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Abstract—Differential flatness is a property which substan-
tially reduces the difficulty involved in generating dynamically
feasible trajectories for underactuated robotic systems. However,
there is a large class of robotic systems that are not differentially
flat, and an efficient method for computing dynamically feasible
trajectories does not exist. In this paper we introduce a weaker
but more general form of differential flatness, termed partial
differential flatness, which enables efficient planning of dynamic
feasible motion plans for an entire new class of systems. We
provide several examples of underactuated systems which are
not differentially flat, but are partially differentially flat. We also
extend the notion of partial differential flatness to hybrid systems.
Finally, we consider the infamous cart-pole system and provide
a concrete example of designing dynamically feasible trajectories
in the presence of obstacles.

I. INTRODUCTION

In recent years, there has been a strong need for generating
dynamically feasible motion plans for underactuated robotic
systems. Doing this for any general system is extremely
hard, involving high dimensional numerical integration and
constrained nonlinear optimizations to choose a feedforward
input such that the system trajectory evolves as desired while
enforcing some constraints. For a particular class of systems,
called differentially flat systems, this problem is relatively
easy. Briefly, a system is differentially flat if we can find
a set of outputs such that both the states and the inputs
can be determined from these outputs and their higher-order
derivatives without any integration [6]. This enables posing
the problem of finding dynamically feasible trajectories as
something as simple as a constrained quadratic program with
no integration. This produces both a dynamically feasible
trajectory that satisfies a set of constraints, and the nominal
feedforward input that causes the system to evolve along the
trajectory.

Differential flatness is a strong system property that can
be used for generating dynamically feasible trajectories for
underactuated robotic systems. In recent years, quadrotors
systems were shown to be differentially flat, leading to signifi-
cant progress in trajectory generation and control of quadrotor
systems. For instance, in [2], a flatness-based flight planning
/ replanning strategy is proposed for a quadrotor; while in
[7], differential flatness of position dynamics of quadrotor is
exploited to design a controller via feedforward linearization;
and recently in [21], the underactuated dynamical system
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comprising of multiple quadrotors cooperatively carrying a
cable-suspended load was shown to be differentially flat.

Differential flatness has also been used to generate and
track feasible trajectories in many other robotic and mechanical
systems. In [10], a point to point pose tracking controller based
on differential flatness for a steer-and-drive omnidirectional
mobile robot is presented. In [9], a differential flatness based
model predictive controller is proposed to reduce the fatal
damage of tire blowout during vehicle operation. In [22], a
differentially driven wheeled mobile robot is controlled by a
differential flatness based controller.

However, the class of systems that are differentially flat
is rather small. For instance, common underactuated systems
such as the cart-pole, segway, ballbot, satellite with moment
gyros, etc., are not differentially flat and thus we require a
better way to plan dynamically feasible trajectories. In this
paper we introduce a weaker notion of differential flatness,
termed partial differential flatness that applies to a broader
set of systems. Roughly speaking, a system is partially dif-
ferentially flat if we can find a set of outputs and a state
partition, such that the inputs and a partition of the states can
be obtained from the outputs and their higher-order derivatives
without integration. The remaining (typically low-dimensional)
partition of the state can be found through integration if the
initial condition is known. As we will see, partial differential
flatness will enable dynamically feasible trajectory generation
for a larger class of underactuated robotic systems.

We will also briefly note the similarities / differences /
relations between our notion of partial differential flatness and
relative flatness [19], defect of a nonlinear system [6], shape-
accelerated underactuated balancing systems [15], and partial
feedback linearization [20].

The rest of the paper is structured as follows. Section II
introduces the concept of partial differential flatness, Section
III presents several examples of systems that are partially
differentially flat, Section IV extends the notion of partial
differential flatness to hybrid systems, Section V performs a
numerical simulation to illustrate dynamical trajectory genera-
tion for one particular system, and finally Section VI provides
some concluding remarks and summarizes the key benefits and
limitations of partial differential flatness.

II. PARTIAL DIFFERENTIAL FLATNESS

The goal of this section is to introduce the new concept
of partially differentially flat systems, wherein a part of the
system is differentially flat and the remaining part of the
system has a special structure corresponding to that of multiple
chains of integrators. If the flat output of the system and the
initial condition at time t0 of the non-differentially flat part of
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Fig. 1: Illustration depicting various system properties and their implication relations. Lemma 1 in the paper establishes conditions
under which (static, non-collocated) partial feedback linearization implies partial differential flatness.

the system is known, then everything about the system can be
obtained. This enables dynamically feasible motion planning
for an entire class of systems that are not differentially flat.
Examples of such systems include the cart-pole, the triaxial
spacecraft attitude testbed [3], ballbot [14], cubli [12], etc.

Definition 1. Differentially-flat system [13]: A system ẋ =
f(x, u), x ∈ Rn, u ∈ Rm, is differentially flat if there
exists outputs y ∈ Rm of the form y = y(x, u, u̇, · · · , u(p)),
such that the states and the inputs can be expressed as
x = x(y, ẏ, · · · , y(q)), u = u(y, ẏ, · · · , y(q)), where p, q are
finite integers.

Definition 2. Partial Differential Flatness: A system ẋ =
f(x, u), x ∈ Rn, u ∈ Rm, is partially differentially flat

if there exists a partition of the state, x =

[
s
r

]
, s ∈

Rk, r ∈ Rn−k, k ≤ n, (called s-states and r-states) and
outputs y ∈ Rm of the form y = y(s, u, u̇, · · · , u(p)), such
that the state-partition s and input u can be expressed as
s = s(y, ẏ, · · · , y(q)), u = u(y, ẏ, · · · , y(q)) respectively,
where p, q are finite integers, and the r-state dynamics are
that of one or more chains of integrators, i.e.,

ṙ =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 . . . Al

 r +


b1
b2
...
bl

 , (1)

with Ai and bi given as

Ai =

[
0 I
0 0

]
, bi =

[
0

hi(y, ẏ, . . . , y
(q))

]
, (2)

where hi is a smooth scalar function, and the bold constants
are either row/column vectors or matrices of appropriate size.

Remark 1. For k = n, the above definition is equivalent to
differential flatness. Thus, partial differential flatness encom-
passes a larger class of systems.

Remark 2. This definition renders a part of the system differ-
entially flat, and thus the name partial differential flatness. In
particular, the s-states of the system can be obtained from the
flat output and their higher order derivatives without integra-
tion. Furthermore, we also stress that, just as in differential
flatness, no differential equations need to be integrated to
obtain the open-loop control either.

Remark 3. Clearly the entire state trajectory, x(t) can not be
determined from the flat output and its higher-order deriva-
tives. Only the s-states, s(t), can be determined. However, if
the initial condition of the r-states, r(0) is known, then the
entire state trajectory can be determined through integration
of the chain of integrators given by (1). However, note that we
are not integrating the system dynamics nor do we require the
system input for this integration. Moreover, since the dimension
of r is typically significantly smaller than the state dimension,
this integration is very efficient. In a practical setting, even if
this integration can not be performed analytically, it can be
carried out numerically (potentially as a simple trapezoidal
integration), enabling online trajectory planning.

Remark 4. For numerical trajectory optimization, integration
can be avoided all together if we plan trajectories for both
the s-states, s(t), and r-states, r(t). From the s-states and
its higher order derivatives, the control input can be obtained,
along with the functions hi in (2). Then, a (nonlinear) equality
constraint on ṙ, as in (1)-(2), can be placed on the trajectory
generation optimization. This completely avoids integration.

Remark 5. Partial differential flatness is similar to relative
flatness as defined in [19], wherein a subsystem is differentially
flat. However, unlike relative flatness, for partial differential
flatness, the entire set of inputs can be determined from the
flat outputs and its higher-order derivatives.

Remark 6. The system we have considered above can also be
seen as a special form of a nonlinear system with defect equal
to the dimension of r, where defect is as defined in [6].

Remark 7. Partial differential flatness can also be compared
with shape-accelerated underactuated balancing systems as
defined in [15], wherein the configuration space is equally
partitioned into unactuated shape variables and actuated
position variables. However, in [15], trajectory tracking is
performed by considering a position trajectory, and inverting
the non-holonomic dynamic constraint between the acceler-
ation of the position variables and the shape variables and
their higher order derivatives, under the assumption that the
shape variables are constant. This results in a shape variable
trajectory point-wise in time. In particular, this is like using a
trajectory r(t) and then inverting the scalar h map under a
quasi-static assumption to obtain the configuration variable
that is part of s. In general, unlike the notion of partial
differential flatness being presented here, the method of shape-



accelerated underactuated balancing systems does not produce
dynamically feasible trajectories.

Remark 8. It is well known that systems that are (static)
feedback linearizable are differentially flat [16]. This raises the
question of whether systems that are (static, non-collocated)
partial feedback linearizable [20], where only a part of the
system is feedback linearized, are partially differentially flat?
Although partial feedback linearization does introduce a state
partition and does create the integrator chain as in (1),
however, in general, the input may not be expressed as a
function of the flat output and its higher-order derivatives.
Lemma 1 provides conditions under which a partial feedback
linearizable system is partially differentially flat. Figure 1 sum-
marizes various implication relations between various kinds of
feedback linearization and differential flatness.

Lemma 1. Consider the n-DOF underactuated system with
unactuated states qu ∈ Rl, actuated states qa ∈ Rm, with
l +m = n, and control input τ ∈ Rm given by,[

M11 M12

M21 M22

] [
q̈u
q̈a

]
+

[
H1

H2

]
=

[
0
τ

]
. (3)

Suppose (a) there exists a partition of the actuated states
such that M12q̈a =

[
M c

12 Md
12

] [
qca qda

]T
, with qca ∈ Rl,

qda ∈ Rm−l, (b) the above system is (static, non-collocated)
partial feedback linearizable with rank(M c

12) = l, (c) qca
are cyclic variables, and (d) H1, H2 are independent of q̇ca,
then the system is partially differentially flat with flat outputs
Y =

[
qu qda

]
∈ Rm.

Proof: The above underactuated system can be (static,
collocated) partial feedback linearized as [20],

M11q̈u +H1 = −
[
M c

12 Md
12

] [vca
vda

]
,

[
q̈ca
q̈da

]
=

[
vca
vda

]
. (4)

By assumption (b), we can choose vca = −(M c
12)−1(M11vu +

H1 −Md
12)vda), to obtain the (static, non-collocated) partial

feedback linearized form,

q̈u = vu, (5)
q̈ca = −(M c

12)−1(M11vu +H1 −Md
12)vda), (6)

q̈da = vda, (7)

with the actual control input τ being a function of vu, vda.
Assumption (c) implies Mij(q), Hi(q, q̇) are independent of
qca, since ∂L(q,q̇)

∂qca
= 0, where L(q, q̇) is the Lagrangian of the

system. Assumption (d) implies H(q, q̇) is independent of q̇c.
Then, from the flat output and its higher order derivatives, we
can determine Mij , Hi; while from (5)-(7) we can determine
vu, v

d
a, thereby determining the actual control input τ ; and

finally we can determine q̈ca from (6).

Having introduced the abstract concept of partial differ-
ential flatness and providing some comments to compare /
contrast / relate with other notions such as relative flatness,
defect of a nonlinear system, shape-accelerated underactuated
balancing systems, and partial feedback linearization, we now
look to illustrate the concept through several examples. In
particular, we will demonstrate that the following underactu-
ated mechanical systems are partially differentially flat: cart-
pole, planar ballbot, triaxial attitude control test bed, and cubli

Fig. 2: Cart-Pole system from Wikipedia. Considering θ as
your flat output yields input force and all the state variables
except cart velocity and position as a function of the flat output
and its higher order derivatives.

balancing on its edge and on its corner. This is just a small
subset of such systems. Other potential systems are the segway,
3D ballbot, etc.

III. EXAMPLES

This section will present several underactuated mechanical
systems and demonstrate that they are partially differentially
flat. We will use results from this section to demonstrate
dynamically feasible trajectory generation for one particular
system in Section V.

A. Cart-Pole

The cart-pole system is a classical underactuated mechan-
ical system that serves as a benchmark example for control
design. Here, we will consider the cart-pole system and
demonstrate that it is partially differentially flat. The cart-pole
system is illustrated in Figure 2 and makes use of the variables
defined below.

Symbol
M Mass of the cart
m Mass of the pendulum bob
θ Angle made by the cart with the vertical
F Force applied on the cart
x Displacement of the cart in horizontal direction
g Magnitude of gravity vector

The equations of motion for this system are given by,[
(M +m) −mlcosθ
−mlcosθ ml2

] [
ẍ

θ̈

]
+

[
mlθ̇2sinθ

0

]
(8)

+

[
0

−mlgsinθ

]
=

[
F
0

]



If we consider Y = θ to be our flat output, from the
equations of motion we get,

F = (M +m)
(lθ̈ − g sin θ)

cos θ
−mlθ̈ cos θ

+ mlθ̇2 sin θ, (9)

ẍ =
(lθ̈ − g sin θ)

cos θ
. (10)

Thus, we get the control input F and the s-states [θ, θ̇] as
a function of our flat output and its higher order derivatives.
Furthermore, since the cart acceleration ẍ is also know from
(10), if the initial condition of the r-states, [x(0), ẋ(0)] is
known, then by integrating (10) we can find all the system
states.

B. Planar Ballbot

The Ballbot is a mobile robot that moves on a single
spherical wheel. The ballbot can be modeled as a rigid cylinder
on top of a rigid sphere. In [14], a planar model of the ballbot
is developed. The model assumes no slip between the spherical
wheel and the floor. Furthermore, we assume that there is no
friction between the rollers and the ball, which means we can
neglect the damping term in the equations of motion. The
ballbot system is illustrated in Figure 3 and makes use of the
variables defined below.

Symbol
φ Body angle
θ Angle between body and the ball
mball Mass of the ball
mbody Mass of the body
r Radius of the ball
l Distance of centre of mass from the ball
τ Input torque
Iball Moment of inertia of the ball
Ibody Moment of inertia of the body
α Iball + (mball +mbody)r2

β mbodyrl
γ Ibody +mbodyl

2

Euler Lagrange equations are used to derive the dynamic
equations of motion, which are given by,

M(q)q̈ + C(q, q̇) +G(q) =

[
τ
0

]
(11)

where q = [θ, φ]

M(q) =

[
α α+ β cosφ

α+ β cosφ α+ γ + 2β cosφ

]
, (12)

C(q, q̇) =

[
−β sinφφ̇2

−β sinφφ̇2

]
, (13)

G(q) =

[
0

−βg sinφr

]
. (14)

where α = Iball + (mball + mbody)r2, β = mbodyrl, γ =
Ibody +mbodyl

2

Fig. 3: Planar Ballbot obtained from [18]. Considering φ as
your flat output yields input torque and θ̈ as a function of
the flat output and its higher order derivatives. θ and θ̇ can
be obtained by integrating the expression for θ̈ if the initial
conditions are known.

Fig. 4: Figure obtained from [4]. Tri-Axial Attitude Control
Testbed: Considering the rotation matrix to be the flat output,
yields input τs and q̇ as functions of the flat output and its
higher order derivatives and the state variable q can be found
out by integration if the initial conditions are known.

If we choose Y = φ as our flat output, from equation (11),
we get,

θ̈ =
β sinφφ̇2 + βg sinφ

r − (α+ γ + 2β cosφ)φ̈

α+ β cosφ
, (15)

τ = β sinφφ̇2 − (α+ β cosφ)φ̈− αθ̈. (16)

Thus we get the input torque τ and the s-states [φ, φ̇]
explicitly as a function of the flat output and its higher
order derivatives and we also know θ̈ from (15). Thus with
knowledge of the initial conditions, we can integrate (15) to
get the r-states [θ, θ̇].

C. Triaxial Attitude Control Test Bed

The Triaxial Attitude Control testbed (TACT) was devel-
oped to study spacecraft multibody rotational dynamics and
control. Here we prove that the TACT is a partially differen-
tially flat system when actuated by three reaction wheels. The



TACT system is illustrated in Figure 4 and makes use of the
variables defined below.

Symbol
R Rotation matrix from base sphere frame

to inertial frame
τs Generalised forces and moments that act to

change TACT shape dynamics
ω Angular velocity of base body
Γ Reduced attitude vector

The equations of motion for the TACT actuated by three
reaction wheels is obtained from [3], and are given by,

Ṙ = Rω̂, (17)[
J B
BT M

] [
ω̇
q̈

]
=

[
Jω × ω +Bq̇ × ω +mτgρs × Γ

0

]
(18)

+

[
0
τs

]
. (19)

where,
Γ = RT e3 (20)

From equation (21),[
ω̇
q̈

]
=

[
J B
BT M

]−1 [
Jω × ω +Bq̇ × ω +mτgρs × Γ

0

]
+

[
0
τs

]
(21)

If we consider Y = R to be our flat output, from equation
(17), we get ω to be a function of our flat outputs and it’s
higher order derivatives. From equation (21) and assuming B
is invertible, we get q̇, q̈, τs as function of our flat outputs and
its higher order derivatives. Thus we obtain the input torque
τs, the s-states [R,ω, q̇] and q̈ as a function of our flat outputs
and its higher order derivatives and if we know the initial
conditions of our system, we can obtain the r-state [q] by
integrating the expression for q̇.

D. Cubli about its edge

Cubli is a 3D inverted pendulum test bed with three
reaction wheels mounted orthogonally to each other. This is
an interesting hybrid system that is capable transitioning from
being on its face to balancing on its edge, to balancing on a
corner. The Cubli system is illustrated in Figure 5 and makes
use of the variables defined below.

Symbol
φ, ψ Angles that describe position of cubli
θo Total moment of inertia in

the body fixed coordinate frame
θw Reaction wheel’s moment of inertia in

the body fixed coordinate frame
pφ, pψ Generalized momenta
mtot total mass
l distance between the pivot point to the center

of gravity of the whole system
m mtotg
T Input torque

The equations of motion are obtained from [12]. The
generalized momenta are defined by:

pφ = θoφ̇+ θwψ̇, (22)
pψ = θw(φ̇+ ψ̇). (23)

The equations of motion are given by, φ̇ṗφ
ṗψ

 =

θ̂−1o (pφ − pψ)
mg sinφ

T

 (24)

where T is the torque and θ̂o is equal to θo−θw. Differentiating
equation (22) and (23),

ṗψ = θw(φ̈+ ψ̈), (25)
ṗφ = θoφ̈+ θwψ̈. (26)

By solving equations (24),(25) and (26), the following can be
obtained,

ṗψ = T = φ̈(θw − θo) +mg sinφ (27)

Therefore if we choose our flat output to be Y = φ, the input
torque T , and the s-state [φ] have been obtained in terms of
the flat outputs and its higher order derivatives. Also from
equations (24) and (27) we know ṗφ and ṗψ . Now given the
initial conditions of the system, by integration we can find our
r-states [pψ , pφ].

E. Cubli Balancing About a Corner

The equations of motion when the cubli is balancing about
a corner as shown in the Figure 5c are given in [12], and they
utilize the following symbols.

Symbol
ωw Reaction wheel angular velocity
ωh Body angular velocity
−→g Gravity vector
pωh , pωw Generalized momenta
θo Total moment of inertia of the

full cubli about the pivot point
θw Moment of inertia of the reaction wheels

in the body fixed frame
Position vector from the pivot point

−→m to the center of gravity multiplied by
the total mass

T Input torque

The equations of motion are given as,

−̇→g = 0, (28)
−̇→p ωh = −→m ×−→g , (29)
ṗωw = T, (30)

where,

pωh =: θoωh + θwωw, (31)
pωw =: θw(ωh + ωw). (32)

If we consider our flat output to be Y = −→m in the world
frame, then we can obtain our input torque T from equations



(a) (b) (c) (d) (e)

Fig. 5: Figures obtained from [12, 8]. (a) The Cubli experimental test bed. (b) Cubli balancing about an edge. In this configuration
it is effectively a reaction wheel based 1D inverted pendulum. Considering φ as your flat output yields input torque and derivatives
of generalised momenta as functions of the flat output and its higher order derivatives. (c) Cubli balancing about a point. Bei
and Iei denote the principle axis of the body fixed frame B and inertial frame I. The pivot point O is the common origin of
coordinate frames I and B. (d) The cubli jumping up to balance on its edge. (e) The cubli goes from balancing on an edge to
balancing on a corner.

Cart-pole Planar TACT Cubli about Cubli about
Ballbot an Edge a Corner

Variable θ, x φ, θ R, q φ, pφ, pψ
−→m, pwh , pww

No. of Degrees 2 2 6 2 6
of Freedom
No. of Actuators 1 1 3 1 3
Partially Flat θ φ R φ −→m
output
r x, ẋ θ, θ̇ q pφ, pψ pwh , pww

TABLE I: Summary of the presented examples of partially
differentially flat system and their various properties.

(29),(30) and substituting the time-derivatives of equations
(31),(32) as follows,

T = ṗωw = m̂g − (θo − θw)ω̇h (33)

Since from −→m, we can calculate ω̇h, we can get ṗωw and hence
we can obtain our input torque as a function of the flat outputs
and its higher order derivatives. We also know −̇→p wh , ṗww from
equations (29) and (30). Now given the initial conditions of the
system the r-states [−→p wh , pww ] can be obtained by integration.

IV. HYBRID SYSTEMS

In the previous section, we presented several examples of
underactuated mechanical systems and showed that they were
partially differentially flat, as summarized in Table I. Our goal
in this section is to extend the concept of partial differential
flatness to hybrid systems, so as to plan dynamically feasible
trajectories that span multiple dynamical hybrid modes. We
will also provide a concrete example of an underactuated
hybrid system and show that it is a partially differentially-flat
hybrid system.

Definition 3. A partially differentially-flat hybrid system is a
hybrid system where each subsystem is partially differentially-
flat, with the guards being functions of the flat outputs, their
higher-order derivatives, and the r-states (as in Definition 2),
and with the transition maps being sufficiently smooth.

Remark 9. In contrast to differentially-flat hybrid systems,
as defined in [21], for partially differentially-flat hybrid sys-

Σf Σe Σc

∆f→e

∆e→f

∆e→c

∆c→e

Fig. 6: Transition between the different dynamical modes of
Cubli. The subscripts f, e, c represent face, edge and corner
respectively

tems, the guards may not be determined only from the flat
outputs and their higher-order derivatives. Instead, r-states
would need to be known, which can only be obtained through
integration. Moreover, the transition maps need not map from
the flat output space of one subsystem to the flat output space
of the subsequent subsystem either.

For the purposes of a concrete illustration of this concept,
we will consider the Cubli system which can transition from
being on its face, to balancing on its edge, and then to
balancing on its corner, with the dynamics switching at the
transition (see Figure 5d and 5e), making it a hybrid system.
The transitions occurs when a brake is applied to the internal
moment gyros spinning at high speed causing a transfer
of angular momentum from the gyros to the cube due to
conservation of angular momentum. For the purpose of this
discussion, we will assume the brake is applied when the
moment gyros reach a particular angular momentum.

The three distinct dynamical subsystems or modes of Cubli
are: resting on a face (Σf ), balancing on an edge (Σe), and
balancing on a corner (Σc). This is illustrated in Figure 6 with
appropriate transition maps between the various subsystems.
We can summarize a single set of equations of motion that are
valid for all three cases with the initial conditions ensuring
that the system maintains the constrains of each mode. For all
three subsystems, the state of the system can be defined as
x = [θω g pωh pωω ] ∈ X , where θω ∈ R3 represents the
angles of the three moment wheels, and the other variables are
as defined in Section III-E. Then, the equations of motion can



be written as (see (24), (28)-(30)),

Σf,e,c :
d

dt

 θω−→g
−→p ωh
pωω

 =

 ωω
0

−→m ×−→g
T

 , (34)

with the guard surfaces defined as

Sf→e = {x ∈ X | pωω · e1 = c1}, (35)
Se→c = {x ∈ X | pωω · (e1 + e2) = c2}. (36)

This indicates that the face to edge balancing transition occurs
when the angular momentum of one of the internal gyros
reaches c1, and the edge to corner transition occurs when the
sum of angular momentum of the remaining moment gyros
reaches c2. The transition maps are defined as follows:

∆f→e : p+ωω · e1 = 0, p+ωh · e1 = p−ωω · e1 (37)
∆e→c : p+ωω · e2 = 0, p+ωω · e3 = 0,

p+ωh · e2 = p−ωω · e2, p+ωh · e3 = p−ωω · e3,(38)

where the subscripts +,− indicate the values of the variables
before and after transition respectively.

The flat outputs for the three subsystems are (the edge and
corner is shown in the previous section),

Yf = {θω · e1, θω · e2, θω · e3}, (39)
Ye = {ψ, θω · e2, θω · e3}, (40)
Yc = {m}. (41)

Now, starting with the Cubli resting on its face (g =
0, pωω = 0, we can plan trajectories for the flat output Yf
and know exactly when the system transitions to balancing
on its edge and when the system transitions to balancing on
its face, and so on. This is because the Cubli is trivially
partially differentially flat (its actually differentially flat) when
its resting on its face. Then Yf (t) lets us determine when the
state intersects the guard surface Sf→e. Then, the transition
map ∆f→e gives us the initial post transition state. Further,
planning a trajectory for Ye(t) and the initial state gives us the
full state as a function of time, and we can once again exactly
plan when the transition to balancing on its edge occurs. Thus,
the Cubli system is a partially differentially flat hybrid system.

V. SIMULATION RESULTS

Having demonstrated that several underactuated mechani-
cal systems are partially differentially flat and even one which
is a partially differentially flat hybrid system, we now illustrate
an example of using the partial differential flatness property
to generate dynamically feasible trajectories. In particular, we
will consider the cart-pole system, and use the fact that it is
a partially differentially flat system to generate dynamically
feasible trajectories around obstacles.

The problem statement is to generate dynamically feasibly
trajectories that take a cart-pole system from position A at rest
to position B at rest while ensuring that the pendulum avoids
an obstacle (see Figure 7).

Fig. 7: Cart Pole Planning problem. The objective is to plan
a dynamically feasible trajectory from Position A to position
B which is 5m away which avoids collision of the pendulum
bob with the wall.

Fig. 9: Trajectory of the pendulum angle (in degrees): This
corresponds to the stick figure plot of the pendulum and cart
shown in Figure 8.

We solve this problem by posing it as a nonlinear con-
strained optimization problem. We will utilize the fact that
the Cart-Pole system is a partially differentially flat system
with θ being the flat output. So, any planned trajectory in the
flat output space will yield corresponding trajectories for the
control input and s-states of the system. Furthermore, if the
initial condition of the r-states of the system is known, which
is the case here, we can find the entire state trajectory.

We parametrize the flat output θ(t) using Legendre poly-
nomials as follows,

θ(t) =

6∑
k=1

αiBi(t) (42)

where, αi is the coefficient of the ith Legendre polynomial and
Bi(t) is the ith Legendre polynomial. The starting and ending
configurations are posed as equality constraints, and the object
collision avoidance is posed by having the pendulum cart pass
through a set point, which would ensure the cart leans enough
to avoid the wall, and another constraint to ensure once the
cart crosses the wall, it doesnt return. The cost function is the



(a) θ=0◦ (b) θ=30◦

(c) θ=60◦ (d) θ=−23◦

Fig. 8: Stick figure of the pendulum cart trajectory obtained for different initial pendulum lean angles. The color of the snapshots
transition from red (initial configuration) to blue (final configuration), while the density is inversely proportional to the speed of
the pendulum cart. As is clearly visible the pendulum bob avoids the wall.

L2 norm of the force applied on the cart,

J =

T∫
0

|F (t)|2 dt. (43)

Thus, the flat output gives us the control input, F (t), the
s-states, [θ(t), θ̇(t)], and then using the initial condition for the
r-states, r(0) = [x(0), ẋ(0)] = [0, 0], numerical integration of
(10) provides the full state trajectory which the optimization
uses to compute an optimal solution that meets the constraints.

The resulting optimal trajectory of the pendulum bob on a
cart is shown as stick figure plots in Figure 8 for various initial
pendlum lean angles. It can be seen that the pendulum bob
clearly avoids collision with the obstacle. The corresponding
trajectory of the pendulum angle θ is shown in Figure 9, with
the pendulum swinging almost 60 degrees on either side.

VI. CONCLUSION

We have introduced the notion of partial differential flat-
ness, that enables efficient generation of dynamically feasible
trajectories for a large class of underactuated systems that are
not differentially flat. Several underactuated systems, such as
the cart-pole, planar ballbot, tri-axial satellite attitude control
testbed, Cubli balancing about both its edge and corner were
shown to be partially differentially flat. We have also extended
the notion of partial differential flatness to hybrid systems
enabling dynamically feasible trajectory generation that spans
multiple hybrid modes. We have illustrated a simple example
of designing dynamically feasible trajectories in the presence
of obstacles for the cart-pole system. In the near future, we

intend to demonstrate online planning of dynamically feasible
trajectories for more complex systems in experiments.

The key benefit of partial differential flatness is in ex-
tending the concept and advantages of differential flatness
to systems that are not differentially flat. It offers a way to
analytically compute the input and a subset of the states using
the flat outputs. Although integration is required to compute
the remaining subset of the flat outputs, the system dynamics
do not have to be integrated. Moreover, a differential constraint
can be posed directly in the trajectory optimization process to
completely avoid integration. Since partial differential flatness
reduces the dimension of the integration and essentially the
trajectory optimization, it has the potential of being faster. A
more thorough theoretical and / or numerical analysis needs
to be done to clearly establish this.

Partial differential flatness inherits all the limitations of
differential flatness. These include not being robust and re-
quiring a perfect model, requiring several time-derivatives
of variables which makes physical implementation hard, not
being a generally applicable method since not all systems are
partially differentially flat, and non existence of a constructive
method to find the flat outputs. In addition, partial differential
flatness does not provide the complete state trajectory as a
function of time without integration. Moreover, in most cases,
the trajectory optimization is still a constrained nonlinear
program, albeit of reduced dimension.
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