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Abstract— A range-free approach for adaptive localization of 
un-localized sensor nodes employing a mobile robot with GPS is 
detailed. A mobile robot navigates through the sensor 
deployment area broadcasting its positional estimate and the 
uncertainty in its estimate. Distributed computationally-
inexpensive, discrete-time Kalman Filters, implemented on each 
static sensor node, fuse information obtained over time from the 
robot to decrease the uncertainty in each node’s location 
estimate. On the other hand, due to dead reckoning and other 
systematic errors, the robot loses positional accuracy over time. 
Updates from GPS and from the localized sensor nodes serve in 
improving the localization uncertainty of the robot. A 
Continuous-Discrete Extended Kalman Filter (CD EKF) running 
on the mobile robot fuses information from multiple distinct 
sources (GPS, various sensors nodes) for robot navigation. This 
two-part procedure achieves simultaneous localization of the 
sensor nodes and the mobile robot.  

Keywords— Adaptive Localization, Continuous-Discrete 
Extended Kalman Filter (CD EKF), Simultaneous Localization, 
Sensor Networks. 

I.  INTRODUCTION 
Location information is imperative for applications in both 

wireless sensor networks and mobile robotics. Many sensor 
network applications, such as tracking targets, environmental 
monitoring, geo-spatial packet routing, require that the sensor 
nodes know their locations. The large scale of deployment in 
sensor networks makes careful placement or uniform 
distribution of sensor nodes impractical. The requirement of the 
sensors to be small, un-tethered, low energy consuming, cheap, 
etc., make the sensors resource-constrained [1]. Localization is 
a challenging problem and yet crucial for many applications. 

Approaches to the problem of localization are varied. A 
detailed introduction to localization in sensor networks is 
presented in [2]. GPS [3] solves the problem trivially, but 
equipping the sensors with the required hardware may be 
impractical. A small section of active beacons can be placed in 
the sensor network and other sensors can derive their location 
from these anchor nodes [4], [5]. Cooperative localization 
methods have been developed for relative localization [6], [7]. 
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Other approaches involve RSSI [8], TOA [9], [10], AOA [11], 
and Signal Pattern Matching [3]. 

For localization with no additional hardware on the sensor 
node, the geometric constraints of radio connectivity are 
exploited. Some authors suggest using a mobile robot (whose 
position is known) to localize the sensors. However, the 
position of the mobile robot may be hard to determine. 
LaSLAT [12] uses a Bayesian filter to localize the sensor 
network and track the mobile robot. In [13], a particle filter is 
employed to localize elements of the network based on 
observation of other elements of the network. In [14], a mobile 
robotic sensor localized the network based on simple 
intersections of bounding boxes. In [15], geometric constraints 
based on both radio connectivity and sensing of a moving 
beacon localize the sensor network. The Kalman filter has been 
used in dead-reckoning for mobile robots but its full potential 
in localization of WSN has not heretofore been fully explored. 
In [16], an extended Kalman filter is used for localization and 
tracking of a target. The Kalman filter was used in [17] for 
active beacon and mobile AUV localization and in [18] for 
scheduling of sensors for target tracking. SLAM [19] and CML 
[20] employ Kalman filters for concurrent mapping and mobile 
robot localization, which can be considered similar to our work 
wherein the geometric constraints introduced due to radio 
connectivity of the static sensors play the role of features. In 
this paper we use the full capabilities of the Kalman filter in the 
general WSN localization problem. 

Our work exploits geometric constrains based on radio 
connectivity such that range information is not needed. A 
mobile robot initially sweeps the network, and broadcasts from 
the robot are used to localize the sensor nodes. 
Computationally inexpensive Kalman filters implemented on 
the sensors fuse the information. On the other hand, as time 
passes, the mobile robot gradually loses its own localization 
information. We present an algorithm that uses updates from 
the better localized sensors along with GPS updates, when they 
occur, to correct this problem. A continuous-discrete extended 
Kalman filter running on the robot estimates the robot state 
continuously and fuses the discrete measurement updates 
available from the more localized sensors and infrequent GPS. 

II. SENSOR LOCALIZATION USING MOBILE ROBOT 
In this section we provide an algorithm that runs on each 

Unattended Ground Sensor (UGS) node that allows it to update 



         

its position estimate, and the uncertainty in that estimate, as a 
mobile robot with known position moves through the network. 
The algorithm is range-free in that only the communication 
range need be known, not the range from the node to the 
mobile robot. It is assumed in this section that the mobile 
robot’s position is exactly known. 

A. Scenario 
A deployed wireless sensor network comprised of static 

unattended ground sensors is to be absolutely localized by a 
mobile robot. The robot broadcasts consist of its own position 
and its position uncertainty estimates. Broadcasts can only be 
heard within the robot’s communication range. The static 
sensors, on receiving these broadcasts, combine the new 
information to update their current location estimate. A simple 
discrete-time Kalman filter running on each static sensor node 
serves to fuse information and update its location and 
uncertainty estimates. 

This is a formalized rigorous approach employing Kalman 
filters for localization, in contrast to bounding boxes [14], [15], 
which are harder to update and keep track of. The developed 
algorithm is simple and can efficiently be implemented on the 
sensor nodes with a small computing power. The Kalman filter 
is simply an optimal recursive data processing algorithm [21] 
and has been subject of extensive research and applications, 
particularly in the area of autonomous navigation. 

B. Robot Control 
A classical three-wheeled tricycle robot model is employed 

in all simulations. This configuration uses a controlled steering 
angle and drive speed to navigate to a desired position as 
illustrated in Fig. 1. 

Figure 1.  Tricycle Robot Configuration. 

The states and kinematics of the robot are given by, 
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with ( )yx,  the position of the robot, α  the steering angle, and 
φ  the heading angle. The control inputs are the speed tv and 
the steering rate αω . 

A simple Proportional-Derivative goal-based controller 
with a temporally varying goal is implemented to navigate the 
robot along a desired trajectory. For more details, see [22]. 

This dynamical setup allows more accurate simulations 
than the simple moving-point model usually assumed in sensor 
network localization papers. 

C. Sensor Node Kalman Filter 
Each static sensor node maintains its own position and 

uncertainty estimates. The mobile robot broadcasts contain the 
robot’s position estimate and uncertainty estimate. The 
broadcasts can only be heard within the robot’s communication 
range. A discrete-time Kalman filter running on each sensor 
node combines this information to optimally update the node’s 
position estimate and its uncertainty. For more details on the 
derivation of the Kalman filter equations, interested readers are 
referred to [26]. 

 The Kalman filter is a set of mathematical equations 
running in a software algorithm that provide an efficient 
computational means to estimate the state of a process. The 
state of sensor i at discrete time instant k  is 

 [ ]Tiii
k yxx =  (3) 

The sensor state is governed by the linear stochastic 
difference equation 
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with measurements given by 
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The random variables i
kw  and i

kv  represent process and 
measurement noises given by 
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where ( )Pm,  denotes a Gaussian noise process with mean m  
and covariance P . 

For stationary nodes, the system matrices are given by 
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The a priori position estimates prior to measurement 
updates at time 1+k  are given by the time update equations, 
which give the effects of time on sensor localization: 
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In these equations, i
kx̂  represents the position estimate of node 

i  at time k , while the covariance matrix i
kP  gives the 

corresponding uncertainty in the position estimate. 

The a posteriori estimates given a position measurement 

kz  are given by the measurement update equations, which 
gives the effect of the robot broadcast on sensor localization: 
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The covariance matrices i
kQ  and kR  are design parameters 

chosen by the engineer. With a zero i
kQ , the uncertainty in 

location of the sensor i remains constant with time. With an 
extremely small i

kQ , the localization uncertainty slowly drifts 
with time. This means that the current measurements from the 
mobile robot are given more weight than the current node 
position estimate, which avoids the node’s becoming too 
certain of a position that may be incorrect. 

When the robot is in range and the sensor hears the 
broadcast position of the robot, the measurement update 
equation is used to combine the new information to improve 
sensor node position and uncertainty estimates. In this section, 
the robot is assumed to be perfectly localized. Thus when a 
sensor hears a broadcast, it could only be within the 
communication range of the robot whose position is broadcast. 
The measurement uncertainty matrix kR  reflects this, and is 
chosen as 
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where Botσ  is the uncertainty introduced due to BotRange , the 
communication range of the robot. We assume the design 
parameter 3=constσ , to include 70% of the communication 
range, BotRange , of the robot. (Gaussian uncertainties are 
assumed.) Through this selection of kR  the Kalman filter 
automatically takes care of the range of the robot within which 
it hears broadcasts. 

Table I shows the position update algorithm that runs on 
each node, which is very simple and easy to implement. It 
consists of four equations, two for the time update, and two for 
the measurement update. This algorithm automatically provides 
uncertainty estimates through the computation of the error 
covariance i

kP , which is equivalent to the bounding box 
information provided by the algorithm in [14]. 

TABLE I.  STATIC SENSOR NODE LOCALIZATION ALGORITHM 

1. At each discrete time instant, 
2. if robot broadcast received by sensor 
3. then 
4.   Update sensor state and uncertainty estimates using KF 

measurement equations (10,11). 
5. else 
6.   Propagate estimates using time update equations (8,9). 
7. end if 

 

D. Simulation Results 
Extensive simulations have been performed to verify the 

effectiveness of the proposed algorithm. We also studied the 
effects of initial sweep paths and the robot broadcast interval 
on sensor localization. The mobile robot is navigated along the 
desired sweep path and periodic location information is 
broadcast. On receiving a broadcast, sensors update their 
location and uncertainty estimates. This is a range-free 
procedure that relies on the limited communication range of the 
robot, and as such, the sensor locations are updated based on 
the position of the robot. That is, the updated sensor position 
estimate is a weighted combination of its current location 
estimate and the current location of the robot. Thus sensors 
hearing only one broadcast will have an estimated location that 
is projected onto the path of the robot. 

Fig. 2 shows the initial sinusoidal sweep path and the 
position and range of the broadcast with a broadcast interval of 
5 discrete time instants. The ‘ x ’ represent the actual positions 
of the static sensors that are to be localized. The sensor nodes 
do not initially know their actual positions. The nodes all have 
initial position estimates being the centroid of the deployment 
area, and an initial uncertainty of infinity, corresponding to 
complete lack of knowledge of their positions. 

Fig. 3 illustrates the localized sensors after the robot has 
made its sweep through the network. The ‘ • ’ represent the 
final position estimates of the nodes. To remain consistent with 
earlier work involving bounding boxes (e.g. [14]), the 
uncertainty of the sensors in their position estimates has been 
depicted as rectangles representing σ3  of the uncertainty 
distribution, assuming Gaussian uncertainties. Note that the 
sensors always outside the communication range of the mobile 



         

robot do not become localized (i.e. they have no bounding box, 
which denotes infinite position uncertainty). The sensors that 
receive more than one broadcast from the mobile robot end up 
being better localized, since each position update reduces the 
position uncertainty. 

The effectiveness of the algorithm is demonstrated by the 
fact that in every case, the actual location (marked by an ‘ x ’) 
is within the uncertainty bound of the estimated position 
(marked by a ‘• ’). 

The localization error of the sensors, computed as the 
Euclidean distance between true and estimated positions, is 
depicted in the vertical axis of Fig. 4. Sensors near the path of 
the mobile robot that have received multiple broadcasts have 
smaller errors. 

The same simulation was rerun with different mobile robot 
broadcast intervals, and the effect of broadcast interval on the 
average localization error of the network is depicted in Fig. 5. 
Generally, as broadcast interval decreases, the average error 
decreases. 

Figure 2.   Initial sinusoidal sweep path with broadcast locations and range of 
broadcast. 

Figure 3.  Localized sensors, real positions (denoted by ‘x’) and estimated 
positions (denoted by ‘ • ’), are illustrated after initial mobile robot sweep of 

the deployment area. Uncertainty rectangles have been illustrated to depict the 
uncertainty of the sensor in its position estimate. 

Figure 4.   Localization error, computed as the Euclidean distance between 
real and estimated positions, of sensors after initial sweep of the deployment 

area. 

Figure 5.   Effect of broadcast interval on average localization error. 

III. SIMULTANEOUS MOBILE ROBOT AND SENSOR 
LOCALIZATION 

In this section we consider the realistic case where the 
mobile robot’s position is not exactly known. We provide an 
algorithm which runs on the mobile robot that fuses position 
information from GPS, when it is available, and from the 
already-localized sensor nodes. This allows the robot to update 
its position estimate as well as the uncertainty estimate. When 
this algorithm is run simultaneously with the algorithm of the 
previous section running on each sensor node, the result is 
simultaneous mobile robot and sensor localization. A 
procedure is given to avoid detrimental recursive feedback 
between the two algorithms. 



         

A. Mobile Robot Localization 
When localizing the sensor nodes in the previous section, 

the robot was assumed to know its position exactly at all 
instants of time. However, as the robot navigates by dead 
reckoning, or due to steering inaccuracies, its localization 
increasingly deteriorates as time passes. Location updates from 
the GPS, when they occur, and from stationary sensor nodes 
that have already been localized can be used to improve the 
localization estimate of the robot. 

Some sensor nodes are localized more finely due to more 
numerous updates they have previously received from the 
mobile robot. These sensors can be employed to localize the 
robot when its position information deteriorates. This is 
accomplished by having each sensor node make a transmission 
that contains the node’s position estimate and uncertainty. This 
is received by the robot when it is in range. The sensors 
transmit at fixed intervals, with each sensor having a different 
random interval. This ensures that the updates between mobile 
robot and sensor nodes are staggered in time and that no 
recursive feedback occurs. 

A continuous-discrete extended Kalman filter running on 
the mobile robot is used to simulate the robot and update the 
states using measurements from the GPS system and the better-
localized UGSs. Extended Kalman filters have been used for 
local and infrequent global senor data fusion [23], for mobile 
robot localization [24], and in navigation of autonomous 
vehicles [25]. For information about the Extended Kalman 
filter see [26]. 

The continuous-time system model of the robot is given by 
(2) as 

 ( ) ( )wtGtuXaX += ,,  (14) 

The sampled discrete-time measurement model of the robot is 
given by 
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In the extended Kalman filter, the effect of time on the 
robot states is given by the time update equation 
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In [27], the deleterious effects of time passing are shown in 
terms of increasing position uncertainty and decreasing belief. 
These effects are formally captured in a rigorous manner by the 
time-update equations (18)-(19), which shows how uncertainty 
increases due to dead reckoning and steering uncertainties. 

The effects of the GPS navigation updates, when they are 
received, are given by the measurement update equation 
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The effects of the updates based on localized sensor nodes, 
when they are received, are given by the UGS measurement 
update equation 
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The measurement uncertainty matrices gpsR  and ugsR  
represent the uncertainty in the GPS and the uncertainty in the 
update offered by UGS i  respectively. The uncertainty in the 
sensor update, ugsR , is a combination of the uncertainty of the 
sensor position and the uncertainty due to the communication 
range of the sensor. These uncertainties combine in quadrature 
as 
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where iσ  is the uncertainty introduced due to iRange , the 
communication range of sensor i . 

Similarly, the measurement noise covariance of the sensor, 
(12), has to be modified to include the uncertainty in the 
robot’s position. The robot is no longer absolutely localized 
with zero uncertainty. The uncertainty in robot localization and 
the uncertainty due to robot communication range combine in 
quadrature, modifying (12) as 



         

 




 +=

22 BotBot
XYk PR σ  (23) 

Bot
XYP  is the partial error covariance of the robot which effects 

only the position of the robot, and Botσ  is as defined earlier. 

The Jacobians of the nonlinear system, determined from 
(2), are given by the following system matrices: 
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With these equations in place and programmed as a 
software algorithm on the mobile robot, and the sensor nodes 
running the algorithm presented in the previous section, the 
mobile robot and the static sensors automatically mutually 
update their estimates with incoming updates. There is no 
additional decision-making logic to be implemented as in other 
range-free work discussed earlier. There is no need to compute 
bounding boxes, as the error covariance matrices are 
automatically updated as measurements are received. 

The algorithm to be implemented on the mobile robot that 
updates its position estimate and uncertainty based on GPS 
measurements and on the localized sensor nodes is given as 
Table II. This algorithm is efficient to implement since the bulk 
of it is mathematical equations. 

TABLE II.  MOBILE ROBOT LOCALIZATION ALGORITHM 

1. Navigate robot along desired path. 
2. Broadcast location information at discrete intervals. 
3. if  broadcast from GPS received 
4.   Update robot state and uncertainty estimates using measurement 

equation (20). 
5. end if 
6. if broadcast from sensor received 
7.   Update robot state and uncertainty estimates using measurement 

equation (21). 
8. end if 

 

When algorithm II is run on the robot simultaneously along 
with algorithm I on each sensor node, simultaneous mobile 
robot and sensor localization occurs. 

B. Simulation Results 
The simulations described in Section II have been rerun 

with GPS updates and sensor updates implemented as 

Algorithm II on the mobile robot. Infrequent GPS updates and 
temporally staggered sensor updates help localize the robot. 
Fig. 6 shows the robot’s sweep path with GPS and UGS 
updates disabled. A systematic dead reckoning error, [28], has 
been injected into the mobile robot to give gradually 
deteriorating position information. The localization of the robot 
deteriorates with time as can be seen in the deviation of the 
robot’s estimated path (hyphenated green line) from the robot’s 
true path (continuous green line.)  

Fig. 7 illustrates the robot’s sweep path which is corrected 
in time by GPS and UGS updates using Algorithm II. As is 
evident, the robot’s localization has improved and the positions 
of where the robot thinks it is (the estimated position), and 
where the robot actually is (the true position) are much closer, 
since the estimates are continuously corrected using Algorithm 
II as position information arrives, either from GPS or from 
sensor node broadcasts. 

Figure 6.   Initial sweep path of the robot with GPS and UGS updates 
disabled. Robot’s localization deteriorates with time as evident in the 

deviation in the estimated path (hyphenated green line) and the true path 
(continuous red line.) 

Robot broadcasts occur along the true path of the robot and 
consist of the robot’s estimated position (slightly different from 
the robot’s true position where the broadcast occurs) and 
uncertainty. Sensors within range receive the broadcast and 
update their positional information based on the robot’s 
estimates. 

Fig. 8 illustrates the localized sensors after the initial 
sweep. True sensor positions are indicated by an ‘x’ and 
estimated positions by a ‘• ’. Now, some true sensor positions 
are outside the 3σ boxes due to the added uncertainty in the 
robot position, though they are generally close to these boxes. 
Fig. 9 depicts the final localization error of each sensor. 



         

Figure 7.   Initial sweep path of the mobile with GPS and UGS updates 
enabled as Algorithm II. The robot’s localization has improved and the true 

position and the estimated position of the robot along the path are much 
closer. 

Figure 8.   Localized sensors after initial sweep of the deployment area. True 
sensor positions are indicated by a ‘x’ and estimated positions by a ‘ • ’. 

Figure 9.   Localization error of sensors computed as the Euclidean distance 
between true and estimated positions. 

IV. CONCLUSION 
Rigorous mathematical algorithms for adaptive 

simultaneous localization of the static unattended ground 
sensors and the mobile robot have been demonstrated. The first 
algorithm localizes the static sensors and the second algorithm 
localizes the mobile robot. These algorithms together allow 
simultaneous localization of the static sensor and the mobile 
robot. A third adaptive localization algorithm ensures that the 
region of the deployment area with the largest uncertainty is 
localized with minimal robot movement. 
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