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A range-free approach for adaptive localization of un-localized sensor nodes employing a mobile
robot with GPS is detailed. A mobile robot navigates through the sensor deployment area
broadcasting its positional estimate and the uncertainty in its estimate. Distributed
computationally-inexpensive, discrete-time Kalman Filters, implemented on each static sensor
node, fuse information obtained over time from the robot to decrease the uncertainty in each
node’s location estimate. On the other hand, due to dead reckoning and other systematic errors,
the robot loses positional accuracy over time. Updates from GPS and from the localized sensor
nodes serve in improving the localization uncertainty of the robot. A Continuous-Discrete
Extended Kalman Filter (CD EKF) running on the mobile robot fuses information from multiple
distinct sources (GPS, various sensors nodes) for robot navigation. This two-part procedure
achieves simultaneous localization of the sensor nodes and the mobile robot. Also presented is an
adaptive localization strategy to navigate the mobile robot to the area of least localized sensor
nodes. This ensures that the robot maneuvers to an area where the sensor nodes possess the
largest uncertainty in location, so that it can maximize the usefulness of its positional information

in best localizing the overall network.

Index Terms— Adaptive Localization, Continuous-
Discrete Extended Kalman Filter (CD EKF),
Simultaneous Localization, Sensor Networks.

I. Introduction

Location information is imperative for applications in
both wireless sensor networks and mobile robotics.
Many sensor network applications, such as tracking
targets, environmental monitoring, geo-spatial packet
routing, require that the sensor nodes know their
locations. The large scale of deployment in sensor
networks makes careful placement or uniform
distribution of sensor nodes impractical. The
requirement of the sensors to be small, un-tethered, low
energy consuming, cheap, etc., make the sensors
resource-constrained [1]. Localization is a challenging
problem and yet crucial for many applications.

Approaches to the problem of localization are varied.
A detailed introduction to localization in sensor
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networks is presented in [2]. GPS [3] solves the
problem trivially, but equipping the sensors with the
required hardware may be impractical. A small section
of active beacons can be placed in the sensor network
and other sensors can derive their location from these
anchor nodes [4], [5]. Cooperative localization methods
have been developed for relative localization [6], [7].
Other approaches involve RSSI [8], TOA [9], [10],
AOA [11], and Signal Pattern Matching [3].

For localization with no additional hardware on the
sensor node, the geometric constraints of radio
connectivity are exploited. Some authors suggest using
a mobile robot (whose position is known) to localize
the sensors. However, the position of the mobile robot
may be hard to determine. Sequential Monte Carlo
localization [12] presents a range-free localization
method in the presence of mobility using mobile and
seed nodes. LaSLAT [13] uses a Bayesian filter to
localize the sensor network and track the mobile robot.
In [14], a particle filter is employed to localize elements
of the network based on observation of other elements
of the network. In [15], a mobile robotic sensor
localized the network based on simple intersections of
bounding boxes. In [16], geometric constraints based on
both radio connectivity and sensing of a moving beacon
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localize the sensor network. The Kalman filter has been
used in dead-reckoning for mobile robots but its full
potential in localization of WSN has not heretofore
been fully explored. In [17], an extended Kalman filter
is used for localization and tracking of a target. [18]
uses RSSI and a robust extended Kalman filter
implemented on a mobile robot to localize a delay-
tolerant sensor network. The Kalman filter was used in
[19] for active beacon and mobile AUV localization
and in [20] for scheduling of sensors for target tracking.
SLAM [21] and CML [22] employ Kalman filters for
concurrent mapping and mobile robot localization,
which can be considered similar to our work wherein
the geometric constraints introduced due to radio
connectivity of the static sensors play the role of
features. In this paper we use the full capabilities of the
Kalman filter in the general WSN localization problem.

Our work exploits geometric constrains based on
radio connectivity such that range information is not
needed. A mobile robot initially sweeps the network,
and broadcasts from the robot are used to localize the
sensor nodes. Computationally inexpensive Kalman
filters implemented on the sensors fuse the information.
On the other hand, as time passes, the mobile robot
gradually loses its own localization information. We
present an algorithm that uses updates from the better
localized sensors along with GPS updates, when they
occur, to correct this problem. A continuous-discrete
extended Kalman filter running on the robot estimates
the robot state continuously and fuses the discrete
measurement updates.

Finally, an adaptive localization algorithm, based on
adaptive sampling techniques [23], [24], is presented
that navigates the mobile robot to an area of nodes with
highest position uncertainty. This ensures that the robot
maneuvers to an area where the nodes are least
localized, so that it can maximize the usefulness of its
positional information in best localizing the overall
network. The adaptive localization strategy ensures
that, with a minimal robot movement, the largest
reduction in aggregated node uncertainty is achieved at
every iteration of the adaptive localization algorithm.

The Paper is organized into the following sections.
Section II presents an algorithm for localization of
static sensor nodes using positional updates broadcast
from the mobile robot. Section III presents an algorithm
that updates the location information of the mobile
robot based on GPS measurements, when they occur,
and position information from nodes that are well
localized. We illustrate the simultaneous localization of
both static sensors and the mobile robot by fusing
information from multiple sources. Section IV
addresses the problem of where to send the mobile
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robot next to maximally decrease the localization
uncertainty in the sensor network. This is the scenario
of Adaptive Localization. Section V presents some
discussions and future work. Section VI concludes the

paper.

II. Sensor Localization using Mobile

Robot

In this section we provide an algorithm that runs on
each Unattended Ground Sensor (UGS) node that
allows it to update its position estimate, and the
uncertainty in that estimate, as a mobile robot with
known position moves through the network. The
algorithm is range-free in that only the communication
range need be known, not the range from the node to
the mobile robot. It is assumed in this section that the
mobile robot’s position is exactly known.

IL.A.

A deployed wireless sensor network comprised of
static unattended ground sensors is to be absolutely
localized by a mobile robot. The robot broadcasts
consist of its own position and its position uncertainty
estimates. Broadcasts can only be heard within the
robot’s communication range. The static sensors, on
receiving these broadcasts, combine the new
information to update their current location estimate. A
simple discrete-time Kalman filter running on each
static sensor node serves to fuse information and update
its location and uncertainty estimates.

This is a formalized rigorous approach employing
Kalman filters for localization, in contrast to bounding
boxes [15], [16], which are harder to update and keep
track of. The developed algorithm is simple and can
efficiently be implemented on the sensor nodes with a
small computing power. The Kalman filter is simply an
optimal recursive data processing algorithm [25] and
has been subject of extensive research and applications,
particularly in the area of autonomous navigation.

I1.B. Robot Control

A classical three-wheeled tricycle robot model is
employed in all simulations. This configuration uses a
controlled steering angle and drive speed to navigate to
a desired position as illustrated in Figure 1.

Scenario
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Figure 1: Tricycle Robot Configuration.

The states and kinematics of the robot are given by,

=[x y ¢ o (1)
x v, COs a cos ¢
. % v, cos & sin ¢
X za(x,t): .| = v/ ) 2)
@ t/ sin o
i L
a w,

with (x,y) the position of the robot, « the steering
angle, and ¢ the heading angle. The control inputs are
the speed v, and the steering rate ,, .

A simple Proportional-Derivative  goal-based
controller with a temporally varying goal is
implemented to navigate the robot along a desired
trajectory. For more details, see [26].

This dynamical setup allows more accurate
simulations than the simple moving-point model
usually assumed in sensor network localization papers.

I1.C.

Each static sensor node maintains its own position
and uncertainty estimates. The mobile robot broadcasts
contain the robot’s position estimate and uncertainty
estimate. The broadcasts can only be heard within the
robot’s communication range. A discrete-time Kalman
filter running on each sensor node combines this
information to optimally update the node’s position
estimate and its uncertainty. For more details on the
derivation of the Kalman filter equations, interested
readers are referred to [30].

The Kalman filter is a set of mathematical equations
running in a software algorithm that provide an
efficient computational means to estimate the state of a
process. The state of sensor i at discrete time instant &
is

Sensor Node Kalman Filter

. . r
xi=f ] ()
The sensor state is governed by the linear stochastic
difference equation

i i i i i
Xps1 = Apxp + By +Grwy “4)
with measurements given by
zi = Hixp +v 5)

The random variables w; and v, represent process and
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measurement noises given by
s =.pl bwi =00l i =rl)  ©
where (m,P) denotes a Gaussian noise process with

mean m and covariance P .
For stationary nodes, the system matrices are given by

o[V 0] g [0 0] i [ 0] i [T 0 o
o 1R o ool o 1T o1

The a priori position estimates prior to measurement
updates at time k+1 are given by the time update
equations, which give the effects of time on sensor
localization:

Pl =Pi+0; ®)
(€))

In these equations, %, represents the position estimate

AP Y
Xl = Xg

of node i at time k, while the covariance matrix P/

gives the corresponding uncertainty in the position
estimate.

The a posteriori estimates given a position
measurement z, are given by the measurement update

equations, which gives the effect of the robot broadcast
on sensor localization:
-1

1
i i i T 1,
P = |:Pk+1 +Hpy Rin Hk+1i| (10

. R . T . . .-
i s i i =1 i i
Xpat = Xpp1 F P H o Ry (Zlm—l —H Xk ) (11)
The covariance matrices Q; and R, are design

parameters chosen by the engineer. With a zero Q; , the
uncertainty in location of the sensor i remains constant
with time. With an extremely small Q; , the localization

uncertainty slowly drifts with time. This means that the
current measurements from the mobile robot are given
more weight than the current node position estimate,
which avoids the node’s becoming too certain of a
position that may be incorrect.

When the robot is in range and the sensor hears the
broadcast position of the robot, the measurement update
equation is used to combine the new information to
improve sensor node position and uncertainty estimates.
In this section, the robot is assumed to be perfectly
localized. Thus when a sensor hears a broadcast, it
could only be within the communication range of the
robot whose position is broadcast. The measurement
uncertainty matrix R, reflects this, and is chosen as

Bot
o 0
Rk :GBOI,GBOZ _ X 5 (12)
ot
0 o,
R Bot Range®!
Bot __ ange., Bot __ g v 13
X - > y - ( )
O const O const
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where o%* 1is the uncertainty introduced due to
Range™', the communication range of the robot. We
=3, to include 70%

of the communication range, Range®”, of the robot.

assume the design parameter o

const

(Gaussian uncertainties are assumed.) Through this
selection of g, the Kalman filter automatically takes

care of the range of the robot within which it hears
broadcasts.

Algorithm 1 shows the position update algorithm that
runs on each node, which is very simple and easy to
implement. It consists of four equations, two for the
time update, and two for the measurement update. This
algorithm automatically provides uncertainty estimates
through the computation of the error covariance P/,

which is equivalent to the bounding box information
provided by the algorithm in [15].

Algorithm 1: Static sensor node localization algorithm

1. At each discrete time instant,

2. 1if robot broadcast received by sensor

3. then

4. Update sensor state and uncertainty
estimates using KF measurement Egs. (10,11).

5. else

6. Propagate estimates using time update Egs.
(8,9).

7. end if

ILD. Simulation Results

Extensive simulations have been performed to verify
the effectiveness of the proposed algorithm. We also
studied the effects of initial sweep paths and the robot
broadcast interval on sensor localization. The mobile
robot is navigated along the desired sweep path and
periodic location information is broadcast. On receiving
a broadcast, sensors update their location and
uncertainty estimates. This is a range-free procedure
that relies on the limited communication range of the
robot, and as such, the sensor locations are updated
based on the position of the robot. That is, the updated
sensor position estimate is a weighted combination of
its current location estimate and the current location of
the robot. Thus sensors hearing only one broadcast will
have an estimated location that is projected onto the
path of the robot.

Figure 2 shows the initial sinusoidal sweep path and
the position and range of the broadcast with a broadcast
interval of 5 discrete time instants. The desired path is
the setpoint trajectory input to the robot controller, and
the simulated path is the path along which the controller
drives the robot. These paths differ due to the non-
holonomic kinematics of a tricycle configuration. Robot
broadcasts consist of locations from the simulated path
in this scenario. The ‘ x’ represent the actual positions
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of the static sensors that are to be localized. The sensor
nodes are randomly deployed in an area of 100x100
units and do not initially know their actual positions.
The nodes all have initial position estimates being the
centroid of the deployment area, and an initial
uncertainty of infinity, corresponding to complete lack
of knowledge of their positions. The sensors have a
communication range of 20 units (corresponding to a
20m range of a MICA mote), and the robot has a
communication range of 15 units.

Figure 3 illustrates the localized sensors after the
robot has made its sweep through the network. The ‘e’
represent the final position estimates of the nodes.The
uncertainty of the sensors in their position estimates has
been depicted as circles and ellipses representing 3o of
the uncertainty distribution, assuming Gaussian
uncertainties. Note that the sensors always outside the
communication range of the mobile robot do not
become localized. The sensors that receive more than
one broadcast from the mobile robot end up being
better localized, since each position update reduces the
position uncertainty.

The effectiveness of the algorithm is demonstrated by
the fact that in every case, the actual location (marked
by an ‘x’) is within the uncertainty bound of the
estimated position (marked by a “e”).

The localization error of the sensors, computed as the
Euclidean distance between true and estimated
positions, is depicted in the vertical axis of Figure 4.
Sensors near the path of the mobile robot that have
received multiple broadcasts have smaller errors.

Sensaor Localization - Robot Path

e S p— Desired Path

Sirnulated Path [Mominal]

100 -
mf
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40+

20+

20k

1 .
100 120

Figure 2: Initial sinusoidal sweep path with broadcast locations and
range of broadcast.
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Figure 3: Localized sensors, real positions (denoted by ‘x’) and
estimated positions (denoted by ‘e ’), are illustrated after initial
mobile robot sweep of the deployment area. Uncertainty rectangles
have been illustrated to depict the uncertainty of the sensor in its
position estimate.

Sensor localization error

Sensor distances from estimates

y-position

H-position

Figure 4: Localization error, computed as the Euclidean distance
between real and estimated positions, of sensors after initial sweep
of the deployment area.

The same simulation was rerun with different mobile
robot broadcast intervals, and the effect of broadcast
interval on the average localization error of the network
is depicted in Figure 5. Generally, as broadcast interval
decreases, the average error decreases.
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Awverage error vs Broadcast interval of Mobile Robot
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Figure 5: Effect of broadcast interval on average localization error.

III. Simultaneous Mobile Robot and
Sensor Localization

In this section we consider the realistic case where
the mobile robot’s position is not exactly known. We
provide an algorithm which runs on the mobile robot
that fuses position information from GPS, when it is
available, and from the already-localized sensor nodes.
This allows the robot to update its position estimate as
well as the uncertainty estimate. When this algorithm is
run simultaneously with the algorithm of the previous
section running on each sensor node, the result is
simultaneous mobile robot and sensor localization. A
procedure is given to avoid detrimental recursive
feedback between the two algorithms.

III.A. Mobile Robot Localization

When localizing the sensor nodes in the previous
section, the robot was assumed to know its position
exactly at all instants of time. However, as the robot
navigates by dead reckoning, or due to steering
inaccuracies, its localization increasingly deteriorates as
time passes. Location updates from the GPS, when they
occur, and from stationary sensor nodes that have
already been localized can be used to improve the
localization estimate of the robot.

Some sensor nodes are localized more finely due to
more numerous updates they have previously received
from the mobile robot. These sensors can be employed
to localize the robot when its position information
deteriorates. This is accomplished by having each
sensor node make a transmission that contains the
node’s position estimate and uncertainty. This is
received by the robot when it is in range. The sensors
transmit at fixed intervals, with each sensor having a
different random interval. This ensures that the updates
between mobile robot and sensor nodes are staggered in
time and that no recursive feedback occurs. A recursive
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feedback practically feeds back to the robot, it’s own
positional estimate and a slightly larger uncertainty
estimate than its own. This recursive measurement
update does not change the positional estimate, but
however wrongly reduces the robot’s uncertainty
estimate. A similar case arises for the sensor if it
immediately receives yet another update from the robot.

A continuous-discrete extended Kalman filter
running on the mobile robot is used to simulate the
robot and update the states using measurements from
the GPS system and the better-localized UGSs.
Extended Kalman filters have been used for local and
infrequent global senor data fusion [27], for mobile
robot localization [28], and in navigation of
autonomous vehicles [29]. For information about the
Extended Kalman filter see [30].

The continuous-time system model of the robot is
given by (2) as

X =a(X,u,t)+G(t)w (14)

The sampled discrete-time measurement model of the
robot is given by

ZF = h® (X (), k] + v

(15)
718 = h" (X (1), k] + v
where
X(0)= (T, 2y ()= 0.00 v = 0.8 )" = 0.2
(16)
X Vv, COS & €OS ¢ 1 0 00
¥ v, cos a sin ¢ 0100
X,t)=|". |= = 1
alor) ¢ "/ sina /Gl0) 000 o7
a o, 0000
WS [X (1), k] = H R X (1), k] = H (18)
y y

In the extended Kalman filter, the effect of time on
the robot states is given by the time update equation
X = a()A( ,u, t)
P=A(X.1)p+PaT(%.1)+ GOGT
In [31], the deleterious effects of time passing are
shown in terms of increasing position uncertainty and
decreasing belief. These effects are formally captured in
a rigorous manner by the time-update equations (18)-
(19), which shows how uncertainty increases due to
dead reckoning and steering uncertainties.
The effects of the GPS navigation updates, when they
are received, are given by the measurement update
equation

(19)

-1
T( ~ A T A
K, =P (¢, )H®" (Xk*IHgPS(Xk*)P‘(tk)HgPS (X,;)+Rg’”}

P(o)=[r- ke (%, o)

%= Rk one (3 )

(20)
The effects of the updates based on localized sensor
nodes, when they are received, are given by the UGS
measurement update equation

-1
T(~ A T A
K, =P (4, )H"® (X,jIH“gS(Xk*)P‘(zk)H“gS (Xk*)+R“gS}

Pl =l - ke (e )
K= &k [z - w8k
21

The measurement uncertainty matrices R%® and
R"® represent the uncertainty in the GPS and the
uncertainty in the update offered by UGS i
respectively. The uncertainty in the sensor update,
R"®", is a combination of the uncertainty of the sensor
position and the uncertainty due to the communication
range of the sensor. These uncertainties combine in
quadrature as

) ST ) ol 0
e )
% (22)
i Rangei ol = Range’y
Yo Y o

const const

is the uncertainty introduced due to Range',

where o'

the communication range of sensor i .

Similarly, the measurement noise covariance of the
sensor, eq. (12), has to be modified to include the
uncertainty in the robot’s position. The robot is no
longer absolutely localized with zero uncertainty. The
uncertainty in robot localization and the uncertainty due
to robot communication range combine in quadrature,
modifying eq. (12) as

2 2 12
Rk — [PXB;JI + O_BOZ ]/
is the partial error covariance of the robot which

(23)

Bot
PXY

° is as

effects only the position of the robot, and o
defined earlier.
The Jacobians of the nonlinear system, determined

from (2), are given by the following system matrices:

0 0 —v,cosasing —v,sinacosg
0 0 v, cosacos —V, sin sin
Alx,t)= Oa(X,1) _ ! ¢ N ¢
oxX 00 0 Y/ cosa
00 0 0
< &ps 1 000
o (x)= oh” (X, k) _
oX 01 00
ugs 1 000
1 (x) = oh"e (X, k) _
16 0100
24

With these equations in place and programmed as a
software algorithm on the mobile robot, and the sensor
nodes running the algorithm presented in the previous
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section, the mobile robot and the static sensors
automatically mutually update their estimates with
incoming updates. There is no additional decision-
making logic to be implemented as in other range-free
work discussed earlier. There is no need to compute
bounding boxes, as the error covariance matrices are
automatically updated as measurements are received.

The algorithm to be implemented on the mobile robot
that updates its position estimate and uncertainty based
on GPS measurements and on the localized sensor
nodes is given as Algorithm 2. This algorithm is
efficient to implement since the bulk of it is
mathematical equations.

When Algorithm 2 is run on the robot simultaneously
along with Algorithm 1 on each sensor node,
simultaneous mobile robot and sensor localization
occurs.

Algorithm 2: Mobile robot localization algorithm.

1. Navigate robot along desired path.

2. Broadcast location information at discrete
intervals.

3. if Dbroadcast from GPS received

4. Update robot state and uncertainty
estimates using measurement Eqg. (20).

5. end if

6. 1if Dbroadcast from sensor received

7. Update robot state and uncertainty
estimates using measurement Eqg. (21).

8. end if

III.B. Simulation Results

The simulations described in Section Il have been
rerun  with GPS updates and sensor updates
implemented as Algorithm 2 on the mobile robot.
Infrequent GPS updates and temporally staggered
sensor updates help localize the robot. Figure 6 shows
the robot’s sweep path with GPS and UGS updates
disabled. A systematic dead reckoning error [32] has
been injected into the mobile robot to give gradually
deteriorating position information. The localization of
the robot deteriorates with time as can be seen in the
deviation of the robot’s estimated path (hyphenated
green line) from the robot’s true path (continuous red
line.) The desired path is as defined earlier, the
simulated path is the estimated path of the robot (where
the robot thinks it is), and the actual path is the true
path of the robot. Robot broadcasts occur along the true
path but the broadcasted position is a corresponding
location on the estimated path of the robot. If not
corrected, these wrong broadcasts could incorrectly
localize the sensors.

Figure 7 illustrates the robot’s sweep path which is
corrected in time by GPS and UGS updates using
Algorithm 2. As is evident, the robot’s localization has
improved and the positions of where the robot thinks it
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is (the estimated position), and where the robot actually
is (the true position) are much closer, since the
estimates are continuously corrected using Algorithm 2
as position information arrives, either from GPS or
from sensor node broadcasts.

Robot broadcasts occur along the true path of the
robot and consist of the robot’s estimated position
(slightly different from the robot’s true position where
the broadcast occurs) and uncertainty. Sensors within
range receive the broadcast and update their positional
information based on the robot’s estimates.

Figure 8 illustrates the localized sensors after the
initial sweep. True sensor positions are indicated by an
‘x” and estimated positions by a ‘e’. Now, some true
sensor positions are outside the 3c boxes due to the
added uncertainty in the robot position, though they are
generally close to these boxes. Figure 9 depicts the final
localization error of each sensor.

Figure 10 compares the average localization error of
the sensor network obtained by running algorithm 1 in
section | and algorithm 2 in section II with UGS and
GPS updates off and on. As can be seen, for the case of
algorithm 1 where the robot is assumed to be perfectly
localized, the average localization error is less than that
for algorithm 2. And in the case of algorithm 2, better
localization is obtained when the robot receives updates
from the UGSs and the GPS system.

Sensar Localization - Robot Path

EUS Desired Path

— — Simulated Path [Mominal]
Actual Path [Perturbed]

100 +

80t
a0t
0

oF

720 L 1 1 L 1 1 1
20 0 2 a0 & &0

00 0
Figure 6: Initial sweep path of the robot with GPS and UGS updates
disabled. Robot’s localization deteriorates with time as evident in
the deviation in the estimated path (hyphenated green line) and the
true path (continuous red line.)
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Figure 7: Initial sweep path of the mobile with GPS and UGS
updates enabled as Algorithm 2. The robot’s localization has
improved and the true position and the estimated position of the
robot along the path are much closer.
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Figure 8: Localized sensors after initial sweep of the deployment
area. True sensor positions are indicated by a ‘x’ and estimated
positions by a ‘e .
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Figure 9: Localization error of sensors computed as the Euclidean
distance between true and estimated positions.
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Figure 10: Average localization error over time for Algorithm 1 and
for Algorithm 2 with UGS and GPS updates Off and On.

IV. Adaptive Localization

A navigation strategy, to be used subsequent to the
initial sweep of the deployment area that was presented
in the previous sections, is developed here which
further minimizes the localization uncertainty of the
sensor network in the most efficient manner. An
adaptive localization policy is adopted to navigate the
mobile robot to an area of least localized sensor nodes.
This ensures that the robot maneuvers to an area with
sensor nodes possessing the largest uncertainty in
location.

Accurate position of coarsely localized sensors can
not be known (due to inherent coarse localization) so
that navigating to these sensors is not possible. The
radio connectivity of the network is exploited to
address the problem of having the robot navigate to a
location which is imprecise. Figure 11 depicts the
communication connectivity of the network.

Sensors

20k
20 0 20 40 60 a0 1m0 120
X
Figure 11: Communication connectivity of the network.
Communication routes between sensors and range of

communication of each sensor are depicted.

A communication protocol is developed wherein, the
robot broadcasts a navigation request packet, NAV-
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REQ, when the robot wants to find a new location to
navigate to. Sensors which receive the NAV-REQ
packet, forward it along the network. Sensors having a
large uncertainty scalar, the Frobenius Norm [33] of the
uncertainty matrix, reply back with a localization
request packet, LOC-REQ. The LOC-REQ packet
consists of the uncertainty matrix of the requesting
sensor and propagates along the network until it is
received by a friendly localized neighbor. Friendly
localized neighboring sensors receiving the LOC-REQ
packet append it with their position and forward the
packet along the sensor network to the robot. Figure 12
and Figure 13 show the flow of the NAV-REQ and
LOC-REQ packets.

Localized Sensors
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20+
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Figure 12: Initiation of the navigation request "NAV-REQ" packet
from the robot.
Localized Sensors

120

100

B0+

40+

-20 L 1 1 1 1 1 1 1 1
20 D 20 w B0 B0 100 12

Figure 13: Coarsely localized sensors reply back with a localization
request "LOC-REQ" packet. Black arrows indicate the flow of the
"LOC-REQ" packets to friendly neighbor nodes which append the
packet with their position and forward it along the network towards
the robot.

The robot receives packets from multiple non-unique
friendly neighbors each representing a single coarsely
localized sensor. The robot needs to choose a friendly
neighbor to navigate to. Friendly neighbor arbitration is
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performed by grouping uncertainties of the same
friendly neighbor in quadrature to give its combined
uncertainty scalar. The friendly neighbor with the
largest combined uncertainty scalar is picked as the
location to navigate to. If multiple such neighbors exist,
the most localized neighbor is chosen. The tradeoff
between combined uncertainty versus localization
certainty of a friendly neighbor even when there is no
tie is such that the robot always navigates to reduce the
most amount of uncertainty with each iteration. This
may result in more coarsely localized sensors than one
or two finely localized sensors.

Thus regions with a large density of coarsely
localized sensors having a common friendly neighbor
are adaptively navigated to. However, due to the
inherent imprecise location of the friendly neighbor, the
robot actually navigates a circular path around the
neighbor’s estimated position.

Algorithm 3 summarizes the Adaptive localization
algorithm.

Algorithm 3: Adaptive localization algorithm.

1. Broadcast Navigation request, NAV-REQ,
packet.

2. Wait to receive Localization request, LOC-
REQ, packets.

3. for all LOC-REQ with the same friendly
neighbor

4. Combine uncertainty scalars of the

requesting sensors.
5. end for
6. Pick friendly neighbor with maximum combined
uncertainty scalar of the requesting sensors.
7. if multiple maximas arise

8. Among the maxima, pick the most localized
friendly neighbor.

9. end if

10. Navigate around the picked friendly neighbor
executing the simultaneous localization
algorithm, Algorithm 1 on the sensors and

Algorithm 2 on the mobile robot.
11. Repeat Steps 1-10 as required.

After the initial sinusoidal sweep, see Figure 8,
Figure 13, sensors 8 and 14 both receive three
Localization request packets each from sensors
10,20,25, and 3,15,23 respectively. And on combining
the uncertainties of the requesting coarsely localized
sensors, an equal maximum uncertainty scalar arises for
sensors 8 and 14. However sensor 8 is more localized
than sensor 14 and robot navigation occurs around the
estimated position of sensor 8, see Figure 14(b).

Figure 14 illustrates four adaptive localization
iterations and its navigation path is shown in (a-¢) and
corresponding uncertainty scalars of the sensors at the
end each adaptive localization iteration is illustrated in
(f-j). With each adaptive localization iteration, Figure
15 shows the reduction of localization error of each
sensor, and Figure 16 depicts the reduction of the



average localization error of the sensor network. Figure
17 illustrates the localized sensors after four iterations
of the adaptive localization algorithm. As can be seen,
all sensors are localized and uncertainty in localization
fairly small. Figure 18 compares the average
localization error for the three algorithms (1-3) over
time. As can be seen, with the adaptive navigation
(algorithm 3), there is a significant reduction in
localization error.

At every instant, along with the adaptive localization
algorithm, Algorithm 3, the entire simultaneous
localization algorithm with updates from the GPS, and
more localized sensor, Algorithm 1 and Algorithm 2,
are always running. This demonstrates simultaneous
adaptive localization of the sensor network.
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Figure 15: Reduction of the average Localization error of the
sensors with each adaptive localization iteration.
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Figure 18: Average localization error of the sensor network with
time for Algorithms 1, 2, and 3. A “*’ demarcates each adaptive
localization iteration region.

V. Discussions

This section discusses how the results of this work
are affected by dropping certain ideal assumptions.

V.A. Effect of uncertainty matrices

Infrequent accurate GPS updates are assumed to exist
which, along with updates from the UGSs help in
localizing the robot. Figure 19 shows the effect of the
GPS uncertainty matrix, R%® (Eq. 20). With an highly
inaccurate GPS (large R"®), the localization of the
sensor network initially decreases as sensors get
localized, but then increases again as the robot drifts are
wrongly corrected and the sensors get localized to the
increasingly incorrect robot broadcasts.

On the other hand, with increasing robot uncertainty
matrix, the robot broadcasts locations are accurate but
with large uncertainty. Figure 20 shows the effect of the
robot uncertainty matrix through Q (Eq. 19) on
localization. As expected localization error is very
slightly affected, however the uncertainty of the sensors
in their estimates increases with Q.
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Figure 19: Effect of GPS uncertainty matrix on sensor network
localization.
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Figure 20: Effect of Robot uncertainty matrix on (a) Average sensor
network localization, and (b) Mean uncertainty scalar in sensor
network localization.

V.B.

The localization algorithms presented here entirely
rely on the sensor being able to hear robot broadcasts.
Figure 21 shows the effect on localization by varying
the communication range of the robot only (the range of
the sensors is fixed at 20 units.) An extremely small
robot range does not actually improve localization as
sensors either hear a small number of robot broadcasts
or none at all. With large robot ranges, all sensors are
rapidly localized but with coarse localization. A robot
communication range that is slightly smaller than the
sensor communication range seems to obtain the best
localization results.

Radio irregularity is a common and non-negligible
phenomenon in wireless sensor networks. It results in
irregularity in radio range in different directions [34]. A
Radio Irregularity Model (RIM) discussed in [35] has
been implemented to see the effect of radio irregularity
on sensor network localization. Figure 22(a) shows the
robot communication range for different values of
degree of irregularity (DOI). Figure 22(b) shows the
robot broadcasts with the implemented dynamic RIM
where the range is asymmetric and it dynamically
reorients based on the orientation of the robot.

Algorithms 1-3 have been run ten times for each of

11

Effect of radio range and irregularity



the different DOI and the mean sensor network
localization error is obtained. The number of adaptive
localization iterations has been limited to four to
provide means of a fair comparison. As seen in Figure
23, with increasing radio irregularity, the localization
error deteriorates. Certain robot broadcasts may be lost
due to the radio irregularity; however adaptive
localization continues to work as long as the network
does not break up into trivial clusters of a single node.
For an increased DOI, the algorithm will just take more
iterations to converge to an equivalent localization error
obtained with no radio irregularity.

One aspect that has not so far been addressed is
related to the issue of drop packets / link connectivity.
In other words what happens if NAV-REQ and LOC-
REQ packets are received intermittently. Research [40]
has shown that nodes may be in communication range
but yet occasionally drop packets due to environmental
factors, interference, congestion, and other sources of
loss. It’s possible to keep retransmitting packets and
increase the delivery probability, but this also increases
the transmission time and energy consumed. Figure 24
shows the effect on the adaptive localization algorithms
when communication links fail with certain probabilites
and packets are dropped. The mean sensor localization
error deteriorates as links fail and packets get dropped.
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Figure 21: Effect of robot communication range on sensor network
localization.
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V.C. Energy considerations

Algorithm 1 on the sensor node, although
computationally inexpensive, places the sensor in listen
mode for extended periods of time. This is a case of idle
listening, were the sensor node actively listens for
potential robot broadcasts. Idle listening of the radio
has been identified as a major source of energy wastage
[36]. A survey of energy saving mechanisms in sensor
networks exists in [37].

In our application, since all communication for our
algorithms are discrete in nature, the listening of the
nodes can be discretized. For instance, if the knowledge
that the robot broadcasts every 5 seconds is available to
every node, then the node can sleep for 4 seconds and
listen for 1 second. This in itself is an energy saving of
over 80%. All NAV-REQ, and LOC-REQ packet
transmissions can by synced to this interval. Periodic
correction of clock drifts for various nodes would
however be required. In the initial case of a node not
knowing when to listen, it can listen 100% of the time
until it finds out the discrete broadcast periodic interval.
For detailed information on sleep scheduling refer [38],
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[39].

V.D.  Extensions to Simultaneous adaptive

localization

Sensor nodes are localized only by broadcasts from
the mobile robot. Other sensor broadcasts could be used
for localization, but for even a reasonably fine
localization, multiple localized neighbors around the
sensor are required. Multiple broadcasts from one
particular sensor provide as much information as just
one broadcast.

The initial sweep path of the mobile robot over the
sensor network may place certain restrictions (such as
knowing the extent of the sensor network to be swept).
However, this sweep path need not cover the entire
area, infact the sweep path can be entirely dropped and
the adaptive localization algorithm made to completely
take over. An initial NAV-REQ would result with a
LOC-REQ and will navigate the robot to the initial
estimate of the sensor requesting localization (usually
the center of the deployment area, but could be any
other location.) Figure 25 shows four adaptive
localization iterations with no initial network sweep. As
shown in Figure 26, with no initial sweep, the
localization error initially is high, but eventually
converges to that obtained with an initial sine sweep.

The distributed nature of algorithms 1-3 also present
the ability of trivially introducing additional mobile
robots into the network. Each robot can implement
algorithms 2, and 3 with absolutely no changes thereby
accelerating localization of the sensor network to an
even fine granularity.

Robot Path Robot Path

(©)

Figure 25: Adaptive localization paths with no initial sweep.
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VI. Conclusion

Rigorous mathematical algorithms for adaptive
simultaneous localization of the static unattended
ground sensors and the mobile robot have been
demonstrated. The first algorithm localizes the static
sensors and the second algorithm localizes the mobile
robot. These algorithms together allow simultaneous
localization of the static sensor and the mobile robot. A
third adaptive localization algorithm ensures that the
region of the deployment area with the largest
uncertainty is localized with minimal robot movement.

Future work will involve experimental validations of
the proposed algorithms using the Automation &
Robotics Research Institue’s (ARRI) WSN testbed and
the mobile robot developed by the authors in [24]. A
communication link estimation model as discussed in
[40] may need to be added to the Kalman filter to
reliably route NAV-REQ and LOC-REQ packets in an
efficient manner in the presence of lossy
communication links.
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