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Abstract— We present a large language model (LLM) based
system to empower quadrupedal robots with problem-solving
abilities for long-horizon tasks beyond short-term motions.
Long-horizon tasks for quadrupeds are challenging since they
require both a high-level understanding of the semantics of the
problem for task planning and a broad range of locomotion
and manipulation skills to interact with the environment. Our
system builds a high-level reasoning layer with large language
models, which generates hybrid discrete-continuous plans as
robot code from task descriptions. It comprises multiple LLM
agents: a semantic planner for sketching a plan, a parameter
calculator for predicting arguments in the plan, and a code
generator to convert the plan into executable robot code. At
the low level, we adopt reinforcement learning to train a set
of motion planning and control skills to unleash the flexibility
of quadrupeds for rich environment interactions. Our system
is tested on long-horizon tasks that are infeasible to complete
with one single skill. Simulation and real-world experiments
show that it successfully figures out multi-step strategies and
demonstrates non-trivial behaviors, including building tools or
notifying a human for help.

I. INTRODUCTION

Quadrupedal robots have demonstrated advantages in mo-
bility and versatility using a variety of skills. The field has
witnessed exciting advancement in developing locomotion
controllers to enhance traversability [1], [2], [3] and manip-
ulation controllers to facilitate physical interactions with the
world [4], [5], [6]. Although much progress has been made
in the acquisition of specific motion skills, we would like
to push the autonomy of the robot to a higher level beyond
the individual skills and ask: How can a quadruped robot
combine its locomotion and manipulation abilities to tackle
challenging problems necessitating long-horizon planning
and strategic interactions with the environment?

An example of a long-horizon task may be turning the
lights off before exiting an office, a scenario demanding a
strategic combination of actions such as climbing to reach
a button, pressing an object, and walking. Such a long-
term maneuver poses significant challenges both in high-level
reasoning and in low-level motion planning and control.

For high-level reasoning, the agent must devise a multi-
step strategy that takes into account both physical affordances
and skill limitations, all without the aid of immediate learn-
ing signals, thus encountering substantial exploration hurdles
in long-term problem-solving. Furthermore, the vast decision
space of the high-level policy exacerbates the challenges.
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Fig. 1: Overview of the hierarchical system for long-horizon
loco-manipulation task. The system is built up from a rea-
soning layer for task decomposition (yellow) and a control-
ling layer for skill execution (purple). Given the language
description of the long-horizon task (top), a cascade of
LLM agents perform high-level task planning and generate
function calls of parameterized robot skills. The controlling
layer instantiates the mid-level motion planning and low-
level controlling skills with RL.

The policy needs to simultaneously determine which skill to
execute (e.g., walking or pitching up) and how to execute
it (e.g., specifying continuous parameters for the target
position). Prior research often relies on demonstrations [7] or
heuristics in search [8] to reduce the computation burden. As
for low-level control, the quadrupeds’ nonlinearity and high
dimensionality pose challenges in acquiring versatile behav-
iors necessary to enable complex environmental interactions.

We propose a hierarchical system to address the challenges
in long-horizon loco-manipulation problems for quadrupeds
as illustrated in Fig. 1. At the high level, we harness the
planning ability of pretrained large language models (LLMs)
for abstract reasoning over the long horizon. Leveraging
the wealth of encoded common-sense knowledge, the LLM-
based reasoning layer can directly predict high-level strate-
gies without demonstrations or searching heuristics. To better
ground to robotic problems, we design the reasoning module
as a cascade of multiple LLM agents. A semantic planner
sketches a discrete plan, while a parameter calculator predicts
continuous parameters in the plan. Subsequently, a code
generator encapsulates the plan into function calls for robot
skills. At the low level, we train a spectrum of motion
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planning and control policies with model-free reinforcement
learning, spanning from quadrupedal locomotion to bipedal
manipulation.

Our system is tested with long-horizon loco-manipulation
tasks such as turning off the lights before exiting the office,
and delivering a package into a room with a closed door. The
LLM-based reasoning module figures out strategic solutions
including building stairs with appropriate heights to touch an
originally unreachable button. Combined with versatile low-
level motion planning and control policies, the system can
address long-horizon tasks that require minutes of execution
of multiple motion skills, demonstrating a success rate of
over 70% in simulation and successful deployment in the
real world.

II. RELATED WORK

Quadrupedal locomotion and manipulation: Develop-
ing versatile motions over quadrupedal robots to make them
work like real animals has attracted much research interest. A
large body of works focuses on robust and agile locomotion
skills that can walk on challenging terrains [9], [3], [10]
and perform extreme parkour [11], [12]. Some recent works
develop manipulation skills for quadrupeds to better interact
with the environment, such as learning manipulation via
locomotion to push heavy objects [13], manipulating with
one or two legs while balancing on other legs [14], [7], [6],
or manipulating with a gripper mounted on the robot [15],
[16]. There are also works that learn mid-level motion
planning policies over these low-level motion controllers
for more complex skills, such as soccer manipulation [17],
[18]. We focus on empowering quadrupeds with long-horizon
problem-solving abilities beyond motion planning and con-
trol skills for specific tasks. The problems considered in this
work require an abstract task-planning ability that reasons
over the semantics. The desired strategy, such as building
stairs under the wall so that the robot can climb up and reach
the light switch, requires common-sense knowledge about
the physical constraints of the environment and the robot’s
capabilities and is challenging to discover from scratch.

Tackling long-horizon challenge in robotic tasks: Tra-
ditionally, Task and Motion Planning (TAMP) [19] methods
are adopted to get plans for long-horizon tasks that involve
a hybrid of discrete tasks and continuous parameters, but
typically require entire environment states and suffer from
heavy computational burden [20]. Training hierarchical poli-
cies incorporating temporal abstractions is another approach
to tackle long-horizon problems [21], [22], [23]. Some other
works adopt behavior trees [7] or skill chaining [24] to
address the long-horizon challenge.

Recently, pretrained large language models [25], [26], [27]
have demonstrated impressive reasoning abilities to plan over
robot skills for solving long-horizon tasks. A line of works
uses LLMs to decompose long-range tasks into step-by-step
plans in natural language [28], [29], [30], and grounds the
language plan to robot execution with language-conditioned
control policies. With the development of code-completion
LLMs, researchers have also considered using Pythonic code

as the interface between LLM reasoning and robot skills [31],
[32] since it can be more directly grounded to available robot
APIs and allows more fine-grained behaviors using numerical
arguments in function calls. We similarly leverage LLMs
to generate robot code for completing long-horizon tasks
that involve physical constraints in this work and separate
semantic planning, numerical argument computing, and code
writing to different LLM agents.

The most relevant work to us is RoboTool [33] which
also reasons over long-range physical puzzles with mul-
tiple LLMs. However, RoboTool only leverages the basic
quadrupedal locomotion skills, which essentially treats the
quadruped robot as a mobile platform and does not fully uti-
lize its high dimensionality. Our system additionally supports
a more diverse set of low-level skills such as pitching up
and bipedal manipulation, therefore can be applied to more
complex scenarios.

III. METHOD

In this work, we develop a hierarchical system on a
quadruped robot to solve challenging long-horizon tasks
that require a smart combination of dynamic skills. For
high-level reasoning over the long horizon, we design a
cascade of LLMs to figure out hybrid discrete-continuous
plans represented as parameterized robot skill API calls. At
the low level, we instantiate motion planning and control for
locomotion and manipulation skills with model-free RL.

A. High-level reasoning for long-horizon tasks with LLMs

To address the challenging reasoning and grounding prob-
lem, we design a cascade of three LLM agents with different
focuses as the high-level reasoning module as shown in
Fig. 2. A semantic planner focuses on task decomposition
with constraints from physical affordances and robot ca-
pabilities and sketches a plan of primitive skills for the
long-horizon problem. A parameter calculator figures out
the precise arguments for the primitives in the plan. A code
generator converts the plan and the arguments into one single
piece of executable code that can strategically combine the
available low-level skills to handle the long-horizon problem.
We use GPT-4-turbo-preview [34] for all the LLM agents 1.

1) Semantic planner: The agent reasons at an abstract
level to predict a feasible plan from natural language de-
scriptions of the task setup and the available robot skills.
The required strategy may differ according to variations in
the environment configurations, e.g., the robot can directly
climb up stairs if the slope is within its ability but it needs
to seek a box to step on before climbing otherwise. Different
from previous approaches that run planning for specific
environment configurations, we ask the planner to consider
different conditions and use “if-else” clauses to unify all
strategies into a single plan. Therefore, our generated plan
could merit generalization over different setups at test time.

1We also tried other LLMs such as GPT-3.5 [26] and Kimichat [35].
GPT-3.5 struggles to generate feasible abstract plans due to its deficiency in
reasoning. Kimichat can generate reasonable plans given the environment
descriptions and constraints but fails to calculate the accurate parameters
even when prompted with detailed instructions.



Fig. 2: Illustration of the LLM-based high-level reasoning layer that generates hybrid discrete-continuous plans from the task
description in language. It is composed of a semantic planner that proposes a solution consisting of branches conditioned
on environment specifications and primitive actions, a parameter calculator that fills in arguments for the actions, a code
generator to summarize the plan as executable robot code. The texts are abbreviated generated contents from the LLMs.

Fig. 3: The decomposed plan generated by the semantic
planner LLM. The plan unifies multiple control branches
depending on the environment specification. The steps in
the plan are either feasibility checks that could branch out
different conditions, or sequences of primitive skills.

We first provide the planner with descriptions of each
motion skill, the physical rules to follow, and an exam-
ple showing the output format. We then give environment
descriptions, specifically the information about the objects
contained in the environment, the task to complete, and the
limit of the robot’s low-level skills. Note that the environment
information does not contain numerical values about the
objects. Instead, we encourage the planner to use “if-else”
clauses in the plan to consider different cases.

The output of the planner is shown in Fig. 3. It formulates
the plan as a workflow with branches and jumps. Each
step is either a feasibility check or an action step. A check
step redirects the control flow to different steps depending

on the environment configuration or raises an error if the
task is deemed unsolvable given all the constraints. An
action step invokes one or more parameterized skills to be
executed sequentially, but the corresponding parameters may
be incorrect or undefined, e.g., the predicted target position
for the climbing skill in step 2 does not consider the size
of the robot. The parameters are handled by a calculator
described next.

2) Parameter calculator: We leverage a second LLM to
obtain the correct parameters for the invoked robot skills in
the plan. Previous research [32], [36], [33] find that a single
LLM is not proficient at reasoning across multiple levels of
abstraction. We similarly observed that the planner for task
decomposition is erroneous regarding detailed parameters for
the skills, therefore assigning the calculation to another LLM.

The parameter calculator is designed to generate formu-
las that can be executed to calculate the 3D targets from
variables given in the environment description. It takes the
predicted plan along with the original environment descrip-
tion as input, and is prompted with rules for computation
and one example output. For each action step, the calculator
first parses out the primitive skill that needs to compute
arguments, then thinks about how to do the calculation
verbally, and finally gives the formulas for every dimension
of the arguments. The snapshot of its output can be seen
from Fig. 2.

3) Code generator: Given the abstract plan and the de-
tailed parameters for the skills in the plan, we use a third
LLM agent to convert them into executable Python code
that can directly orchestrate the low-level locomotion and
manipulation skills. We prompt the code generator with
documented function definitions and global variables that
can be used in the code, rules for code writing, and one
dummy example for formatting. The available functions are
the skill set of the robot and a perception function to query
the position of an object. The global variables are geometrical



properties of objects, whose values will be assigned at test
time. We then provide the abstract plan, the parameters, and
the environment description to the code generator. The code
output is shown in Fig. 2. The code generator interprets
the control flow in the plan as conditioning blocks, triggers
relevant skills in each branch, and performs appropriate
arithmetic operations to obtain parameters.

B. Low-level motion planning and control with RL

We implement robot skill APIs used in the high-level
reasoning layer with RL-based motion planning and con-
trol policies. We first train control policies for short-term
motions including quadrupedal locomotion on terrains, i.e.,
climb to position, and bipedal locomotion and ma-
nipulation skills stand up, hand touch position,
sit down. Building upon the control policies, we de-
velop motion planning policies for mid-term strategies
such as push to position for moving objects and
walk to position for navigation with collision avoid-
ance. To switch between the skills more robustly, we further
fine-tune the policies by initializing each of them from
the termination states of the preceding skill following the
predicted order in the LLM-generated code. All these skills
are trained with PPO [37] in domain randomized simulation.

1) Learning control policies for short-term motions:
Quadrupedal locomotion is formulated as a velocity-
tracking motion, and is trained with a multi-stage curriculum
of increasingly challenging terrains to efficiently learn a
robust policy. In the first stage, a walking policy is trained
on a flat surface following the same reward specification
of [38]. It is then transferred to the second stage to learn
locomotion over static stairs where the stair height ranges
from 0 to 0.35m. After the policy is capable of climbing up
the highest stairs, it is transferred and continues to be trained
in the final stage of environment where the stairs are built
from multiple movable boxes. The policy is trained to track a
linear velocity along a fixed direction across the boxes while
avoiding moving the boxes at the same time. This final stage
encourages the robot to learn a gentle and robust climbing
strategy without stepping on the edges of the terrain.

Bipedal locomotion and manipulation To facilitate
interaction with objects, we develop bipedal locomotion and
manipulation policies that control the quadrupedal robot to
reach target positions with its front legs while standing on
its hind legs. We first train a bipedal locomotion policy that
can pitch up from a four-leg standing pose, then track a
linear bipedal walking velocity using the method in [39].
Afterward, we train a bipedal manipulation policy to reach
target positions using one front leg with a summation of three
categories of reward terms. The first category is position-
tracking rewards that encourage the robot to move its left
front toe to the desired position as close as possible. To re-
duce jitter around the desired position, the robot is also given
a bonus reward linear to the number of consecutive steps
during which the distance to the desired position is within
a threshold. The second category shapes the robot base and
the other three legs into an upright standing pose. The third

category is regularization terms that penalize abrupt actions,
large joint velocities, and dangerous collisions with the robot.
The policy is trained from states in bipedal standing poses
with the robot base pose and the joint positions sampled from
a hand-crafted range. To transit from bipedal to quadrupedal
standing poses, we also train a sit-down policy following the
reward in [39].

2) Learning motion planning policies with hierarchical
RL: We build object-pushing and obstacle-avoiding skills
with hierarchical RL, both trained as mid-level motion
planning policies over the previously obtained quadrupedal
locomotion controllers. The object-pushing policy aims to
manipulate an object to a desired pose. It is trained to predict
the linear and angular velocity for the locomotion controller
every 0.5 seconds. The policy takes low-dimensional states
including the current and the desired object pose, the robot
body pose and the object size as input. The primary reward
encourages a shorter distance between the current and the
desired object pose. We additionally credit the robot to face
towards the object so that it can keep the vision of the object.

As for the obstacle-avoiding policy, it aims to control
the robot to move to a desired position and orientation while
avoiding collision with an obstacle in the scene. The policy
shares the same action space as the object-pushing policy and
predicts actions every 0.2 seconds. The observation similarly
contains the current pose of the obstacle, the current and the
desired pose of the robot base and the size of the obstacle.
The rewards consist of a pose-tracking term that encourages
the robot to match the target pose and an obstacle-avoidance
term that penalizes the robot for being too close to the object.

3) Chaining RL skills: Directly executing different skills
sequentially often leads to suboptimal behavior since the
terminate state distribution of one policy may not perfectly
match the initial state distribution of the next policy. For
instance, the quadrupedal climbing policy is trained from
initial states where the edges of all the stairs are parallel.
However, the preceding box-pushing policy often terminates
with the box deviating from the ideal pose right beneath
the existing stairs. Executing the climbing skill from the
out-of-distribution states will lead to missteps and falls,
thus resulting in lower success rates as more skills are
executed. To mitigate the impact of the preceding strategy’s
termination state on the subsequent strategy, we collect a set
of termination states of the preceding policy of each policy,
then fine-tune the policy from a mixture of the original initial
state distribution and the collected states. Note that we only
run fine-tuning for the pair of policies that will be executed
sequentially according to the plan generated by the reasoning
layer to reduce the computation burden.

IV. EXPERIMENTS

A. Experiment setup

We experiment with two benchmark tasks that require
strategic high-level reasoning. One task is turning off the
light with the button high beyond the reach of the robot.
The desired solution is to first build up stairs from boxes,
then climb on top of the stairs and stand up to press the



button. The other task is delivering a package into a room
with the door closed. The robot should ring the doorbell to
ask a human inside the room to open the door, and then push
the package. We generate robot code as illustrated in Fig. 2
for each task then execute the code in simulation or on the
real robot.

To facilitate the successful deployment of RL policies
to a real Xiaomi Cyberdog2 [40] robot, we add domain
randomization to the simulation including joint friction, joint
damping, mass displacement, motor strength, and observa-
tion noise to the object positions during training. We attach
multiple AprilTags [41] to the surface of the objects and use a
forward-view RealSense D430 camera on the robot for pose
estimation. Since the tags frequently go out of the view of the
cameras during deployment, we also mimic the phenomenon
in simulation by freezing the relevant observations when
the object is out of the camera’s field osf view. We also
randomly freeze the observations to mimic the situation when
the detection fails due to the motion blur of captured images.

B. Ablation studies

Ablation on the high-level reasoning layer: We first
verify the proposed design of the high-level reasoning layer
composed of a cascade of LLM agents in the simulation.
We compare our method LLM (S+P+C) that leverages a
semantic planner, a parameter calculator and a code generator
with the following variants:

• LLM (S+C) that removes the parameter calculator
agent, i.e., passing the output of the planner and the task
description to the coder. The coder needs to calculate
the parameters to write functional programs;

• LLM (C) with code generator only, i.e., directly gen-
erating code from the task description.

The performances are measured using (i) the overall success
rate for completing the whole task, and (ii) a normalized
distance metric defined specific to the semantic of each task.
The light-switching task is considered successful when the
distance between the front-left end-effector and the button
is smaller than 0.03m in the direction perpendicular to the
wall and 0.06m in the other two axises parallel to the wall.
The normalized distance is calculated as the shortest distance
between the robot and the button within one episode divided
by the initial distance. The success condition for the package-
delivery task is when the bounding box of the package is in
the room. We also report the shortest distance between the
package and a fixed spot behind the door within each episode
normalized by the initial distance for this task.

We use a temperature of 0.2 to generate 3 runs of code
for each method. The generated codes are evaluated for 100
trajectories in simulation. In each trajectory, we randomize
the height and density of the boxes, the initial position and
density of the package, the height of the button and doorbell,
and the dynamics of the robot joints. For the light-switching
task, the height of the lower stair will affect the necessity of
pushing the box to construct the intermediate platform.

As reported in Table I, removing the parameter calculator
and the semantic planner leads to a significant performance

drop. Note that LLM (S+C) and LLM (C) fail to achieve
any success in the light-switching task since they mostly get
stuck at the first executed skill with incorrect arguments. The
arguments generated without the parameter calculator fail to
consider the bounding box of objects and their geometric
relationship. As the code snippets in Fig. 4 show, LLM (S+C)
sets the target position of climbing to the center of a stair
rather than the top surface, and it decides to push the movable
box exactly beneath the lower stair, which is physically
infeasible. LLM (C) fails to consider basic physical concepts
like volumes. For example, it calls a walking skill with the
target position at the center of a box, which will collide
with the box and make the later steps more difficult to
succeed. Similarly, in the package-delivery task, the variants
without the parameter calculator struggle to obtain the correct
arguments. Some sampled code plans would even attempt to
push the box into the locked room without ringing the bell.

Comparison with hierarchical RL: We also validate
the LLM-based reasoning module by comparing it with a
hierarchical RL (HRL) baseline. It trains a high-level RL
policy that operates over the same set of low-level skills
used in our system to function as the reasoning module.
The high-level policy jointly predicts the discrete low-level
skill ID and its continuous parameters every 0.1 seconds.
We implement a two-head MLP with shared base layers and
separate output layers for discrete and continuous predictions
respectively. For the light-switching task, the policy is trained
with a reward that encourages the robot to get its front-
left end-effector closer to the light button, and for the
package delivery task, it is trained with a reward regarding
the distance between the package and the door. We early-
terminate an episode when the robot falls or moves too
far away from its initial position. The high-level policy is
optimized with PPO [37]. As shown in Table I, HRL cannot
outperform LLM-based methods. In the light-switching task,
HRL learns a sub-optimal policy that consistently tries to
climb straight up the stairs instead of using the box as a
step when necessary. This results in many falls when trying
to climb up the stairs. As for the package-delivery task,
HRL only learns to perturb the package closer to the door
a little bit with quadrupedal locomotion skills, and cannot
discover how to unlock the door. They both fail to learn the
correct solutions since the vast search space makes it almost
impossible to explore the exact combination of skills without
prior knowledge.

Ablation on fine-tuning RL skills for smooth chaining:
We study whether chaining RL skills via fine-tuning helps
alleviate compounding errors by comparing our method with
a variant without fine-tuning the low-level skills from aug-
mented initial states. The two sets of skills are orchestrated
with the same high-level code plans and are tested in the
light-switching task. As reported in Table II, our method with
additional fine-tuning performs significantly better in terms
of the success rate and the relative distance metric. Since the
two methods use the same high-level plans, it indicates that
the proposed fine-tuning stage is critical to the robustness of
the system when transiting between different skills.



Fig. 4: The code snippets generated by different variants of the LLM-based reasoning layer in the light-switching task.
Without the parameter calculator, the generated arguments by LLM (S+C) and LLM (C) fail to ground to the physical
world. Without the semantic planner, the generated code from LLM (C) contains more unnecessary primitive actions.

TABLE I: Ablation studies on the reasoning layer. The mean and standard deviation of the success rate and a distance metric
in two tasks across 3 seeds are reported. The composition of multiple LLM agents is critical to the good performance of
the system. LLM-based reasoning performs better than an RL-based high-level policy.

Light switching Package delivery
success ↑ normalized distance ↓ success ↑ normalized distance↓

LLM (S+P+C) 0.747±0.012 0.032±0.004 0.770±0.022 0.265±0.016
LLM (S+C) 0.0±0.0 0.326±0.002 0.0±0.0 0.697±0.408
LLM (C) 0.0±0.0 0.397±0.083 0.0±0.0 0.483±0.249

Hierarchical RL 0.0±0.0 0.662±0.196 0.0±0.0 0.933±0.021

(a) Light-switching task.

(b) Package-delivery task.

Fig. 5: Execution of LLM-generated long-term strategies for two benchmark tasks in the simulation and real world.

C. Main results

We test our system on two aforementioned benchmark
tasks in the real world. As shown in Fig. 5a, we execute the

generated code together with the RL motion skills to turn off
the light. In the initial setup, the height of the light button is
out of reach with any single skill, and the first level of stairs is



TABLE II: The effectiveness of fine-tuning low-level RL
policies from the terminal states of preceding policies.

success rate ↑ normalized distance ↓

w/ fine-tune 0.747±0.012 0.032±0.004
w/o fine-tune 0.540±0.020 0.177±0.012

(a) Quadrupedal locomotion controller.

(b) Bipedal manipulation controller.

(c) Object-pushing motion planner.

(d) Obstacle-avoidance motion planner.

Fig. 6: Visualization of versatile behaviors driven by the
RL-based skill repertoire, covering short-term locomotion
and manipulation controllers (a)(b) and mid-term motion
planning skills (c)(d). Each policy is capable of a range of
continuously parameterized problems.

too high for the robot to climb directly. Considering the scene
configuration, the LLM planner decides to push a lower box
in front of the existing stairs so that the robot can use it as an
intermediate platform to climb up then to touch the button.
Finally, it runs a sit-down policy to transit to the quadrupedal
pose. In Fig. 5b, we show how the quadrupedal robot delivers
a package into a room with the door closed initially. To get
access to the room, our reasoning layer figures out a strategy
to ring a bell to notify the human inside the room to open
the door. To protect the package from unnecessary collisions,
it leverages the obstacle-avoidance locomotion skill when
moving to the bell and before pushing the package.

D. More analysis

Analysis of low-level RL skills: We showcase how
the parameterized motion planning and controlling policies
enable versatile motions in Fig. 6. The quadrupedal lo-
comotion policy can walk or climb up boxes of various
sizes. Fig. 6a shows snapshots when climbing the height of
0.35m and 0.15m. The bipedal locomotion and manipulation

Fig. 7: One typical failure case in the light-switching task.
The quadruped robot falls to the ground from the stairs
after it loses balance during the execution of the bipedal
manipulation skill.

control policy could touch target spots with different relative
positions to the robot, as shown in Fig. 6b, where the robot is
adapting itself when the target position is lower, higher, to its
left or right. As for the motion planning policies, the object-
pushing policy demonstrates some adjustment trajectories
when aligning the pose of the box to the target, shown in
Fig. 6c. We test the robot to walk to different goal positions
while avoiding collision with an obstacle shown in Fig. 6d,
and find the policy can choose different paths according to
the target position.

Failure case: The quadrupedal robot may enter dead ends
when the execution of some low-level skills fails. As shown
in Fig. 7, the robot occasionally loses balance after standing
up and then falls from the stairs. Since our system gives
plans in an open-loop manner currently, the robot cannot get
an updated plan in such cases. In addition, our system cannot
invent policies beyond the fixed set of low-level skills, and
thus cannot recover from fatal states without a reset policy.

V. CONCLUSION

We present an LLM-based system for tackling long-
horizon tasks with a quadruped robot that extends the
autonomy of quadrupeds from shorter-term motions for
specific skills to long-range complex behaviors that require
orchestrating multiple locomotion and manipulation policies.
The high-level task planning is enabled with our design
of multiple LLM agents for decomposing the whole task
into robot actions and then grounded to parameterized robot
API calls. The low-level control that exploits the agility
of quadrupeds to unlock rich environment interactions is
instantiated with model-free RL. Our LLM reasoning layer
plans in an open loop. Allowing it to improve from feedback
such as execution traces with in-context learning is an
interesting future direction. Currently, the reasoning layer
plans over a fixed set of low-level robot skills crafted by
experts. Future research could investigate the possibility of
actively discovering new skills to learn when encountering
unprecedented circumstances.
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