 –1644 vol.2, Dec. 1994.

[8] S.P. Bhat and D.S. Bernstein. Continuous finite-time stabilization of the
translational and rotational double integrators. IEEE Transactions on
Automatic Control, 43(5):678–682, 1998.

[9] F. Blanchini and S. Miani. Set-Theoretic Methods in Control. Birkhäuser,
2008.

[10] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt,
C. Canudas-de-Wit, and J. W. Grizzle. RABBIT: A testbed for advanced
control theory. IEEE Control Systems Magazine, 23(5):57–79, October
2003.

[11] S. Diop, J.W. Grizzle, P.E. Moraal, and A. Stefanopoulou. Interpolation
and numerical differentiation for observer design. Proc. of American
Control Conference, pages 1329–1333, 1994.

[12] R. A. Freeman and P. V. Kokotović. Robust Nonlinear Control Design.
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