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Abstract
Differential Dynamic Programming (DDP) is an optimal con-
trol algorithm that takes iterative Newton steps to solve
Bellman equations with quadratic approximations. While
DDP has been adapted for hybrid dynamical systems such
as legged robots, current methods do not address the uncer-
tainties in reset events such as ground contacts and impacts.
In this paper, we propose Robust Hybrid DDP (RH-DDP),
an extension of the DDP algorithm for hybrid systems that
ensures robustness against worst-case bounded disturbances
during reset events. We employ log-sum-exponent functions
to approximate the worst-case value function, solving the
robust optimal control problem with our modified DDP algo-
rithm.We show that for linear systems, our method results in
a cost reduction up to a constant in each iteration. Through
simulations, we demonstrate the effectiveness of RH-DDP
in generating robust trajectories for a linear system and a
simple biped robot subjected to an uncertain ground impact.

Keywords: Differential Dynamic Programming, Robust Con-
trol, Optimal Control, Legged Robots, Hybrid Systems

1 Introduction
1.1 Motivation
Legged robots are complex hybrid dynamical systems that
engage in complex interactions with their environments
characterized by discrete events such as ground contacts
and impacts. These interactions are often difficult to model
accurately, especially given the presence of uncertainties
that affect the reset of the system states, such as unchar-
acterized geometry and compliance of terrains or varying
friction coefficients. Such uncertainties can significantly im-
pact the robot’s stability and balance. As a result, planning
and control algorithms for legged robots must account for
these uncertainties to ensure robust and stable performance.
Differential Dynamic Programming (DDP) [13, 23] is a

renowned optimal control technique employed extensively

∗*The first three authors have contributed equally to the paper.

in robot motion planning and control problems. By approxi-
mating the costs and dynamics as second order functions in
state and input, DDP uses iterative Newton steps to converge
to a solution [7]. Its efficacy has been demonstrated across
a diverse range of applications, encompassing aerial path
planning [11] and robotic manipulation [34]. DDP has been
further applied to contact-rich systems like legged robots
[29], but its capability to deal with model errors or uncertain-
ties associated with contact events remains limited. While
explicit treatment of the impact event in the DDP algorithm
has been introduced in [14, 17], the methods in these works
assume accurate model of the impact dynamics. This paper
introduces a novel methodology that enhances the existing
DDP algorithm for hybrid systems with reset events [17].
Our approach explicitly accounts for the worst-case perturba-
tions and uncertainties during reset events, thereby yielding
a solution that stands robust in the face of uncertainties
inherent to such events.

1.2 Related Works
Numerous methods are developed based upon various con-
trol theory paradigms, including numerical dynamic pro-
gramming [4, 6], hybrid zero dynamics [27, 32], and Lya-
punov stability analysis [1, 25]. Recently, deep reinforcement
learning-based approaches have shown successful demon-
strations of legged robots coping with various uncertain-
ties in their contact interactions with the environments
[16, 20, 26].
In this work, we focus on optimal control-based tech-

niques, which offer constructive and interpretable methods
for the synthesis of robust trajectory plans and feedback poli-
cies. Within the optimal control literature, there still exists
a plethora of various kinds of solution methods, including
indirect methods, multiple shooting, direct collocation, and
DDP, each extensively surveyed in [31]. The main strengths
of DDP compared to the other methods are twofold. First,
it shows a fast quadratic convergence to a locally optimal
solution due to its resemblance to Newton’s method [7, 21].
Second, the DDP not only provides the optimal trajectory but
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also provides a linear feedback policy around the solution,
which can be used online to track the trajectory. Thus, DDP
has been deployed successfully not only for offline trajec-
tory optimization but also for online feedback control in a
predictive control paradigm [19, 29].

DDP algorithms have been applied to whole-body motion
planning and legged robot locomotion problems, as seen in
works such as [5, 22, 29], to name just a few. The methods in
[5, 29] employ smooth contact models to facilitate the com-
putation of contact-constrained dynamics; however, these
smooth contact models are inherently susceptible to model-
ing errors. The approach in [22] handles the Bellman update
with respect to the contact-constrained dynamics and the
impact dynamics indifferently, failing to explicitly address
the potential state discontinuity induced by impact dynam-
ics. Although the explicit treatment of impact dynamics in
DDP algorithms is explored in [15, 17], none of the afore-
mentioned works provide robustness against uncertainties
in the impact model by explicitly addressing them.

The explicit treatment of robustness against disturbances
in DDP algorithms has been explored in previous works. The
work in [24] introduces a minimax, worst-case formulation
to cope with disturbances affecting the continuous-time evo-
lution of the system. Subsequent works such as [9, 28] have
extended this approach, enhancing algorithm convergence
and addressing bounded disturbances. In parallel, alterna-
tive variants of DDP algorithms have been proposed, adopt-
ing stochastic dynamics settings rather than the worst-case
analysis [10, 30]. While the worst-case formulation might
introduce additional conservativeness to the solution, its ad-
vantage over the stochastic setting is that it does not require
knowledge of the probability distribution of the disturbance.
Most importantly, none of the aforementioned works ad-
dresses disturbances in hybrid systems and reset events.
Finally, there exist various algorithms that improve the

convergence or computational speed [18, 22], numerical sta-
bility [29], and constraint handling [12, 22, 33] of the DDP.
Our work’s primary focus is on the explicit treatment of the
uncertainty in the reset events, thus, we adhere to the basic
DDP algorithm and its hybrid systems extension in [17] as
our baseline method, which will be explained in Section 3.
Its extension to advanced DDP algorithms will be considered
in the future work.

1.3 Contributions
The contributions for our paper are as follows: First, we
propose Robust Hybrid DDP (RH-DDP) – a formulation of
DDP that is robust to convex disturbance sets in the resetmap
of a hybrid system, by incorporating over-approximations
of the worst-case effect of possible disturbances. Second,
we provide guarantees on cost reduction after every DDP
iteration for a hybrid linear quadratic regulator. Finally, we
demonstrate our method on a two-link legged robot, and

show that our method results in a decrease in worst-case
cost, compared to non-robust DDP approaches.

2 Problem Statement
We consider a finite-horizon optimal control problem of a
nonlinear system, subjected to one reset event in the time
horizon. We discretize the system dynamics in time, denot-
ing the timesteps as 𝑘 ∈ {0, 1, · · · , 𝑛}, and assume that a
time-triggered reset event happens at 𝑘 =𝑚, (𝑚 < 𝑛). This
dynamics is described by

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ) for all 𝑘 ≠𝑚 (1a)
𝑥𝑚+1 = 𝑃 (𝑥𝑚 ;𝑑) . (1b)

Eq. (1a) represents the evolution of trajectory along the
continuous-time dynamics, discretized in time, which we re-
fer to as the continuous mode of the dynamics, where 𝑥 ∈ R𝑛𝑥

is the system state, 𝑢 ∈ R𝑛𝑢 is the control input. Eq. (1b) de-
scribes the state jump happening at the reset event, described
by the reset map 𝑃 , where 𝑑 ∈ R𝑛𝑑 is a disturbance (or
uncertainty) in the reset map.
We assume that the disturbance is bounded by a distur-

bance set given by D = conv({𝑑1, ..., 𝑑𝑣}), a convex hull of
extreme disturbance vectors 𝑑𝑖 =∈ R𝑛𝑑 , 𝑖 = 1, · · · , 𝑣 . We
assume that the nominal disturbance is set to 0, and 0 ∈ D.

We consider a general finite-horizon cost function consist-
ing of a running cost and a terminal cost,

𝐽 (𝑥0, 𝒖0:𝑛−1;𝑑) =
𝑛−1∑︁
𝑘=0
𝑘≠𝑚

𝑙 (𝑥𝑘 , 𝑢𝑘 ) + 𝑙𝑓 (𝑥𝑛), (2)

where 𝒖𝑘1:𝑘2 = {𝑢𝑘1 , ..., 𝑢𝑘2 } denotes the control sequence
from timestep 𝑘1 to 𝑘2, 𝑙 is a stage cost, and 𝑙𝑓 is a terminal
cost. We assume that 𝑙 is jointly convex in (𝑥,𝑢) and strongly
convex in 𝑢 for each fixed 𝑥 , and 𝑙𝑓 is convex.

We consider an optimal control problem under the worst-
case disturbance, in which we assume that the value of the
disturbance can be taken such that it maximizes the cost
function. We assume that the disturbance value is taken only
in a non-anticipative way, meaning the disturbance cannot
use any information about the future control inputs. Thus,
formally, the problem is described as finding the optimal
control sequence 𝒖∗0:𝑛−1 that solves

min
𝒖0:𝑚

max
𝑑∈D

min
𝒖𝑚+1:𝑛−1

𝐽 (𝑥0, 𝒖0:𝑛−1;𝑑). (3)

Remark 1. Problem in (3) describes a special case of a dy-
namic feedback Stackelberg game between the control and the
disturbance [8], where the disturbance can take an action only
at the reset event. Introduction of the disturbance to the con-
tinuous mode of the dynamics (1a) is discussed in detail in [8],
and the DDP solution to such problem for systems without reset
events are discussed in [9, 24, 28]. Although combining these
methods to our framework is possible since the DDP update
for the continuous mode remains unchanged in our method,
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to distinguish from the existing work, we only consider the
disturbance in the reset event.

Remark 2. (Time-triggered vs. event-triggered reset events)
Many physical systems involving reset events do not have a
fixed reset event schedule or timing (𝑚), but rather, the reset
event happens when the state meets a particular condition.
These conditions are known as guards or switching surfaces,
and the time when the state meets these conditions may alter
the value of𝑚. In this paper, we are not concerned with up-
dating𝑚, but its update can be done in the outer loop of the
DDP algorithm using a switching time optimization [17], or
by using the notion of a saltation matrix as in [14].

3 Background
3.1 Classical DDP
Classical DDP seeks to iteratively minimize a cost function
via a series of backward passes (where a new control se-
quence is generated) and forward passes (where the new
control sequence generates a new trajectory).

The dynamics and the cost function are given by (1a) and
(2), where the reset event is not considered in the classic
literature. We define the value function as the optimal cost-
to-go function, given as

𝑉 (𝑥𝑘 ) := 𝐽 (𝑥𝑘 , 𝒖∗𝑘 :𝑛−1), where 𝒖
∗
𝑘 :𝑛−1=arg min 𝐽 (𝑥𝑘 , 𝒖𝑘 :𝑛−1).

The forward pass takes a nominal control sequence 𝒖0:𝑛−1
from the initial state 𝑥0 and computes the trajectory. By
Bellman’s principle of optimality, the value function at step
𝑘 satisfies

𝑉 (𝑥𝑘 ) = min
𝑢𝑘
[𝑙 (𝑥𝑘 , 𝑢𝑘 ) +𝑉 (𝑓 (𝑥𝑘 , 𝑢𝑘 ))] . (4)

DDP takes a Newton method approach to solve (4) quickly,
where local quadratic approximations of the value function
are used. Note that the timestep subscripts are dropped for
simplicity below, and the primes (′) denote the next time
step. We define the argument of the min of (4) under the
state and control input perturbation 𝛿𝑥 , 𝛿𝑢 as

𝑄 (𝛿𝑥, 𝛿𝑢) = 𝑙 (𝑥 + 𝛿𝑥,𝑢 + 𝛿𝑢) +𝑉 (𝑓 (𝑥 + 𝛿𝑥,𝑢 + 𝛿𝑢)), (5)

and consider a second-order variation

𝛿𝑄 (𝛿𝑥, 𝛿𝑢)=𝑄 (𝛿𝑥, 𝛿𝑢)−𝑄 (0, 0) ≈
[ 1
𝛿𝑥

𝛿𝑢

]⊤ [ 0 𝑄⊤𝑥 𝑄⊤𝑢
𝑄𝑥 𝑄𝑥𝑥 𝑄⊤𝑢𝑥
𝑄𝑢 𝑄𝑢𝑥 𝑄𝑢𝑢

] [ 1
𝛿𝑥

𝛿𝑢

]
,

where the partial derivatives (denoted by subscripts) are

𝑄𝑥 = 𝐿𝑥 + 𝑓 ⊤𝑥 𝑉 ′𝑥 (6a)
𝑄𝑢 = 𝐿𝑢 + 𝑓 ⊤𝑢 𝑉 ′𝑥 (6b)
𝑄𝑥𝑥 = 𝐿𝑥𝑥 + 𝑓 ⊤𝑥 𝑉 ′𝑥𝑥 𝑓𝑥 (6c)
𝑄𝑢𝑢 = 𝐿𝑢𝑢 + 𝑓 ⊤𝑢 𝑉 ′𝑥𝑥 𝑓𝑢 (6d)
𝑄𝑢𝑥 = 𝐿𝑢𝑥 + 𝑓 ⊤𝑢 𝑉 ′𝑥𝑥 𝑓𝑥 . (6e)

Eqs. (6c), (6d), and (6e) have a tensor-matrix product, which
can be omitted for numerical stability. In the backward pass,
we optimize 𝑄 w.r.t 𝛿𝑢, to obtain

𝛿𝑢∗ = argmin
𝑢∗
[𝑄 (𝛿𝑥, 𝛿𝑢)]

= −𝑄−1
𝑢𝑢 (𝑄𝑢 +𝑄𝑢𝑥𝛿𝑥)

=: 𝜅 + 𝐾𝛿𝑥.
(7)

Substituting (7) into (6), we obtain

Δ𝑉 = Δ𝑉 ′ + 1
2
𝑄⊤𝑢𝑄

−1
𝑢𝑢𝑄𝑢 (8a)

𝑉𝑥 = 𝑄𝑥 −𝑄⊤𝑢𝑥𝑄−1
𝑢𝑢𝑄𝑢 (8b)

𝑉𝑥𝑥 = 𝑄𝑥𝑥 −𝑄⊤𝑢𝑥𝑄−1
𝑢𝑢𝑄𝑢𝑥 (8c)

where Δ𝑉 denotes the expected reduction in value function
this iteration. During the next forward pass, 𝒖𝑖 is updated
through an Armijo backtracking line search by

𝑥0 = 𝑥0 (9a)
𝑢𝑖 = 𝑢𝑖 + 𝜖𝜅𝑖 + 𝐾𝑖 (𝑥𝑖 − 𝑥𝑖 ) (9b)

𝑥𝑖+1 = 𝑓 (𝑥𝑖 , 𝑢𝑖 ), (9c)

where 𝜖 is the backtracking search parameter, and is initial-
ized as 1. It is geometrically reduced by a factor 𝑐 (we use
𝑐 = 0.5, for 𝜖 ← 0.5𝜖), until the Armijo condition, given
below is satisfied:

𝐽 (𝑥0, 𝑢0:𝑛−1) ≤ 𝐽 (𝑥0, 𝒖0:𝑛−1) − 𝑐𝑏Δ𝑉0, (10)

where Δ𝑉0 is given by (8a) for 𝑘 = 0, and 𝑏 is a hyperparam-
eter of the optimization, which we choose to use 0.5.
The forward pass is complete once the above line search

is done. It passes the new trajectory to the backward pass.
This process continues until convergence to a locally optimal
control sequence 𝒖∗0:𝑛−1.

3.2 Hybrid Systems DDP
The method developed in [17] explicitly accounts for the
reset events in the dynamics (1). Note that this method does
not account for the disturbance term. To simplify notations,
we denote the entities before the reset event, happening at
𝑘 = 𝑚, with a superscript (−), and entities after the reset
event at 𝑘 =𝑚 + 1, with a superscript (+).
The paper shows that the value function update across

the reset map during the backward pass is given by

Δ𝑉 − = Δ𝑉 + (11a)
𝑉 −𝑥𝑥 ≈ 𝑃⊤𝑥 𝑉 +𝑥𝑥𝑃𝑥 (11b)
𝑉 −𝑥 = 𝑃⊤𝑥 𝑉

+
𝑥 (11c)

Where 𝑃𝑥 is the Jacobian of the reset map with respect to
the state before the reset, 𝑥− .
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3.3 Log-Sum-Exp
The log-sum-exponent (LSE) operator is an effective smooth
approximation of a max operator, and is used in our method
to approximately solve max𝑑∈D in (3).

Let𝑦𝑖 ∈ R, 𝑖 ∈ {1, ..., 𝑣},𝑦 = [𝑦1, ..., 𝑦𝑣]𝑇 , and𝑦 = max𝑖 {𝑦𝑖 }.
Then, the LSE function for some parameter 𝛼 is a smooth
approximation of 𝑦 defined as

LSE𝛼 (𝑦) =
1
𝛼
· log

( 𝑣∑︁
𝑖=1

exp(𝛼 · 𝑦𝑖 )
)
. (12)

The parameter 𝛼 controls the tightness of the approximation
and provides the upper and lower bound of 𝑦 as,

LSE𝛼 (𝑦) −
log(𝑣)
𝛼
≤ 𝑦 < LSE𝛼 (𝑦). (13)

For real-valued functions ℎ𝑖 : R𝑛 → R, let 𝐻 = (ℎ1, ..., ℎ𝑣)
and 𝐻 (𝑥) = [ℎ1 (𝑥), ..., ℎ𝑣 (𝑥)]⊤. Then we define the operator
LSE𝛼 (𝐻 ) as

LSE𝛼 (𝐻 ) (𝑥) = LSE𝛼 (𝐻 (𝑥)) .

For this work, we will takeℎ𝑖 (𝑥) of the form 1
2𝑥
⊤𝐴𝑥+𝐵𝑖𝑥+𝐶𝑖 ,

𝐴 ≻ 0. All the ℎ𝑖 are quadratic functions, with a common
quadratic term that is assumed to be positive definite, but
possibly different linear and constant terms. These terms
will be defined contextually in Section 4.

LSE𝛼 (𝐻 ) then provides a smooth over-approximation of
the point-wise maximum operator, max𝑖 ℎ𝑖 . For sufficiently
small 𝛼 , the second order expansion of LSE𝛼 (𝐻 ) is also an
over-approximation of max𝑖 ℎ𝑖 , and can be used in the DDP’s
Newton step optimization approach.

To find this expansion, define 𝐷𝐻 (𝑥) ∈ R𝑣×𝑛 as the Jaco-
bian of 𝐻 , which is

𝐷𝐻 (𝑥) =

ℎ⊤1𝑥 (𝑥)
...

ℎ⊤𝑣𝑥 (𝑥)

 =

(𝐴𝑥 + 𝐵⊤1 )⊤

...

(𝐴𝑥 + 𝐵⊤𝑣 )⊤

 ,
and define SM𝛼 (𝐻 ) (𝑥) := softmax(𝛼𝐻 (𝑥)) ∈ R𝑣 . The 𝑖-th
entry of SM𝛼 (𝐻 ) (𝑥) is given by

[SM𝛼 (𝐻 (𝑥)]𝑖 =
exp (𝛼ℎ𝑖 (𝑥))∑𝑣
𝑗=1 exp (𝛼ℎ 𝑗 (𝑥))

.

Then, the gradient and Hessians of LSE𝛼 (𝐻 (𝑥)) can be cal-
culated as

∇𝑥LSE𝛼 (𝐻 ) (𝑥) = 𝐷𝐻 (𝑥)⊤SM𝛼 (𝐻 ) (𝑥), (14a)
∇𝑥𝑥LSE𝛼 (𝐻 ) (𝑥) = 𝛼𝐷𝐻 (𝑥)⊤ [diag{SM𝛼 (𝐻 ) (𝑥)} (14b)

− SM𝛼 (𝐻 )(𝑥) SM𝛼 (𝐻 )(𝑥)⊤]𝐷𝐻 (𝑥) +𝐴.

The matrix (diag{SM𝛼 (𝐻 ) (𝑥)} − SM𝛼 (𝐻 )(𝑥) SM𝛼 (𝐻 )(𝑥)⊤)
is positive semi-definite [3, Pg. 74], so ∇𝑥𝑥LSE𝛼 (𝐻 ) (𝑥) ⪰ 𝐴.
Additionally, we note that (14a) and (14b) can be computed
using a numerically stable implementation of softmax [2].

4 Method
At each time step in the backward pass, DDP requires a posi-
tive definite quadratic local approximation of the Q and value
functions. Similar to LQR, the Bellman update at time step
𝑘 in the continuous mode preserves the quadratic approx-
imation of the value function at time step 𝑘 − 1. However,
before the reset (at time step𝑚) the quadratic approximation
no longer holds, because the worst-case disturbance tries
to maximize the value function at time step𝑚 + 1, (3). This
means that the backward pass iteration cannot be directly
performed at time step𝑚.
The key idea of our method and the flow of this section

is as follows: first, we show that the value function at time
step 𝑚 (just before the reset) is convex and we compute
a smooth over-approximation of the value function. How-
ever, this approximate smooth function is not quadratic, so
we compute a second-order approximation to obtain a qua-
dratic function. We show that this quadratic function is an
over-approximation of the actual value function at time step
𝑚. The DDP backward pass can now proceed using this
quadratic function. For the special case of linear-quadratic
regulators with a linear reset map, we can show that our
method results in a guaranteed decrease in the cost (3) up to
a constant term.

4.1 Backward pass
Our method runs the backward pass as normal until it en-
counters a reset event. Upon the reset event, we would like
to pass back the worst-case value function with respect to
the disturbance. We examine a second order expansion of
𝑉 +, the value function just after reset, with respect to 𝑥+, the
state just after reset:

𝛿𝑄− (𝛿𝑥−, 𝛿𝑑) := 𝛿𝑉 + (𝛿𝑥+) ≈ 𝑉 +𝑥
⊤
𝛿𝑥+ + 1

2
𝛿𝑥+⊤𝑉 +𝑥𝑥𝛿𝑥

+.

(15)
We also examine a first-order expansion of 𝑥+ with respect

to the state before the reset, 𝑥− , and the nominal disturbance
0 in the reset event.

𝛿𝑥+ ≈ 𝑃𝑥 (𝑥−, 0)𝛿𝑥− + 𝑃𝑑 (𝑥−, 0)𝛿𝑑. (16)

Here, 𝛿𝑑 is an infinitesimal disturbance about the nomi-
nal disturbance 0 and is assumed to lie in the set 𝛿D =

conv{𝛿𝑑1, ..., 𝛿𝑑𝑣}. We comment on how big the disturbance
𝛿𝑑 can be Remark 3.

Substituting (16) in (15), we find an expansion of 𝑄− as a
function of (𝛿𝑥−, 𝛿𝑑) about (𝑥−, 0):

𝛿𝑄− (𝛿𝑥−, 𝛿𝑑) = 1
2
𝛿𝑥−⊤𝐴𝛿𝑥− + 𝐵(𝛿𝑑)𝛿𝑥− +𝐶 (𝛿𝑑), (17)
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where

𝐴 = 𝑃⊤𝑥 𝑉
+
𝑥𝑥𝑃𝑥 , (18a)

𝐵(𝛿𝑑) = 𝛿𝑑⊤𝑃⊤
𝑑
𝑉 +𝑥𝑥𝑃𝑥 +𝑉 +𝑥

⊤
𝑃𝑥 , (18b)

𝐶 (𝛿𝑑) = 1
2
𝛿𝑑⊤𝑃𝑑𝑉

+
𝑥𝑥𝑃𝑑𝛿𝑑 +𝑉 +

⊤
𝑃𝑑𝛿𝑑. (18c)

To account for the worst-case disturbance, we set the
value function after the reset to be the maximum over all the
disturbances:

𝛿𝑉 − (𝛿𝑥−) = max
𝛿𝑑∈𝛿D

𝛿𝑄− (𝛿𝑥−, 𝛿𝑑).

Note that 𝛿𝑉 − is the point-wise maximum of a family of
convex functions, and thus is convex [3, Sec. 3.2.3]. Moreover,
because 𝛿D is a compact polyhedral set and the maximum
of a convex function on a compact polyhedral set is achieved
on at least one of its vertices,

𝛿𝑉 − (𝛿𝑥−) = max
1≤𝑖≤𝑣

𝛿𝑄− (𝛿𝑥−, 𝛿𝑑𝑖 ). (19)

At this point, we have shown that 𝛿𝑉 − is a convex func-
tion, but it is not quadratic and thus cannot be directly
used for the backward pass. So, we find a quadratic over-
approximation of 𝛿𝑉 − . We begin by computing the smooth
LSE over-approximation of 𝛿𝑉 − .
Defining 𝐵𝑖 = 𝐵(𝛿𝑑𝑖 ) and 𝐶𝑖 = 𝐶 (𝛿𝑑𝑖 ), let

ℎ𝑖 (𝛿𝑥−) : = 𝛿𝑄− (𝛿𝑥−, 𝛿𝑑𝑖 ),

=
1
2
𝛿𝑥−⊤𝐴𝛿𝑥− + 𝐵𝑖𝛿𝑥− +𝐶𝑖 , (20a)

𝐻 (𝛿𝑥−) : = [ℎ1 (𝛿𝑥−), ..., ℎ𝑣 (𝛿𝑥−)]⊤. (20b)

Then, we can approximate 𝛿𝑉 − using (19) as

𝛿𝑉 − (𝛿𝑥−) = LSE𝛼 (𝐻 ) (𝛿𝑥−), (21)

based on Section 3.3. Since LSE𝛼 (𝐻 ) is not quadratic, we
compute its second-order approximation about 𝑥− , as

𝛿𝑉 − (𝛿𝑥−) ≈ LSE𝛼 (𝐻 ) (0) +𝑉 −𝑥 ⊤𝛿𝑥− +
1
2
𝛿𝑥−⊤𝑉 −𝑥𝑥𝛿𝑥

−, (22)

where

𝑉 −𝑥 = ∇𝑥LSE𝛼 (𝐻 ) (0), (23a)
𝑉 −𝑥𝑥 = ∇𝑥𝑥LSE𝛼 (𝐻 ) (0) + 𝛽𝐼𝑛𝑥×𝑛𝑥 . (23b)

The derivatives (23a, 23b) can be calculated using (14a, 14b).
The regularization constant 𝛽 ≥ 0 is used to guarantee that
𝛿𝑉 − (𝛿𝑥−) ≥ ℎ𝑖 (𝛿𝑥−) ∀𝛿𝑥−, 𝑖 , i.e. to ensure that 𝛿𝑉 − is an
over-approximation of the actual value function.
𝛽 can be calculated as follows: First, note that since LSE𝛼 (𝐻 )

over-approximates ℎ𝑖 , 𝛿𝑉 − (0) > ℎ𝑖 (0) ∀𝑖 ⇒ LSE𝛼 (𝐻 ) (0) >
𝐶𝑖 ∀𝑖 . Noting from Sec. 3.3 that 𝑉 −𝑥𝑥 ⪰ 𝐴 + 𝛽𝐼 , a sufficient
condition to ensure 𝛿𝑉 − (𝛿𝑥−) ≥ ℎ𝑖 (𝛿𝑥−) ∀𝛿𝑥− is,

LSE𝛼 (𝐻 ) (0) +𝑉 −𝑥 ⊤𝛿𝑥− +
1
2
𝛽 ∥𝛿𝑥− ∥22 ≥ 𝐵𝑖𝛿𝑥− +𝐶𝑖 .

It is easily shown that this inequality holds for all 𝛿𝑥−, 𝑖
when

𝛽 ≥ max
𝑖

∥𝑉 −𝑥 − 𝐵⊤𝑖 ∥22
2(LSE𝛼 (𝐻 ) (0) −𝐶𝑖 )

. (24)

With (22), (23), and (24), we have computed a quadratic ap-
proximation 𝛿𝑉 − of the actual value function, which can now
be used in the backward pass. Our backward pass method is
summarized in Algorithm 1.

4.2 Forward pass
The forward pass is mostly the same as that of the classical
DDP, described in Section 3.1. The only major difference is
that in each step of the Armijo backtracking line search, to
ensure proper convergence, we must conduct a rollout under
each 𝑑𝑖 , and use the worst-case cost to check the Armijo
Condition, which becomes

max
1≤𝑖≤𝑣

𝐽 (𝑥0, 𝑢0:𝑛−1;𝑑𝑖 ) ≤ 𝐽 prevmax − 𝑐𝑏Δ𝑉0, (25)

where 𝐽 prevmax is the maximum cost of the previous forward
pass. Once the Armijo condition is satisfied, we pass the
trajectory under the disturbance that incurred the worst-
case cost to the backward pass and reiterate the process.
The forward pass is described in Algorithm 2 and the entire
algorithm is summarized in Algorithm 3.

Algorithm 1: Backward Pass
1 Input: 𝒙0:𝑛 , 𝒖0:𝑛−1,
2 Output: 𝜿0:𝑛−1,𝑲0:𝑛−1,𝚫V0:𝑛−1
3 𝐻 ← Horizon length, 𝑅 ← timestep of reset map
4 Initialize 𝚫V0:𝑛−1, 𝑽𝒙 ,0:𝑛−1, 𝑽𝒙𝒙 ,0:𝑛−1, 𝜿0:𝑛−1, 𝑲0:𝑛−1
5 for 𝑖 = 𝑛 − 1; 𝑖 ≥ 𝑚 + 1; 𝑖 ← 𝑖 − 1 do
6 𝚫V𝑖 , 𝑽𝒙 ,𝑖 , 𝑽𝒙𝒙 ,𝑖 , 𝜿𝑖 , 𝑲𝑖 updated per (7, 8)
7 end
8 𝚫V𝑚 , 𝑽𝒙 ,𝑚 , 𝑽𝒙𝒙 ,𝑚 updated per (22), (23), and (24)
9 for 𝑖 =𝑚 − 1; 𝑖 ≥ 0; 𝑖 ← 𝑖 − 1 do
10 𝚫V𝑖 , 𝑽𝒙 ,𝑖 , 𝑽𝒙𝒙 ,𝑖 , 𝜿𝑖 , 𝑲𝑖 updated per (7, 8)
11 end
12 return 𝜿0:𝑛−1,𝑲0:𝑛−1,Δ𝑉0

Algorithm 2: Forward Pass
1 Input: 𝒙0:𝑛, 𝒖0:𝑛−1,𝜿0:𝑛−1,𝑲0:𝑛−1,Δ𝑉0, 𝐽max
2 Output: 𝒙0:𝑛, 𝒖0:𝑛−1, 𝐽max
3 𝐽

prev
max ← 𝐽max

4 while Line Search Not Satisfied do
5 𝐽max ← Rollout trajectory and update control for each

𝛿𝑑𝑖 ; choose maximum cost
6 Compare 𝐽max against Δ𝑉0, 𝐽

prev
max

7 end
8 𝒙0:𝑛, 𝒖0:𝑛−1 ← Trajectory that incurred the maximum cost
9 return 𝒙0:𝑛, 𝒖0:𝑛−1, 𝐽max
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Algorithm 3: Robust Hybrid DDP (RH-DDP)
1 Input: 𝒖init

0:𝑛−1, 𝒙0,D
2 Output: 𝒙0:𝑛, 𝒖0:𝑛−1,𝑲0:𝑛−1, 𝐽max
3 𝑋 ← roll out trajectory with control𝑈WS, initial state 𝑥0,

and disturbance 𝑑nom.
4 while not converged do
5 𝜿0:𝑛−1,𝑲0:𝑛−1,Δ𝑉0 ← Backward Pass(𝒙0:𝑛, 𝒖0:𝑛−1)
6 𝜿0:𝑛−1,𝑲0:𝑛−1,Δ𝑉0 ← Forward Pass(𝒙0:𝑛, 𝒖0:𝑛−1,

7 𝜿0:𝑛−1,𝑲0:𝑛−1,Δ𝑉0, 𝐽max)
8 end
9 return 𝒙0:𝑛, 𝒖0:𝑛−1,𝑲0:𝑛−1, 𝐽max

4.3 Linear System Analysis
In this section, we consider a linear quadratic regulator with
a linear reset map. We show that for any compact polyhedral
disturbance setD, one iteration of ourmethod (i.e., backward
pass + forward pass) results in a decrease in cost up to a
constant. Towards this end, consider a discrete-time linear
hybrid system:

𝑥𝑘+1 = 𝐹𝑥𝑘 +𝐺𝑢𝑘 for all 𝑘 ≠𝑚, (26a)
𝑥𝑚+1 = 𝑃𝑥𝑚 + 𝑑, (26b)

Consider the optimal control problem (3), with the cost func-
tion at time step 𝑡 as

𝐽𝑡 (𝑥𝑡 , 𝒖𝑡 :𝑛−1;𝑑) = 𝑥⊤𝑛 𝑆𝑛𝑥𝑛 +
𝑛−1∑︁
𝑘=𝑡
𝑘≠𝑚

𝑥⊤
𝑘

N𝑥𝑘 + 𝑢⊤𝑘 M𝑢𝑘 , (27)

where the trajectory 𝒙𝑡 :𝑛 is computed using (26), and N, 𝑆𝑛 ⪰
0 and M ≻ 0 are the cost matrices. Let

𝑉𝑡 (𝑥𝑡 ) = min
𝒖𝑡 :𝑚

max
𝑑∈D

min
𝒖𝑚+1:𝑛−1

𝐽𝑡 (𝑥𝑡 , 𝒖𝑡 :𝑛−1;𝑑) (28)

be the optimal cost-to-go at time step 𝑡 from state 𝑥𝑡 . When
𝑡 = 0, this is the same as the cost function (2). For 𝑡 ≥ 𝑚 + 1,
(28) is an LQR problem, so for 𝑡 ≥ 𝑚 + 1, 𝑉𝑡 (𝑥𝑡 ) = 𝑥⊤𝑡 𝑆𝑡𝑥𝑡 ,
where 𝑆𝑡 ⪰ 0 is obtained from the Riccati Difference Equation
(RDE).

According to the Bellman principle, and by (19),

𝑉𝑚 (𝑥𝑚) = max
𝑑∈D

(𝑃𝑥𝑚 + 𝑑)⊤𝑆𝑚+1 (𝑃𝑥𝑚 + 𝑑), (29a)

= max
𝑖∈{1,...,𝑣}

(𝑃𝑥𝑚 + 𝑑𝑖 )⊤𝑆𝑚+1 (𝑃𝑥𝑚 + 𝑑𝑖 ). (29b)

Now, (28) at 𝑡 = 0 can be written as,

𝑉0 (𝑥0) = min
𝒙0:𝑚
𝒖0:𝑚−1

𝑚−1∑︁
𝑘=0
(𝑥⊤

𝑘
N𝑥𝑘 + 𝑢⊤𝑘 M𝑢𝑘 ) +𝑉𝑚 (𝑥𝑚), (30a)

s.t 𝑥𝑘+1 = 𝐹𝑥𝑘 +𝐺𝑢𝑘 , 𝑘 ∈ {0, ...,𝑚 − 1}, (30b)

which is a (non-smooth) convex optimization problem.
Our method, described in Sec. 4.1 and Sec. 4.2, solves

this problem iteratively using LSE to over-approximate the
value function 𝑉𝑚 using the quadratic function 𝑉̃𝑚 , (22). Let
(𝒙 𝑗

0:𝑚, 𝒖
𝑗

0:𝑚−1) be the current iterate for the DDP algorithm,

and (𝒙 𝑗+1
0:𝑚, 𝒖

𝑗+1
0:𝑚−1) be the next iterate obtained after one

step of our algorithm. Then, Robust Hybrid DDP solves for
(𝒙 𝑗+1

0:𝑚, 𝒖
𝑗+1
0:𝑚−1) by solving the following LQR problem,

𝑉̃0 (𝑥0) = min
𝒙0:𝑚
𝒖0:𝑚−1

𝑚−1∑︁
𝑘=0
(𝑥⊤

𝑘
N𝑥𝑘 + 𝑢⊤𝑘 M𝑢𝑘 ) + 𝑉̃𝑚 (𝑥𝑚 ;𝑥 𝑗

𝑚),

(31a)
s.t 𝑥𝑘+1 = 𝐹𝑥𝑘 +𝐺𝑢𝑘 , 𝑘 ∈ {0, ...,𝑚 − 1}, (31b)

where 𝑉̃𝑚 (· ;𝑥 𝑗
𝑚) is the quadratic over-approximation of 𝑉𝑚

with the second-order approximation of the LSE performed
at 𝑥 𝑗

𝑚 , (22). Note that (31) is an LQR problem.
Before proving our result, we define the cost functions

for a trajectory (𝒙0:𝑚, 𝒖0:𝑚−1) corresponding to (30) and (31),
respectively, as

𝐽𝑚0 (𝒙0:𝑚, 𝒖0:𝑚−1) =
𝑚−1∑︁
𝑘=0
(𝑥⊤

𝑘
N𝑥𝑘 + 𝑢⊤𝑘 M𝑢𝑘 ) +𝑉𝑚 (𝑥𝑚),

𝐽𝑚0 (𝒙0:𝑚, 𝒖0:𝑚−1) =
𝑚−1∑︁
𝑘=0
(𝑥⊤

𝑘
N𝑥𝑘 + 𝑢⊤𝑘 M𝑢𝑘 ) + 𝑉̃𝑚 (𝑥𝑚 ;𝑥 𝑗

𝑚).

Now, we can prove the following result, which guarantees
that the cost corresponding to the trajectory (𝒙 𝑗+1

0:𝑚, 𝒖
𝑗+1
0:𝑚−1)

cannot increase by more than an amount inversely propor-
tional to 𝛼 .

Theorem1. LetD be any compact polyhedral disturbance set,
and consider the optimal control problem (30) subject to (26).
For any dynamically feasible trajectory iterate (𝒙 𝑗

0:𝑚, 𝒖
𝑗

0:𝑚−1),
let the next iterate (𝒙 𝑗+1

0:𝑚, 𝒖
𝑗+1
0:𝑚−1) be obtained by solving the

LQR problem (31), where 𝑉̃𝑚 (· ;𝑥 𝑗
𝑚) is obtained as in (22). Then,

𝐽𝑚0 (𝒙
𝑗+1
0:𝑚, 𝒖

𝑗+1
0:𝑚−1) ≤ 𝐽

𝑚
0 (𝒙

𝑗

0:𝑚, 𝒖
𝑗

0:𝑚−1) +
log(𝑣)
𝛼

. (32)

Proof. The quadratic over-approximation function 𝑉̃𝑚 (· ;𝑥 𝑗
𝑚)

satisfies the following properties, as shown in Sec. 4.1:

(a) 𝑉̃𝑚 (𝑥 𝑗
𝑚 ;𝑥 𝑗

𝑚) ≤ 𝑉𝑚 (𝑥 𝑗
𝑚) + log(𝑣)

𝛼
(by LSE property (13)).

(b) 𝑉𝑚 (·) ≤ 𝑉̃𝑚 (· ;𝑥 𝑗
𝑚) (by construction in Sec. 4.1).

By properties (a) and (b) respectively, we have that for the
trajectories (𝒙 𝑗

0:𝑚, 𝒖
𝑗

0:𝑚−1) and (𝒙
𝑗+1
0:𝑚, 𝒖

𝑗+1
0:𝑚−1),

𝐽𝑚0 (𝒙
𝑗

0:𝑚, 𝒖
𝑗

0:𝑚−1) ≤ 𝐽
𝑚
0 (𝒙

𝑗

0:𝑚, 𝒖
𝑗

0:𝑚−1) +
log(𝑣)
𝛼

, (33a)

𝐽𝑚0 (𝒙
𝑗+1
0:𝑚, 𝒖

𝑗+1
0:𝑚−1) ≤ 𝐽

𝑚
0 (𝒙

𝑗+1
0:𝑚, 𝒖

𝑗+1
0:𝑚−1). (33b)

Finally, we note that the LQR process produces the optimal
solution in one step, and thus leads to a reduction in cost.
This means that,

𝐽𝑚0 (𝒙
𝑗+1
0:𝑚, 𝒖

𝑗+1
0:𝑚−1) ≤ 𝐽

𝑚
0 (𝒙

𝑗

0:𝑚, 𝒖
𝑗

0:𝑚−1). (34)

Combining inequalities (33a), (33b), and (34), we get (32).
□
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Theorem 1 guarantees that the cost of the next iterate does
not increase by more log(𝑣)

𝛼
. If we increase 𝛼 , the tightness

parameter, we can reduce this error. However, using a large
value of 𝛼 initially can blow up the 𝛽 parameter (24). There-
fore, we propose annealing of the 𝛼 parameter, where it is
increased by a factor every few DDP iterations. Furthermore,
by (34), if the LQR problem (31) results in a decrease of more
than log(𝑣)

𝛼
, then the cost of the next iterate is guaranteed

to be lower. This tells us that whenever the cost reduction
from a fixed value 𝛼 is less than log(𝑣)

𝛼
, we can perform an

annealing step.

Remark 3. (Nonlinear system case) While we present results
of our approach on nonlinear systems in 5.2, however the above
analysis on linear systems is not directly applicable to nonlin-
ear systems due to several key factors. Firstly, the quadratic
approximations of the value function (6) are only accurate
within a specific neighborhood of the state-input trajectory, the
extent of which hinges on the cost functions and the nonlinear
dynamics. This limitation is a practical consideration for DDP
algorithms in all nonlinear systems, necessitating a line search
in the forward pass (10) to ensure proper cost reduction in each
iteration. Secondly, the accuracy of the reset map linearization
is similarly confined to a neighborhood around the lineariza-
tion point when the reset map is nonlinear. Consequently, the
worst-case disturbance may not occur at the vertices of the dis-
turbance setD and at the time step𝑚. Therefore, our algorithm
is most effective when the disturbance set is not excessively
large.

5 Results
In this section, we present the application of our algorithm
(Algorithm 3) to two examples. To the extent of our knowl-
edge, there exist no other method in the literature that explic-
itly addresses the uncertainties in the reset event which we
can compare against. Thus, we mainly compare our method,
denoted as RH-DDP, against the method developed in [17],
denoted as HS-DDP, described in Section 3.2. The HS-DDP
algorithm can be considered as a special case of Algorithm
3 where the disturbance set D is set to {0}. Note that the
original work in [17] has additional outer loops of trajectory
optimization that impose constraints to the trajectory and
adjust the time of the reset events, which are not included
in this comparison, since we do not consider the constraints
or event-triggered reset events.

In both examples, we show the efficacy of our method in
producing a more robust trajectory than the baseline method,
by confirming the cost reduction in the solution under the
worst-case disturbance scenario. In the first example, we
apply our algorithm to a linear system, to show our method’s
compliance with the analysis conducted in Section 4.3. In the
second example, we demonstrate our algorithm on a simple
two-link legged robot system, a nonlinear system subjected
to a reset event as its swinging leg hits the ground.

5.1 Linear System Example: Double Integrator
We analyze a point mass constrained to one dimension as a
simple double integrator, whose continuous mode dynamics
is given as

𝑥𝑘+1 =

[
1 Δ𝑡
0 1

]
𝑥𝑘 +

[
0
Δ𝑡

]
𝑢𝑘 ,

where the state 𝑥 consists of the position and the velocity,
the control input𝑢 represents the acceleration, and Δ𝑡 = 0.01
is the time step for the Euler discretization. The time horizon
is set as 𝑛 = 1000, and the reset is scheduled at 𝑚 = 800.
Upon the reset, a fixed value of 0.5 and the disturbance value
𝑑 is added to the velocity, given as

𝑃 (𝑥− ;𝑑) = 𝑥− +
[

0
0.5 + 𝑑

]
.

We consider the disturbance bound D = [−0.5, 0.5]. Finally,
the cost terms are as follows:

𝑙 (𝑥,𝑢)=𝑥⊤
[
0.01 0

0 0.01

]
𝑥 + 2.5𝑢2; 𝑙𝑓 (𝑥)=𝑥⊤

[
500 0
0 1000

]
𝑥,

which penalize the trajectories deviation from the origin,
which is considered as the goal state, and the control effort.

After solving for the optimal control sequence 𝒖0:𝑛−1 and
the local linear feedback controller provided by 𝑲0:𝑛−1 with
RH-DDP and HS-DDP, we rollout the obtained controllers
under each 𝑑 values in D and compute the cost 𝐽 for each
controller. The results are shown in Figure 1. The maximum
cost of HS-DDP over this disturbance set is 360.71, incurred
at 𝑑 = 0.5. Meanwhile, the maximum cost of our method
is 321.01 incurred symemtrically at 𝑑 = −0.5 and 𝑑 = 0.5,
corresponding to a cost reduction of 11.0% at the worst-
case instance. Under the nominal case where there is no
disturbance (𝑑 = 0), our method incurs a slight increase in
the cost (9.5%) compared to the baseline method, which is an
expected symptom of robust control, since it would improve
the worst-case performance at the expense of sacrificing the
overall performance.
Figure 2 shows a position-velocity phase plot, under the

worst-case disturbance that incurs maximum cost of the HS-
DDP trajectory (top), and under the nominal case without
any disturbance (bottom). Our method tends to produce a
trajectory whose velocity is close to zero right before the
reset, so that when a positive disturbance is applied during
the reset, it reduces a cost associated with the velocity mag-
nitude. In the nominal case, this affects the terminal state to
slightly reach less close to the origin, thereby resulting in a
slight increase in the total cost.

5.2 Nonlinear System Example: Two-link Walker
To demonstrate the application of our algorithm to robust
control of legged robots, we consider a simple two-link
walker system, illustrated in Figure 3. The continuous mode
dynamics of the robot (1a) is derived from the Euler-Lagrange



Preprint, Nov 28, 2023

Figure 1. Double integrator example: incurred costs of DDP
trajectories with respect to various disturbance values at the
reset event.

Figure 2. Double integrator example: position-velocity
phase plot of the trajectories under worst-case disturbance
(𝑑 = 0.5, top) and without disturbance (𝑑 = 0, bottom). The
straight lines represent the discontinuity of the states in-
curred at the reset event.

equation, constrained by the contact force between the stance
leg and the ground. The general structure of this dynamics

𝜃!

𝜃"(−)

𝑝#

𝑝$

Figure 3. Configuration of the two-link walker.

is given as[
D −J𝑇𝑠𝑡
−J𝑠𝑡 0

] [
¥𝑞
𝜆𝑠𝑡

]
=

[
B𝑢 − C ¤𝑞 − G
¤J𝑠𝑡 ¤𝑞

]
,

where 𝑞 denotes the generalized coordinates, 𝑢 is the actu-
ation torque that is considered as the input to the system,
and D, C ¤𝑞, G, B are inertia matrix, Coriolis force, gravity
force, and input mapping matrix, respectively. J𝑠𝑡 and 𝜆𝑠𝑡
represents the contact Jacobian and contact force associated
with the stance foot. The robot state consist of 𝑥 = [𝑞; ¤𝑞], and
the dynamics 𝑓 in (1a) can be derived by taking the inverse
of the matrix in the left hand side and separating out the
solution for ¥𝑞, and then applying the Euler discretization.
The timestep we use is Δ𝑡 = 0.003s. For the two-link walker,
𝑞 = [𝑝𝑥 , 𝑝𝑦, 𝜃1, 𝜃2], where (𝑝𝑥 , 𝑝𝑦) is the torso position, 𝜃1 is
the stance leg angle, and 𝜃2 is the relative angle between the
legs (Figure 3), and ¤𝑞 = [𝑣𝑥 , 𝑣𝑦, ¤𝜃1, ¤𝜃2], where (𝑣𝑥 , 𝑣𝑦) is the
torso velocity.
The impact dynamics are modeled based on the rigid im-

pact model, given as[
D −J𝑇𝑠𝑤
−J𝑠𝑤 0

] [ ¤̂𝑞+
𝜆𝑠𝑤

]
=

[
D ¤𝑞−

0

]
, (35)

where ¤𝑞− and ¤̂𝑞+ are the generalized velocity before and
after the impact, respectively, and J𝑠𝑤 and 𝜆𝑠𝑤 represent
the contact Jacobian and impulse at the swing foot. Note
that under the rigid impact, the generalized coordinate 𝑞− is
unchanged. Based on the symmetry of the robot, the post-
reset state 𝑥+ is obtained after relabeling the swing leg to
the stance leg, and vice versa, given as 𝑥+ = [𝑞+; ¤𝑞+] =

[R𝑞− ; R ¤̂𝑞+]⊤, where R is the relabeling matrix. Finally, we
assume that the post-impact velocity ¤𝑞+ can be perturbed
by the disturbance. We factor 𝑣𝑥 by (0.8 + 𝑑1) and ¤𝜃2 by
(0.8 +𝑑2), where 𝑑 = (𝑑1, 𝑑2) ∈ D = [−0.2, 0.2] × [−0.2, 0.2],
which captures a change in torso and swing leg velocity due
to unmodeled factors. Note that 𝑣𝑦 and ¤𝜃1 is also changed
accordingly to meet the constraint that the stance foot is
fixed on the ground. Such impact happens when the swing
leg hits the ground, which is an event-triggered reset event.
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Figure 4. Two-link walker: incurred costs of DDP trajecto-
ries with respect to various disturbance values at the reset
event.

To correctly time this reset, we set the initial state of the
robot to be exactly one timestep before the reset, so that the
reset always happen at𝑚 = 1.

The DDP solves an optimal control problem that stabilizes
the robot from the initial state to a complete stop, at which
the torso transverse velocity becomes 𝑣𝑥 = 0. To achieve
this, the running cost 𝑙 penalizes the control effort and the
terminal cost 𝑙𝑓 penalizes |2𝜃1 − 𝜃2 | (the configuration in
which both feet touch the ground), and the velocity |𝑣𝑥 |.

After obtaining the HS-DDP and RH-DDP solutions, we
evaluate the controllers under various disturbance values
in the disturbance set, and the resulting incurred costs are
plotted in Figure 4. At a disturbance of 𝑑 = (0.2, 0.2), the
HS-DDP controller incurs its maximum cost of 39.55. In
contrast, the our method incurs only 27.50, a significant
reduction in the cost of 30.3%. Under some other disturbance
values, mostly when 𝑑1 is negative, RH-DDP induce a slight
increase in the cost compared to HS-DDP, but its maximal
increase rate is 5.8%, under 𝑑 = (−0.03,−0.2). Thus, while
our method significantly improves the cost of the trajectory
under the worst-case disturbance, the penalty incurred at
the other disturbance values are negligible. In Figure 5, the
phase portrait and the 𝑣𝑥 history of the trajectories under the
worst-case disturbance are displayed. It is worth noting that
under the worst-case disturbance, RH-DDP is more effective
in yielding the torso to a velocity close to zero.

6 Conclusion
This paper presented an extension of the DDP algorithm for
hybrid systems, as introduced in [17], to incorporate robust-
ness against worst-case disturbances in the reset event. This
formulation is particularly valuable when the system is sub-
ject to uncertain reset events; for example, in legged robots,

Figure 5. Two-link walker: 𝜃1 − 𝜃2 phase portraits of the
trajectories (top) and the transverse velocity of the torso
(bottom) under the worst-case disturbance (𝑑 = (0.2, 0.2)).
The straight lines represent the discontinuity of the states
incurred by the impact incurred immediately after the initial
state.

where the impact with the ground may vary unpredictably.
We proved that for linear systems, our algorithm guarantees
cost reduction up to a constant in each iteration. This was
then validated through simulation of two distinct systems,
including a stabilization task for a simple nonlinear legged
robot.
There are several promising directions for future work.

First, our method can be extended to trajectory optimization
involving multiple reset events, however, a more detailed
investigation into the impact of over-approximation gaps
of the log-sum-exponent operation on the cost reduction is
required. Also, the incorporation of equality and inequality
constraints is essential to enhance the applicability of our
methods to more practical systems and problems. Finally, an
exciting direction is to integrate our method with multiple
shooting variants of the DDP, as seen in [18, 22]. The current
single shooting implementation is inherently more sensitive
to initial conditions and guesses, especially when the system
is subjected to reset events.
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