
Variable Impedance Control using Deep
Geometric Potential Fields

Nikhil Potu Surya Prakash ∗ Joohwan Seo ∗

Koushil Sreenath ∗ Jonguen Choi ∗∗ Roberto Horowitz ∗

∗ University of California, Berkeley, CA 94720 USA
∗∗ Yonsei University, Seoul 03722, Republic of Korea

e-mails: *{nikhilps,joohwan seo,koushils,horowitz}@berkeley.edu,**
jongeunchoi@yonsei.ac.kr

Abstract:
In this paper, we present a novel strategy for developing control mechanisms for fully actuated
mechanical systems evolving on manifolds utilizing the representative power of neural networks.
This method builds invariant conservative and dissipative potential functions using neural
networks that generate a stabilizing nonlinear elastic and damping wrench pair (stable potential
field). These elastic and damping forces can be used to replace the proportional and derivative
control terms in impedance control to have more representative controllers that can be made
to mimic expert demonstrations for kinesthetic teaching or to improve performance using an
LQR style formulation. Furthermore, the principle of invariance is instrumental in enhancing the
transferability of learning across different scenarios through the invariant potential functions.

Keywords: Impedance Control, Potential Fields, Kinesthetic Teaching, Geometric Control,
Deep Learning

1. INTRODUCTION

The development of control laws based on learning for
systems operating on smooth manifolds is a challenging
yet intriguing issue within the realm of control systems
engineering. Learning based approaches can be used to
improve performances of traditional control algorithms
across various applications, including aerial robots Lee
(2012); Kotaru et al. (2020); Kronander and Billard (2016)
and robotic manipulators equipped with impedance and
admittance control mechanisms Hogan (1985); Seo et al.
(2023a,b, 2024). These areas require advanced control
strategies capable of navigating the systems’ inherent non-
linearities and intricacies. Within this framework, em-
ploying potential functions that generate elastic forces
to dictate control laws presents a promising method for
controller synthesis, providing a reliable means to steer
the system’s behavior toward targeted states.

In the literature, it has been observed that potential func-
tions formulated on the Special Orthogonal group (SO(3)),
as discussed in Bullo and Murray (1999); Lee (2012), en-
counter issues of vanishing gradients when the orientation
error reaches π radians. This results in diminutive forces
at substantial errors, leading to a tepid response from
the system. Previous research efforts, including those by
Bullo and Murray (1995); Park (1995); Park et al. (1995)
have proposed utilizing a metric on the Lie algebras of
SO(3) and SE(3) that maintains a uniformly quadratic
nature. However, this approach encounters limitations as
the logarithmic map becomes undefined for orientation
errors of π radians, given that rotations about any axis by
π radians yield identical orientations. While these poten-
tial functions allow for the integration of matrix gains to

modulate system responses for positions and orientations,
tuning these gains to achieve a desired response is not as
straightforward as with linear systems.

These challenges underscore the need for innovative ap-
proaches to construct potential functions. One promising
direction is the application of neural networks, leveraging
their capacity for representation to develop potential func-
tions whose gradients generate elastic spring and damp-
ing forces. Nonetheless, it is important to acknowledge
that such neural network-based potential functions may
only achieve almost global properties, rather than global
ones (which are also true for other potential functions).
This limitation arises from the impossibility of building
a continuous control law that yields a continuous vector
field on a compact manifold with a globally asymptotic
equilibrium point, as elucidated by Bhat and Bernstein
(2000). Consequently, the aim is not to circumnavigate
this inherent limitation but to design potential functions
in a manner that relocate “problematic” points to regions
of the manifold that are of lesser interest, thereby opti-
mizing system performance within the desired operational
domain.

An additional significant application of leveraging neural
networks for the construction of potential functions is the
acquisition of potential fields through expert demonstra-
tions, achieved in an invariant fashion. In our preceding
study Seo et al. (2023a), we introduced a neural network-
based architecture designed to infer gains as a function
of state variables, utilizing potential fields derived from
expert demonstrations. The methodology presented in this
manuscript extends this concept by offering a generalized
framework for the learning of state-dependent gains via



potential functions. This framework not only facilitates
the direct derivation of a stabilizing control law during
inference but also does so with provable guarantees of sta-
bility, thereby enhancing the robustness and applicability
of the approach in practical settings.

In our previous work in Prakash et al. (2024), we developed
conservative potential functions and used a linear damping
term, whereas in the current work we extend the previous
work to generalize the damping potentials. One of the chal-
lenges in building these potential functions is that their
structure needs to satisfy specific Lyapunov function like
properties, such as being zero at the equilibrium and pos-
itive everywhere else (or equivalently being lower bound
and attaining the minimum at its equilibrium). These
properties will be achieved with the use of Input Convex
Neural Networks (ICNNs) Amos et al. (2016) and its appli-
cation to the construction of Lyapunov functions to learn
stable dynamical systems in Manek and Kolter (2020).
Though these Lyapunov functions were constructed for
Euclidean spaces, we will show in the next sections how
this approach is also beneficial for systems evolving on
smooth manifolds.

The key contributions of this paper are outlined as fol-
lows: 1. A recapitulation of errors and variations on man-
ifolds is provided. 2. A Neural Network architecture to
construct deep invariant geometric potential functions on
smooth manifolds is presented. These potential functions
are designed to produce stabilizing elastic (summarized
from Prakash et al. (2024)) and dissipative wrench pairs
from any random initial network setup. 3. An impedance
control law for robotic manipulators and an orientation
control law for satellites based on these potential func-
tions, including a training procedure aimed at refining the
potential function to enhance convergence of trajectories
is presented.

2. PRELIMINARIES

In this section, we will summarize the notion of an error
on the manifold and describe the kinematics of a particle
moving on the manifold, variations of configurations, and
errors in velocities the Special Orthogonal Group (SO(3))
and the Special Euclidean Group (SE(3)) from Bullo and
Murray (1999); Lee et al. (2017).

2.1 Special Orthogonal Group (SO(3)):

The Special Orthogonal group (SO(3)) represents the set
of all possible rotation matrices R without any reflections.
The following is a representation of the group as an
embedding in R3×3

SO(3) = {R ∈ R3×3 : RTR = I3 , det(R) = 1}. (1)

The kinematics of a body that just is restricted to rotate
without any translations can be written as

Ṙ = RΩ̂, (2)

where Ω ∈ R3 is the angular velocity expressed in the
body-fixed frame and Ω̂ ∈ so(3), the Lie Algebra (tangent
space at identity) of SO(3).

The configuration error between a desired configuration
Rd and the current configuration R can be defined as

Re =
∆ RT

d R. (3)

This error is called the right error according to Bullo and
Murray (1999). Note that the error Re is also an element
of SO(3), and the error becomes I3 when R = Rd. The
body fixed angular velocity error Ωe according to Bullo
and Murray (1999) can be defined using the body fixed

angular velocity Ω̂ = RT Ṙ and the desired angular velocity
Ω̂d = RT

d Ṙd via

Ṙe = ReΩ̂e, (4)

where
Ωe =

∆ Ω−RT
e Ωd. (5)

2.2 Special Euclidean Group (SE(3)):

The Special Euclidean group (SE(3)) describes the pose of
a rigid body in 3D space via a rotation matrix R and a
position p. The following is a representation of the group:

SE(3) = {(R, p) ∈ SO(3)×R3 : RTR = I3 , det(R) = 1}.
The kinematics of a body evolving on SE(3) can be written
as

ġ = gΓ(V b), (6)

where

g =

[
R p
0 1

]
, V b =

[
v
Ω

]
,Γ(V b) =

[
Ω̂ v
0 0

]
. (7)

Here g is called the homogeneous representation of the
SE(3) group and v ∈ R3 is the translational velocity with
ṗ = v represented in the body coordinates.

The configuration error between a desired configuration gd
and the current configuration g can be defined as follows
with Re from (3) and pe =

∆ p−pd denoting the translational
error

ge =
∆ g−1

d g =

[
Re RT

d pe
0 1

]
, gd =

[
Rd pd
0 1

]
. (8)

Note that the configuration error ge is also an element of
SE(3) and the error becomes I4 when g = gd.

By taking the time derivative of ge, we can obtain the
following

ġe = geΓ(eV ). (9)

where eV is the velocity error defined by the following
utilizing the desired quantities with subscript d

eV =∆
[
v
Ω

]
︸︷︷︸
V b

−
[
RT

e vd +RT
e Ω̂dR

T
d (p− pd)

RT
e Ωd

]
︸ ︷︷ ︸

V ∗
d

=

[
ev
Ωe

]
.

(10)

Here V b is the velocity in the body fixed frame and V ∗
d is

the desired velocity transported to the tangent space of g.

Left Invariance:

It can be seen from the following equations that by
transforming the current and desired configurations both
from the left arbitrarily by the same translation, we do not
get a change in the error.

(Rlrd)
T (Rlr) = rTd (R

T
l Rl)r = rTd r = re

(RlRd)
T (RlR) = RT

d (R
T
l Rl)R = RT

d R = Re

(glgd)
−1(glg) = g−1

d (g−1
l gl)g = g−1

d g = ge

(11)

This is an essential property as incorporating this prop-
erty allows us to transfer trained skills from one scene to



another scene without any new training. We will use these
errors to construct potentials in Sec. 3. Since the potentials
depend solely on the errors, the potential functions are also
left invariant. It is also easy to see that for left error rep-
resentations, we have right invariance. Seo et al. (2023a)
presents a more elaborate explanation of invariance.

3. POTENTIAL FUNCTIONS

In this section, a methodology for designing positive def-
inite conservative potential functions and positive semi
definite dissipative potential functions utilizing Fully Input
Convex Neural Networks (FICNNs) and Partially Input
Convex Neural Networks (PICNNs) from Amos et al.
(2016) and its use in the construction of Lyapunov func-
tions Manek and Kolter (2020) will be presented. The
conservative potential functions are summarized from our
previous work in Prakash et al. (2024).

For the remainder of the section, quantities defined by W
are real matrices, quantities defined by U are non-negative
matrices (non-negative entries), and quantities defined by
b are real bias vectors, all of appropriate dimensions.
The nonlinear activations σi must be convex like ReLU
but σ̃i could be arbitrary nonlinear activations. A small
positive definite term is added at the end using ϵ1, ϵ2 > 0
to ensure the positive definiteness/semi definiteness of
the potential functions. The activation at the final layer
σk+1 is a smoothed ReLU (for details about all the
activation functions, readers are referred to Manek and
Kolter (2020)).

Properties of Conservative Potentials

We consider the following properties to build conservative
potential functions Ψ that generate elastic forces fs which
are the nonlinear generalizations of proportional terms in
PD control. The potential function Ψ

(1) is a function of only the configuration error.
(2) is positive definite.
(3) obtains its unique global minimum when the current

configuration and desired configuration are the same.

The aim is to make the conservative potential function zero
when the current configuration and desired configuration
coincide and positive everywhere else. Though convexity
is a restriction, we can relax this by adding another layer
of an invertible residual network Behrmann et al. (2019)
layer before FICNN to improve representative power. A
caveat here is that though we are using an FICNN to build
the conservative potential functions, the manifold is not
convex, and hence, the conservative potential function and
domain pair together are not convex, but the conservative
potential function with a convex domain remains convex.

Properties of Dissipative Potentials

We consider the following properties to build dissipative
potential functions R (Rayleigh dissipation potentials)
that generate damping forces which are the nonlinear
generalizations of derivative terms in PD control. The
potential function R

(1) is a non negative function of the configuration error
(first argument) and the velocity error (second argu-
ment).

(2) is positive definite in its second argument.
(3) is zero when the velocity error is zero.

0 = R(·, 0) ≤ R(·, ·) (12)

(4) is convex in its second argument i.e., velocity error.
This property is necessary for proving asymptotic
stability.

3.1 Potential Functions on SE(3)

Conservative Potentials: We can define Ψ : SE(3) 7→

R+ such that Ψ(I3) = 0 as follows. Here ḡe =

[
R̄e

RT
d pe

]
,

where R̄e is the 9 × 1 vector reshaping of Re, i.e., R̄e =
vec(Re).

z1 = σ0(W0ḡe + b0)

zi+1 = σi(Uizi +Wiḡe + bi),

Φ(ge) ≡ zk

Ψ(ge) = σk+1(Φ(ge)− Φ(I4)) + ϵ1∥I4 − ge∥2F .

(13)

Dissipative Potentials: We can define the dissipative
potential function R : SE(3) × R6 7→ R+ such that
R(ge, 06×1) = 0 as follows:

u0 = ḡe

ui+1 = σ̃i(W̃iui + b̃i)

zi+1 = σi(U
z
i (zi ◦ [W zu

i ui + bzi ]+)

+W y
i (y ◦ (W

yu
i ui + byi )) +Wu

i ui + bi)

ξ(ge, eV ) ≡ zk
R(ge, eV ) = σk+1(ξ(ge, eV )− ξ(ge, 06×1))

+ ϵ2∥eV ∥22,

(14)

where ◦ represent the Hadamard product or an elemen-
twise multiplication. Here i = 1, · · · , k − 1 and zi refers
to the output of the ith layer with z0 = eV . By making
pe = 0, the potential function in (13) reduces to the
potential on SO(3). Similarly, making pe = 0, ve = v −
vd = 0 and just using Re,Ωe in (14) also reduces the
dissipative potential to that of SO(3) × R3. It is worth
noting here that the potential functions defined in (13) and
(14) always produce a stabilizing elastic force and damping
force pair irrespective of the initialization of the weights
as long as U matrices are non-negative. This constraint
on U can be enforced by first initializing them randomly
and then using the softplus activation function to make
them all positive. The subscript + in dissipation potentials
follows the convention in Amos et al. (2016) and makes its
corresponding arguments positive using softplus activation
function.

4. ELASTIC AND DAMPING WRENCHES

In this section, we briefly show, without extensive details,
the various elastic wrenches from conservative potentials
and also define the damping forces as gradients of dissipa-
tive potentials. Definitions, detailed derivations of elastic
forces and stability analyses can be found in our previous
work Prakash et al. (2024) but the definitions of damping
terms are novel.



4.1 Special Orthogonal Group SO(3):

A conservative potential on SO(3) can be represented as
Ψ(Re) by letting pe = 0 in (13) and a dissipative potential
on SO(3)× TRSO(3) can be represented as R(Re,Ωe) by
letting pe = 0, ve = 0. The elastic and damping forces can
be found as

fs = −DReΨ = −(RT
e Ψ

′(Re)−Ψ′(Re)
TRe)

∨

fd = −∂Ωe
R(Re,Ωe)

(15)

where Ψ′ = ∂
∂MΨ(M)

∣∣
M=Re

.

4.2 Special Euclidean Group SE(3):

The variation of the conservative potential function on
SE(3) defined in (13) and the gradient of dissipative
potential function defined in (14) generate the following
elastic and damping forces. This yields the elastic force as

fs =

[
−RT

e ∂2Ψ
−(RT

e ∂1Ψ− ∂1Ψ
TRe)

∨

]
fd = −∂eV R(ge, eV )

(16)

where ∂1Ψ = ∂
∂MΨ(M, z)

∣∣
M=Re,z=RT

d
pe

and ∂2Ψ =

∂
∂zΨ(M, z)

∣∣
M=Re,z=RT

d
pe
.

Theorem 1. The dissipative potential functions defined in
(14) satisfy ΩT

e ∂Ωe
R(Re,Ωe) ≥ 0 and eTV ∂eV R(ge, eV ) ≥ 0.

Proof. For a smooth convex function h(·), we have the
following first-order necessary and sufficient condition in
terms of its gradient ∀ x, y ∈ dom(h)

h(y) ≥ h(x) + ∂xh(x)
T (y − x) (17)

By interchanging x and y, we get

h(x) ≥ h(y) + ∂yh(y)
T (x− y)

=⇒ ∂xh(x)
T (y − x) ≤ h(y)− h(x) ≤ ∂yh(y)

T (y − x)

=⇒ (∂yh(y)− ∂yh(x))
T (y − x) ≥ 0

(18)
Since R(·, ·) is convex in its second argument, we have

(∂yR(·, y)− ∂xR(·, x))T (y − x) ≥ 0, (19)

By letting x = 0, we get

∂yR(·, y)T y = yT∂yR(·, y) ≥ 0. (20)

This is equivalent to

fd(·, y)T y ≤ 0. (21)

By letting y = ev,Ωe or eV , the theorem can be proved
for all manifolds.

5. DYNAMIC CONTROL

In this section, we consider two interesting and practical
problems on SO(3) and SE(3) manifolds namely orien-
tation control of a satellite and Impedance control of a
robotic manipulator respectively. The dynamics of both
the systems and stabilizing control laws using the con-
structed potential functions will be presented.

5.1 Control of a Satellite on SO(3):

A simple model of a rigid body rotating without translat-
ing can be used to describe the orientation control problem

of a satellite. The orientation of the satellite is described
through rotation matrices R ∈ SO(3). The control is
achieved through momentum wheels attached to three
perpendicular axes of the satellite. Again for simplicity, we
will ignore the dynamics of the reaction wheels and assume
the availability of three independent torque components
along its three perpendicular axes. The dynamics can be
written as follows with J as the symmetric positive definite
inertia matrix, Ω ∈ R3 as the angular velocity represented
in the body-fixed frame and τ ∈ R3 as the torque.

Ṙ = RΩ̂

JΩ̇ + Ω̂JΩ = τ
(22)

Theorem 2. The following control almost globally asymp-
totically tracks Rd(t) for a dynamical system described
by (22) with the elastic force fs and damping force fd
described by (15)

τ = Ω̂JΩ− JΩ̂eR
T
e Ωd + JRT

e Ω̇d + J(fs + fd). (23)

Proof. This control law achieves the following error dy-
namics

Ω̇e + ∂Ωe
R(Re,Ωe) +DRe

Ψ(Re) = 0

or Ω̇e − fd(Re,Ωe)− fs(Re) = 0
(24)

We will consider the following positive definite Lyapunov
candidate function

W = Ψ(Re) +
1
2Ω

T
e Ωe

=⇒ Ẇ = Ψ̇(Re) + ΩT
e Ω̇e = ΩT

e (Ω̇e − fs(Re))

= ΩT
e fd(Re,Ωe) ≤ 0 from (21).

Using Lasalle’s Invariance principle, we can also conclude
that the equilibrium Re = I3 of the error dynamics
in (24) is almost globally asymptotically stable as the

largest invariant set where Ẇ = 0 only when Re = I3
(removing the other unstable equilibria). It may firstly
be a bit non-intuitive, but it should be noted that Ωe

can be expressed in terms of Re and Ṙe which makes the
entire error equation a function of just Re and its time
derivatives. The expression is omitted for compactness.

5.2 Control of a Robotic Manipulator on SE(3):

Another problem where potential functions play an im-
portant role is in the control of robotic manipulators. We
will demonstrate an application to Impedance control of a
robotic manipulator Seo et al. (2023b). The manipulator
equations in joint space can be written as follows with
q ∈ Rn as the vector of generalized coordinates of the
manipulator.

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + Jb(q)
TTe, (25)

where M(q) ∈ Rn×n is the symmetric positive definite
inertia matrix, C(q, q̇)∈Rn×n is a Coriolis matrix, G(q)∈
Rn represents the gravitational terms, τ ∈ Rn is the
joint torque, and Te ∈ R6 is an external wrench at
the end-effector from contacts, human inputs etc. The
Coriolis matrix satisfies the property that Ṁ−2C is skew-
symmetric.

In the field of impedance control combined with opera-
tional space formulation, it is well known from Khatib
(1987) that the robot dynamics (25) can be rewritten as



M̃V̇ b + C̃V b + G̃ = τ̃ + τ̃e, (26)

where the definitions of M̃ , C̃, G̃, T̃ , and T̃e can be referred
to Seo et al. (2023b).

Theorem 3. The following control law almost globally
asymptotically tracks gd(t) for a dynamical system de-
scribed by (26) with the elastic and damping forces de-
scribed by (16) when Te = 0

τ̃ = M̃V̇ ∗
d + C̃V ∗

d + G̃+ M̃(fd + fs). (27)

Proof. When Te = 0, this control law achieves the
following error dynamics

ėV + ∂eV R(ge, eV ) +DgeΨ(ge) = 0

or ėV − fd(ge, eV )− fs(ge) = 0
(28)

We will consider the following positive definite Lyapunov
candidate function

W = Ψ+ 1
2e

T
V eV

=⇒ Ẇ = Ψ̇ + eTV ėV = eTV (ėV − fs(ge))

= eTV fd(ge, eV ) ≤ 0 from (21).

(29)

Using Lassalle’s, we can conclude again that the desired
equilibrium is almost globally asymptotically stable.

This control law is left invariant and has good learning
and transferability properties similar to Seo et al. (2023a).

6. TRAINING THE NEURAL NETWORK

Once the structure of the potential function is finalized (by
fixing the number of layers and their sizes), an objective
according to the needs of the user can be specified which
can be posed as an optimization problem of minimizing
a loss function by gradient descent. For improving the
performance, we can consider an LQR-style problem where
we have a running cost along the trajectory that needs
to be minimized. A sample loss function for an error
trajectory is shown in (30) with a positive weight λ. We
could also add weighting matrices like in the LQR problem
instead of the scalar λ.

L1 =

∫ T

0

(∥I3 −Re(t)∥2F + λ∥Ωe(t)∥22)dt (30)

The procedure to shape the potential function to minimize
this loss is shown in Fig. 1. We first start by forming a set of
initial conditions around which the system is expected to
start. The set of parameters defining the neural network
potential functions will be denoted by θ = [θc, θd] with
θc denoting the parameters of the conservative potential
function and θd denoting the parameters of the dissipa-
tive potential function. Since any potential with random
initialization (of course with some non-negative weights
which can be taken care of by softplus function in Py-
Torch) becomes a valid potential function, we can obtain
the corresponding stabilizing elastic and damping forces
and integrate the system forward to obtain the error tra-
jectories for each of the initial conditions for a user-defined
fixed time T without the fear of trajectories blowing up.
Here we have shown it for SO(3) error dynamics in (24),
but any of the error dynamics can be used here depending
on the system and situation of interest. A mean loss is

computed by taking the average of individual losses corre-
sponding to the trajectory for each initial condition. Next,
standard back-propagation algorithms with the choice of
gradient descent, such as Stochastic Gradient Descent
(SGD), RMSprop, and ADAM, can be used to update the
parameters of the potential functions. The function α(·)
is used to represent the choice of our optimizer. These
updated potential functions generate the updated elastic
and damping forces and the system is integrated forward
for all the initial conditions again. This cycle is repeated
till convergence or any other user-specified termination cri-
terion. Note that since the dynamics evolve on manifolds, a
variational integrator like Kobilarov and Marsden (2011);
Kobilarov et al. (2009); Prakash (2022) could be a better
choice to integrate the system forward as they preserve
the geometry of the manifold. In Fig.1, the dynamical

Initial condition set
{gie(0), eiV (0)}
∀i = 1, . . . , N

Integrate forward &
Collect trajectories
gie(t), e

i
V (t) ∀i = 1, . . . , N

ġe = geΓ(eV )
ėV +KDeV − fs(ge) = 0

Compute Mean Loss

L = 1
N

∑N
i=1 L1(g

i
e(t), e

i
V (t))

Take gradient step
θ+ = θ − α(∂L∂θ )

Update potentials
Ψθ+

fs,θ+ = −DgeΨθ+

Fig. 1. Flow chart showing the training process for po-
tential functions for a satellite orientation control
problem.

equations in the integration block can be replaced by (28)
and the loss function can be updated appropriately to
account for SE(3) trajectories.

7. SIMULATION RESULTS

In this section, we consider the problem of regulating
the error ge to I4 of a rigid body evolving on SE(3)
according to the error dynamics (28). A neural network
with 3 hidden layers of 7 neurons each, using Kaiming
initialization within bounds (−

√
3,
√
3), was trained on

50 initial conditions. Initial conditions were set with ro-
tation errors normally distributed around π radians from
the identity matrix, position errors normally distributed
around [1, 1, 1] with unit variance and velocity errors with
zero mean and unit variance. The training utilized the
Adam optimizer at a learning rate of 0.01 to minimize the
loss function in (30) with λ = 1. Results in Fig.2 illustrates
the evolution of configuration error trajectories for neural
network potential functions for a random initialization
without any training. Fig. 3 shows improved trajectories
after the training process. We can see that the trajectories
remain stable despite random initializations even in this
case. In all the plots, we will use ΨF (ge) =

1
2∥I4− ge∥2F to

evaluate the configuration error.

Fig. 4 shows the trajectories with the trained potential
functions but with large initial errors. The benchmark
potential functions used are Ψb =

1
2∥I4 − ge∥2F and Rb =

1
2∥eV ∥

2
2.
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Fig. 2. Randomly Initialized Network: (a) Configuration
error trajectory and (b) Corresponding velocity error
trajectory for a rigid body with initial rotation error
Re(0) = 0.1π rotated along the z-axis, pe = [1, 1, 1]T

and zero initial velocity error.
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Fig. 3. Trained Network: (a) Configuration error trajectory
and (b) Corresponding velocity error trajectory for a
rigid body with initial rotation error Re(0) = 0.1π
rotated along the z-axis, pe = [1, 1, 1]T and zero initial
velocity error.
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Fig. 4. Trained Network: (a) Configuration error trajectory
and (b) Corresponding velocity error trajectory for a
rigid body with initial rotation error Re(0) = 0.999π
rotated along the z-axis, pe = [1, 1, 1]T and zero initial
velocity error.

8. CONCLUSIONS

In this paper, a generic design methodology for designing
trainable conservative and dissipative potential functions
for fully actuated dynamical systems evolving on manifolds
has been presented. The corresponding elastic and damp-
ing wrenches/forces obtained from the potential functions
were shown to be stabilizing irrespective of the initializa-
tion of the network. These wrenches/forces were used to
formulate the loss functions which can be minimized using
gradient descent algorithms to achieve user’s requirements.
Analysis of the potential functions and stability for various
manifolds of interest has also been presented. Finally,
the methodology was demonstrated on two problems -
a satellite orientation control and a robotic manipulator
impedance control.
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