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Abstract—In this paper, we extend the concept of control
barrier functions, developed initially for continuous time systems,
to the discrete-time domain. We demonstrate safety-critical
control for nonlinear discrete-time systems with applications to
3D bipedal robot navigation. Particularly, we mathematically
analyze two different formulations of control barrier functions,
based on their continuous-time counterparts, and demonstrate
how these can be applied to discrete-time systems. We show that
the resulting formulation is a nonlinear program in contrast to
the quadratic program for continuous-time systems and under
certain conditions, the nonlinear program can be formulated as
a quadratically constrained quadratic program. Furthermore,
using the developed concept of discrete control barrier functions,
we present a novel control method to address the problem of navi-
gation of a high-dimensional bipedal robot through environments
with moving obstacles that present time-varying safety-critical
constraints.

I. INTRODUCTION

Barrier function based control techniques have recently
gained success in a wide variety continuous-time systems for
safety-critical applications such as precise footstep placement
of high degree of freedom bipedal robots [23, 22, 24, 26,
27], adaptive cruise control systems [2], multi-agent systems
[30, 4], and quadrotor systems [33, 34, 32]. In these, the
problem of stabilization with guaranteed safety is posed as
a constrained convex optimization problem, that combines
control Lyapunov and control barrier functions, and solves
for an optimal control input that maintains the states of the
system with a predefined safety set. In [28], control barrier
and control Lyapunov functions are combined through an
analytical framework.

In this paper, we extend the concept of Control Barrier
Functions (CBFs) to discrete-time dynamical systems. Par-
ticularly, we analyze the formulation of CBFs presented in
[2, 25] and show that these can be applied directly to discrete-
time systems. Interestingly, however, unlike their continuous-
time counterparts, we find that the resulting optimization
problem is not necessarily convex and is infact nonlinear. For
the formulation of exponential barrier functions presented in
[25], we show that under certain conditions, the optimization
problem is a Quadratically Constrained Quadratic Program
(QCQP).
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Fig. 1: An example scenario of a humanoid robot in a dynam-
ically changing environment. We present a navigation scheme
that can handle static/moving obstacles (represented by red
spheres), while trying to follow a desired path (represented in
green).

We then apply these concepts to address the challenge of
bipedal robot navigation in cluttered and dynamically changing
environments such as in indoor urban spaces with moving
obstacles, stairs and narrow passages. An example of such a
scenario is presented in Fig. 1. Motion planning for humanoid
robots has been commonly addressed through planning of
footstep placements in constrained environments to handle
obstacles, while operating within kinematic limits of the robot.
In [20], a vision-based foot placement method is proposed, and
implemented on the humanoid robot ASIMO, that searches
over a discrete set of actions to avoid obstacles while reaching
the goal. A real-time planning algorithm is presented in
[3] that utilizes RRTs to search over dense, pre-computed
swept volumes to avoid collision with moving 3D obstacles.
Other work related to footstep placement planning include
[19, 6, 5, 18]. In [8], a Mixed Integer Convex Optimization
Program is used to plan footstep placements for bipedal robot
walking on uneven terrains with obstacles. A comprehensive
review of motion planning for humanoid robots, including
whole body motion planning can be found in [15].

In the context of limit-cycle walkers, footstep placement
strategies based on barrier functions to traverse terrains with
discrete footholds is presented in [22, 24, 26] for 2D robots
and in [23] for high degree of freedom 3D robots. Navigation



planning of 3D dynamic walkers has been studied in [11] and
more recently in [21] by composing asymptotically stable mo-
tion primitives. Additionally, [21] provides analytical stability
guarantees.

In our work, obstacle-free regions are treated as safe sets in
the task space. Discrete-time versions of control barrier and
control Lyapunov functions, developed in this paper, are used
as high-level planners that issue an optimal heading angle at
every step to follow a desired path (obtained through path-
planning algorithms like A∗) while simultaneously keeping
the robot in the safe set. A low-level Hybrid Zero Dynamics
(HZD) based controller then executes this plan.

The contributions of this paper with respect to prior work
are as follows:
• We introduce the concept of control barrier functions

[2, 25] for nonlinear discrete-time systems and mathe-
matically show the forward invariance of sets associated
with these barrier functions (known as Safety Sets).

• Using the concept of discrete-time control barrier func-
tions developed in this paper, we design feedback con-
trollers for high degree-of-freedom bipedal robots to
follow a desired path in the task space while avoiding
time-varying unsafe regions such as moving obstacles.

• We evaluate our proposed controller through numerical
simulations for different desired paths and for static and
moving obstacles in the task space.

The rest of the paper is organized as follows. In Section
II, we introduce the concept of Control Lyapunov Functions
(CLFs) and Control Barrier Functions (CBFs) for discrete-
time dynamical systems and show the invariance of sets
associated with CBFs. We apply the concept of discrete-time
CLFs and CBFs to linear systems and show results from
numerical simulations. In Section III, we apply the concept of
Exponential CBFs developed in [25] to discrete-time systems.
We apply this concept to both linear and nonlinear systems
and show results from numerical simulations. In Section IV,
we develop an event-based controller for a high dimensional
bipedal robot for the purpose of following a desired path
while simultaneously avoiding obstacles in the the task space.
Finally, in Section V, we conclude by highlighting certain
drawbacks of our controller design and indicating directions
for future work.

II. LYAPUNOV AND BARRIER FUNCTIONS FOR
DISCRETE-TIME SYSTEMS

In this section, we take the concept of barrier functions
developed for continuous-time systems, particularly in [2, 25]
and translate it to discrete-time systems that are given by:

x(k + 1) = f(x(k)), (1)

where x(k) ∈ D ⊂ Rn represents the state of the system at
time step k ∈ Z+ and f : D → D is a continuous function.

Note: Throughout the rest of this paper, we will represent
the state of the system x(k) at time step k as xk.

We show that the same formulation of barrier functions
developed for continuous-time systems can be applied to

discrete-time systems as well. An important observation for
discrete-time systems that we will see later is that, unlike
continuous-time systems, the resulting Lyapunov and barrier
conditions are not necessarily affine in the control input.
Rather, they depend on the nature of the system as well
as the nature of the chosen Lyapunov and barrier functions
themselves. Implementing Control Lyapunov and control bar-
rier functions through optimization may result in a potentially
non-convex nonlinear program. For the formulation of CBFs
in [25], we show that the resulting optimization problem is
convex for a class of nonlinear systems and CLFs/CBFs.

A. Lyapunov Functions for Discrete-Time Systems

Consider the nonlinear discrete-time control system,

xk+1 = f (xk, uk) , (2)

where uk ∈ U ⊂ Rm is the control input at time step k and
U is the set of admissible control inputs.

Definition 1. (Discrete-Time Exponentially stabilizing Con-
trol Lyapunov Function): A map V : D → R is an Exponen-
tial Control Lyapunov Function for the discrete-time control
system (2) if there exists:

1) positive constants c1 and c2 such that

c1‖xk‖2 ≤ V (xk) ≤ c2‖xk‖2, (3)

and
2) a control input uk : D → U, ∀xk ∈ D and c3 > 0 such

that

∆V (xk, uk) + c3‖xk‖2 ≤ 0, (4)

where, ∆V (xk, uk) := V (xk+1)− V (xk) = ∆Vk.

Remark 1. The control input uk renders the origin exponen-
tially stable. See [17] for a comprehensive stability analysis
for discrete-time systems.

The concept of discrete-time control lyapunov functions has
been previously studied in [14] and applied to an automotive
engine control problem.

Similar to [9] for continuous-time systems, the CLF con-
dition (4) can be enforced through a constrained optimization
program:

u∗k = argmin
uk∈D

uTk uk

s.t. ∆V (xk, uk) + c3‖xk‖2 ≤ 0.
(5)

B. Barrier Functions for Discrete-Time Systems

We next consider a Safety Set S and establish its forward
invariance. The safety set and its boundary are respectively
defined as,

S := {x(k) ∈ D | h(x(k)) ≥ 0}, (6)
∂S := {x(k) ∈ D | h(x(k)) = 0}, (7)

for a smooth function h : Rn → R associated with a Barrier
function defined similar to [2] as below.



Definition 2. (Disrete-Time Barrier Function): A function B :
S → R is a barrier function for the set S if there exists locally
Lipschitz class K functions α1, α2 and α3 such that

1

α1(h(xk))
≤ B(xk) ≤ 1

α2(h(xk))
, (8)

∆B(xk+1, xk) := B(xk+1)−B(xk) ≤ α3(h(xk)). (9)

To prove the invariance of the set S for discrete-time
systems, we will need few other results.

Proposition 1. Consider two sequences {uk}k≥0 and {vk}k≥0

and their first differences {∆uk} and {∆vk}. If ∆uk ≤ ∆vk
and u0 ≤ v0, then uk ≤ vk ∀k ≥ 0.

Proof:

∆vk = vk+1 − vk
⇒ vk+1 = vk + ∆vk

= v0 +

k∑
i=0

∆vi

≤ u0 +

k∑
i=0

∆ui = uk+1.

Proposition 2. Consider the difference equation

∆vk = α

(
1

vk

)
, v0 ≥ 0,

where α is a class K function. Then vk ≥ 0, ∀k ∈ Z+.
Proof: The proof is straightforward and is derived from

the fact that α( 1
vk

) ≥ 0, ∀vk ≥ 0.
Since v0 ≥ 0,

⇒ 1

v0
≥ 0

⇒ α

(
1

v0

)
≥ 0

⇒ v1 = v0 + α

(
1

v0

)
≥ v0

Inductively, 0 ≤ v0 ≤ v1 ≤ · · · ≤ vk, ∀k ∈ Z+.

We now prove the invariance of the Safety Set S.

Proposition 3. (Main Result) If there exists a barrier function
B(xk) for the discrete-time system (1), then the set S is
invariant along the trajectories of (1), i.e. if x0 ∈ S then
f(xk) ∈ S, ∀k ∈ Z+.

Proof:

∆B (xk+1, xk) ≤ α3 ◦ α−1
2

(
1

B(xk)

)
=: α

(
1

B(xk)

)
.

Consider now the difference equation ∆Γ(xk) =

α
(

1
Γ(xk)

)
, with initial condition Γ(x0) ≥ 0. Let the solution

be Γ(xk).

From Proposition 2, Γ(xk) ≥ 0, ∀k ∈ Z+ and from
Proposition 1,

B(xk) ≤ Γ(xk) (10)

⇒ 1

B(xk)
≥ 1

Γ(xk)
≥ 0. (11)

From the left-hand inequality of (8) we have,

α−1
1

(
1

B(xk)

)
≤ h(xk).

We define α4 := α−1
1 , to be another class K function. From

the inequality in (11),

0 ≤ α4

(
1

B(xk)

)
≤ h(xk)

⇒ B(xk) ≥ 0⇒ xk ∈ S, ∀k ∈ Z+.

Definition 3. (Discrete-Time Control Barrier Function): A
mapping B : S → R is a control barrier function for the
discrete-time control system (2) if there exists:

1) class K functions α1 and α2 such that

1

α1 (‖xk‖∂S)
≤ B(xk) ≤ 1

α2 (‖xk‖∂S)
, (12)

and
2) a control input uk : S → U, ∀xk ∈ S and γ > 0 such

that

∆B (xk, uk)− γ

B(xk)
≤ 0. (13)

This essentially means that the control input uk maintains
the Barrier Function Bk ≥ 0,∀k ∈ Z+ given that B0 ≥ 0. In
other words, uk keeps the trajectory xk of the system within
the safe set S, given the initial state x0 lies in the S.

C. Combining Control Lyapunov and Control Barrier Func-
tions

We pose the problem of combining CLFs and CBFs as a
constrained optimization problem [2, 25]. For p ≥ 0,

u∗k = argmin
Uk

uTk uk + p · d2

Uk =

[
uk
d

]
∈ Rm+1

s.t. ∆V (xk, uk) + c3‖xk‖2 ≤ d

∆B (xk, uk)− γ

B(xk)
≤ 0,

umin ≤ uk ≤ umax.

(14)

Here d ≥ 0 is a relaxation term that allows the Lyapunov
Function to grow when the CLF and CBF constraints are
conflicting. Note that the CBF condition is always satisfied
and the trajectory of the system x(k) always remains within
the safe set S. The terms umin and umax are bounds on the
control input.



Remark 2. Note that we have kept our presentation of the
discrete-time version of the CBF-CLF controller similar to the
continuous-time case introduced in [2]. This enables readers
to intuitively see the extension of the CBF-CLF formulation
to the discrete-time domain.

Remark 3. With just the (relaxed) CLF and CBF constraints,
the above optimization problem is always feasible. In the
presence of additional constraints such as bounded control
input, the feasibility is not always guaranteed. If the nominal
trajectory satisfies these constraints, then the above optimiza-
tion problem is locally feasible in a neighborhood of the
nominal trajectory.

In the next subsection, we apply this method to find a
control input that enforces safety-critical constraints for a
discrete-time linear system.

D. Application to Linear Systems

Consider the discrete-time linear system xk+1 = Axk+Duk
with xk ∈ Rn, uk ∈ Rm, A ∈ Rn×n, D ∈ Rn×m and the safe
set S defined by the linear function

h(xk) = Hxk + F, (15)

with H ∈ R1×n and F ∈ R. We choose a quadratic
control Lyapunov function Vk = xTk Pxk with P symmetric
and positive-definite, obtained by solving the discrete-time
Lyapunov equation, ATPA− P = −Q, for a symmetric and
positive definite matrix Q. The CLF condition (4) is then given
by:

∆Vk + c3‖xk‖2 = Vk+1 − Vk + c3x
T
k xk

= xTk+1Pxk+1 − xTk Pxk + c3x
T
k xk

= uTkD
TPDuk + xTk (ATPA− P )xk+

2xTkAPDuk + c3x
T
k xk ≤ 0.

Similar to the continuous-time domain [2], we chose the
following Control Barrier Function,

Bk = B(xk) =
1

h(xk)
= (Hxk + F )

−1
.

The CBF condition (13) then becomes

∆Bk −
γ

Bk
= Bk+1 −Bk −

γ

Bk

= − H(Axk − xk +Duk)

(HAxk +HDuk + F )(Hxk + F )

− γ(Hxk + F )

≤ 0.

Remark 4. Note that, unlike for the continuous-time case,
the CLF and CBF conditions are no longer affine in the
control input uk and depend on the choice of Vk and Bk.
This implies that for general nonlinear systems with nonlinear
Lyapunov and Barrier Functions, the resulting optimization
problem (14) is not necessarily quadratic, or even convex.
Moreover, as we have seen, this is also true even for linear
systems with quadratic Lyapunov functions and with linear

functions defining the safety set. In Section III, we will use a
different formulation of the barrier function that results in a
convex optimization problem for a class of nonlinear systems.

III. DISCRETE TIME EXPONENTIAL CBF

In this section, we show the forward invariance of the safety
set using the exponential control barrier function formulation,
derived for continuous-time systems in [25], for the discrete-
time system (1). Moreover, for the linear system with the
safety set defined by a linear function, as described in Section
II-D, the resulting optimization problem (14) turns into a con-
vex, Quadratically Constrained Quadratic Program (QCQP),
unlike a general (and potentially non-convex) nonlinear pro-
gram with the formulation in (8).

We redefine the safety set, S as:

S = {xk ∈ D | B (xk) ≥ 0}, (16)

where B : D → R is called the discrete-time Exponential
Barrier Function.

Proposition 4. The set S is invariant along the trajectories of
the discrete-time system (1) if there exists a map B : S → R
such that:

1) B0 ≥ 0 and,
2) ∆Bk + γBk ≥ 0, ∀k ∈ Z, γ ≤ 1

Proof: From Proposition 1, Bk ≥ (1− γ)
k
B0 ≥ 0 ∀k ∈

Z+, γ ≤ 1. This implies that xk ∈ S, ∀k ∈ Z+.

Remark 5. Bk is always greater than (1− γ)
k
B0, an expo-

nential function in k, and hence the name Exponential Control
Barrier Function.

Definition 4. (Discrete-Time Exponential Control Barrier
Function) A map B : D → R is a Discrete-Time Exponential
Control Barrier Function if:

1) B0 ≥ 0 and,
2) there exists a control input uk ∈ Rm such that

∆B (xk, uk) + γB (xk) ≥ 0, ∀k ∈ Z+, γ ≤ 1.

A. Linear System Revisited

In this section, we apply the Discrete-Time Exponential
Barrier Function to the linear system presented in Section II-D.
Note that B (xk) is equal to h(xk) defined in (15). The CBF
condition now becomes:

∆Bk + γBk = Bk+1 + (γ − 1)Bk,

= H(Axk +Duk) + F + (1− γ)(Hxk + F )

= H (A+ (1− γ) I)xk + (2− γ)F +HDuk

≥ 0

Similar to (14), a control input uk that ensures the forward
invariance of the set S while driving the state xk as close to
the origin as possible can be obtained through a QCQP as:



u∗k = argmin
Uk

UTk P0Uk

Uk =

[
uk
d

]
∈ Rm+1

s.t. UTk P1Uk + qT1 Uk + r1 ≤ 0, (D − CLF )

UTk P2Uk + qT2 Uk + r2 ≤ 0, (D − CBF )

(17)

where,

P0 =

[
Im×m

p

]
P1 =

[
DTPD

0

]
P2 = 0m×m

q1 =
[
2xTkAPD −1

]T
q2 =

[
−HD 0

]T
r1 = xTk (ATPA− P + c3In×n)xk

r2 = −H (A+ (1− γ) I)xk − (2− γ)F.

Remark 6. Note that the above QCQP is convex since the
matrices P0, P1, P2 are all positive semi-definite.
Remark 7. As we have seen here, the exponential CBF formu-
lation results in a convex optimization problem (particularly
a QCQP) for a linear system with quadratic Lyapunov and
Barrier functions. Moreover, this is also true for nonlinear,
control affine systems with Linear and/or Quadratic Lyapunov
and Barrier functions. This can be solved efficiently using
MATLAB’s fmincon [1] using packages such as CVX [10].

B. Example

We now present simple examples of the discrete-time CBF-
CLF controllers for both linear and nonlinear control affine
systems.

Consider the linear system with A, D, H and F matrices
given by,

A =

[
1 2
2 2

]
, D =

[
1 2

]T
,

H =
[
1 0

]
, F = −1.5.

(18)

Utilizing the discrete-time CBF-CLF controller in (14), the
trajectory of the system always remains within the safe region
(see Fig.2a).

Consider now the discrete-time control affine nonlinear
system given by,[

xk+1,1

xk+1,2

]
=

[
sin (xk,1) + xk,1 + 2xk,2 + uk
sin (xk,2) + 2xk,1 + 2xk,2 + 2uk

]
. (19)

Note that linearizing the above nonlinear system yields the
same linear system as in (18).

On applying the discrete-time CBF-CLF controller to the
nonlinear system (19), we see that like in the case of the linear
system, the trajectories of the nonlinear system also remain
within the safety set (See Fig.2b).

(a) Trajectory of the linear
system in (18).

(b) Trajectory of the nonlin-
ear system in (19).

Fig. 2: Numerical simulations of the discrete-time CBF-CLF
controller applied to linear and nonlinear control affine sys-
tems. In both cases, the trajectory (in blue) of the system
remains outside the unsafe region (highlighted in red).

IV. APPLICATION TO BIPEDAL WALKING

In this section, we use the concept of the discrete-Time
control Lyapunov (D-CLF) and barrier functions (D-CBF)
to develop a stride-to-stride controller for a 21 degree of
freedom bipedal robot model to follow a given path in the task
space, while avoiding static and moving obstacles. We begin
by presenting a brief overview of the hybrid zero dynamics
framework [12, 31], which is used to generate dynamic,
stable and periodic gaits and to develop a continuous-time
controller for walking along a straight line. Similar to [7, 29],
we then present a stride-to-stride controller which can be
combined with the continuous-time controller to achieve a
desired heading angle in the task space.

Moreover, as pointed out in [21], literature on high-level
motion planning for limit-cycle walkers is limited. As we
will see, the discrete-time version of CBF-CLF controller
allows for the development of a high-level motion planner and
provides safety guarantees for the problem of path-following
and obstacle avoidance for bipedal robots.

A. Hybrid Model of Walking

We consider the particular case of Flat-footed walking
which consists of alternating phases of a continuous, single-
support (swing) phase and an instantaneous, double-support
(or impact) phase, with both feet maintained parallel to the
ground at all times. we use generalized floating base co-
ordinates [13], where, the configuration of the robot, q =
(pb, φ, qb) ∈ Q = R3 × SO(3) × Qb, is represented by the
Cartesian position, pb, and orientation, φ, of a body-fixed
frame on the robot with respect to the inertial frame and
the joint angles, qb ∈ Qb ⊂ Rn, where n = 15, is the
number of joints. Foot contact with the ground is modeled as
a holonomic constraint, ηc : Q→ R. These are held constant
during each phase i.e. ηc ≡ constant, and the associated
kinematic constraint, J(q)q̇ = ∂ηc/∂q · q̇ = 0. In particular,
the holonomic constraints here are the stance foot positions
and orientations. The switching guard surface G is defined as
the set of states x = (q, q̇)T , when the swing-foot strikes the



Fig. 3: Snapshots of a single step of walking obtained using
the the direct collocation optimization method.

ground, i.e. when the z− position of the swing foot (pzsw) is
equal to zero and the z− velocity of the swing foot is less
than zero: G = {(q, q̇) ∈ T Q | pzsw(q) = 0, ṗzsw(q) < 0}.

The post impact states, (q+, q̇+) are determined from the
impact map ∆ (q−, q̇−), given the pre-impact states, (q−, q̇−),
assuming a perfectly plastic impact. The hybrid model of the
system is then comprised of the continuous time dynamics and
the discrete dynamics:

Σ :

{
ẋ = f(x) + g(x)u, x /∈ G,
x+ = ∆(x−), x ∈ G.

(20)

We define the set N := {(q, q̇) ∈ T Q | ηc = ηc(q
+), J(q)q̇ =

0} as the set of states such that the holonomic constraints are
satisfied.

B. Hybrid Zero Dynamics (HZD) Control

a) Virtual Constraints: We define a set of outputs (also
referred to as virtual constraints), y ∈ Rm, for the control
system (20), which consists of velocity regulating and position
modulating terms. These are defined as the difference between
the actual output, ya(x) and desired output, yd(τ, α),

y := ya(x)− yd(τ, α),

where τ(q) ∈ [0, 1] is the gait phasing variable and α ∈
Rm×(b+1) is a set of Bézier Polynomial coefficients of degree
b that parametrize the desired position modulating outputs and
is obtained through a constrained nonlinear optimization pro-
gram [16]. An input-output linearizing controller ΓIO drives
y → 0 exponentially [31].

C. Stride-to-Stride Controller for Turning

The input-output linearizing controller can be combined
with a discrete-time controller based on the Poincaré map,
similar to [29, 7, 21], to follow a desired heading angle, φ.
Specifically, we define the Poincaré map P : N∩∆(G)×B 7→
N ∩∆(G)× B as:

xk+1 := P (xk, βk), (21)

where xk ∈ N ∩∆(G) ⊂ R(2n−nc+11), is the reduced set of
states on the post impact surface, ∆(G), and which satisfy the
holonomic constraints, at the kth step. βk ∈ B ⊂ Rm is a set
of parameters that modifies the outputs, y, towards the end of
a step, as follows,

y = ya(q, q̇)− yd(τ, α)− yb(τ, βk), (22)

(a) Path traversed by the robot for different de-
sired heading angles.

(b) Snapshots of the robot at different time instances for walking on a
circular path.

Fig. 4: Path followed by the robot using the event-based
controller in (24)

with yb defined as,
yb = 0, if τ = 0,

yb = βk, if τ = 1,
∂yb

∂τ = 0, if τ = {0, 1}.

The linearized Poincaré map,

δxk+1 = A δxk + B δβk, (23)

can be treated a discrete-time control system, where δxk :=
xk−x∗ and δβk = βk−β∗, with x∗ a fixed point of (21) and
β∗ = 0m×1. The matrices A and B are the Jacobians of P
with respect to xk and βk respectively. A feedback controller
Γβ : N ∩∆(G)→ B,

δβk = Γβ = −Kδ ·
(
xk − xd

(
∆φdk

))
, (24)

with Kδ obtained using the DLQR method such that the
eigenvalues of (A− BKδ) are within the unit circle. The
vector xd

(
∆φdk

)
is the fixed-point x∗ with the heading angle

replaced by the desired change in heading angle ∆φdk. Fig. 4a
shows the path traversed by the robot for different desired
heading angles while Fig. 4b shows snapshots of the robot
for walking on a circular path, both using the event-based
controller (24).

D. Path Following

Consider the desired path to be represented by pdy = ζ (px) ,
where pdy is the desired position of the robot on the ground
plane along the y-axis, px is the current position of the robot
on the ground plane along the x-axis, and ζ : R → R is a
smooth function.



Fig. 5: Foot-step positions of the robot (in blue) for a
sinusoidal path (green curve) using the discrete-time CLF
controller.

Remark 8. A desired path for the robot’s position can be
computed offline from existing path planning algorithms such
as RRTs, A∗ search, or any other method.

From (23) and (24), another system can be constructed,

pstk+1 (xk+1) =: P̃
(
pstk (xk) ,∆φdk

)
, (25)

where pstk :=
(
pstx,k, p

st
y,k

)T
is the position of the stance foot

at step k. Again, this can be linearized as,

pstk+1 = Ãpstk + B̃∆φdk, (26)

where Ã, B̃ are the Jacobian matrices of P̃ with respect to pstk
and ∆φdk respectively.

The error between the desired and the vertical position of
the stance foot is obtained as,

eyk := psty,k − ζ
(
pstx,k

)
. (27)

A discrete-time CLF controller can then be developed to
follow the given path as:

∆φ∗k = argmin
∆φk∈R

∆φTk ∆φk

s.t. ∆V (eyk,∆φk) + c3‖eyk‖
2 ≤ 0,

−∆φmax ≤ ∆φk ≤ ∆φmax.

(28)

where V is a control Lyapunov function for the discrete-time
control system in (26).

Fig.5 shows the foot-step locations of the robot for a
sinusoidal desired path.

Remark 9. Note that the above controller saturates the change
in the heading angle between ±∆φmax to avoid foot slipping
and motor torque saturation.

E. Obstacle Avoidance

The D-CLF path-following controller in (28) can be aug-
mented with a discrete-time control barrier function (D-CBF)
to avoid obstacles in the task space, while staying as close
as possible to the desired path. Particularly, we use the
exponential barrier function formulation presented in Section
III, since this leads to a convex optimization problem (QCQP)
for linear barrier and quadratic Lyapunov functions.

In the following examples, we consider the obstacles to be
ellipses with semi-major axis a, semi-minor axis b, centered at
(x0, y0) and the axes of the ellipse aligned with the horizontal

Fig. 6: Overview of the proposed controller. Dashed lines
represent signals in discrete-time.

and vertical axes of the inertial frame. The control barrier
function is then formulated as:

Bk =

(
pstx,k − x0

)2

a2
+

(
psty,k − y0

)2

b2
− 1. (29)

Note that Bk+1 is quadratic in ∆φk.

Remark 10. Although we only consider ellipses here, the
obstacles, in general, maybe any convex shape. Shapes that
are described by polynomials of degree higher than two may
lead the optimization problem in (30) to be non-convex.

The combined D-CBF-D-CLF controller can be formulated
as a QCQP:

∆φ∗k = argmin
Uk

∆φTk ∆φk + p · d2

Uk =

[
∆φk
d

]
∈ R2

s.t. ∆V (eyk,∆φk) + c3‖eyk‖
2 ≤ d,

∆B
(
pstk ,∆φk

)
+ γB

(
pstk
)
≥ 0,

∆φmink ≤ ∆φk ≤ ∆φmaxk .

(30)

Remark 11. In this paper, we look at the discrete-time version
of the CBF-CLF based control developed in [2] as the Poincaré
map based control problem for path-following and obstacle
avoidance for a bipedal robot is inherently discrete-time due
to the stride-to-stride event-based control action. Moreover,
continuous-time controllers presented in [23, 22] only allow
for within-stride control of the foot position and cannot be
applied directly to this problem.

Remark 12. The discrete-time CBF controller behaves like a
step-to-step planner and gives a minimum change in heading
angle ∆φ∗k at the beginning of each walking step that is
required to keep the robot as close as possible to the desired
path and simultaneously avoid obstacles. The required change
in heading angle ∆φ∗k is then tracked by the event-based
controller in (24). Fig. 6 shows an overview of the complete
control system.

Remark 13. We note again that the d term in (30) is required to
relax the discrete-time CLF condition (4) so that the Lyapunov
function V can grow when the the CLF and CBF conditions
are conflicting (when the obstacles are on the desired path, our
primary goal is to avoid the obstacles rather than to follow the
desired path).



(a) Straight-line desired path.

(b) Sinusoidal desired path.

Fig. 7: Foot-step positions of the robot (in blue) for different
desired trajectories (green curve) while avoiding static obsta-
cles (red circle) using the discrete-time CBF-CLF controller.

Fig. 8: Snapshots of the robot’s stance foot (in blue) at different
steps, k. Red circle represents a moving obstacle, green line
represents the desired trajectory.

Fig. 7 shows the results of our proposed controller for
following a desired path, while avoiding static obstacles. Fig.
8 shows snapshots of the robot’s foot position for the case
with moving obstacles.

Remark 14. For the case of moving obstacles, we assume that
the robot does not strike any obstacles during the swing phase.
This is a reasonable assumption since the step times are in the
order of 1s.

Remark 15. For the case of avoiding moving obstacles,
traditional path-planning algorithms such as RRTs could be
potentially inefficient.

Remark 16. The discrete time CBF-CLF controller (30) can
be concatenated with a continuous-time CBF-CLF controller
[9, 22, 26] to traverse over more complex terrains such as
stepping stones while avoiding obstacles.

V. CONCLUSION

In this paper, we took tools recently developed for safety-
critical applications of continuous-time systems and showed
mathematically how they can be extended to discrete-time sys-
tems. For discrete-time systems, however, using the definition
of barrier functions in (8) and (9) an additional complexity
arises in that the resulting optimization problem to solve for
the optimal control input is not necessarily convex. We then
used the concept of exponential control barrier functions and
showed that for nonlinear control-affine discrete-time systems,
the CLF and CBF conditions are quadratic for quadratic
Lyapunov and linear barrier functions and the resulting op-
timization problem is a convex Quadratically Constrained
Quadratic Program. Using this concept of CLFs and CBFs
for discrete-time systems, we then developed a stride-to-stride
controller for path-following and obstacle avoidance in the task
space for a high-dimensional bipedal robot.

A few shortcomings of our method are detailed next. In our
control design we make certain simplifications and assump-
tions, which include linearized models for the Poincaré map
(23) and foot-step placement (26), which results in a slightly
inaccurate estimate of footstep position. This can be addressed
either by considering the nonlinear discrete-time systems at the
expense of not having a QCQP, or by formulating enlarged
barriers that are equivalent to the amount of uncertainty in
estimating the footstep positions. We also assumed that we
have knowledge about the full state of the robot (such as its
position in the inertial frame) and the environment (such as
position of obstacles with respect to the robot). In future work,
we intend to address this by integrating inertial and vision
sensors in our control design to estimate the location of the
robot and obstacles. Another important assumption we make is
the feasibility of the optimization problem in (14) to guarantee
invariance of the safe set.

As part of future work, we seek to enable bipedal robots to
walk over uneven and discrete terrain while avoiding obstacles.
We hope to facilitate this by integrating the discrete-time CBF
controller presented here with the continuous-time controllers
presented in [22, 25, 24, 26].
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