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Abstract—As the use of autonomous robotic systems expands
in tasks that are complex and challenging to model, the demand
for robust data-driven control methods that can certify safety
and stability in uncertain conditions is increasing. However, the
practical implementation of these methods often faces scalability
issues due to the growing amount of data points with system
complexity, and a significant reliance on high-quality training
data. In response to these challenges, this study presents a
scalable data-driven controller that efficiently identifies and
infers from the most informative data points for implementing
data-driven safety filters. Our approach is grounded in the
integration of a model-based certificate function-based method
and Gaussian Process (GP) regression, reinforced by a novel
online data selection algorithm that reduces time complexity
from quadratic to linear relative to dataset size. Empirical
evidence, gathered from successful real-world cart-pole swing-
up experiments and simulated locomotion of a five-link bipedal
robot, demonstrates the efficacy of our approach. Our findings
reveal that our efficient online data selection algorithm, which
strategically selects key data points, enhances the practicality
and efficiency of data-driven certifying filters in complex robotic
systems, significantly mitigating scalability concerns inherent in
nonparametric learning-based control methods.

Index Terms—Safety-critical systems, Learning-based control,
Safety filters, Safety, Stability

I. INTRODUCTION

A. Motivation

AS autonomous robots become increasingly prevalent in
our everyday lives, incidents such as fatal accidents

involving self-driving cars have highlighted the importance
of ensuring that robotic systems adhere to various system-
critical constraints. Examples of these constraints include
safety requirements for self-driving cars to prevent accidents,
or stability conditions for legged robots to avoid falling over.
Failure to meet these constraints can lead to catastrophic
consequences.

Learning-based control methods have gained considerable
attention in recent years due to their capacity to accomplish
complex tasks by leveraging vast amounts of data. However,
a fundamental challenge in deploying these emerging meth-
ods for real-world robots is ensuring their adherence to the
considered system-critical constraints.

One way of addressing this challenge is through a-posteriori
verification, i.e., analyzing the properties of these policies after
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they have been synthesized. A significant body of recent work
on neural network verification follows this approach [1]. If
the neural policy of interest does not pass the certification
test, the designer typically modifies the learning setup and
reiterates this process until a satisfying policy is found. This
can be a time-consuming and computationally expensive pro-
cess, although there are ongoing efforts in the community to
overcome this challenge by using the result from verification
to guide the control design process [2], [3].

An alternative to the a-posteriori certification approach is
using a model-based certifying filter, supplemented by data to
address the limitations imposed by imperfect models. In this
scheme, a certifying filter is designed using available math-
ematical models to ensure compliance with system-critical
constraints, and then the filter is enhanced by incorporating
data from the actual system to address discrepancies arising
from the imperfect model. This concept is often referred to as
the data-driven safety filter [4].

The data-driven component of the filter learns how to
address the effect of the discrepancy between the mathematical
model and the actual system in choosing the control input that
renders the system to satisfy the desired constraints. Many
of these methods employ nonparametric learning techniques,
such as Gaussian Process regression [5]. This approach is used
because it provides not only predictions but also uncertainty
estimates for those predictions, which can be used to quantify
possible prediction errors of the learned model and maintain
the desired level of safety despite any errors that the learned
model may make.

However, there are two primary challenges associated with
the data-driven certifying filter. First, nonparametric methods
generally do not scale well with an increasing number of
data points, which can significantly limit their application
to more complex systems. As system complexity increases,
characterizing the effect of the imperfect model requires more
data, and controllers need to operate at higher frequencies to
effectively manage rapidly changing system dynamics. Sec-
ond, the success of a data-driven certifying filter in achieving
its objective, like any other learning-based control approach,
relies on the quality of the available training data [6], [7]. If
the information derived from the data about the real system
is insufficient, the data-driven controller can fail to adhere to
the system-critical constraints.

These two challenges are tightly coupled; when a large
dataset is available, it is crucial to investigate which data points
are most critical for meeting the certifying filter’s objective
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to properly address the scalability challenge. This raises the
motivating question of the paper: by focusing on the most
relevant data for system-critical constraints, can we extend the
applicability of data-driven certifying filters to more complex
and uncertain real-world robotic systems?

B. Contributions

In this paper, we introduce an efficient approach for de-
termining the most relevant data points for deploying data-
driven certifying filters on real-world robotic systems. Our
method expands on our earlier work [8], [9], where we de-
signed a data-driven filter that combines a model-based control
method rooted in certificate functions, such as Control Barrier
Functions (CBFs [10]) and Control Lyapunov Functions (CLFs
[11]), with a Gaussian Process (GP) regression for the data-
driven component. The filtered control input, guaranteed to
satisfy system-critical constraints with high probability, is
determined by solving a second-order cone program (SOCP).
We delve into understanding which data points are critical for
ensuring the feasibility of the SOCP filter and subsequently,
for meeting the system-critical constraints. Guided by this
understanding, we develop an efficient online data selection
algorithm for the filter. Each time the SOCP controller is
executed, this algorithm selects only the most relevant data
points to secure the SOCP’s feasibility, which considerably
enhances the time complexity of the GP-based safety filter.

Using the proposed approach, we showcase the applicability
of Gaussian Process-based safety filters to high-dimensional
and real robotic systems handling large datasets, overcoming
the scalability constraints that previously limited the use of
such filters to simple toy systems [7]–[9], [12]–[16]. We
demonstrate the successful deployment of our method in a
real cart-pole experiment to ensure the cart remains within its
position limit and a 10-dimensional bipedal robot in simulation
that attempts stable walking while subjected to model errors.

C. Notations
B: binary correlation indicator matrix (32)
C: certificate function (Definition 1)
DN := {x̄j , z̄j}Nj=1: entire dataset for GP regression
DM (⊂ DN ): online dataset
f, g: true plant vector fields ((1))
f̃ , g̃: nominal model vector fields ((2))
FDM : objective function of the data selection algorithm ((26))
kf , kg1 · · · , kgm : individual kernels (Definition 2)
k: Affine Dot Product (ADP) kernel (Definition 2)
ku: ADP kernel that captures only the control vector field-relevant
part ((21))
KDN ,KDM : kernel matrix whose (i, j)th element is k(x̄i, x̄j)
K∗ :=[k(x̄∗, x̄1), · · · , k(x̄∗, x̄N )] ∈ RN

K∗U : (13)
L̂fC(x|DM,N ), L̂gC(x|DM,N ): GP mean-based estimate of the Lie
derivatives of C ((16))
m: control input dimension
M : number of online data points
n: state dimension
ni(x, u): kernel-based alignment measure ((27))
N : number of entire data points
u: control input
uref: reference controller
U : control input bound

x: state
x̄ := (x, u): input for GP regression
X : state domain
X̄ = X × Rm: GP input domain
z̄j : noisy measurement of ∆ at query x̄j

z: vector consisting of the dataset outputs, z̄j
β: constant in Assumption 1
γ: comparision function in Definition 1
δ: probability level in Assumption 1
∆: model uncertainty term ((7))
ϵ: constant in Theorem 1
µ(x, u|DM,N ): GP posterior mean
M(x|DN ): (11)
σ2(x, u|DM,N ): GP posterior variance
σ2
n: measurement noise variance

Σ(x|DN ): Gram matrix of GP posterior variance ((12))
φ(x, u): ADP kernel’s feature vector

II. RELATED WORK

Control Barrier Functions (CBFs, [10]) and Control Lya-
punov Functions (CLFs, [11]) are model-based certificate
functions that can be used to design policy filters to enforce
safety and stability, respectively, of a controlled system. While
initially conceived for systems with perfectly known dynamics,
early results showed how to extend these filters to robust [17]–
[20] and adaptive [21]–[23] control settings to address the
issue of imperfect models.

The integration of these certificate filters with data-driven
methods has become increasingly popular for systems with
uncertain dynamics. Several studies employ neural networks
to learn the model mismatch terms [24]–[26]. Despite their
practicality and effectiveness, verifying the accuracy of neural
network predictions can be challenging.

Alternative approaches, upon which our work builds, use
nonparametric regression techniques for this purpose [7]–[9],
[12]–[16], [27]. Most notably, Gaussian Process (GP) regres-
sion models provide a probabilistic assurance of prediction
quality under mild assumptions [28], [29].

The GP research community has a rich history in developing
methods to improve the computational complexity of GP
inference, commonly referred to as Sparse GP regression [30],
[31]. The work in [27] uses one of this methods (random
features approximation) to speed up GP inference for data-
driven safety filters. Additionally, existing approaches that
quantify the importance of data for system identification
mostly focus on optimizing information-theoretic metrics, such
as the information gain, when developing exploration strate-
gies [32]–[37]. However, these general-purpose methods lack
awareness of any control objective. Instead of aiming to obtain
an approximate global GP regression model, the method we
introduce in this paper utilizes certificate functions to select a
small set of data points, online at each state, that are useful
for certification.

However, obtaining the best subset of data constitutes a
combinatorial optimization problem that would be more com-
putationally demanding than performing exact GP inference.
For this reason, we instead present a control-informed efficient
approximate data selection method that effectively serves to
reduce the inference time of data-driven safety filters. This
enables the deployment of these filters on real robotic systems.



IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. X, SEPTEMBER 2023 3

The authors of [6], [38] propose a method to evaluate
the importance of data for maintaining the stability of data-
driven closed-loop systems. As such, they study the connection
between data and the performance of a particular given policy.
Additionally, they introduce a greedy data selection strategy
for GP inference based on an importance measure they pro-
pose. However, these selection strategies are still too computa-
tionally expensive to run online. Our work instead tackles the
problem of robust control design, studying online which data is
most relevant to achieve a desired certification property in the
resulting data-driven control policy. Furthermore, our approach
characterizes the relationship between data and safety in the
control input space, emphasizing the richness of each data
point for the specific certification objective, rather than relying
on data density measures. This is a similar objective to the
one of [39], where an algorithm to select the most useful data
points for successfully performing multiple control tasks is
presented. However, this method also suffers from scalability
issues that prevent it from being applicable to real robotic
systems.

III. CERTIFYING FILTERS FOR UNCERTAIN SYSTEMS

A. Uncertain Dynamics and Certifying Filter

In this paper, we examine a control-affine system as shown
below:

ẋ = f(x) + g(x)u. (1)

Here, x ∈ X ⊂ Rn represents the state, and u ∈ Rm denotes
the control input. This form is suitable for representing various
robotic systems, including those with Lagrangian dynamics.
We assume that both f and g are locally Lipschitz continuous,
and without loss of generality, we consider f(0) = 0 so that
x = 0 is an equilibrium. Throughout the paper, we will refer
to the system described in (1) as the true plant.

This paper addresses the challenge of ensuring critical
system constraints for the true plant (1), such as safety and
stability, when its dynamics f and g are unknown, while trying
to accomplish a desired task. We assume that a controller for
the desired task has already been designed and is provided
as a reference controller uref : X → Rm. In the absence of
the reference controller, we can consider uref(x) ≡ 0. This
controller is often unaware of the system’s constraints that
are vital for preventing catastrophic failure, which we refer
to as system-critical constraints. Common examples of these
constraints include safety constraints, which can be expressed
as constraints in the system’s state space, and stability con-
straints that maintain the system’s stability around a desired
equilibrium point.

We aim to design a certifying filter that operates between
the reference controller uref and the true plant, ensuring the
control applied to the true plant is filtered to satisfy the relevant
system-critical constraint. When the reference controller uref
adheres to the constraint, the certifying filter simply passes
uref(x) to the true plant. However, if uref violates the con-
straint, the filter minimally overrides it with a safe control
signal to prevent system failure. This filtering structure is
known by various names, most notably as a safety filter
[4], [40]. Since this structure decouples the design process

for safety assurance from the design procedure for achieving
performance and thus, reducing the complexity of the control
system design, it has been demonstrated to be an effective
control architecture for numerous real-world applications [41].

For this purpose, we assume access to an approximate
nominal model of the true plant’s dynamics, represented by
f̃ : X → Rn and g̃ : X → Rn×m:

ẋ = f̃(x) + g̃(x)u. (2)

Consequently, the true plant dynamics in (1) are uncertain,
and only a nominal model (2) is available. This nominal model
serves as the starting point for the design steps of the certifying
filter, which will be discussed subsequently, and represents
the designer’s best estimate of the true plant. The degree of
accuracy required for approximating the true plant with the
nominal model, in the design steps we undertake, will be
discussed in Remark 1.

B. Certificate Function-based Design

A vital step in designing the certifying filter involves
utilizing the concept of certificate functions [42], which are
also known by various names, such as safety index in [43]
or energy function in [44]. Informally, a certificate function
is a scalar function of the state, and its value and gradient
can be used to establish a sufficient condition for a control
input u to satisfy the desired system-critical constraint. This
condition can then be employed as a certifying constraint in
the certifying filter for the control input. If uref(x) fails to
meet the constraint, it is overridden with an appropriate control
input u that satisfies the constraint. The idea of using such
scalar functions traces back to Lyapunov functions, energy-
like functions that certify the stability of an equilibrium [45].

In this paper, we focus on Control Barrier Functions (CBFs)
[10] and Control Lyapunov Functions (CLFs) [11] as specific
examples of certificate functions, since they are the most
prevalent choices for ensuring the satisfaction of safety and
stability constraints in a system, respectively [42]. We put forth
a definition of a certificate function that unifies both CBFs and
CLFs under a single definition, as similarly proposed in [12]:

Definition 1. A function C : X → R is a certificate function
for the true plant (1) with an extended class K∞ function
γ : R → R (called comparison function) if

1) for all x ∈ X , there exists u ∈ Rm such that

Ċ(x, u) + γ(C(x)) ≥ 0, (3)

where Ċ(x, u) is the Lie derivative of C for the true
plant (1), that is,

Ċ(x, u) = ∇C(x) · f(x)︸ ︷︷ ︸
LfC(x)

+∇C(x) · g(x)︸ ︷︷ ︸
LgC(x)

u, (4)

2) and if u(t) satisfying (3) for all t ≥ 0 is a sufficient
condition for x(t) satisfying the desired system-critical
constraint for all t ≥ 0.

The system-critical constraint for the CBF is that the tra-
jectory stays inside the zero-superlevel set of C indefinitely,
i.e., x(t) ∈ C := {x ∈ X | C(x) ≥ 0} for all t ≥ 0 [10]. The
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system-critical constraint for the CLF is that the trajectory
is asymptotically stable to the equilibrium x = 0 [46].
Both CBFs and CLFs satisfy the aforementioned definition of
certificate functions. Note that to align with the inequality form
in (3), we need to negate the CLF. This adjustment ensures that
both CBFs and CLFs can be used within the same framework
to satisfy the desired system-critical constraints.

Given a reference controller uref : X → Rm, the condition
in (3) can be used to formulate a minimally-invasive certifying
filter [10]:

Certificate Function-based Quadratic Program (CF-QP):

u∗(x) = argmin
u∈Rm

∥u− uref(x)∥22 (5a)

s.t. LfC(x) + LgC(x)u+ γ(C(x)) ≥ 0. (5b)

It is important to note that the constraint (5b) is affine in
u, which means that the optimization problem is a quadratic
program (QP). This problem is solved pointwise in time to
obtain a filtered control law u∗ : X → Rm that only deviates
from the reference controller uref when the condition (5b) is
violated. We will refer to (5b) as the true certifying constraint
and (5) as the oracle CF-QP. When specifically using CBFs
or CLFs in place of C, we may refer to (5) as the oracle
CBF-QP and CLF-QP, respectively.

The oracle CF-QP requires perfect knowledge of the sys-
tem dynamics since the Lie derivatives of C appear in the
constraint. Instead, we can use the nominal model and replace
LfC(x) and LgC(x) with Lf̃C(x) and Lg̃C(x) respectively,
the Lie derivatives of C with respect to the nominal model.
We call this a nominal model-based CF-QP.

The primary assumption we make in this paper is that we
have access to the certificate function C that is valid for the
true plant. This assumption ensures that a control policy exists
to keep the true plant (1) in compliance with the system-critical
constraint. However, even when a valid certificate function is
available, obtaining such a control policy is not straightforward
due to the lack of direct access to f and g in the true certifying
constraint (5b). Due to the mismatch between the true plant
dynamics and the nominal model, the nominal model-based
CF-QP also does not provide any guarantee that the system-
critical constraint will be met under the filtered control input.
To examine this, the true certifying constraint in (5b) is
expressed using the nominal model as follows:

Lf̃C(x) + Lg̃C(x)u︸ ︷︷ ︸˜̇C(x,u)

+∆(x, u) + γ(C(x)) ≥ 0, (6)

where ˜̇C(x, u) is the Lie derivative of C based on the nominal
model, and the model uncertainty term ∆ [19], [26], is defined
for each x ∈ X , u ∈ Rm as

∆(x, u) :=(LfC−Lf̃C)(x) + (LgC−Lg̃C)(x)u

= [L∆fC(x) L∆gC(x)]

[
1
u

]
. (7)

Note that like the original constraint (5b), ∆ is also affine in
the control input u.

In the next section, we introduce a method developed in
our prior work to estimate ∆ from data collected from the
true plant [7], [8]. Note that the data for ∆ can be gathered
from state trajectories without needing access to f and g. This
can be achieved by evaluating Ċ(x, u) along the trajectories
using numerical differentiation and subtracting ˜̇C(x, u). By
employing the estimate of ∆ derived from the data, we
can design a data-driven certifying filter that offers a high
probability of satisfying (5b).

Remark 1. Discovering valid certificate functions for uncer-
tain systems is far from trivial and is, in fact, an active area of
research [47]–[52]. Our contribution runs parallel to this line
of research, and in fact, our work complements these efforts,
as only when the design of the certificate function and the
design of the certifying filter are combined, can the certifying
filter for uncertain systems be effectively implemented. In our
work, we employ the nominal model to find CBFs and CLFs to
be used as certificate functions. Thus, this procedure implicitly
assumes that the nominal model is sufficiently accurate in its
approximation of the true plant to enable the identification
of a valid CBF or CLF. This assumption is also present in
prior works that most closely align with our research [12],
[13], [16], [25], [26]. This approach is considered reasonable
for feedback linearizable systems with known relative degree,
owing to the inherent robustness properties of CBFs and CLFs
[53], [54]. Indeed, the practice of using first-principle nominal
models for designing CBFs is widely adopted for numerous
complex robotics systems [55]–[57].

IV. DATA-DRIVEN CERTIFYING FILTERS

The data-driven certifying filters we introduce in this section
employ Gaussian Process (GP) regression to learn the estimate
of ∆ from data. We first provide a brief background on GP
regression.

A. Gaussian Process Regression

A Gaussian Process is a random process where any finite
collection of samples has a joint Gaussian distribution. The
process is characterized by the mean function q : X̄ → R and
the covariance (or kernel) function k : X̄ × X̄ → R, where X̄
represents the input domain of the process.

GP regression is a Bayesian approach for regressing an
unknown function h : X̄ → R by assuming that h is a sample
from a GP, namely, h ∼ GP(q, k). This implies that the prior
distribution of h(x̄∗), where x̄∗ ∈ X̄ is an unseen query
point, is given by N (q(x̄∗), k(x̄∗, x̄∗)). For our application,
X̄ = X × Rm, where Rm represents the control input space,
x̄∗ = (x∗, u∗), and the unknown function we aim to regress is
∆ defined in (7). We assume the mean function q ≡ 0 since
the prior information, which is based on the nominal model,
is already captured in the term ˜̇C(x, u) in (6).

With the dataset of noisy measurements of ∆, denoted
by z̄j at query x̄j , given as DN := {x̄j , z̄j}Nj=1 =
{(xj , uj), ∆(xj , uj) + ϵj}Nj=1, a prediction of ∆
at x̄∗ is derived from the joint distribution of
[∆(x̄1), · · · ,∆(x̄N ),∆(x̄∗)]

⊤ conditioned on the dataset
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DN . Here, ϵj ∼ N (0, σ2
n) is white measurement noise, with

σn > 0. This conditional distribution at the query point x̄∗
is called the GP posterior, whose mean and variance of the
prediction of ∆(x̄∗) are expressed as

µ(x̄∗|DN ) = z⊤(KDN
+ σ2

nI)
−1KT

∗ , (8)

σ2(x̄∗|DN ) = k (x∗, x∗)−K∗(KDN
+ σ2

nI)
−1KT

∗ , (9)

where KDN
∈ RN×N is the kernel matrix, whose (i, j)th

element is k(x̄i, x̄j), K∗ :=[k(x̄∗, x̄1), · · · , k(x̄∗, x̄N )] ∈ RN ,
and z ∈ RN is the vector consisting of the dataset outputs, z̄j .

The kernel value, k(x̄, x̄′), quantifies the correlation be-
tween two query points x̄ and x̄′. A higher kernel value
indicates a stronger correlation between the points, suggesting
that the corresponding values of ∆(x̄) and ∆(x̄′) are more
likely to be similar to each other. Thus, the choice of kernel k
determines properties of the target function like its smoothness
or Lipschitz constant [29]. For example, the square exponential
kernel, which is among the most popular choices for kernels in
the GP regression literature [5], attributes a higher correlation
to points that are closer together in the input space, and the
resulting samples of the GP are infinitely differentiable func-
tions. The kernel can also capture prior structural knowledge
of the target function [58]. In our case, we mainly want to
exploit the fact that the target function ∆ from (7) is control-
affine. For this, we use the Affine Dot Product compound
kernel presented in [8].

Definition 2. Affine Dot Product Compound Kernel [8]:
Define k : X̄ × X̄ → R given by

k
(
(x, u), (x′, u′)

)
:= [1 u⊤]Diag(kf (x, x

′), kg1(x, x
′) · · ·, kgm(x, x′))

[
1
u′

]
, (10)

where Diag(·) indicates the diagonal matrix whose diagonal
terms consist of the entities in the paranthesis, as the Affine
Dot Product (ADP) compound kernel of (m+1) individual
kernels kf , kg1 , · · · , kgm : X × X → R.

When L∆fC(x) and each element of L∆gC(x) in (7)
is a sample from a GP defined by the individual kernels
kf , kg1 · · · , kgm , respectively, the model uncertainty term
∆(x, u) is a sample from a GP defined by the ADP kernel
k. Thus, using the ADP compound kernel, from (8) and (9),
the GP posterior at a query point (x∗, u∗) is given as

µ(x∗, u∗|DN ) = z⊤(KDN
+ σ2

nI)
−1K⊤

∗U︸ ︷︷ ︸
=: M(x∗|DN )

[
1
u∗

]
, (11)

σ2(x∗, u∗|DN )=
[
1 u⊤

∗

](
K∗∗−K∗U(KDN + σ2

nI)
−1KT

∗U

)
︸ ︷︷ ︸

=: Σ(x∗|DN )

[
1
u∗

]
,

(12)

where K∗∗ = Diag (kf (x∗, x∗), · · · , kgm(x∗, x∗)) ∈
R(m+1)×(m+1), and K∗U ∈ R(m+1)×N is given by

K∗U :=


kf (x∗, x1) · · · kf (x∗, xN )
kg1(x∗, x1) · · · kg1(x∗, xN )

...
kgm(x∗, x1) · · · kgm(x∗, xN )

◦[11×N

UN

]
, (13)

where ◦ indicates the element-wise product, and UN :=
[u1 · · · uN ] ∈ Rm×N . Note that Σ(x∗|DN ) is positive definite
when the individual kernels kf , kg1 · · · , kgm are positive
definite kernels and σn > 0 [8].

One of the most significant advantages of using GP re-
gression is that it generates predictions of the target function
value in the form of a probability distribution, rather than
deterministically, based on (11) and (12). This allows for the
computation of a probabilistic bound on the true value of
∆(x∗, u∗) using µ(x∗, u∗|DN ) and σ(x∗, u∗|DN ):

Assumption 1. For a given δ ∈ (0, 1), there exists a constant
β > 0 such that

P
{ ∣∣∣∣µ(x∗, u∗|DN )−∆(x∗, u∗)

∣∣∣∣ ≤ βσ(x∗, u∗|DN )

}
≥ 1− δ,

(14)

for all x∗ ∈ X , u∗ ∈ Rm.

Numerous existing works have conducted theoretical anal-
yses to determine the conditions under which Assumption 1
holds and to identify the values of β. The term µ(x∗, u∗|DN )+
βσ(x∗, u∗|DN ) is referred to as the GP upper confidence
bound (GP-UCB). It serves as an upper bound for ∆(x∗, u∗),
with a high probability that the true value of ∆(x∗, u∗) is less
than or equal to this bound [28]. Similarly, µ(x∗, u∗|DN ) −
βσ(x∗, u∗|DN ) is the lower confidence bound of ∆(x∗, u∗).
It is important to note that verifying the right value of β is
not the primary focus of this work, and we direct interested
readers to the relevant literature for further details [28], [29],
[59]–[61].

B. Second-order Cone Program-based Certifying Filters

With the bound provided in (14), we can now present
a data-driven certifying filter that offers a high probability
guarantee of satisfying (5b) based on the learned GP model of
∆. By employing the lower bound of ∆(x, u), we construct
a certifying chance constraint that can be evaluated without
explicit knowledge of the true plant’s dynamics:

Lf̃C(x)+Lg̃C(x)u+µ(x, u|DN )−βσ(x, u|DN )+γ(C(x))≥0.
(15)

If the constraint (15) is satisfied, from Assumption 1, we have
a guarantee that the true certifying constraint in (5b) is satisfied
with a probability of at least 1− δ.

Note that from the affine structure of the mean expression
in (11), we get

µ(x, u|DN )=M(x|DN )

[
1
u

]
=

[
L̂∆fC(x) L̂∆gC(x)

][
1
u

]
,

where

L̂∆fC(x) :=M(x|DN )[1], L̂∆gC(x) :=M(x|DN )[2:(m+1)].

We define

L̂fC(x|DN ) := Lf̃C(x) + L̂∆fC(x) ∈ R,

L̂gC(x|DN ) := Lg̃C(x) + L̂∆gC(x) ∈ R1×m. (16)
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Using these expressions, (15) can be represented as

βσ(x, u|DN ) ≤
[
L̂fC(x|DN )+γ(C(x)) L̂gC(x|DN )

][
1
u

]
.

(17)
From the quadratic structure of the variance expression in (12)
and Σ(x|DN ) being positive definite, we can conclude that
(17) is a second-order cone constraint.

This constraint is then incorporated into a chance-
constrained reformulation of the CF-QP [7], [8]:

GP-CF-SOCP:

u∗(x) = argmin
u∈U

∥u− uref(x)∥22 s.t. (18)

Lf̃C(x) + Lg̃C(x)u+µ(x, u|DN )−βσ(x, u|DN )+γ(C(x)) ≥ 0,

wherein by leveraging the control-affine structure in the GP
regression, we obtain a convex optimization problem, which
is a second-order cone program (SOCP) that can be solved
efficiently at high-frequency rates using modern solvers. For
the full proof that (18) is an SOCP, readers are referred to [8].
When specifically using CBFs or CLFs in place of C, we refer
to (18) as GP-CBF-SOCP and GP-CLF-SOCP, respectively.

The guarantee that the true certifying constraint will be
satisfied with high probability exists only when the SOCP
filter in (18) is feasible. However, this program can become
infeasible for two reasons. Firstly, there might not be any u
such that the prediction uncertainty in the left-hand side of
(17) is adequately small compared to its right-hand side. This
suggests that the dataset for the GP regression is insufficient
to characterize the model uncertainty term ∆ with high con-
fidence. In this case, it may be necessary to collect more data
to reduce the prediction uncertainty and ensure the feasibility
of (17). A detailed analysis of the conditions under which
(18) is feasible is conducted in [7]. Secondly, most robotic
systems have bounded control input limits, either due to their
physical actuation limits or safety concerns. This input bound,
represented as U ⊂ Rm, further constrains the feasible set of
(18) and may render it infeasible.

During the deployment of the SOCP filter on real-world
systems, it is often impossible to perfectly eliminate infeasi-
bility. However, an effective strategy to address cases when
infeasibility occurs is to use a backup control input computed
by the following second-order cone program:

u∗(x) = argmin
u∈U

(
βσ(x, u|DN )− L̂gC(x|DN )u

)
. (19)

This selects a control input within the input bound that
minimizes the violation of the constraint (17).

The main challenge in executing the SOCP filter (18) online
lies not in solving the optimization problem, but rather in the
computationally demanding evaluation of σ when the size of
the dataset is large. The time complexity of the matrix inverse
in (12), (KDN

+ σ2
nI)

−1, is O(N3), while the remaining
matrix multiplication involved in evaluating Σ(x∗|DN ) has a
time complexity of O(N2). Although the matrix inversion can
be performed offline, when the dataset is large, the O(N2)
complexity still remains challenging. This issue primarily
motivates the development of Sparse GP literature [30] and

the constraint-guided online data selection algorithm proposed
in this paper, which can reduce the computational complexity
to a linear dependence on N .

C. Running Example: 2D Polynomial System (Polysys)

We now introduce a simple running example system, re-
ferred to as Polysys, which is utilized throughout the paper.
It is important to note that this low-dimensional toy example
is not intended to showcase the computational advantage of
our method, a topic we will present in Section VI. Instead, its
purpose is to provide a walk-through of the inner workings of
our approach for the readers. To achieve this, we have access to
the true plant dynamics, allowing us to compare our method
with the ideal oracle certifying filter. Moreover, the dataset
constructed for the data-driven certifying filters is not meant
to represent a realistic dataset. Instead, it is a simplistic dataset
designed for easy comprehension by the readers.

The dynamics of the system, whose vector fields are poly-
nomial functions of the state x, are given by:

ẋ =

[
fT
1 v
fT
2 v

]
+

[
1 + gT11v gT12v
gT21v 1 + gT22v

]
u, (20)

where x = [x1 x2]
⊤ is the state, u = [u1 u2]

⊤ is the control
input, v = [x1 x2 x2

1 x1x2 x2
2 x3

1 x2
1x2 x1x

2
2 x3

2] ∈ R9 is a
vector that aggregates the monomials of the state, and each
of f1, f2, · · · , g22 are randomly generated coefficient vectors
in R9. We introduce model uncertainty to the true plant by
perturbing the coefficient vectors from the nominal model.

In this example, we aim to design a control policy that
stabilizes the system to the zero equilibrium point. To achieve
this by using the certifying filter, we design the CLF V (x) =
x⊤Px as the certificate function, where P is the solution of
the Algebraic Riccati Equation for the linearized system of
the nominal model (20) around x = 0. In this example, we set
uref(x) ≡ 0 since we do not have any other explicit tasks to
achieve. As shown in Figure 1, we can see that the oracle CLF-
QP (orange) is able to stabilize the state to the equilibrium,
confirming that the CLF is a valid certificate function for the
true plant. However, due to the model uncertainty we introduce
to the true plant, the nominal model-based CLF-QP (green)
fails to stabilize the system.

We next show the application of the GP-CLF-SOCP in (18)
on this example. We first construct the dataset DN in order
to apply GP regression to ∆. We partition the subspace of
the state space [−2, 2] × [−2, 2] into the coarse state grid
of size (10, 10). At every vertex xj of the state grid, we
apply the randomly sampled control input uj to simulate the
system (20) for a sampling time ∆t and collect a single
data point (x̄j = (xj , uj), z̄j). We account for the numerical
differentiation error in obtaining z̄j as measurement noise. In
addition to the data from the coarse grid, we also incorporate
some densely populated data points centered at a few selected
state and action pairs, (xa, ua). Around each of these points,
a dense state-control grid is created by gridding up [xa,1−
δ, xa,1+δ]×[xa,2−δ, xa,2+δ]×[ua,1−δ, ua,1+δ]×[ua,2−δ, ua,2+δ]
in (2, 2, 2, 2) grid, where we set δ = 0.1. This results in a total
of 81 data points collected at each (xa, ua). In the subsequent
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sections describing the Polysys example, we refer to the data
points generated from a single dense grid as a data cluster.
Combined together, we get in total N = 361 data points,
visualized by their projection to the state space in Figure 1.

We use GP regression to fit ∆ from the dataset presented
above, using the ADP compound kernel with isotropic squared
exponential kernels as components. Then, we apply the GP-
CLF-SOCP of (18) to control the system. As shown in Figure
1, the GP-CLF-SOCP using the full dataset (black dashed line)
is able to stabilize the system to near the origin despite the
uncertainty in the true plant dynamics.

V. CONSTRAINT GUIDED ONLINE DATA SELECTION

In this section, we present the core contribution of our
paper: a constraint-guided online data selection algorithm that
improves the time complexity of GP inference for the GP-CF-
SOCP from O(N2) to O(N).

Using the entire dataset to evaluate σ2(x∗, u∗|DN ) would
yield minimal uncertainty for any query point x∗, u∗, as we
would utilize all available information, but this comes at the
cost of high computational demand. One way to mitigate
this computational burden involves constructing an offline
model that approximates the precise Gaussian Process (GP)
inference, with the goal of making accurate predictions for
any new query points encountered during runtime. However,
our approach, similar to many existing Sparse GP methods,
is based on the idea that it is not necessary to reduce the
uncertainty globally [62]–[64]. Instead, we aim to reduce the
uncertainty for specific input classes relevant to our problem.
The former approach, known as induction, aims to regress the
function with high quality across the entire input space. In
contrast, our approach, which is called transduction, focuses
on learning only for specific test points that we care about [31].
Revisiting the learning objective in our problem, we seek to
find u∗(x) such that the certifying chance constraint (15) is
feasible. Therefore, our data selection algorithm is designed
to efficiently achieve this goal.

To facilitate the presentation of our algorithm, we first
introduce some simplified notations and preliminaries that will
be used in this section. We also present a sufficient condition
for the feasibility of GP-CF-SOCP, from which we derive the
main control input direction we want to characterize. This
control input direction is the foundation upon which we apply
the concept of transduction in our data selection algorithm.

A. Preliminaries

1) Simplified notations for kernels: We use

kij := k ((xi, ui), (xj , uj)) ,

k∗∗(x, u) := k ((x, u), (x, u)) ,

k∗i(x, u) := k ((x, u), (xi, ui)) ,

and ki := kii as simplified notations, where (xi, ui) is an
input point in DN . We also consider the compound kernel
that captures only the control vector field-relevant part:

ku((x, u), (x′, u′)) := u⊤Diag(kg1(x, x
′),· · ·, kgm(x, x′))u′.

(21)

Fig. 1: The simulation result of the Polysys example under
various controllers: the nominal model-based CLF-QP (yel-
low), the oracle CLF-QP (orange), the GP-CLF-SOCP using
full data (black), the GP-CLF-SOCP using naive data selection
(magenta) discussed in Sec. V-C, the GP-CLF-SOCP using our
main data selection algorithm (blue) discussed in Sec. V-D,
both using the same number of online data, M = 40. The
topmost plot illustrates the trajectory’s progression in the state
space for 2.6 seconds, with an initial state of x0 = [1.5 1.5]⊤,
while the data is depicted as grey dots. The four subplots
on the bottom show the state x1, x2, the CLF values, and the
feasibility of the QP and SOCP in time, respectively. While the
naive approach often faces infeasibility and fails to stabilize
the system close to the origin, our approach effectively selects
an online dataset that secures the feasibility of the SOCP.
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Note that k((x, u), (x′, u′)) = kf (x, x
′) + ku ((x, u), (x′, u′))

from Definition 2. Similarly, we define

ku
∗∗(x, u) := ku ((x, u), (x, u)) ,

ku
∗i(x, u) := ku ((x, u), (xi, ui)) .

2) Alternative expression for the GP posterior variance
(12): Using simplified notations, we can express[

1 u⊤
∗
]
K∗U = [k∗1(x∗, u∗) · · · k∗N (x∗, u∗)] ,

and (12) becomes

σ2(x∗, u∗|DN ) (22)

= k∗∗(x∗, u∗)− [k∗1 · · · k∗N ] (KDN
+ σ2

nI)
−1

 k∗1
...

k∗N ,


with (x∗, u∗) dropped in k∗i for simplicity. Note that the first
term on the right-hand side is contributed from the GP prior,
and the choice of the data only affects the second term.

3) Sufficient Condition for Pointwise Feasibility of GP-CF-
SOCP: The expression of the certifying chance constraint in
(17) highlights the tradeoff required to evaluate its feasibility,
which lies between the prediction uncertainty of the GP
regression on the left-hand side and the mean-estimate of the
true certifying constraint on the right-hand side. This structure
is useful for verifying the following sufficient condition for the
feasibility of (17).

Lemma 1. Given a dataset DN , for a point x ∈ X , If there
exists a constant α > 0 such that the following inequality
holds,

β σ
(
x, αL̂gC(x|DN )⊤

∣∣DN

)
< α

∥∥∥L̂gC(x|DN )
∥∥∥2 (23)

then the GP-CF-SOCP in (18) is feasible. The feasible control
input can be found by taking u = α′L̂gC(x|DN )⊤ with
sufficiently large α′ > 0.

Proof. See Appendix A.

The main implication of the above lemma is that the
feasibility of (18) can be assessed by examining the size of
the prediction uncertainty, σ, in just one control input direc-
tion, specifically the direction of the mean-based estimate of
LgC(x), denoted as L̂gC(x|DN ). This direction is particularly
important because according to what the mean prediction of
the GP tells, it is the control input direction in which we can
most effectively regulate the value of C(x). If the prediction
uncertainty is sufficiently small in this direction, by taking the
control input in this direction with large enough magnitude,
we can ensure (18) to be feasible.

B. Data Selection Objective

We seek to design an online data selection algorithm, that
selects a subset of data from the entire dataset, DM (x)⊂DN ,
at every sampling time at the current state x. Once M online
data points are determined, the GP-CF-SOCP in (18) is solved
with the online dataset DM (x) in place of DN , to determine
the filtered control input u∗(x) which will be applied to the

system next. Among the data points in the full dataset, we want
to select a limited number of points that are most helpful in
characterizing the control direction that secures the feasibility
of the certifying chance constraint in (15).

We attempt to achieve this by utilizing the result of Lemma
1, trying to make sure that condition (23) is met with the
limited M data points we are allowed to use. Adopting the
approach of transduction, the goal of the data selection is to
reduce the uncertainty in the direction of L̂gC(x|DM )⊤, i.e.,
select DM (x) which best reduces σ

(
x, αL̂gC(x|DM )⊤|DM

)
for sufficiently large α. However, we do not know how
sufficiently large α needs to be to render (23) feasible prior to
selecting DM (x) and actually solving the SOCP. Therefore,
we eliminate the dependency on the magnitude of α by
considering the following problem:

arg min
DM (x)

lim
α→∞

1

α
σ
(
x, αL̂gC(x|DM )⊤|DM

)
. (24)

Note that we drop the dependency of DM on x whenever
it is obvious, for notational simplicity. From the expression of
the variance in (22), we can derive the following lemma that
transforms the objective function above into a form without
the appearance of α:

Lemma 2. The optimization problem (24) can be equivalently
expressed as

arg max
DM⊂DN

FDM
(x, L̂gC(x|DM )⊤), (25)

where FDM
(x, u) :=

[ku
∗1(x, u) · · · ku

∗M (x, u)] (KDM + σ2
nI)

−1

 ku
∗1(x, u)

...
ku
∗M (x, u)

 , (26)

which is the second order term in the control input u of the
posterior variance σ2(x, u|DM ).

Proof. See Appendix B.

Thus, we will consider FDM
(x, L̂gC(x|DM )⊤) as the ob-

jective function of the data selection algorithm.

Remark 2. Since we do not have access to L̂gC(x|DM )

prior to determining DM , we can replace L̂gC(x|DM ) in
FDM

with L̂gC(x|DN ), where DN is the entire dataset. Note
that L̂gC(x|DN ) only requires the computation of µ(x, u|DN )
but not σ(x, u|DN ). Since z⊤(KDN

+ σ2
nI)

−1 in (11) can
be precomputed offline, the time complexity of evaluating
L̂gC(x|DN ) online is O(N). When N is very large, it
may be impractical or computationally infeasible to evaluate
z⊤(KDN

+ σ2
nI)

−1 offline since it requires us to compute the
inverse of the matrix. In such cases, an effective approximation
for L̂gC(x|DM ) can still be achieved by using L̂gC(x|D′

M ),
where D′

M represents the dataset selected online at the previ-
ous time step.

C. Naive approach

Before we proceed to present the main algorithm of the
paper, let’s take a moment to build a better understanding of
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the data points we wish to include in DM (x). To facilitate
this discussion and simplify our thought process, consider a
scenario where all data points in DN are not correlated with
one another, meaning that kij = k ((xi, ui), (xj , uj)) = 0
for all i ̸= j. Additionally, let’s assume there is no noise in
the data, so σn = 0. In this simplified case, KDN

+ σ2
nI =

Diag(k1, · · · ,kN ), and from (26) it holds that

FDM (x, u)

= [ku
∗1(x, u) · · · ku

∗M (x, u)]Diag

(
1

k1
, · · · , 1

kM

) ku
∗1(x, u)

...
ku
∗M (x, u)



=

[
ku
∗1(x, u)√

k1

· · · k
u
∗M (x, u)√

kM

]
ku
∗1(x,u)√

k1

...
ku
∗1(x,u)√

k1

=

M∑
i=1

(
ku
∗i(x, u)√

ki

)2

.

We define a kernel-based alignment measure as

ni(x, u) :=
|ku

∗i(x, u)|√
ki

=
|ku ((x, u), (xi, ui)) |√
k ((xi, ui), (xi, ui))

, (27)

which results in

FDM

(
x, L̂gC(x|DM )⊤

)
=

M∑
i=1

n2
i

(
x, L̂gC(x|DM )⊤

)
. (28)

Therefore, we can optimize FDM

(
x, L̂gC(x|DM )⊤

)
simply

by selecting M points from DN that exhibit maximum values
of ni

(
x, L̂gC(x|DM )⊤

)
. The time complexity of finding

such points is O(N), which can be achieved using efficient
algorithms, such as a quick selection.

Equation (28) highlights that the alignment measure
ni

(
x, L̂gC(x|DM )⊤

)
is the measure of the relevance of the

data point (xi, ui) to the feasible direction of the certifying
chance constraint. Here, we offer a concise explanation of the
geometric interpretation of this measure.

For kernels used in GP regression, note that the kernel value
of two inputs, k(x, x′) can be interpreted as an inner product
between the feature vectors of x and x′, i.e. k(x, x′) = φ(x) ·
φ(x′) [5]. For the ADP kernel in Definition 2, denoting the
feature vectors for individual kernels as φf , φg1 , · · · , φgm ,
we can express the ADP kernel’s feature vector as φ(x, u) :=

[φf (x) φg1(x) · · · φgm(x)]

[
1
u

]
. Consequently, we get

ni

(
x, L̂gC(x|DM )⊤

)
= lim

α→∞

∣∣∣φ(x, αL̂gC(x|DM )⊤) ·φ(xi, ui)
∣∣∣

α
√

φ(xi, ui) ·φ(xi, ui)
,

from (27), where we get rid of the autonomous vector field
relevant part from the numerator in (27) by taking the limit
of α→∞. Thus, ni

(
x, L̂gC(x|DM )⊤

)
captures how well the

data point is aligned in the feature space of the ADP kernel
with the feasible input direction.

In summary, the naive approach, which selects M points
with maximum values of ni

(
x, L̂gC(x|DM )⊤

)
from the

dataset DN , optimally achieves the objective in (24) under
the ideal conditions of an uncorrelated dataset and absence of
measurement noise. However, these assumptions do not ac-
curately represent the characteristics of real-world datasets. In

practice, data from actual systems often have a high correlation
because sampled data points from trajectories are sequential
and share similar properties due to their close proximity in
time and space.

We use the Polysys example to highlight the failure of the
naive approach in handling datasets that deviate from ideal
conditions, particularly those containing self-correlated data
points. Our demonstration reveals that the naive approach
may choose an unsuitable DM , rendering the SOCP filter
infeasible. This limitation motivates the development of a more
advanced data selection algorithm, which we present in the
next subsection.

Running Example–Polysys (Cont’d): As described in Sec-
tion IV-C, the dataset created for the Polysys example contains
highly correlated data points, especially in the data clusters.
Figure 2 (a) illustrates a failure case of the naive algorithm.
In the first row of Figure 2 (a), we visualize the selected
data points DM (x) at a query state x under various values
of M . The second row represents the prediction uncertainty
βσ(x, u) in control-input space as an ellipse, and L̂gC(x|DM )
as a dashed magenta line, thereby illustrating the competitive
relationship between the left-hand side (ellipse) and the right-
hand side (magenta line) of the certifying chance constraint
(17).

Since the naive approach greedily selects the points that
maximize ni

(
x, L̂gC(x|DM )⊤

)
without considering the cor-

relation between them, the selected data points are sourced
from the data cluster that is close to the query state. The
effect of using such highly self-correlated data points as DM

is shown in the second row of the figure. It demonstrates
that even after increasing the size of M from 40 to 60,
the uncertainty ellipse barely reduces its size, leading to the
infeasibility of the SOCP. Clearly, selecting such concentrated
data points does not provide additional information, which
intuitively illustrates why the naive approach can fail.

D. Main Algorithm

Selecting the data points in the dataset DN that maxi-
mize our objective function FDM

(x, L̂gC(x|DM )⊤) when the
dataset is self-correlated is in fact a combinatorial optimization
problem which is NP-hard [65]. This complexity occurs from
the need, as seen in (26), to find the optimal subset of data
that maximizes the correlation with the target point (k∗j in
(26)), while minimizing the self-correlation within the subset
(captured by KDM

). Therefore, directly optimizing for the
objective function online is intractable. The result presented
next, which is the main assertion of our paper, allows us to
indirectly find a good candidate DM by maximizing a lower
bound of the objective function.

Theorem 1. For a given dataset DM with M ≥ 2, assume
that there exists a constant ϵ ∈ [0, 1) that satisfies

k2
ij < ϵ2kikj , (29)

for all i, j = 1, · · · ,M and i ̸= j, and

σ2
n ≤ ϵ2(M − 1)mini ki

1− ϵ
. (30)
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Fig. 2: Comparison between the two data selection strategies–
(a) naive approach described in Section V-C and (b) our main
algorithm described in Section V-D, on the Polysys running
example system, with a varying number of online selected
data points (M = 20, 40, 60). In each case, the first row
visualizes the entire dataset DN (grey dots) projected on the
state space and the data points selected online DM (magenta
dots) according to the data selection algorithm at the query
state x = [0.011 − 0.0756]⊤ (orange diamond). The second
row visualizes the selected points projected on the control
input space (magenta dots), and the prediction uncertainty
βσ(x, u)’s growth in the control space as an ellipse. We also
visualize L̂gC(x|DN ) and L̂gC(x|DM ) as the dashed green
and magenta lines, respectively. The ellipse and magenta line
represent the growth of the right-hand side and left-hand side
of (17), respectively. The feasibility of the chance certifying
constraint can be deduced by evaluating the relative ratio of
the magenta line’s length to the ellipse’s radial distance in
the magenta line’s direction. A smaller ratio suggests that a
larger control input in the L̂gC(x|DM ) direction is required
to satisfy the chance constraint.

Then, FDM
(x, u) is lower bounded by the inequality below

FDM
(x, u) ≥ 1− ϵ

1 + ϵ(M − 2)

M∑
i=1

n2
i (x, u). (31)

Note that the equality is satisfied when ϵ = 0.

Proof. See Appendix C.

The condition (29) requires the dataset to exhibit no more
than a weak correlation, while condition (30) necessitates
that the noise variance remains comparatively small with
respect to the correlation threshold ϵ. It is worth noting that
the latter condition becomes less stringent as the value of
M increases. Under these conditions, Theorem 1 concludes
that the lower bound of the objective function can be maxi-
mized by, again, selecting M points with maximum values of
ni

(
x, L̂gC(x|DM )⊤

)
.

Leveraging the result of Theorem 1, we aim to maximize
the lower bound as a proxy for the original objective function,
thereby rendering the problem more tractable. The essence
of our main algorithm is to condition the dataset to satisfy
the assumption in (29), ensuring that Theorem 1 holds, and
then identify the data points for which

∑M
i=1 n

2
i (x, u) is

maximized.
We achieve this through a two-fold algorithm. First, during

the offline phase, we compute a ready-to-use binary matrix
B ∈ RN×N , with elements defined as follows:

Bij :=

{
1 if k2

ij < ϵ2kikj

0 otherwise
(32)

The matrix B can be efficiently constructed by applying an
ϵ-threshold to the matrix

Diag

(
1√
k1

, · · · , 1√
kN

)⊤
KDN

Diag

(
1√
k1

, · · · , 1√
kN

)
.

(33)
This operation has a time complexity of O(N2) but occurs
during the offline stage, so it does not impact the online time
complexity.

Next, in the online phase described in Algorithm 1, we first
initialize a candidate dataset as the entire dataset (Line 4). We
then sequentially add to the online dataset DM the data point
that has the maximum value of ni

(
x, L̂gC(x|DM )⊤

)
among

those in the candidate dataset (Line 6-7). As we select each
point, we remove from the candidate dataset the points that
have a correlation greater than ϵ relative to the selected point,
by directly referring to the matrix B (Line 8).

Algorithm 1 has a time complexity of O(MN), as each
operation in Line 6 and Line 8 inside the for loop is O(N).
At each time step, after obtaining DM from the proposed
algorithm, we use this online dataset for the GP-CF-SOCP
filter in (18) instead of using the entire dataset. This requires
evaluating the matrix inverse in (11) and (12) online, which
has a time complexity of O(M3). Thus, with our proposed
approach, obtaining the optimal filtered control input u∗(x)
has a total time complexity of O(NM + M3), in terms of
N and M . We are neglecting the time complexity of solving
the SOCP since it does not depend on the number of data
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Algorithm 1: Online Data Selection for GP-CF-SOCP
1 Input: Current state x, entire dataset DN , B defined in (32)
2 Output: Online dataset DM

3 DM ← ∅
4 Icandidate ← {1, 2, · · · , N}
5 for k = 0; k < M ; k = k + 1 do
6 i∗ ← argmaxi∈Icandidate

ni(x, L̂gC(x|DM )⊤)
7 DM ← DM ∪ (xi∗ , ui∗ , zi∗)
8 Icandidate ← Icandidate \ {j ∈ Icandidate | Bi∗j == 0}
9 end

points. Given that we choose M << N in practice, the time
complexity of the GP-CF-SOCP safety filter combined with
our online data selection algorithm is linear in N .

Remark 3. Choosing the value of the correlation threshold ϵ
allows users to strike a balance between the contribution of the
term

∑M
i=1 n

2
i (x, u) and the adverse impact of self-correlation

on the objective function FDM
(x, u). With a value of ϵ=1, the

data selection is identical to the naive approach. However, the
right-hand side of (31) being zero indicates that the informa-
tion gained from the selected data points can be significantly
compromised by their self-correlations, potentially resulting
in no contribution to the objective function at all. Conversely,
ϵ = 0 prohibits users from using data points with even the
slightest correlation, which is impractical. Ideally, we should
find the optimal value of ϵ that offers the best trade-off.
However, determining the optimal ϵ is an NP-hard problem,
as it shares the same problem complexity as maximizing the
data selection objective FDM

directly. A practical and effective
strategy is to leverage prior knowledge of the full dataset
to identify an acceptable ϵ value, for instance, by evaluating
the histogram of

k2
ij

kikj
for the dataset and selecting an ϵ that

corresponds to a reasonable quantile of data satisfying (29).

Running Example–Polysys (Cont’d): We investigate how
Algorithm 1 selects data online and improves the downstream
objective of enhancing the feasibility of the GP-CLF-SOCP
through its self-correlation remedy in the Polysys example.
We use ϵ = 0.95 in the example, which is the minimum
correlation between data points within a data cluster. Using
this value prevents our main algorithm from selecting more
than one point per data cluster. The first row of Figure 2 (b)
displays that our main algorithm selects at most one data from
each data cluster even as M increases. This correlation-aware
behavior resulting from upper-bounding the maximum self-
correlation of the selected data points induces the algorithm to
select diverse data. Consequently, the prediction uncertainty,
illustrated as the ellipse in the second row of the image, is
reduced as M increases in all directions of u but, more impor-
tantly, it is primarily reduced in the direction of L̂gC(x|DN ).
Moreover, in the case of M = 20, it is notable that the
algorithm prioritizes selecting data points whose control input
values are well aligned in the direction of L̂gC(x|DM ). As
a result, the GP-CLF-SOCP controller utilizing the online
dataset constructed by our main algorithm is feasible for all
M in Figure 2.

E. Related Data Selection Methods

The point at issue of this paper is very related to the
information-theoretic data subset selection [66], [67] and
sensor placement [65], [68] problems, which are known to
be NP-hard for many different objective functions, such as
mutual information and conditional entropy [32], [69]. While
our focus is on optimizing a particular certification-oriented
measure (26) that differs from the information-theoretic objec-
tive functions, our optimization problem still suffers from the
same combinatorial challenges, and solving (25) to optimality
would be intractable for large datasets.

A reasonable alternative to our approach would be to form
the online dataset DM by greedily selecting, one at a time, the
data points that maximize (25). This idea was applied to the
sensor placement in [32] and has been used for data-driven
control in [6], [70]. To approximately solve (25), this greedy
selection method can be implemented with an asymptotic time
complexity of O(NM3). While this asymptotic complexity is
only slightly worse than the O(NM) complexity of Algorithm
1, in practice we observe that the greedy method is too slow to
perform the data selection online, even when using the locality
and lazy evaluation speedups proposed in [65].

Another simpler approach would be to choose the k-nearest
neighbors (k-NN) at each query state-action pair. However,
given the control-affine structure of the target function ∆, it is
not immediately clear which distance metric should be used
for the k-NN to capture the most relevant information. The
authors in [71] propose to use the kernel distance [72], [73],
which is the Euclidean distance in the kernel feature space.
Although simple, these k-NN selection approaches suffer from
similar problems as our naive selection algorithm, as they do
not consider the self-correlation of the dataset.

VI. RESULTS

In this section, we apply our method to three specific
examples, consisting of two numerical simulations and one
hardware experiment. We refer to the GP-CF-SOCP filter
using the full dataset as GP-CF-SOCP (Full), the GP-CF-
SOCP using the online data constructed by the naive approach
in Section V-C as GP-CF-SOCP (Naive), and the GP-CF-
SOCP using the online data constructed by our main data
selection algorithm as GP-CF-SOCP (Ours).

A. Running Example: Polynomial System (Cont’d)

The simulation results of Polysys under the GP-CLF-SOCP
(Naive) and GP-CLF-SOCP (Ours) are evaluated in this study,
extending the analysis in Section IV-C. To ensure a fair
comparison, both controllers select 40 (M ) data points from
the full dataset, which has a total of 361 (N ) data points,
as constructed in Section IV-C. The results are presented in
Figure 1, which shows that GP-CLF-SOCP (Ours) is feasible
throughout the simulation period, imposing the probabilistic
guarantee of stability to the closed-loop system. In contrast,
the GP-CLF-SOCP (Naive) fails to do so, and the SOCP
is infeasible very frequently with this approach. Note that
when the SOCP is infeasible, the backup controller in (19)
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is deployed, and the stability property that the certifying
constraint is trying to impose is not guaranteed anymore.

Further analysis of the trajectory of the two controllers in
the topmost plot of Figure 1 reveals two important behaviors.
First, the GP-CLF-SOCP (Ours) (blue) exhibits a similar
trajectory to that of GP-CLF-SOCP (Full) (black). This implies
that the effect of the information loss due to using only
the online-selected data points is negligible when employing
our algorithm. Second, the GP-CLF-SOCP (Naive) controller
(magenta) exhibits a more aggressive trajectory compared to
GP-CLF-SOCP (Ours), as evidenced by the rapid decay of
V (x) and a swift change in state history starting at around
t = 1s. This is when the naive algorithm begins selecting most
of the data points in the densely populated data cluster near
the origin. These observations demonstrate that the naive data
selection leads to a large prediction uncertainty in the direction
of L̂gC(x|DN ), resulting in a considerably more conservative
control policy than necessary. This also makes the controller
more susceptible to infeasibility.

Note that the Polysys example is devised to provide a de-
tailed walk-through of our method; thus, we do not benchmark
the computation time of each method in this example. Given
the relatively small number of data points used in this example,
the computational efficiency gained from our method would
not be easily noticeable.

B. High-dimensional System in Simulation: Five-link Walker

We explore the performance of our algorithm in a high-
dimensional system, RABBIT [74], a planar five-link bipedal
robot consisting of ten state variables. We demonstrate the
effectiveness of our algorithm in achieving stable walking. The
significance of our algorithm in reducing the computational
demands of executing the certifying filter is highlighted.

RABBIT is a testbed system developed to study bipedal
robot locomotion [74]. As depicted in Figure 3 (a), its con-
figuration is represented by the generalized coordinate vector
q = [q1, q2, q3, q4, q5]

⊤ consisting of the robot’s joint angle
variables. We adopt the mathematical model for RABBIT
locomotion in [74] to design the simulation model of this
system, where the state is defined as x = [q, q̇] ∈ R10, and
the control input is defined as u ∈ R4, consisting of the hip
and knee motor torques for both legs. The torque saturation is
set at 150Nm. The hybrid system description of the robot’s
walking process consists of a single-support swing phase under
a Lagrangian dynamics and a reset map defined by the rigid
impact model, which switches the robot’s state to the post-
impact state upon the swing foot’s impact with the ground.

The objective of the certifying filter is to achieve an ex-
ponentially stabilizing periodic gait for RABBIT, despite the
effect of the impacts. To accomplish this, we employ a Rapidly
Exponentially Stabilizing Control Lyapunov Function (RES-
CLF) [46] as our certificate function. We also set uref(x) ≡ 0
since this naturally captures the objective of minimizing the
energy spent to produce the motor torques. In order to con-
struct RES-CLFs, we first input-output linearize the continuous
dynamics of the system by defining the output functions:

y(q) = q2:5 − yd(θ(q)), (34)

(a)

𝑞! 𝑞"

𝑞#
𝑞$

𝑞%

stance leg swing leg

(b)

𝑠!"#

𝑠

𝜃

Fig. 3: (a) The configuration of the planar five-link bipedal
robot RABBIT [74] (b) Cart-pole experiment setup based on
Quanser Linear Servo Base Unit with Inverted Pendulum [76].

where θ(q) is a variable that defines the phase along the gait,
which monotonically increases within each walking step, and
yd(·) is a desired gait represented by a Bezier polynomial,
generated offline using the Fast Robot Optimization and Simu-
lation Toolkit (FROST) [75]. We can then decompose the state
of the system into the transverse coordinates ξ = [y ẏ]⊤ ∈ R8

and the zero coordinates η = [θ(q) θ̇(q)] ∈ R2. After applying
the input-output linearization, we can represent the transverse
dynamics as:

ξ̇ = f(ξ, η) + g(ξ, η)µ, (35)

where µ is the virtual input. By stabilizing ξ to zero, we
enforce the joint trajectory to converge to the desired stable
walking gait defined by yd(θ(q)).

Model uncertainty is introduced in the simulation by scaling
the mass and inertia values of the robot by a factor of 2, which
poses a challenge for the controller to maintain stability during
walking. Note that a payload is one of the most common
sources of model uncertainty for legged robots in practical
applications. As illustrated in Figure 4, while the oracle CLF-
QP (blue), which assumes access to the true plant dynamics,
successfully completes fifteen steps, the nominal model-based
CLF-QP (magenta), which is unaware of the change in mass
and inertia, fails to stabilize the robot and it eventually falls
down during the fourteenth step. This observation motivates
the use of the GP-CLF-SOCP controller.

We collect data points represented as x̄j = ([ξj , ηj ], µj)
since we aim to learn the effect of model uncertainty in
the transverse dynamics (35). The dataset is collected in an
episodic learning fashion, similar to our previous work [7].
The nominal model-based CLF-QP is run in the first episode
to create an initial dataset for the GP regression. Following
this, the GP-CLF-SOCP is executed, and the data collected
from the new trajectory is iteratively added to the dataset.
For the GP-CLF-SOCP, we initially use the full dataset;
however, when the execution time of the SOCP controller
approaches the limit of the target sampling time, we activate
the data selection algorithm. It is essential to acknowledge that
high-dimensional systems are more susceptible to the out-of-
distribution problem, as data is inherently more scarce. To
address this challenge, we introduce perturbations to the reset
map at every impact event and create variations in the control
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Fig. 4: Simulation results of RABBIT achieving stable walking under various controllers: the nominal model-based CLF-QP
(magenta), the oracle CLF-QP (blue), GP-CLF-SOCP (Full) (black), and GP-CLF-SOCP (Ours) (green). The left column
depicts histories of the Euclidean norm of the tracking error y and its time derivative ẏ with respect to the reference gait. The
right column shows the evolution of the hip’s vertical position from the ground and the value of the CLF V (x).

policies executed in each episode, for example, by altering the
number of M , in order to enhance the dataset’s coverage. As a
result, we obtain a comprehensive dataset comprising 12,765
(N ) data points.

When assuming the ability to deploy the GP-CLF-SOCP
(Full) at a sampling rate of 40Hz (25ms), it can achieve
fifteen successful steps without falling, as shown in Figure 4
(black). However, this would not be achievable in reality, as the
average execution time of the controller using the full dataset
is 238.3ms, which significantly exceeds the target sampling
time. Instead, we employed our main data selection algorithm
to choose 30 (M ) data points from the full dataset. As
demonstrated in Table I, this algorithm significantly reduced
the execution time to an average of 22.9ms.

As shown in Figure 4, the GP-CLF-SOCP (Ours) (green)
enables the robot to successfully complete fifteen steps. This
is further evidenced by the CLF and tracking error plot,
where the controller consistently and exponentially stabilizes
the tracking error close to zero after the repeated state resets.
It is worth noting that the resulting walking gait of the GP-
CLF-SOCP controller differs from the oracle controller, as the
SOCP controller chooses control inputs that are robust to the
prediction uncertainty. Consequently, the controller behaves
more conservatively; in this case, it leads to a slightly faster
walking gait than that of the oracle CLF-QP controller.

C. Hardware Experiment: Cart-pole System

The importance of the method presented in this work is most
notable for real hardware systems, as we can use the data
collected from the real system to account for the inevitable
inaccuracies that even our best possible mathematical descrip-
tion of its dynamics might suffer from. This is precisely what
is observed in the experiment we conducted on a Quanser
Linear Servo Base Unit with Inverted Pendulum [76] hardware
(Figure 3 (b)). This cart-pole system consists of a linearly-

TABLE I: Total execution time (data selection, GP inference,
numerical optimization) of the GP-CF-SOCP controller with
different datasets in the RABBIT simulation and the Cart-pole
experiment. Mean and standard deviations are in milliseconds.

GP-CF-SOCP (Ours) GP-CF-SOCP (Full)
System mean stdev M mean stdev N

RABBIT 22.9 4.4 30 238.3 9.4 12765
Cart-Pole 11.8 0.75 40 60.4 4.1 6957

actuated cart and an unactuated pendulum. The state of the
system can be described as x = [s, ṡ, θ, θ̇] ∈ R4, where s and
ṡ are the cart’s position and velocity, and θ and θ̇ correspond
to the pole’s relative angle with respect to the upright position
and its angular velocity. The control input u ∈ R is the voltage
applied to the linear actuator of the cart.

The control objective of this experiment is to swing-up the
pole to the upright position and balance it at the top, while
respecting a safety constraint on the cart’s position, given as
|s| ≤ slim = 0.35m. In particular, this constraint is placed to
avoid the cart from colliding against the limits of the linear
guide. The CBF we designed, which is then used as the
certificate function, is based on the exponential CBF design
methods for high relative-degree constraints [77]; in our case,
the original cart position constraint has a relative degree of
two. This results in a CBF expressed as

C(x) = −2sṡ+ k(s2lim − s2). (36)

The zero-level set of the CBF is depicted in red in the left
plot of Figure 5.

For the swing-up task, we design a reference policy uref,
which is a hybrid controller that switches between an energy-
based feedback controller that increases the total energy of the
system until it matches the level of the potential energy of the
unstable equilbrium, and a stabilizing controller to which the
system switches at the vicinity of the equilibrium.
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Fig. 5: 10 episodes of the cart-pole experiment under GP-
CBF-SOCP (Ours). We highlight one of the ten trajectories
in magenta with thick curves and the rest in thin transparent
curves. On the left is the phase plot of the trajectories in the
cart position and velocity space (s vs ṡ), where the region
between the red curves indicates the zero-super level set of
the CBF. The diamond markers indicate the initial states of the
trajectories. No trajectory exits the zero-super level set of the
CBF. On the right are the plots of cart position(s), pole angle
(θ), and CBF value of the trajectories in time. The highlighted
trajectory successfully swings up the pole while maintaining
the safety constraint.

We then apply the reference policy filtered by the nominal
model-based CBF-QP certifying filter. For the nominal model,
we use the high-fidelity dynamics model provided by the
manufacturer [76]. We apply the computed filtered control
input to the actual system every 25ms, which is the target
sampling time for the real-time execution of the controller.
Even though the provided dynamics model tries to capture
many of the complex nonlinearities present in the system, we
observe that, when deployed on the real system, the nominal
model-based CBF-QP still fails to satisfy the safety constraints
at several trials and the CBF becomes negative.

This motivates us to employ the GP-CBF-SOCP certifying
filter to achieve the swing-up task while adhering to the cart
position limit, after learning the effect of model uncertainty
from the data. In order to maintain feasibility of the GP-
CBF-SOCP filter, the dataset must sufficiently cover the state
and control input space where the system operates. We collect
these data points in an episodic fashion. As more data points
are aggregated, the GP inference takes longer, eventually
exceeding the 25ms limit of our sampling time. Thus, we
conduct the episodic procedure twice, each collecting nine
trajectories, and then combine the two datasets into the full
dataset. With the full dataset comprising 6957 (N ) data points,
we observe that the GP-CBF-SOCP controller takes too long
to perform the inference, causing an average 60.4ms execution
time (Table I), which does not meet the target sampling rate
requirement. This effect is evident in the experiment, as the
cart-pole fails to swing up properly due to the delay.

On the contrary, using our data selection algorithm with 40

(M ) points selected online, the total execution time becomes
much smaller, resulting in an average of 11.8ms. Over 10
experiments using our main algorithm and the GP-CBF-SOCP,
we achieve 100% constraint satisfaction. These trajectories are
shown in Figure 5. Although not all of these experiments
result in a successful balance at the upright position within
the allocated 20 seconds (achieved in 6 out of 10 experi-
ments), the GP-CBF-SOCP successfully prioritizes safety over
performance, ensuring the cart never exits the defined limits
imposed by the CBF-based certifying constraint. In the video
showcasing the results in video link1, it is clear that the learned
certifying constraint forces the cart to drop the pole when it
approaches the position limit. Moreover, we demonstrate that
even when an external user introduces disturbances by pushing
the pole, the system remains safe.

VII. CONCLUSION

In this study, we introduce a runtime-efficient data-driven
certifying filter approach applicable to real-time, complex
robotic systems with uncertain dynamics that typically require
large datasets for learning certified control laws. We achieved
this by creating a nonparametric learning-based SOCP filter
with significantly improved time complexity, transitioning
from quadratic to linear with respect to dataset size, utilizing a
novel online data selection algorithm. This algorithm generates
a dataset most relevant to the desired certification of the
system, grounded in a theoretical analysis that confirms its
approximate optimality under reasonable dataset assumptions.
The effectiveness of our algorithm is demonstrated in secur-
ing the safety of a real-world cart-pole swing-up task and
maintaining stable locomotion for a five-link bipedal walker
under significant mass uncertainty, as exhibited in the RABBIT
simulation.

Our investigation into the quantification of information from
individual data points for the certifying filter establishes a
foundation for a more profound understanding of the rela-
tionship between data and certifying control laws. Potential
future research directions include incorporating data selection
objectives during the data collection process for sample-
efficient learning and expanding our framework to address
systems with multiple certifying constraints.
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APPENDIX

A. Proof of Lemma 1

For notational convenience, we will drop (·|DN ). From (17),
GP-CF-SOCP is feasible under u=α′L̂gC(x)⊤ if

cα
∥∥∥L̂gC(x)

∥∥∥2

−βσ
(
x, cαL̂gC(x)⊤

)
≥ −

(
L̂fC(x) + γ(C(x))

)
,

where c := α′/α > 1. First, we compare σ
(
x, cαL̂gC(x)⊤

)
and σ

(
x, αL̂gC(x)⊤

)
as below:

1

c2
σ2

(
x, cαL̂gC(x)⊤

)
=

1

c2
[1 cαL̂gC(x)]Σ(x)

[
1

cαL̂gC(x)⊤

]
= [1/c αL̂gC(x)]Σ(x)

[
1/c

αL̂gC(x)⊤

]
= [1 αL̂gC(x)]Σ(x)

[
1

αL̂gC(x)⊤

]
−
[
1− 1

c2
0

]
Σ(x)

[
1− 1

c2

0

]
= σ2

(
x, αL̂gC(x)

)
−
(
1− 1

c2

)2

Σ(x)[1,1]

Thus,

σ2
(
x, cαL̂gC(x)⊤

)
=c2

(
σ2
(
x, αL̂gC(x)⊤

)
−
(
1−

1

c2

)2

Σ(x)[1,1]

)

Using this expression, we can check that

cα
∥∥∥L̂gC(x)

∥∥∥2

− βσ
(
x, cαL̂gC(x)⊤

)
c

(
α
∥∥∥L̂gC(x)

∥∥∥2

− βσ
(
x, αL̂gC(x)⊤

))

=

α
∥∥∥L̂gC(x)

∥∥∥2

−β
√

σ2
(
x, αL̂gC(x)⊤

)
−
(
1− 1

c2

)2
Σ(x)[1,1]

α
∥∥∥L̂gC(x)

∥∥∥2

− βσ
(
x, αL̂gC(x)⊤

)
> 1.

Finally, since α
∥∥∥L̂gC(x)

∥∥∥2−βσ
(
x, αL̂gC(x)⊤

)
is strictly

positive from (23), by taking c satisfying

c ≥
−
(
L̂fC(x) + γ(C(x))

)
α
∥∥∥L̂gC(x)

∥∥∥2 − βσ
(
x, αL̂gC(x)⊤

) ,
we get

cα
∥∥∥L̂gC(x)

∥∥∥2 − βσ
(
x, cαL̂gC(x)⊤

)
> c

(
α
∥∥∥L̂gC(x)

∥∥∥2 − βσ
(
x, αL̂gC(x)⊤

))
≥ −

(
L̂fC(x) + γ(C(x))

)
,

which completes the proof.

B. Proof of Lemma 2

For notational convenience, we will drop (·|DM ). We begin
the proof by noting that

lim
α→∞

1

α

 k∗1(x, αL̂gC(x)⊤)
...

k∗M (x, αL̂gC(x)⊤)



= lim
α→∞

1

α

 kf (x1, x1) + ku
∗1(x, αL̂gC(x)⊤)
...

kf (xM , xM ) + ku
∗M (x, αL̂gC(x)⊤)



=

 ku
∗1(x, L̂gC(x)⊤)

...
ku
∗M (x, L̂gC(x)⊤)

 . (37)

Thus,

argmin
DM

lim
α→∞

1

α
σ
(
x, αL̂gC(x)⊤

)
=argmin

DM

1

α2
σ2

(
x, αL̂gC(x)⊤

)
=argmax

DM

lim
α→∞

1

α2

[
k∗1(x, αL̂gC(x)⊤) · · ·k∗M (x, αL̂gC(x)⊤)

]

(KDM
+ σ2

nI)
−1

 k∗1(x, αL̂gC(x)⊤)
...

k∗M (x, αL̂gC(x)⊤)

 (from (22))

= argmax
DM

[
ku
∗1(x, L̂gC(x)⊤) · · · ku

∗M (x, L̂gC(x)⊤)
]

(KDM
+ σ2

nI)
−1

 ku
∗1(x, L̂gC(x)⊤)

...
ku
∗M (x, L̂gC(x)⊤)

 (from (37)),

which is precisely the objective function appearing in the
Lemma.

C. Proof of Theorem 1

For notational convenience, we use the subscript ij to
indicate the (i, j)-th element of a matrix. We first present a
few lemmas that will be used in the proof.

Lemma 3. Let C = (cij) ∈ Rn×n be a non-negative matrix.
Then, the maximal eigenvalue of C is upper bounded by its
maximal row sum, that is,

λmax(C) ≤ max
i

n∑
j=1

cij . (38)

Proof. This is a corollary of Perron-Frobenius Theorem for
nonnegative matrices [78, Ch.8].

Lemma 4 (Weyl’s Inequality). Let A,B ∈ Rn×n be symmet-
ric matrices. Then,

λmin(A+B) ≥ λmin(A) + λmin(B).

Lemma 5. Let S = (sij) ∈ Rn×n be a square matrix
whose diagonal entities satisfy sii = 1, and whose off-
diagonal entities satisfy −1 ≤ sij ≤ 0 for all i ̸= j. Let
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S̄ = (s̄ij) ∈ Rn×n be a matrix whose diagonal entities are all
one, and whose off-diagonal entities are s̄ij = ±sij , where
the signs can be arbitrary. Then, if S is positive definite, S̄ is
also positive definite.

Proof. This can be proved by induction. The case when n = 1
is trivial since there is no off-diagonal term.

Assume the lemma holds for n = k, that is, if Sk and S̄k

are constructed to satisfy the statement in the lemma, Sk ≻
0 ⇒ S̄k ≻ 0 holds.

Next, consider

Sk+1 =

[
Sk pk
p⊤k 1

]
≻ 0,

where pk = [s1(k+1) · · · sk(k+1)]
⊤, and −1 ≤ si(k+1) ≤

0 for i = 1, · · · , k. Let S̄k+1 constructed according to the
statement in the lemma as

S̄k+1 =

[
S̄k p̄k
p̄⊤k 1

]
.

Since Sk+1 is positive definite, by Schur complement lemma,
the following holds.

Sk ≻ 0, p⊤k S
−1
k pk < 1.

Note that S̄k ≻ 0 holds due to the assumption of the induction.
Define

Tk = I−Sk =

 0 sij
. . .

sji 0

 , T̄k = I−S̄k =

 0 s̄ij
. . .

s̄ji 0

 .

Then

p̄⊤k S̄
−1
k p̄k =p̄⊤k (I − T̄k)

−1p̄k

=
∞∑
t=0

p̄⊤k T̄
t
k p̄k ≤

∞∑
t=0

p⊤k T
t
k pk

=p⊤k (I − Tk)
−1pk = p⊤k S

−1
k pk < 1.

Since S̄k ≻ 0 and p̄⊤k S̄
−1
k p̄k < 1 holds, by Schur complement

lemma, S̄k+1 is positive definite. This shows that the lemma
holds for n = k + 1. The lemma is proved by induction.

Presented next is the main Proof of Theorem 1. We will drop
(x, u) from ku

∗i and ni, and (·|DM ) for notational convenience.
We want to prove

[ku
∗1 · · · ku

∗M ] (KDM
+ σ2

nI)
−1

 ku
∗1
...

ku
∗M


≥ 1− ϵ

1 + ϵ(M − 2)

M∑
i=1

n2
i (39)

⇔ [ku
∗1 · · · ku

∗M ] (KDM
+ σ2

nI)
−1

 ku
∗1
...

ku
∗M

 (40)

≥ 1− ϵ

1 + ϵ(M − 2)
× (41)

[ku
∗1 · · · ku

∗M ] Diag

([
1

k1
· · · 1

kM

]) ku
∗1
...

ku
∗M

 .

It is sufficient to prove that

(KDM
+ σ2

nI)
−1 ⪰ 1− ϵ

1 + ϵ(M − 2)
Diag

([
1

k1
· · · 1

kM

])
,

and this is equivalent to

1 + ϵ(M − 2)

1− ϵ
Diag ([k1 · · · kM ])−(KDM

+σ2
nI) ⪰ 0. (42)

We have

1 + ϵ(M − 2)

1− ϵ
Diag ([k1 · · · kM ])− (KDM

+ σ2
nI)

=


ϵ(M−1)

1−ϵ k1 − σ2
n −kij

. . .
−kji

ϵ(M−1)
1−ϵ kM − σ2

n


=Diag

(√
k1, · · · ,

√
kM

)
A Diag

(√
k1 · · ·

√
kM

)
, (43)

where

A :=


ϵ(M−1)

1−ϵ − σ2
n

k1
− kij√

kikj

. . .

− kji√
kjki

ϵ(M−1)
1−ϵ − σ2

n

kM

 .

Thus, it is sufficient to prove that A is positive semidefinite.
By Lemma 4,

λmin(A) ≥ λmin(ϵ(M − 1)S̄) + λmin

(
A− ϵ(M − 1)S̄

)
,

where

S̄ :=


1 − 1

ϵ(M−1)
kij√
kikj

. . .
− 1

ϵ(M−1)
kji√
kjki

1

 .

Note that

A− ϵ(M − 1)S̄ =

Diag

(
ϵ2(M − 1)

1− ϵ
− σ2

n

k1
, · · · , ϵ

2(M − 1)

1− ϵ
− σ2

n

kM

)
,

and from (30),
ϵ2(M − 1)

1− ϵ
− σ2

n

ki
≥ 0

for all i = 1, · · · ,M , thus, A − ϵ(M − 1)S̄ is positive
semidefinite. Therefore, it is now sufficient to prove that S̄
is positive semidefinite.
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We define

C :=


0 1

ϵ(M−1)
|kij |√
kik̄j

. . .
1

ϵ(M−1)
|kji|√
kj k̄i

0

 . (44)

By applying Lemma 3 to C which is non-negative, and by
using condition (29):

λmax(C)≤max
i

M∑
j=1,j ̸=i

1

ϵ(M − 1)

|kij |√
kikj

<
1

ϵ(M − 1)
ϵ(M−1)=1.

Thus, we have λmax(C) < 1. By applying Lemma 4, we
have

λmin(I − C) ≥ λmin(I) + λmin(−C) = 1− λmax(C) > 0.

Thus, S := I − C is positive definite. Note that S̄ and S
satisfy the conditions in Lemma 5 since 0 ≤ 1

ϵ(M−1)
|kij |√
kikj

<

1
M−1 ≤ 1 from (29). Thus, by Lemma 5, S̄ is positive definite.
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