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Abstract—This paper builds off of recent work on rapidly
exponentially stabilizing control Lyapunov functions (RES-CLF)
and control Lyapunov function based quadratic programs (CLF-
QP) for underactuated hybrid systems. The primary contribution
of this paper is developing a robust control technique for un-
deractuated hybrid systems with application to bipedal walking,
that is able to track desired trajectories with significant model
perturbation (mass and inertia increased by up to 200%.) We
evaluate our proposed control design on a model of RABBIT, a
five-link planar bipedal robot.

I. INTRODUCTION

There is tremendous interest in employing legged and
humanoid robots for dangerous missions in disaster and rescue
scenarios. This is evidenced by the ongoing grand challenge
in robotics, The DARPA Robotics Challenge (DRC). Such
time and safety critical missions require the robot to op-
erate swiftly and stably while dealing with high levels of
uncertainty and large external disturbances. In addition to
inaccurate robot models, model uncertainty can also arise from
interaction tasks. For instance, practical robotic applications
involving walking robots that lift and carry large unknown
loads, pull unknown weights, drag heavy hoses, etc., will
have to deal with significant changes to the dynamical model.
The limitation of current research, as well as the demand of
practical requirement, motivates our research on robust control
for hybrid systems in general and bipedal robots in particular.

In recent years, the method of Hybrid Zero Dynamics
(HZD), [1, 2], has been very successful in dealing with
the hybrid and underactuated dynamics of legged locomo-
tion. This method is characterized by choosing a set of
output functions, which when driven to zero, creates a lower-
dimensional time-invariant zero dynamics manifold. Stable
periodic orbits designed on this lower-dimensional system are
then also stable orbits for the full system under an appropriate
controller. Until recently, experimental implementations of the
HZD method relied on input-output linearization with PD
control to drive the system to the zero dynamics manifold, for
instance see dynamic walking [3] and running [4] on MABEL.
However, recent work on control Lyapunov function (CLF)-
based controllers has enabled effective implementations of
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Fig. 1: A practical application of walking robots is to carry
and transport large loads over diverse terrain. However, for
dynamic walking, the mass of the load needs to be known
for obtaining a perfect model for control. The proposed robust
controller is able to demonstrate dynamic walking with a large
unknown load whose mass varies at each step. Ten steps of
walking are illustrated in the stick figure with the load (yellow
circle) varying randomly between 0-60 kg, corresponding to
carrying an additional 0-188% of the mass of the robot.

stable walking, both in simulations and experiments [5]. This
flexible control design, based on Lyapunov theory, has also
enabled computing the control based on online quadratic pro-
grams (QPs), facilitating incorporating additional constraints
into the control computation. For instance, control Lyapunov
function based quadratic programs (CLF-QPs) with constraints
on torque saturation were demonstrated experimentally in
[6], and CLF-QPs were used to design a unified controller
for performing locomotion and manipulation tasks in [7].
Sufficient conditions for Lipschitz continuity of the control
produced by solving the CLF-QP problem are reported in [8].

However, a primary shortcoming of all these controllers is
that they assume perfect knowledge of the dynamic model.
The goal of this paper is to relax the requirement of perfect
knowledge of the model by allowing for bounded uncertainty,
and designing an optimal robust controller through a CLF-QP
so as to still retain stability.

Robust control is an extensively studied topic. For robust
control of linear systems, we have well established methods,
such as H∞-based robust control and linear quadratic Gaus-
sian (LQG) based robust control [9, 10]. Additionally, a robust
optimal control scheme developed by Lin [11, 12, 13] pre-
sented uncertainties in the cost functional of the optimization
based on the LQR problem.

For robust control for nonlinear systems, there are two
essential methods: input-to-state stability (ISS) and sliding
mode control (SMC). The ISS technique developed by Sontag
(see [14, 15, 16]) is used to analyze the robustness of nonlinear



systems and design a robust controller based on Control
Lyapunov Functions. In recent years, robust control of hybrid
systems based on the ISS technique has attracted attention, for
instance see [17, 18, 19]. However, ISS based controllers tend
to maintain system errors in a sufficiently small neighborhood
of the origin, and thus have a non-zero tracking error. In
contrast, sliding mode control can deal with a wide range of
uncertainties and drive the system to follow a given sliding
surface, thereby driving outputs to desired values without
any tracking errors (see [20, 21, 22]). However, the primary
disadvantage of SMC is the chattering phenomenon caused
by discrete switching for keeping the system attracted to the
sliding surface.

As a result, with robust control problems for bipedal sys-
tems that require high quality tracking, guarantees on rate
of convergence, smoothness of control inputs, and energy
efficiency, the application of ISS and SMC seem to have some
inherent limitations. There is some work on robust control
with application to bipedal robots based on Sliding Mode
Control [23, 24], and other methods [25], [26], nevertheless
these approaches just deal with a small level of uncertainty. In
[27], CLF-QPs are used to adapt to parameter uncertainty in a
bipedal robot, however the controller assumes full actuation,
requires measurement of acceleration, and appears to only
work for tracking a static pose of the robot.

The main contribution of this paper is a new Optimal Robust
Control strategy that can guarantee the exponential stability
of a periodic orbit for a hybrid, nonlinear, under-actuated
bipedal system with significant uncertainty in the model.
We assume the uncertainty is bounded and incorporate the
uncertainty bounds as additional constraints of a CLF-QP. This
results in the control inputs being optimal and guaranteeing
the best robustness of the closed-loop system. Our method
enables dealing with severe uncertainties, while also providing
a guarantee on the exponential stability of the periodic orbit
for the hybrid system, see Figure 1. The Lipschitz Continuity
of the control inputs is guaranteed through results in [28].

The rest of the paper is organized as follows. Section
II revisits rapidly exponentially stabilizing control Lyapunov
functions (RES-CLFs), and control Lyapunov function-based
quadratic programs (CLF-QPs). Section III discusses the ad-
verse effects of uncertainty in the dynamics on the CLF-QP
controllers. Section IV presents the proposed CLF-QP based
optimal robust controller. Section VI presents simulations of
the controller on a perturbed model of RABBIT, a five-link
planar bipedal robot. Finally, Section VII provides concluding
remarks.

II. RAPIDLY EXPONENTIALLY STABILIZING CONTROL
LYAPUNOV FUNCTIONS AND QUADRATIC PROGRAMS

REVISITED

In this section we start by introducing a hybrid dynamical
model that captures the dynamics of a bipedal robot. We then
review recent innovations on control Lyapunov functions for
hybrid systems and control Lyapunov function based quadratic
programs, introduced in [5] and [6] respectively.

A. Model

This paper will focus on the specific problem of walking
of bipedal robots such as RABBIT (described in [29]), which
is characterized by single-support continuous-time dynamics,
when one foot is assumed to be in contact with the ground,
and double-support discrete-time impact dynamics, when the
swing foot undergoes an instantaneous impact with the ground.
Such a hybrid model is obtained as,

H =



[
q̇

q̈

]
= f(q, q̇) + g(q, q̇)u, (q−, q̇−) /∈ S,

[
q+

q̇+

]
= ∆(q−, q̇−), (q−, q̇−) ∈ S,

(1)

where q ∈ Q is the robot’s configuration variables, u ∈ Rm
is the control inputs, representing the motor torques, (q−, q̇−)
represent the state before impact and (q+, q̇+) represent the
state after impact, S represents the switching surface when the
swing leg contacts the ground, and ∆ represents the discrete-
time impact map.

We also define output functions y ∈ Rm of the form

y(q) := H0q − yd(θ(q)), (2)

where θ(q) is a strictly monotonic function of the configuration
variable q, H0 is an appropriately-sized matrix prescribing
linear combinations of state variables to be controlled, and
yd(·) prescribes the desired evolution of these quantities.
(See [3] for details.) The method of Hybrid Zero Dynamics
(HZD) aims to drive these output functions (and their first
derivatives) to zero, thereby imposing “virtual constraints”
such that the system evolves on the lower-dimensional zero
dynamics manifold, given by

Z = {(q, q̇) ∈ TQ | y(q) = 0, Lfy(q, q̇) = 0}, (3)

where Lf denotes the Lie derivative [30]. In particular, the
dynamics of the system on Z, given by H|Z , is the underactu-
ated dynamics of the system and is forward-invariant. Periodic
motion such as walking is then a hybrid periodic orbit O in
the statespace with OZ being it’s restriction to Z. (We have
O = ι0(OZ), where ι0 : Z → TQ is the inclusion map.)
Prior results on feedback control for such underactuated hybrid
systems assume stability of OZ and design controllers that
stabilize O , see [31, 5]. These controllers are revisited next.

B. Input-output linearization

If y(q) has vector relative degree 2, then the second deriva-
tive takes the form

ÿ = L2
fy(q, q̇) + LgLfy(q, q̇)u. (4)

We can then apply one of the following control laws,

u(q, q̇) = u∗(q, q̇) + µ, (5)



or

u(q, q̇) = u∗(q, q̇) + (LgLfy(q, q̇))−1µ, (6)

where

u∗(q, q̇) := −(LgLfy(q, q̇))−1L2
fy(q, q̇). (7)

Defining transverse variables η = [y, ẏ]T , and using the IO
linearization controller above with the pre-control law (6), we
have,

ÿ = µ. (8)

Then, with the PD control

µ =
[
− 1
ε2KP − 1

εKD

]
η, (9)

the closed-loop system will become

ÿ +
1

ε
KDẏ +

1

ε2
KP y = 0, (10)

and will be exponentially stable if we choose KP and KD

such that

A =

[
0 I
−KP −KD

]
(11)

is Hurwitz. The ε factor is used to control the rate of
convergence and is needed to ensure we converge sufficiently
fast so as to account for the expansion produced by the impact
map, see [32] for more details.

For the work presented here, we will use the pre-control law
(6) that creates the closed-loop output dynamics (8). Therefore,
the input-output linearized dynamics will become

η̇ =

[
ẏ
ÿ

]
=

[
0 I
0 0

] [
y
ẏ

]
+

[
0
I

]
µ. (12)

The closed-loop dynamics in terms of the transverse variables
η and the states z ∈ Z take the form,

η̇ = f̄(η, z) + ḡ(η, z)µ, (13)
ż = p(η, z),

where f̄(η, z) = Fη and ḡ(η, z) = G, with

F =

[
0 I
0 0

]
, G =

[
0
I

]
. (14)

C. CLF-based control

An alternative control approach based on control Lyapunov
functions, introduced in [5], provides guarantees of rapid
exponential stability for the traverse variables η. In particular,
a function Vε(η) is a rapidly exponentially stabilizing control
Lyapunov function (RES-CLF) for the system (13) if there exist
positive constants c1, c2, c3 > 0 such that for all 0 < ε < 1
and all states (η, z) it holds that

c1‖η‖2 ≤ Vε(η) ≤ c2
ε2
‖η‖2, (15)

V̇ε(η, µ) +
c3
ε
Vε(η) ≤ 0. (16)

In our problem, we chose a CLF candidate as follows

Vε(η) = ηT
[

1
εI 0
0 I

]
P

[
1
εI 0
0 I

]
η =: ηTPεη, (17)

where P is the solution of the Lyapunov equation ATP +
PA = −Q (where A is given by (11) and Q is any symmetric
positive-definite matrix). The time derivative of the CLF (17)
is computed as

V̇ε(η, µ) = Lf̄Vε(η, z) + LḡVε(η, z)µ, (18)

where

Lf̄Vε(η, z) = ηT (FTPε + PεF )η,

LḡVε(η, z) = 2ηTPεG. (19)

We can thus construct the set of control µ that satisfies the
RES condition (16) as follows: We define the set,

Kε(η, z) = {µε ∈ U : ψ0,ε(η, z) + ψ1,ε(η, z)µε ≤ 0},

where,

ψ0,ε(η, z) = Lf̄Vε(η, z) +
c3
ε
Vε(η, z)

ψ1,ε(η, z) = LḡVε(η, z). (20)

Then, it can be show that for any Lipschitz continuous
feedback control law µε(η, z) ∈ Kε(η, z), it holds that

‖η(t)‖ ≤ 1

ε

√
c2
c1
e−

c3
2ε t‖η(0)‖, (21)

i.e. the rate of exponential convergence to the zero dynamics
manifold can be directly controlled with the constant ε through
c3
ε . One such controller is the pointwise min-norm control law

[33], formulated as,

Pointwise min-norm:

µε(η, z) =

{
− ψ0,ε(η,z)ψ1,ε(η,z)
ψ1,ε(η,z)Tψ1,ε(η,z)

if ψ0,ε(η, z) > 0

0 if ψ0,ε(η, z) ≤ 0

}
.

(22)

D. CLF-based Quadratic Programs

CLF-based quadratic programs were introduced in [6],
where µε was directly selected through an online quadratic
program to meet (16):

CLF-QP:

argmin
µ

µTµ

s.t. ψ0,ε(η, z) + ψ1,ε(η, z) µ ≤ 0.
(23)

The quadratic program formulation now lets us incorporate
additional constraints of the form A(q, q̇) µ ≤ b(q, q̇) into the
control problem. However, for these additional constraints to
be satisfied and to ensure feasibility of the quadratic program,



we relax the RES-CLF bound on the time-derivative of V .
We do this by requiring V̇ε(η) ≤ −c3/ε Vε(η) +d1, where d1

is typically a small positive quantity. The relaxed CLF-QP is
then written as

Relaxed CLF-QP:

argmin
µ,d1

µTµ+ p1 d
2
1

s.t. ψ0,ε(η, z) + ψ1,ε(η, z) µ ≤ d1,

A(q, q̇) µ ≤ b(q, q̇),

(24)

where p1 is a large positive number that represents the penalty
of relaxing the inequality. The formulation in (24) deals
with additional state-based inequality constraint A(q, q̇) µ ≤
b(q, q̇), that potentially cannot ensure the same type of stability
claims as those provided by [5, Thm. 2], as the relaxations in
the bound on the time-derivative of Vε result in a loss of the
RES-CLF quality for Vε. However, as we will see in this paper,
under appropriate conditions, we still retain the stability of the
hybrid periodic orbit. We will demonstrate this on the torque
saturated controller:

CLF-QP with Torque Saturation:

argmin
µ,d1

µTµ+ p1 d
2
1

s.t. ψ0,ε(η, z) + ψ1,ε(η, z) µ ≤ d1,

(LgLfy(q, q̇))−1 µ ≥ (umin − u∗),
(LgLfy(q, q̇))−1 µ ≤ (umax − u∗).

(25)

Having presented recent developments in control Lyapunov
functions and control Lyapunov functions based quadratic
programs for hybrid dynamical systems, we next consider the
effect of uncertainty in the dynamics on these controllers.

III. ADVERSE EFFECTS OF UNCERTAINTY IN DYNAMICS
ON THE CLF-QP CONTROLLER

The CLF-based approaches presented in Section II have
several interesting properties. Firstly, they provide a guarantee
on the exponential stability of the hybrid system, they are
optimal with respect to some cost function, result in the
minimum control effort, and provide means of balancing
conflicting requirements between performance and state-based
constraints. These controllers were even successfully imple-
mented on MABEL, see [5, 6]. However, a primary disad-
vantage of these controllers is that they require an accurate
dynamical model of the system. Specifically, as we will see,
even for a simpler bipedal model such as RABBIT (compared
to MABEL), uncertainty in mass and inertia properties of the
model can cause bad control quality leading to tracking errors,
and could potentially lead to walking that is unstable.

If we consider uncertainty in the dynamics and assume that
the functions, f(q, q̇), g(q, q̇) of the real dynamics (1), are
unknown, we then have to design our controller based on
nominal functions f̃(q, q̇), g̃(q, q̇). Thus, the pre-control law

(6) is reformulated as

u(q, q̇) = u∗(q, q̇) + (Lg̃Lf̃y(q, q̇))−1µ, (26)

with
u∗(q, q̇) := −(Lg̃Lf̃y(q, q̇))−1L2

f̃
y(q, q̇). (27)

Substituting u(q, q̇) from (26) into (4), the second derivative
of the output, y(q), then becomes

ÿ = µ+ ∆1 + ∆2µ, (28)

where

∆1 = L2
fy(q, q̇)− LgLfy(q, q̇)(Lg̃Lf̃y(q, q̇))−1L2

f̃
y(q, q̇),

∆2 = LgLfy(q, q̇)(Lg̃Lf̃y(q, q̇))−1 − I. (29)

Using F and G as in (14) and defining,

∆H =

[
0

∆1

]
, ∆G =

[
0

∆2

]
, (30)

the closed-loop system now takes the form

η̇ = Fη + (G+ ∆G)µ+ ∆H. (31)

For the following sections, we will abuse notation and redefine
f̄ = Fη + ∆H , ḡ = G+ ∆G.

Clearly for ∆H 6= 0, or ∆G 6= 0, the PD control (9)
does not stabilize the system dynamics. In fact for ∆H 6= 0,
the closed-loop system does not have an equilibrium, and
for ∆G 6= 0, the controller could potentially destabilize the
system. This raises the question of whether it’s possible for
controllers to account for this model uncertainty, and if so,
how do we design such a controller.

IV. CLF BASED QUADRATIC PROGRAMS WITH ROBUST
CONTROL

Having discussed the effect of model uncertainty on the
control Lyapunov function based controllers, we now develop
a controller that can guarantee tracking and stability in the
presence of bounded uncertainty. As we will see, both stability
and tracking performance (rate of convergence and errors
going to zero) are still retained for all uncertainty within a
particular bound. This is evidenced in Figure 3. For uncertainty
that exceeds the specified bound, there is graceful degradation
in performance.

A. Proposed Robust CLF-QP Controller

We start with the closed-loop model with uncertainty as
developed in (31) and develop the robust controller as follows.
With the CLF defined in (17), we have:

V̇ε = Lf̄Vε(η, z) + LḡVε(η, z)µ, (32)

where we have

Lf̄Vε(η, z) = ηT (FTPε + PεF )η + 2ηTPε∆H,

LḡVε(η, z) = 2ηTPε(G+ ∆G). (33)

Then, in order to guarantee the standard RES condition (16),
we will have to guarantee:

Ψ̃0,ε + Ψ̃1,εµ ≤ 0 (34)



where

Ψ̃0,ε = ηT (FTPε + PεF )η + 2ηTPε∆H +
c3
ε
Vε,

Ψ̃1,ε = 2ηTPε(G+ ∆G). (35)

In general, we can not satisfy the inequality (34) for all
possible unknown ∆H,∆G in (35). To address this, we
assume the uncertainty is bounded as follows

‖∆H‖ ≤ ∆Hmax, ‖∆G‖ ≤ ∆Gmax, (36)

where the first norm is a vector norm, while the second norm
is a matrix norm.

The goal of the robust control design is then to find the
control µ satisfying the RES condition (34), evaluated through
the given bounds of uncertainty in (36). Specifically, with the
assumption on bounds on the uncertainty, the RES condition
(34) will hold if the following inequalities holds

Ψ̃max
0,ε + Ψ̃p

1,εµ ≤ 0

Ψ̃max
0,ε + Ψ̃n

1,εµ ≤ 0, (37)

where

Ψ̃max
0,ε = max

(
Ψ̃n

0,ε, Ψ̃
p
0,ε

)
,

Ψ̃p
0,ε = ηT (FTPε + PεF )η + 2ηTPε

[
0
1

]
∆Hmax +

c3
ε
Vε,

Ψ̃n
0,ε = ηT (FTPε + PεF )η − 2ηTPε

[
0
1

]
∆Hmax +

c3
ε
Vε,

Ψ̃p
1,ε = 2ηTPεG(1 + ∆Gmax),

Ψ̃n
1,ε = 2ηTPεG(1−∆Gmax). (38)

We can then incorporate these inequalities into a new relaxed
CLF-QP as follows:

Robust CLF-QP:

argmin
µ,d1,d2

µTµ+ p1 d
2
1 + p2 d

2
2

s.t. ψ̃max0,ε (η, z) + ψ̃p1,ε(η, z) µ ≤ d1,

ψ̃max0,ε (η, z) + ψ̃n1,ε(η, z) µ ≤ d2,

(Lg̃Lf̃y(q, q̇))−1 µ ≥ (umin − u∗),
(Lg̃Lf̃y(q, q̇))−1 µ ≤ (umax − u∗).

(39)

Here d1, d2 are the relaxations of the inequalities in (37). The
relaxed inequality has the benefit of making the solution to the
above Quadratic program feasible and Lipschitz continuous in
a larger region (see [28]). The above robust CLF-QP enables
the controller to be robust to all model perturbations that
are within the specified bound in (36). In particular, both
stability and tracking performance (rate of convergence and
errors going to zero) are still retained for all uncertainty within
bounds. However, since we are expressing this as a relaxed
CLF-QP, we lose the strict RES condition and thus require
additional formulations to formally guarantee stability. We will
develop these formulations next.

V. SUFFICIENT CONDITIONS FOR THE STABILITY OF CLF
WITH RELAXED INEQUALITY

As we saw in the previous section, we can formulate a re-
laxed CLF-QP to be able to incorporate additional constraints
while allowing for violation of the RES-CLF condition. This
could lead to potential instability. However, here, we establish
sufficient conditions under which we still retain the exponen-
tial stability of the hybrid periodic orbit. We will then use this
result to establish stability of the robust CLF-QP.

A. Stability of the Relaxed CLF-QP Controller

The standard RES-CLF will guarantee the following in-
equality:

V̇ε +
c3
ε
Vε ≤ 0 (40)

The CLF-QP with the relaxed inequality will take the form

V̇ε +
c3
ε
Vε ≤ d1. (41)

We define:
dε(t) = V̇ε +

c3
ε
Vε (42)

and

wε(t) =

∫ t

0

dε(τ)

Vε
dτ (43)

Remark 1: First we define T εI (η, z) to be the time-to-
impact, that signifies ending time of the step. Then, intuitively,
wε(T

ε
I (η, z)) indicates a scaled version of the total violation

of the RES-CLF bound in (40) over one complete step. If
wε(T

ε
I (η, z)) ≤ 0, it implies that Vε(T εI (η, z)) is less than

or equal to what would have resulted if the RES-CLF bound
had not been violated at all. As we will see in the following
theorem, we will in fact only require wε(T εI (η, z)) to be upper
bounded by a positive constant for exponential stability.

We then have the following theorem:
Theorem 1: Let OZ be an exponentially stable periodic

orbit of the hybrid zero dynamics H |Z transverse to S ∩ Z
and the continuous dynamics (1) of H controlled by a CLF-
QP with relaxed inequality (24). Then there exists an ε > 0
and an w̄ε ≥ 0 such that for each 0 < ε < ε, if the solution
µε(η, z) of the CLF-QP (24) satisfies wε(T εI (η, z)) ≤ w̄ε, then
O = ι0(OZ) is an exponentially stable hybrid periodic orbit
of H .

Proof: See [34].

B. Stability of the Robust CLF-QP Controller

It is clear that if there is no uncertainty in the system, i.e.,
∆Hmax = ∆Gmax = 0, then the robust CLF-QP (39) is
exactly the same as the CLF-QP with torque saturation (25).
In contrast, if uncertainties are too significant, say ∆Hmax →
∞,∆Gmax →∞, it is obvious that we cannot guarantee the
stability of the hybrid system. We require the uncertainty to be
bounded. Moreover, model uncertainty further complicates the
problem, since it causes the periodic orbit to move from OZ
to ŌZ , corresponding to a periodic orbit for the new perturbed
model. To establish stability guarantees, we restate Theorem
1 for the CLF-QP with robust control as follows:



(a) RABBIT

q1

q2

q3

q4

q5

(b) Coordinate system

Fig. 2: (a) RABBIT, a planar five-link bipedal robot with
nonlinear, hybrid and underactuated dynamics. (b) The the
associated generalized coordinate system used, where q1, q2

are the relative stance and swing leg femur angles referenced
to the torso, q3, q4 are the relative stance and swing leg knee
angles, and q5 is the absolute torso angle in the world frame.

Theorem 2: Let ŌZ be an exponentially stable periodic
orbit of the hybrid zero dynamics H |Z transverse to S ∩ Z
and the continuous dynamics (1) of H controlled by the
robust CLF-QP (39). Then there exists an ε > 0; uεmin >
uKε
min, u

ε
max < uKε

max and ∆Gεmax,∆H
ε
max, such that for each

0 < ε < ε, if

‖∆Gmax‖ ≤ ‖∆Gεmax‖
‖∆Hmax‖ ≤ ‖∆Hε

max‖
umin ≤ uεmin
umax ≥ uεmax, (44)

the CLF-QP with robust control (39) will imply that Ō =
ι0(ŌZ) is an exponentially stable hybrid periodic orbit of H .

Proof: Follows from (39) and Theorem 1.

VI. SIMULATION OF ROBUST CONTROL WITH TORQUE
SATURATION

To demonstrate the effectiveness of the proposed robust
CLF-QP controller, we will conduct numerical simulations on
the model of RABBIT (shown in Figure 2), a planar five-
link bipedal robot with a torso and two legs with revolute
knees that terminate in point feet. RABBIT weighs 32 kg, has
four brushless DC actuators with harmonic drives to control
the hip and knee angles, and is connected to a rotating boom
which constrains the robot to walk in a circle, approximating
planar motion in the sagittal plane. Further description of
RABBIT and the associated mathematical model can be found
in [29, 35]. Fundamental issues in dynamic walking and
running on RABBIT can be found in [35] and [36].

For RABBIT, the stance phase is parametrized by a suitable
set of coordinates, given by q := (q1, q2, q3, q4, q5) and as
illustrated in Fig.2. Here, q1 and q2 are the femur angles
(referenced to the torso), q3 and q4 are the knee angles, and q5

is the absolute angle of the torso. Because RABBIT has point
feet (while many other legged robots have flat feet), the stance
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Fig. 3: Control Lyapunov function for the three controllers:
Min Norm, CLF-QP, Robust CLF-QP, for the cases I-III of
model perturbations. Notice that the convergence performance
(both rate of convergence and tracking error being driven to
zero) of the proposed robust CLF-QP controller remains the
same across the different model perturbations.

phase dynamics are underactuated with the system possessing
4 actuated degrees-of-freedom (DOF) and 1 underactuated
DOF.

For the purpose of evaluating the robust CLF-QP controller,
we will consider a periodic walking gait, with step speed of
0.9 m/s and step length of 0.45 m, that is developed for a
nominal model of RABBIT. The controller is also developed
for this nominal model. The simulation is then carried out
on a perturbed model of RABBIT, where the perturbation is
introduced by scaling all mass and inertia parameters of each
link by a fixed constant scale factor. The perturbed model is
unknown to the controller and will serve as an uncertainty
injected into the model. We will illustrate four separate cases
of scaling the mass and inertia:

Case I : model scale = 1
Case II : model scale = 1.5
Case III : model scale = 0.7
Case IV : model scale = 3;

For each case, we will compare the quality of three controllers

Controller A : Min-norm Controller (22)
Controller B : CLF-QP torque saturation controller (25)
Controller C : CLF-QP robust controller (39).

Note that controllers B, C enable limiting the torque to be
within a user specified bound. For a fair comparison, we
set these torque bounds slightly below the maximum torque
that controller A uses for each particular case of model
perturbation. In particular, the torque saturations were set as
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(a) Case I: model scale = 1

−2

0

2

4

y1
 (

de
g)

−5

0

5

y2
 (

de
g)

−5

0

5

y3
 (

de
g)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−5

0

5

y4
 (

de
g)

Time (s)

 

 
minnorm
CLFQP
RobustCLFQP

(b) Case II: model scale = 1.5
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(c) Case III: model scale = 0.7

Fig. 4: Tracking errors of the virtual constraints (2) based on the simulation of cases I-III of perturbed model of RABBIT with
three controllers as described in Section VI. Simulation of three walking steps are shown.
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(a) Case I: model scale = 1
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(b) Case II: model scale = 1.5
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(c) Case III: model scale = 0.7

Fig. 5: Control inputs (motor torques for stance and swing legs) based on the simulation of cases I-III of perturbed model of
RABBIT with three controllers as described in Section VI. Simulation of three walking steps are shown.

follows: 60 Nm, 80 Nm, 150 Nm, and 300 Nm for the model
scale equals to 0.7, 1, 1.5, 3 respectively.

Each of the four models are evaluated with the three sets
of controllers. The results are presented in Figures 3, 4, 5, 7.

Remark 2: From Figure 3, note that the performance (both
rate of convergence and driving the tracking error to zero) of
the proposed robust CLF-QP controller remains same for all
the considered model variations.

Remark 3: For Case I: model scale = 1, when there is
no uncertainty, we can observe from the top plot of Figure
3 and from Figure 4a that the robust CLF-QP controller
(controller C) performs better than the two other controllers.
This is because the robust controller is trying to satisfy the
convergence bound on the worst possible model perturbation.
Also notice that the CLF-QP with torque saturation (controller
B) does slightly worse than the min-norm controller (controller
A). This is due to the torque saturation that is slightly below
the maximum torque the min-norm controller uses.

For Case II: model scale = 1.5 and Case III: model scale
= 0.7, where mass and inertia were increased by 50% and
reduced by 30% respectively, we can observe from the track-

ing error plots in Figures 4b, 4c, that while the min-norm
controller (controller A) and the CLF-QP torque saturation
controller (controller B) have non-zero tracking errors during
each step, the robust CLF-QP controller (controller C) still per-
forms perfectly, with tracking errors converging to zero. Thus,
even with this level of uncertainty, the proposed robust CLF-
QP controller is able to maintain the same control performance
quality as in Case I (no model uncertainty). This is especially
evident in Figure 3, where we clearly see that the robust CLF-
QP maintains the same rate of convergence for all model
perturbations. Note that these comparisons are fair between
the controllers since we maintain the same range of control
inputs for each case of model perturbation, as evidenced in
the control input plots in Figures 5.

In Case IV: model scale = 3, where we set up a highly
significant level of uncertainty by scaling all mass and inertia
properties by a factor of 3, while the Controllers A and B fail
to sustain walking, the proposed CLF-QP controller is still
able to regulate the outputs with only a slight degradation, see
Figure 6. However, it must be noted that the underlying peri-
odic orbit OZ is unstable, and the walking slows down after
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Fig. 7: Phase portrait of the torso angle for walking simulation
in 25 steps for Cases I-III with the proposed CLF-QP robust
controller, (39). As is evident, due to the different levels of
uncertainty in the model, the walking settles to three different
periodic orbits for each of the three cases respectively. Also
notice that for a heavier robot (Case II with mass scale = 1.5),
the velocities are slower.
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Fig. 6: Tracking errors and control outputs for Case IV: model
scale = 3.

several steps to a complete stop. Nonetheless, the controller is

able to perform its task with such a large model perturbation.
Future research will be directed towards addressing what can
potentially be done for handling the effect of uncertainty for
the underactuated dynamics.

Figure 7 illustrates the simulation of 25 steps of the
proposed CLF-QP based robust controller for three cases
of uncertainty as specified in Case I-III. This illustrates the
controller converging to three periodic orbits that slightly vary
from each other. As mentioned, the uncertainty in the model
causes the underlying periodic orbit to change.

Figure 8 illustrates the hip velocity while carrying an un-
known 60 kg load on the torso, corresponding to an additional
188% mass. Figure 1 illustrates walking with the carried
unknown load randomly varying at each step.

Although the proposed robust CLF-QP based controller
appears impressive, a primary limitation of the controller is
that it always assumes the worst-case scenario with maximum
model perturbation within the specified bounds, even when
the model is known perfectly and there is no uncertainty. This
results in the controller being unnecessarily aggressive, and
may cause problems in experiments.

VII. CONCLUSION

In summary, we have presented a novel optimal robust con-
trol method that successfully handles significantly high model
uncertainty (up to 200 % increase in mass and inertia) and
respecting torque saturations, while still retaining stability of
walking for a nonlinear, hybrid, underactuated, five-link planar
bipedal robot. The proposed robust controller is formulated
based on recent advances in rapidly exponentially stabilizing
control Lyapunov functions for hybrid systems, and control
Lyapunov function based quadratic programs. Future direc-
tions involve experimental validations on an underactuated
bipedal robot and developing controllers that can estimate the
uncertainty in the model.
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