
Reinforcement Learning for Safety-Critical Control
under Model Uncertainty, using Control Lyapunov

Functions and Control Barrier Functions
Jason Choi∗1, Fernando Castañeda∗1, Claire J. Tomlin2, Koushil Sreenath1

1Department of Mechanical Engineering, 2Department of Electrical Engineering and Computer Sciences, UC Berkeley
Email: {jason.choi, fcastaneda, tomlin, koushils}@berkeley.edu

Abstract—In this paper, the issue of model uncertainty in
safety-critical control is addressed with a data-driven approach.
For this purpose, we utilize the structure of an input-ouput
linearization controller based on a nominal model along with a
Control Barrier Function and Control Lyapunov Function based
Quadratic Program (CBF-CLF-QP). Specifically, we propose a
novel reinforcement learning framework which learns the model
uncertainty present in the CBF and CLF constraints, as well
as other control-affine dynamic constraints in the quadratic
program. The trained policy is combined with the nominal model-
based CBF-CLF-QP, resulting in the Reinforcement Learning-
based CBF-CLF-QP (RL-CBF-CLF-QP), which addresses the
problem of model uncertainty in the safety constraints. The
performance of the proposed method is validated by testing it on
an underactuated nonlinear bipedal robot walking on randomly
spaced stepping stones with one step preview, obtaining stable
and safe walking under model uncertainty.

I. INTRODUCTION

In this work, we address the issue of model uncertainty
in safety-critical control using a data-driven machine learning
approach. Our goal is to benefit from the recent successes of
learning-based control in highly uncertain dynamical systems,
such as in Hwangbo et al. [11] and Levine et al. [12], yet
to also account for safety in a formal way. We seek to
combine the benefits of these data-driven approaches with the
benefits of classical model-based control methods which have
theoretical guarantees on stability and safety. Towards this
end, we use Control Lyapunov Function- and Control Barrier
Function-based controllers designed on nominal systems that
are then trained through reinforcement learning (RL) to work
on systems with uncertainty.

A. Related Work

In the field of controls, Control Lyapunov Function (CLF)-
based and Control Barrier Function (CBF)-based control meth-
ods have been shown to be successful for safety-critical con-
trol. Galloway et al. [9] and Ames and Powell [1] have shown
that CLF-based quadratic programs (CLF-QP) with constraints

∗ Indicates equal contribution.
The work of Jason Choi received the support of a fellowship from

Kwanjeong Educational Foundation, Korea. The work of Fernando Castañeda
received the support of a fellowship (code LCF/BQ/AA17/11610009) from
”la Caixa” Foundation (ID 100010434). This work was partially supported
through National Science Foundation Grant CMMI-1931853.

can be solved online in order to perform locomotion and
manipulation tasks. In Ames et al. [3], CBFs are incorporated
with the CLF-QP, namely CBF-CLF-QP, to handle safety
constraints effectively in real time.

These CLF-based and CBF-based methods heavily rely on
accurate knowledge of the system model. When the model
is uncertain, we must consider adaptive or robust versions.
In Nguyen and Sreenath [13], an L1 adaptive controller is
incorporated with the CLF-QP in order to adapt to model
uncertainty, and is shown to work effectively for bipedal
walking. In Nguyen and Sreenath [15], a robust version of the
CBF-CLF-QP is proposed, that solves the quadratic program
for the worst case effect of model uncertainty. While these
methods can tackle model uncertainty to some degree, they
may often fail to account for the correct magnitudes of
adaptation and uncertainty.

Recently, several methods addressing the issue of model un-
certainty in the control problem using a data-driven approach
have been proposed. Westenbroek et al. [22] proposes an RL-
based method to learn the model uncertainty compensation for
input-output linearization control. In Castañeda et al. [6] the
former method is extended to underactuated bipedal walking
on a flat terrain. Taylor et al. [19] and Taylor et al. [20] each
addresses how to learn the uncertainty in CLF and CBF con-
straints respectively, using empirical risk minimization. Our
methodologies most closely align with these works in that we
are also using learning methods to reduce model uncertainty
explicitly in input-output linearization, CLF, and CBF-based
control. However, the main novelty in our approach is that
we have devised a unified RL-based framework for learning
model uncertainty in CLF, CBF, and other dynamic control-
affine constraints altogether in a single learning process. In
addition to the aforementioned papers, there are also a few
approaches [4, 5, 8] that learn model uncertainty through
probabilistic models such as Gaussian Processes. Although
these approaches allow for an insightful analysis of the learned
model or policy, they can scale poorly with state dimension.

B. Contributions

In this paper, we present a novel RL-based framework which
combines two key components: 1) an RL agent which learns
model uncertainty in multiple general dynamic constraints

Fig. 1: Our method (RL-CBF-CLF-QP): We propose a control barrier function (CBF) and control Lyapunov function (CLF)
based parametrized quadratic program, where the parameter θ corresponds to weights of a neural network that estimates the
uncertainty in the CLF and CBF dynamics through reinforcement learning. An RL agent is used to learn uncertainties in the
CLF, CBF and other constraint dynamics. The quadratic program uses learned uncertainties in combination with safety and
stability constraints from a nominal model to solve for the control input point-wise in time.

including CLF and CBF constraints through training, and 2)
a quadratic program that solves for the control that satisfies
the safety constraints under the learned model uncertainty.
We name this framework Reinforcement Learning-based
Control Barrier Function and Control Lyapunov Function
Quadratic Program (RL-CBF-CLF-QP). After training, the
RL-CBF-CLF-QP can be executed online with fast computa-
tion. The overall diagram of our framework is presented in
Fig. 1. Here is the summary of the contribution of our work:

1) We present an RL framework that learns model uncer-
tainty for CLF, CBF and other control-affine dynamic
constraints in a single learning process.

2) We generalize our method to high relative-degree out-
puts and Control Barrier Functions.

3) Our method can learn the uncertainty in the dynamics
of parameterized CBFs that are not only state-dependent
but also dependent on other parameters.

4) We numerically validate our method on an underactuated
nonlinear hybrid system: a bipedal robot walking on
stepping stones with significant model uncertainty.

C. Organization

In Section II, we briefly explain the necessary background
for the paper. In Section III, we discuss how we can learn
model uncertainty in the CLF constraint for CLF-QP through
RL. In Section IV, we expand this method to learn un-
certainties in the CBF and general control-affine dynamic
constraints, and propose the RL-CBF-CLF-QP. In Section
V, we discuss how the RL agent can learn aforementioned
uncertainties. In Sections VI and VII, we explain the results
of the demonstration of RL-CBF-CLF-QP for a bipedal robot.
Finally, we discuss limitations of our method in Section VIII
and give concluding remarks in Section IX.

II. BACKGROUND

A. Input-Output Linearization

Consider a control affine nonlinear system

ẋ = f(x) + g(x)u,

y = h(x),
(1)

where x ∈ Rn is the system state, u ∈ Rm the control input
and y ∈ Rm the output of the system, assuming there are the
same number of input and output variables. We also make the
standard assumption that f and g are Lipschitz continuous.
Then, if the vector relative degree of the outputs is r, we have

y(r) = Lrfh(x) + LgL
r−1
f h(x)u, (2)

where the functions Lrfh and LgLr−1
f h are known as rth order

Lie derivatives [17]. Here, y(r) is the vector of rth derivatives
of each output in y, and (2) indicates that no input in u appears
at lower than the rth derivative of each output. If the m×m
matrix LgL

r−1
f h(x) is nonsingular ∀ x ∈ D, with D ⊂ Rn

being a compact subset containing the origin, then we can
apply a control input which renders the input-output dynamics
of the system linear:

u(x, µ) = u∗(x) +
(
LgL

r−1
f h(x)

)−1

µ, (3)

where u∗ is the feedforward term:

u∗(x) = −
(
LgL

r−1
f h(x)

)−1

Lrfh(x), (4)

and µ ∈ Rm is the auxiliary input.
Using this control law yields the input-output linearized

system y(r) = µ, and we can define a state transformation
Φ : x→ (η, z), with

η = [h(x)>, Lfh(x)>, ..., Lr−1
f h(x)>]> (5)

and z ∈ Z, where Z = {x ∈ Rn| η ≡ 0} is the zero-dynamics
manifold. The closed-loop dynamics of the system can then be

represented as a linear time-invariant system on the transverse
coordinates η, and the zero-dynamics:{

η̇ = Fη +Gµ,

ż = p(η, z),
(6)

where

F =

0 Im . . 0
0 0 Im . 0
. . .
0 . . . Im
0 . . . 0

 and G =

0
.
.
0
Im

 , (7)

with F ∈ Rmr×mr and G ∈ Rmr×m.

B. Control Lyapunov Function Based Quadratic Programs

In Ames et al. [2] a control method that guarantees ex-
ponential stability of the transverse dynamics η with a rapid
enough convergence rate is presented. It introduces the con-
cept of a rapidly exponentially stabilizing control Lyapunov
function (RES-CLF). Specifically, a one-parameter family of
continuously differentiable functions Vε : Rmr → R is said to
be an RES-CLF for system (1) if ∃ γ, c1, c2 > 0 such that ∀
0 < ε < 1 and ∀ η ∈ Rmr, the following holds:

c1‖η‖2 ≤ Vε(η) ≤ c2
ε2
‖η‖2, (8)

V̇ε(η, µ) +
λ

ε
Vε(η) ≤ 0. (9)

If we define a control input µ that makes η exponentially
stable, of the form

µ =

[
− 1

εr
Kr, ..., −

1

ε2
K2, −

1

ε
K1

]
η = Kη, (10)

where K ∈ Rm×mr, then we can choose a quadratic CLF
candidate Vε(η) = ηTPεη, where Pε is the solution of the
Lyapunov equation ATPε + PεA = −Q, with A being the
closed-loop dynamics matrix A = F + GK and Q any
symmetric positive-definite matrix. Defining f̄ = Fη, ḡ = G,
we can write the derivative of the RES-CLF as:

V̇ε(η, µ) = Lf̄Vε(η) + LḡVε(η)µ, (11)

with

Lf̄Vε(η) = ηT
(
FTPε + PεF

)
η, LḡVε(η) = 2ηTPεG.

(12)

We can then define for every time step an optimization
problem in which condition (9) becomes a linear constraint
on the auxiliary input µ. The objective function can be set to
minimize the norm of the control inputs, in which case the
optimization problem is a quadratic program (QP):

CLF-QP:

µ∗(x) = argmin
µ

µTµ (13)

s.t. V̇ε(η, µ) +
λ

ε
Vε(η) ≤ 0 (CLF)

C. Control Barrier Function and Control Lyapunov Function
Based Quadratic Programs

In Nguyen and Sreenath [14] the concept of an Exponential
Control Barrier Function (ECBF) is defined. Specifically, a
function B : Rm → R is an ECBF of relative degree rb for
the system (1) if there exists Kb ∈ R1×rb such that

sup
u

[
Lrbf B(x) + LgL

rb−1
f B(x)u+Kbηb(x)

]
≥ 0 (14)

for ∀x ∈ {x ∈ Rn| B(x) ≥ 0} with

ηb(x) =

B(x)

Ḃ(x)

B̈(x)
...

B(rb−1)(x)

 =

B(x)
LfB(x)
L2
fB(x)

...
L
rb−1
f B(x)

 , (15)

that guarantees B(x0) ≥ 0 =⇒ B(x(t)) ≥ 0, ∀t ≥ 0.
We can then choose a virtual input µb that input-output

linearizes the ECBF dynamics:

B(rb)(x, µ) = Lrbf B(x) + LgL
rb−1
f B(x)u(x, µ) =: µb, (16)

with u defined in (3). We refer readers to Nguyen and Sreenath
[14] for more details. The condition in (14) then translates to
choosing a µb such that

µb +Kbηb ≥ 0, (17)

which is added to the following QP, where safety is prioritized
over stability by relaxing the CLF constraint:

CBF-CLF-QP:

µ∗(x) = argmin
µ, µb, d

µTµ+ p d2 (18)

s.t. V̇ε(η, µ) +
λ

ε
Vε(η) ≤ d (CLF)

µb +Kb ηb ≥ 0 (CBF)

µb = B(rb)(x, µ)

Ac(x)µ+ bc(x) ≤ 0 (Constraints)

Formulating a QP allows us to incorporate additional
control-affine constraints (last line in (18)). These could be in-
put saturation constraints or other state-dependent constraints
such as contact-force constraints.

III. REINFORCEMENT LEARNING FOR CLF-QP BASED
CONTROLLERS UNDER UNCERTAIN DYNAMICS

In this section, we address the issue of having a mismatch
between the model and the plant dynamics when the true
plant vector fields f, g are not precisely known. Specifically,
between this and the next sections we analytically examine
the effects of model uncertainty on the dynamics of the CLF,
CBF and other control-affine dynamic constraints. For each of
these cases we will define the goal of the RL agent and the
policy to be learned.

A. Reinforcement Learning for CLF-QP Based Controllers:
First Approach

Let the nominal model used in the controller be

ẋ = f̃(x) + g̃(x)u. (19)

We assume: 1) the vector fields f̃ : Rn → Rn, g̃ : Rn →
Rn×m are Lipschitz continuous and 2) the vector relative
degrees of the model and plant dynamics are the same (r).
These are the standard assumptions that have been made in
most of the literature [15, 19, 20, 22] to tackle the mismatch
terms analytically.

The pre-control law (3) of input-output linearization com-
puted based on the nominal model f̃ , g̃ has the following form

ũ(x, µ) = ũ∗(x) +
(
Lg̃L

r−1

f̃
h(x)

)−1

µ, (20)

with a feedforward term

ũ∗(x) := −
(
Lg̃L

r−1

f̃
h(x)

)−1

Lr
f̃
h(x). (21)

Using this ũ in (2) yields

y(r) = µ+ ∆1 (x) + ∆2 (x)µ, (22)

where

∆1 (x) :=L
r
fh(x)− LgL

r−1
f h(x)

(
Lg̃L

r−1

f̃
h(x)

)−1

Lrf̃h(x),

∆2 (x) :=LgL
r−1
f h(x)

(
Lg̃L

r−1

f̃
h(x)

)−1

− Im.

(23)
The dynamics of η from (6) now take the form:

η̇ = (Fη +G∆1 (η, z)) +G (Im + ∆2 (η, z))µ. (24)

Note that this equation is the same as (6) if the uncertainty
terms are zero, i.e. ∆1 = ∆2 = 0. Thus, (6) can be considered
a nominal model for the true transverse dynamics (24).

For this first approach we use RL to define an additional
input whose goal is to cancel out the uncertainty terms present
in the transverse dynamics (24), and therefore manipulate the
transverse dynamics to behave like (6), as done in Castañeda
et al. [6] and Westenbroek et al. [22]. If this is achieved
exactly, there will not be any uncertain terms in the CLF
dynamics, since V̇ε only depends on the matrices F and G
of the input-output linearized dynamics.

Applying the following input to (2)

u(x, µ) = ũ(x, µ) + uθ(x, µ), (25)

with ũ as defined in (20) and with

uθ(x, µ) :=
(
Lg̃L

r−1

f̃
h(x)

)−1

(αθ(x)µ+ βθ(x)), (26)

yields

y(r) = µ+ (∆1 (x) + ∆3 (x)βθ(x)) + (∆2 (x) + ∆3 (x)αθ(x))µ,
(27)

where ∆3 (x) := ∆2 (x) + Im, and θ ∈ Θ ⊂ RN are
parameters of a neural network to be learned. We can now
clearly see the goal of the RL agent for this approach: design

a policy αθ, βθ such that y(r) is as close as possible to µ.
Thus, the time-wise reward function can be defined as

R(x, µ) = −||y(r) − µ||22 (28)

where y(r) is numerically estimated. After training, the µ
present in the final control input (25) is obtained by solving
the CLF-QP of (13) in real time. We call this first approach
IO-RL + CLF-QP.

B. Reinforcement Learning for CLF-QP Based Controllers:
Second Approach

In the second approach, we do not directly correct the
uncertain terms of the transverse dynamics (24) as we did
in the first approach. Instead, we directly analyze the impact
of this uncertainty on the dynamics of the CLF.

For this approach, we assume that the CLF designed for
the nominal model’s transverse dynamics is also a CLF for
the true plant’s transverse dynamics (24).

In the presence of uncertainty, V̇ε becomes

V̇ε(η, z, µ) = Lf̄Vε(η, z) + LḡVε(η, z)µ, (29)

where
Lf̄Vε(η, z) = L ˜̄f

Vε(η) + 2ηᵀPεG∆1 (η, z)︸ ︷︷ ︸
=: ∆v

1 (η, z)

,

LḡVε(η, z) = L˜̄gVε(η) + 2ηᵀPεG∆2 (η, z)︸ ︷︷ ︸
=: ∆v

2 (η, z)

.
(30)

Here, ˜̄f and ˜̄g are the nominal model input-output linearized
dynamics: namely, ˜̇V ε(η, µ) = L ˜̄f

Vε(η) + L˜̄gVε(η)µ. There-
fore, under uncertainty:

V̇ε(η, z, µ) = ˜̇V ε(η, µ) + ∆v
1 (η, z) + ∆v

2 (η, z)µ. (31)

In this second approach we use RL to estimate the uncer-
tainty terms in V̇ε: ∆v

1 and ∆v
2 . For this purpose, we construct

an estimatê̇V ε,θ(η, z, µ) = ˜̇V ε(η, µ) + βVθ (η, z) + αVθ (η, z)µ, (32)

where θ ∈ Θ ⊂ RN are again the neural network parameters to
be learned. The goal of RL is then obvious: learn a policy αVθ ,
βVθ such that ̂̇V ε,θ is as close as possible to V̇ε. Any reward
function that penalizes the absolute value of the difference
between the two terms can be used. More details on the
specific RL implementation are discussed in Section V.

Remark 1: For convenience, it is assumed here that αVθ , βVθ
share the same network parameters θ, but this does not need
to be the case. In this paper, we will assume that all the policy
functions to be learned are sharing the same parameters.

The estimate ˆ̇Vε,θ in (32) is then used as our best guess of
V̇ε for the optimization problem:

RL-CLF-QP:

µ∗θ(x) = argmin
µ

µTµ (33)

s.t. ̂̇V ε,θ(η, z, µ) +
λ

ε
Vε(η) ≤ 0 (RL-CLF)

Remark 2: We have illustrated the case in which the CLF
is applied to the input-output linearized dynamics. The reason
why we use a CLF on the input-output linearized dynamics
instead of the full dynamics is that in this way we have a
systematic way of computing a CLF candidate, whereas on the
original nonlinear system this process could be challenging.
However, this approach is not confined to the input-output
linearization structure and is also applicable to any general
nonlinear control-affine system.

IV. REINFORCEMENT LEARNING FOR CBF-CLF-QP
BASED CONTROLLERS UNDER UNCERTAIN DYNAMICS

Having studied how to compensate for the effects of model
uncertainty on CLF-based min-norm controllers, we will now
extend our framework to the safety-critical CBF-CLF-QP by
following a similar approach.

A. Reinforcement Learning for CBFs

In the presence of uncertainty, (16) becomes

B̃(rb)(x, µ) = Lrb
f̃
B(x) + Lg̃L

rb−1

f̃
B(x)ũ(x, µ), (34)

and the actual CBF’s rthb derivative can be written as:

B(rb)(x, µ) = B̃(rb)(x, µ) + ∆b
1 (x) + ∆b

2 (x)µ, (35)

where ∆b
1 and ∆b

2 are the uncertain terms that arise from
the model-plant mismatch. We omit analytic expressions of
∆b

1 ,∆
b
2 for conciseness, but they can be derived similarly to

(23).
Remark 3: When the state of the system can be represented

as x = [q, q̇]T , as in most robotic systems, even for high
relative degree CBFs model uncertainty only affects the rthb
time derivative of B, since B(rb) is the only term that depends
on the plant dynamics through the vector fields f and g.

Next, we present how to estimate the uncertainty terms for
the CBF and for other dynamic constraints using RL. The
approach presented in Section III-A cannot be used here since
the CBF functions depend on the full dynamics of the system,
and not the transverse dynamics.

We build an estimator of B(rb):

B̂(rb)θ(x, µ) = B̃(rb)(x, µ) + βBθ (x) + αBθ (x)µ, (36)

and the goal of RL is to learn a policy αBθ , βBθ such that
B̂(rb)θ is as close as possible to B(rb).

In order to integrate everything in a new QP we define the
new virtual input of the CBF dynamics as

µb := B̂(rb)θ. (37)

In cases where the CBF also depends on a set of parameters
ψ ∈ Rq , then we need to define the CBF as B : Rn×q →
R. The neural-network policy will now need to take ψ as
additional inputs αBθ : Rn×q → Rm, βBθ : Rn×q → R and the
proposed estimate of the rthb time derivative of B becomes:

B̂(rb)θ(x, µ, ψ) = B̃(rb)(x, µ, ψ) + βBθ (x, ψ) + αBθ (x, ψ)µ.
(38)

B. Reinforcement Learning for Additional Control-Affine Dy-
namic Constraints

Now we study the effects of uncertainty on other linear
constraints that depend on the dynamics of the system:

Ac(x, f, g)µ+ bc(x, f, g)︸ ︷︷ ︸
=: ζ(x, µ)

≤ 0. (39)

In the presence of model mismatch we have

bc(x, f, g) = bc(x, f̃ , g̃) + ∆c
1 (x),

Ac(x, f, g) = Ac(x, f̃ , g̃) + ∆c
2 (x),

(40)

where ∆c
1 and ∆c

2 represent the uncertainty terms. We can
then define the nominal constraint

ζ̃(x, µ) = bc(x, f̃ , g̃) +Ac(x, f̃ , g̃)µ. (41)

And the real value of the constraint can be expressed as

ζ(x, µ) = ζ̃(x, µ) + ∆c
1 (x) + ∆c

2 (x)µ. (42)

We can build an estimator of the form

ζ̂θ(x, µ) = ζ̃(x, µ) + βCθ (x) + αCθ (x)µ, (43)

with a learned policy αCθ , βCθ . The goal of the RL agent is
again in this case to make the estimator ζ̂θ as close as possible
to ζ. Expanding ζ̃ we can rewrite the estimator as

ζ̂θ(x, µ) =
(
bc(x, f̃ , g̃) + βCθ (x)

)
︸ ︷︷ ︸

=: bcθ(x)

+
(
Ac(x, f̃ , g̃) + αCθ (x)

)
︸ ︷︷ ︸

=: Acθ(x)

µ.

(44)
So far, we have explained our method of constructing an

estimator of a single B(rb) and a single ζ(x, µ). This can be
applied to nb multiple CBFs and nc multiple control-affine
constraints. The final optimization problem, which includes
all the learned estimates of the uncertain terms is:

RL-CBF-CLF-QP:

µ∗θ(x) =argmin
µ, µb, d

µTµ+ p d2 (45)

s.t. ̂̇V ε,θ(η, z, µ) +
λ

ε
Vε(η) ≤ d (RL-CLF)

for i = 1 · · ·nb µb,i +Kb,i ηb,i ≥ 0 (RL-CBF)

µb,i = B̂(rb)i,θ(x, µ)

for j = 1 · · ·nc Acj,θ(x)µ+ bcj,θ(x) ≤ 0 (RL-Constraints)

V. REINFORCEMENT LEARNING-BASED FRAMEWORK

In this section, we present a unified RL framework that
can learn the uncertainty terms in the CLF, CBF, and other
dynamic constraints by building the terms specified in the
earlier sections as αVθ , α

B
θ , α

C
θ , β

V
θ , β

B
θ , β

C
θ .

A diagram of this framework is illustrated in Fig. 1. The RL
agent learns a policy, which is a combination of uncertainty
terms in CLF, CBF and other dynamic constraints. These terms
are then added to the QP constraints derived from the nominal
model, resulting in the estimates of the true plant constraints.
Using these estimates, the RL-CBF-CLF-QP optimization

problem, in which model uncertainty is addressed, is solved
point-wise in time to obtain the control input.

The reward function of the learning problem is designed
such that it minimizes each of the estimation errors. Thus, the
time-wise loss functions are defined as:

lV,θ : = ||V̇ε − ̂̇V ε,θ(x, µ)||2

lB,θ : = ||B(rb) − B̂(rb)θ(x, µ)||2

lC,θ : = ||ζ − ζ̂θ(x, µ)||2
(46)

It is important to note that the true plant’s dynamics
information is not used for computing the values of these
loss functions. We use explicit expressions for Vε, B and ζ
and compute the time-derivatives V̇ε, B(rb) using numerical
differentiation. For the CBF, it is important to note that
regardless of the value of rb we only need to do numerical
differentiation once, as follows from Remark 3.

A canonical RL problem can be formulated, with the reward
for a given state x defined as the weighted sum of the negative
loss functions in (46), in addition to a user-specific failure-case
penalty −le : Rn → R:

R(x, θ) = −wvlV,θ −
nb∑
i=1

wb,ilBi,θ −
nc∑
j=1

wc,j lCj ,θ − le(x).

(47)
The learning problem is then defined as:

max
θ

Ex0∼X0,w∼N (0,σ2)

∫ T

0

R (x(τ), θ) dτ,

s.t. ẋ = f(x) + g(x)ũ(x, µ∗θ(x) + ω),

(48)

where µ∗θ(x) is the solution of (45), X0 is the initial state
distribution, and w ∼ N (0, σ2) is white noise added to
encourage exploration. A discretized version of this problem
can be solved using conventional RL algorithms.

Remark 4: While running training experiments or simula-
tions, it is assumed that the robot operates under the true plant
dynamics. We will later show in Section VII that the trained
policy works well even when the true plant in the evaluation
differs from the plant of the training environment.

VI. APPLICATION TO BIPEDAL ROBOTS

The goal of this section is to validate that the RL-CBF-
CLF-QP framework enables safety-critical control when model
uncertainty is present. We test our method on RABBIT [7], a
planar five-link bipedal robot, walking on a discrete terrain of
stepping stones with one step preview.

A. Simulation Settings

We run two simulation scenarios with our method and offer
comparisons with the previous methods. The first simulation
consists of RABBIT simply walking on a flat terrain. We
evaluate the CLF based methods in Section III in this scenario.
This is to verify only the stabilizing capacity of our proposed
method under model uncertainty. In the second simulation, we
put the robot on a discrete terrain of randomly spaced stepping
stones (Fig. 4). The robot’s task here is to always place the

foot on the next stepping stone, while managing the stability
and not violating the contact-force constraint. The full RL-
CBF-CLF-QP is tested in this simulation scenario.

The main model uncertainty in both demonstrations is
introduced by scaling all mass and inertia parameters of each
link by a constant scale factor = 2, i.e. the nominal model’s
mass and inertia terms are half of those of the actual plant.

A single periodic walking gait trajectory is generated of-
fline by the Fast Robot Optimization and Simulation Toolkit
(FROST) [10]. The output function h(x) is defined as the
difference between the actuated joint angles and the desired
trajectory’s joint angles from the obtained periodic orbit. The
gait’s nominal step length is 0.35m. Finally, a torque saturation
of 200Nm is applied to the control inputs of all simulations,
including training and evaluation.

B. Reinforcement Learning Settings

We train our agent using a standard Deep Deterministic
Policy Gradient Algorithm (DDPG) [18]. The input for the
actor neural network is 14 observations, which is RABBIT’s
full state x, in addition to the CBF parameter ψ = lmin,k
corresponding to the minimum step length of the kth stepping
stone (Fig. 4) in the second simulation. We use two CBFs
B1 and B2 to constrain the position of the swing foot so that
it lands on the stepping stone, as shown in Fig. 4. We use
two dynamic constraints C1 and C2 which correspond to the
unilateral normal force and friction cone constraints respec-
tively. The output dimension is 25, corresponding to the 4×1
αVθ , α

B1

θ , αB2

θ , αC1

θ , αC2

θ and the 1×1 βVθ , β
B1

θ , βB2

θ , βC1

θ , βC2

θ .
Both actor and critic neural networks have two hidden layers

of widths 400 and 300. This agent is trained on the simulation
of ten walking steps per episode, and a discrete time step
Ts = 0.01sec is used. The failure cases are determined by
the robot’s pose. Training on six multiple cores of Intel(R)
Core(TM) i5-9400F CPU (2.90GHz) without the use of GPU
took about 34 seconds per episode. The final agent in use is
obtained after 110, 79 and 133 episodes for IO-RL + CLF-QP,
RL-CLF-QP and RL-CBF-CLF-QP respectively.

VII. RESULTS

During the evaluation, the robot is tested not only on the
uncertainty that is introduced in the training, but in addition
to it, two other kinds of uncertainty are also introduced. First,
the robot’s motor dynamics that restricts the rate of change of
joint torques is applied in every evaluation. The time constant
of motors used in the simulation is 0.004 seconds. Second, the
robot is also tested on an alternative kind of uncertainty, which
consists of an added weight to the torso of the robot, instead of
scaling the links masses and inertias. This weight can represent
the robot carrying a payload, and it is deliberately introduced
to evaluate the trained policy’s robustness to an unfamiliar
kind of uncertainty that it was not trained on.

A. Simulation 1: Bipedal Walking on Flat Ground

For the first simulation, we evaluate the two RL approaches
for CLF explained in Section III, and compare them with

Fig. 2: Tracking error (top), its derivative (middle), and
tangential-normal contact force ratio (bottom) of IO-RL +
CLF-QP (Sec. III-A), RL-CLF-QP (Sec. III-B), and L1-CLF-
QP [13] controllers, simulated for ten walking steps, where the
robot’s mass and inertia values are scaled by a factor of 2. Both
IO-RL + CLF-QP and RL-CLF-QP maintain the stability while
L1-CLF-QP fails. Only the RL-CLF-QP satisfies the friction
cone constraint |FT /FN | ≤ kf = 0.8.

the standard L1 Adaptive CLF-QP method of Nguyen and
Sreenath [13], which guarantees the CLF to be bounded to
a small value under model uncertainty if using a sufficiently
large adaptation gain.

As illustrated in Fig. 2, both of the proposed methods
manage to get RABBIT to stably walk for multiple steps,
while the L1 Adaptive CLF-QP controller leads to failure.
The original nominal CLF-QP, although not shown in the
figure, also fails under this scaled model uncertainty. Note
that all three methods do not have friction constraints in the
QP and could potentially violate them. In particular, the RL-
CLF-QP method succeeds in satisfying the friction constraint
(|FT /FN | ≤ kf = 0.8) for all steps, the IO-RL + CLF-QP
exceeds the limit in the first two steps, and the L1-CLF-QP
violates it for multiple steps. Therefore, IO-RL + CLF-QP
needs the inclusion of friction constraints in the QP.

Displayed in Fig. 3 is the plot of tracking error and contact
force ratio of the three controllers when, instead of the mass-
inertia-scaling, an additional torso weight of 32kg (100% of
the robot mass) is introduced. It is notable that both the
RL-CLF-QP and IO-RL + CLF-QP manage to adapt to this
uncertainty, which has not been faced during the training.
Furthermore, the RL-CLF-QP manages to stabilize the walking
gait with an additional torso weight of up to 72kg (225% of
robot mass). On the other hand, IO-RL + CLF-QP manages to
adapt to additional weights up to 53kg (166% of robot mass).

B. Simulation 2: Bipedal Walking on Stepping Stones with
One Step Preview

We now evaluate the full RL-CBF-CLF-QP method with the
safety-critical constraint of walking on stepping stones and the
inclusion of friction constraints, which are dependent on the
dynamics. In this simulation scenario, for each step the robot

Fig. 3: Tracking error (top), its derivative (middle), and contact
force ratio (bottom) of the three CLF-based controllers, simu-
lated for ten walking steps with the additional torso weight
32kg (this amounts to the weight of RABBIT, i.e. 100%
additional weight).

Fig. 4: Safety Constraint: In order to guarantee the swing foot
lands on the stepping stone, we use two CBFs to ensure the
swing foot position F is within the grey area during the entire
walking step.

faces a random placement of a stepping stone. Therefore, when
the swing foot hits the ground at the end of the step, we want
the step length to be within a specific range:

lmin,k ≤ lk ≤ lmax,k, (49)

where k indicates the step index. Two position-constraints-
based second order ECBFs parameterized by lmin,k, lmax,k
that are a sufficient condition for (49) are devised by Nguyen
and Sreenath [15]. Basically these constraints imply that the
swing foot position (F in Fig. 4) needs to stay within the grey
area. Note that lmin,k, lmax,k change for every step.

We also include contact force constraints in the RL-CBF-
CLF-QP as control-affine dynamic constraints, following the
procedure of Subsection IV-B. These are important since
the original CBF-CLF-QP violates the friction cone and the
unilateral normal force constraints repeatedly.

The robot is trained to walk on randomly spaced stepping
stones, of which lmin is sampled from a normal distribution
N (0.35m, 0.02m), truncated at 2.5σ. lmax is set as lmin +
0.05m.

Fig. 5 shows the result of the evaluation, where the robot

Fig. 5: Results of the simulation of 20 steps of walking on
stepping stones, where the robot’s mass and inertia values are
scaled by a factor of 2. (Top) History of swing foot position lf
for each step, with the stepping stone constraints lmin, lmax.
(Bottom) History of tangential-normal contact force ratio that
satisfies to stay below |FT /FN | ≤ kf = 0.8.

walks on 20 randomly spaced stepping stones. We can check
that the foot placement is always on the stepping stones. Also,
it is verified that the contact force never exceeds the friction
limit. Note that the sample distribution of lmin here is same
as during training.

Whereas our RL-CBF-CLF-QP method performs well, we
have also tested the nominal model-based CBF-CLF-QP
method on this simulation for comparison. The CBF-CLF-QP
is also solved together with the friction constraints. However,
it violates the step length safety constraints after an average
of 5.6±4.64 steps. This value is obtained from 10 random
executions of 20 steps simulation.

Finally, for the case of having an additional torso weight
applied to the original unscaled plant, RL-CBF-CLF-QP still
manages to stay within the safety and friction constraints when
the weight is in the range of [43kg, 72kg] (134-225% of robot
mass).

VIII. DISCUSSION

In Sections VI and VII, we have demonstrated that our
method can compensate well for the trained model uncertainty
and that it shows some robustness to the introduction of
additional uncertainty during evaluation. It is important to
note that our method is not restricted to mass and inertia
scaling uncertainties, rather they have been used as illustrative
examples for this paper. We have additionally tested our
framework for other uncertainties: a simplified model of joint
friction (assuming that joint friction reduces motor power by a
15%, value taken from Chevallereau et al. [7]), joint damping
(up to 1 (rad/s2)/(rad/s)) and bending of links (up to 5%
of their length) obtaining successful results.

However, a primary drawback of our approach is that we
need the designed nominal controller to not rapidly fail on the
uncertain system before RL can learn the uncertainty. This may
not always be possible depending on the level of uncertainty.

Following this same reasoning, for high levels of uncertainty
the CLF designed for the nominal model may not be a CLF
for the true plant, in which case our assumption would not
hold and the method would fail. There is ongoing research on
designing CLFs for systems with uncertain dynamics [16, 21]
that could be used to solve this issue, since our method is not
restricted to any specific CLF.

An illustration of the aforementioned limitation is that we
have also tested our framework for mass-inertia uncertainty
scales of 0.7 and 0.5. For the case of scale=0.7, our frame-
work produces a stabilizing controller that respects safety and
friction constraints for indefinitely long periods of walking,
whereas the nominal model-based controller fails after just one
step. In contrast, for the scale of 0.5, the nominal controller
fails after just 0.06 seconds, which makes the training a lot
more challenging and our framework fails.

Another limitation is that the measurements of V̇ε and
B(rb) obtained from numerical differentiation could be noisy
in experiments. However, a similar method is proved to be
effective in real experiments in Westenbroek et al. [22],
where an estimate of the output acceleration is computed by
numerical differentiation, which is used to train the RL agent.

In this paper we specifically use RL to learn the uncer-
tainty terms since in this way we can gradually enhance
the quadratic program’s feasibility and performance while
learning the safety constraints, increasingly exploring the state
space of our interest. Moreover, RL allows us to unify the
learning processes of uncertainty terms in multiple safety
constraints to a single process. However, there are several
works tackling similar problems with other learning methods,
such as supervised learning [19, 20], and deciding which is
the best approach is still an open question that might depend
on the specific properties of the platform used for testing. We
plan to address this in the future, adapting our safety-critical
control framework to other learning methods.

Finally, it must be noted that feasibility of a CBF-CLF-
QP with additional constraints, such as friction, is not guar-
anteed in general. However, using the trained RL-CBF-CLF-
QP model, we observe that the feasibility drastically improves
compared to the nominal CBF-CLF-QP.

IX. CONCLUSION

We have addressed the issue of model uncertainty in safety-
critical control with an RL-based data-driven approach. We
have presented a formal analysis of uncertainty terms in CBF
and CLF constraints, in addition to other dynamic constraints.
Our framework includes two core components: 1) an RL agent
which learns to minimize the effect of model uncertainty in
the aforementioned safety constraints, and 2) the formulation
of the RL-CBF-CLF-QP problem that solves online for the
safety-critical control input. The proposed framework is tested
on RABBIT, an underactuated nonlinear bipedal robot. We
demonstrate walking on randomly spaced stepping stones with
one step preview under high model uncertainty.

REFERENCES

[1] A. D. Ames and M. Powell. Towards the unification of
locomotion and manipulation through control lyapunov
functions and quadratic programs. In Control of Cyber-
Physical Systems, pages 219–240. Springer, 2013.

[2] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Griz-
zle. Rapidly exponentially stabilizing control lyapunov
functions and hybrid zero dynamics. IEEE Transactions
on Automatic Control, 59(4):876–891, Apr 2014.

[3] A. D. Ames, J. W. Grizzle, and P. Tabuada. Control bar-
rier function based quadratic programs with application
to adaptive cruise control. In 53rd IEEE Conference on
Decision and Control, pages 6271–6278, Dec 2014.

[4] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J.
Tomiin. Goal-driven dynamics learning via bayesian
optimization. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), pages 5168–5173, Dec
2017.

[5] F. Berkenkamp, M. Turchetta, A. Schoellig, and
A. Krause. Safe model-based reinforcement learning with
stability guarantees. In Advances in neural information
processing systems, pages 908–918, 2017.

[6] F. Castañeda, M. Wulfman, A. Agrawal, T. Westen-
broek, S. S. Sastry, C. J. Tomlin, and K. Sreenath.
Improving input-output linearizing controllers for bipedal
robots via reinforcement learning. arXiv preprint
arXiv:2004.07276, 2020.

[7] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R.
Westervelt, C. Canudas-De-Wit, and J. W. Grizzle. Rab-
bit: a testbed for advanced control theory. IEEE Control
Systems Magazine, 23(5):57–79, 2003.

[8] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kay-
nama, J. Gillula, and C. J. Tomlin. A general safety
framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):
2737–2752, July 2019.

[9] K. Galloway, K. Sreenath, A. D. Ames, and J. W. Grizzle.
Torque saturation in bipedal robotic walking through con-
trol lyapunov function-based quadratic programs. IEEE
Access, 3:323–332, 2015.

[10] A. Hereid and A. D. Ames. Frost: Fast robot optimization
and simulation toolkit. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 719–726. IEEE, 2017.

[11] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso,
V. Tsounis, V. Koltun, and M. Hutter. Learning agile and

dynamic motor skills for legged robots. Science Robotics,
4(26), 2019.

[12] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end
training of deep visuomotor policies. Journal of Machine
Learning Research, 17(1):1334–1373, Jan 2016.

[13] Q. Nguyen and K. Sreenath. L1 adaptive control for
bipedal robots with control lyapunov function based
quadratic programs. In 2015 American Control Confer-
ence (ACC), pages 862–867, July 2015.

[14] Q. Nguyen and K. Sreenath. Exponential control bar-
rier functions for enforcing high relative-degree safety-
critical constraints. In 2016 American Control Confer-
ence (ACC), pages 322–328, July 2016.

[15] Q. Nguyen and K. Sreenath. Optimal robust time-varying
safety-critical control with application to dynamic walk-
ing on moving stepping stones. In ASME Dynamic
Systems and Control Conference, 2016.

[16] S. M. Richards, F. Berkenkamp, and A. Krause. The
lyapunov neural network: Adaptive stability certification
for safe learning of dynamical systems. In Proceedings
of The 2nd Conference on Robot Learning, volume 87 of
Proceedings of Machine Learning Research, pages 466–
476, Oct 2018.

[17] S. Sastry. Nonlinear systems: analysis, stability, and
control. Vol. 10. Springer Science and Business Media,
1999.

[18] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller. Deterministic policy gradient algorithms.
In Proceedings of the 31st International Conference on
Machine Learning (ICML) - Volume 32, pages I–387–
395, 2014.

[19] A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and
A. D. Ames. Episodic learning with control lyapunov
functions for uncertain robotic systems. arXiv preprint
arXiv:1903.01577, 2019.

[20] A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames.
Learning for safety-critical control with control barrier
functions. arXiv preprint arXiv:1912.10099, 2019.

[21] J. Umlauft, L. Pöhler, and S. Hirche. An uncertainty-
based control lyapunov approach for control-affine sys-
tems modeled by gaussian process. IEEE Control Sys-
tems Letters, 2(3):483–488, 2018.

[22] T. Westenbroek, D. Fridovich-Keil, E. Mazumdar,
S. Arora, V. Prabhu, S. S. Sastry, and C. J. Tomlin.
Feedback linearization for unknown systems via rein-
forcement learning. arXiv preprint arXiv:1910.13272,
2019.

	Introduction
	Related Work
	Contributions
	Organization

	Background
	Input-Output Linearization
	Control Lyapunov Function Based Quadratic Programs
	Control Barrier Function and Control Lyapunov Function Based Quadratic Programs

	Reinforcement Learning for CLF-QP Based Controllers under Uncertain Dynamics
	Reinforcement Learning for CLF-QP Based Controllers: First Approach
	Reinforcement Learning for CLF-QP Based Controllers: Second Approach

	Reinforcement Learning for CBF-CLF-QP Based Controllers under Uncertain Dynamics
	Reinforcement Learning for CBFs
	Reinforcement Learning for Additional Control-Affine Dynamic Constraints

	Reinforcement Learning-based Framework
	Application to Bipedal Robots
	Simulation Settings
	Reinforcement Learning Settings

	Results
	Simulation 1: Bipedal Walking on Flat Ground
	Simulation 2: Bipedal Walking on Stepping Stones with One Step Preview

	Discussion
	Conclusion

