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Abstract
Learning-based control approaches have shown great promise in performing complex tasks di-
rectly from high-dimensional perception data for real robotic systems. Nonetheless, the learned
controllers can behave unexpectedly if the trajectories of the system divert from the training data
distribution, which can compromise safety. In this work, we propose a control filter that wraps
any reference policy and effectively encourages the system to stay in-distribution with respect to
offline-collected safe demonstrations. Our methodology is inspired by Control Barrier Functions
(CBFs), which are model-based tools from the nonlinear control literature that can be used to con-
struct minimally invasive safe policy filters. While existing methods based on CBFs require a
known low-dimensional state representation, our proposed approach is directly applicable to sys-
tems that rely solely on high-dimensional visual observations by learning in a latent state-space. We
demonstrate that our method is effective for two different visuomotor control tasks in simulation
environments, including both top-down and egocentric view settings.
Keywords: Distributional Shift, Control Barrier Functions, State Representation Learning

1. Introduction

The modern advances in the representation learning literature have been an enabling factor for
the recent surge of a wide variety of methods for robotic control directly from images or high-
dimensional sensory observations (Watter et al., 2015; Ebert et al., 2018; Hafner et al., 2019; Lenz
et al., 2015; Zhang et al., 2019; Van Hoof et al., 2016). These approaches for visuomotor planning
and control have the potential to solve challenging tasks in which the state of the system might
not be directly observable, or even not possible to model analytically. While promising, the high-
dimensionality of the problem make these methods susceptible to several open challenges. For
example, the exploration requirements of reinforcement learning (RL) algorithms are significantly
exacerbated for these tasks, due to the high-dimensionality of the observations. This can result in
abundant failures during training when trying to learn safe control policies. Supervised learning
approaches for control, such as behavioral cloning, would in principle seem less prone to exhibit
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unsafe behaviors. However, it is well known that simply because of their data-dependent nature,
these methods are still susceptible to a key challenge named distributional shift: if the trajectories
of the system divert from the training data distribution, the controller might take unexpected actions.

On the other hand, the control theory literature extensively covers the problem of long-horizon
constraint satisfaction. In particular, Control Barrier Functions (CBFs, Ames et al. (2014)) are a
popular model-based tool used to restrict the trajectories of the system from entering undesirable
regions of the state-space. An attractive property of CBFs is that they decouple the problem of
constraint-satisfaction from any performance objective. Indeed, if a CBF is available, then Ames
et al. (2014) showed that we can construct a minimally invasive safety filter that transforms into
safety-preserving control actions any unsafe commands that an arbitrary policy could output.

The main question we want to address in this work naturally emerges from the previous dis-
cussion: can we take inspiration from CBFs to avoid out-of-distribution (OOD) states when using
data-driven controllers for visuomotor tasks? Even though CBFs are model-based tools that, as
such, require knowledge of the state-space and dynamics of the system, the recent advances in
learning latent state-space representations and associated dynamics models clearly set a path for
linking data-driven visuomotor policy learning with the use of model-based control-theoretic tools
such as CBFs.

Contributions: We present an end-to-end self-supervised approach for learning a task-agnostic
policy filter which prevents the system from entering OOD states. We do not assume knowledge of
the state-space or system dynamics. In addition, our framework only requires an offline-collected
dataset of safe demonstrations (where the concept of safety is only linked to the demonstrator’s
subjectivity, as it is their responsibility to provide the dataset). We therefore do not require any un-
safe demonstrations to learn a safe policy filter, in contrast to most other works tackling constrained
policy learning. Furthermore, to the best of our knowledge, this is the first work that uses CBFs
for constructing policy filters in learned latent state-spaces. This endows our approach with the
flexibility of being applicable to systems with high-dimensional sensory observations, in contrast
to most prior CBF-based methods. We present simulation experiments on two different visuomotor
control tasks, which suggest that our framework, taking only raw RGB images as input, can learn
to significantly reduce the distributional shift from safe demonstrations and, consequently, critically
improve the safety of both systems.

2. Related Work

Several existing approaches for OOD prevention learn density models of training data that can be
then used to restrict the agent from taking low likelihood actions or moving towards unvisited states
(McAllister et al., 2019; Richter and Roy, 2017; Wu et al., 2019; Kumar et al., 2019). Although some
of these methods have been shown to be effective at offline RL settings that are specially susceptible
to distributional shift, the learned density models have no notion of control invariance and, therefore,
do not consider the problem of how to prevent distributional shift over a long time horizon. A
notable exception is the work of Kang et al. (2022) to constrain long-term distributional shift, in
which a min-max Bellman backup operator is constructed so that Lyapunov-like functions arise as
value functions of an offline RL problem. This work however does not consider the extension to
visuomotor control tasks in learned latent spaces. Furthermore, for our approach we choose not
to rely on a min-max backup operator to learn the certificate function and, instead, use the very
suitable theory of CBFs to devise a self-supervised learning framework.
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There exist some constructive procedures for synthesizing CBFs based on sum-of-squares pro-
gramming (Jarvis-Wloszek et al., 2003; Majumdar et al., 2013; Dai and Permenter, 2022; Wang
et al., 2022) or Hamilton-Jacobi reachability (Choi et al., 2021). However, these methods require
knowledge of the dynamics of the system and typically suffer from scalability issues for high-
dimensional systems. More in line with this work, some recent results show that CBFs can be
learned from data (Jin et al., 2020; Dawson et al., 2022; Qin et al., 2022; Robey et al., 2020; Linde-
mann et al., 2021; Abate et al., 2021; Jagtap et al., 2020). None of these works, however, consider
systems with high-dimensional observations. Furthermore, the works Jin et al. (2020); Dawson
et al. (2022); Qin et al. (2022) assume a priori knowledge of a control-invariant safe set, and focus
on building a CBF for that particular set. The line of research of Robey et al. (2020); Lindemann
et al. (2021) has the most similar problem setup to our work, as they also consider learning from
safe demonstrations. Although, notably, the authors provide formal verification arguments for the
learned CBFs, their methods are not applicable to high-dimensional observations, assume a nominal
dynamics model is given, and use an algorithmic approach for the detection of the boundary of the
dataset that does not scale to large datasets. Other recent approaches build signed distance functions
from sensory measurements that are obtained from a LiDAR or stereo cameras (Long et al., 2021;
Srinivasan et al., 2020; Cosner et al., 2022). However, these functions are not encouraged to satisfy
any set invariance property.

Extensions of the CBF-based control filters to systems with dynamics or measurement-model
uncertainty have also been recently proposed (Nguyen and Sreenath, 2021; Castañeda et al., 2021;
Taylor et al., 2021; Dhiman et al., 2021; Dean et al., 2021). These works assume that a CBF is pro-
vided, and formulate uncertainty-robust optimization problems for the controller design. They can
be considered complementary to our deterministic but end-to-end approach. Future work should ex-
plore quantifying uncertainty estimates within our framework to robustify the learned policy filters.

Finally, the work of Wilcox et al. (2022) presents a framework to learn safe sets in a latent state-
space for iterative control tasks. Compared to this work, our framework has the advantage that it is
task-agnostic and does not require any interactions with the environment during training.

3. Background on Control Barrier Functions

We start by introducing some necessary background on Control Barrier Functions, which are tools
from the nonlinear control literature that serve to enforce safety constraints for systems with known
dynamics. As will be clear later, CBFs are particularly well-suited for continuous-time nonlinear
control-affine systems of the form

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊂ Rn is the state and u ∈ U ⊂ Rm the control input. We assume that f : X → Rn
and g : X → Rn×m are locally Lipschitz continuous.

In the CBF literature, safety is considered as a set invariance problem. In particular, we say that
a control policy π : X → U assures the safety of system (1) with respect to a set Xsafe ⊂ X if the
set Xsafe is forward invariant under the control law π, i.e., for any x0 ∈ Xsafe, the solution x(t) of
system (1) under the control law π remains within Xsafe for all t ≥ 0.

Definition 1 (Control Barrier Function, Ames et al. (2017)) We say that a continuously differ-
entiable function B : X → R is a Control Barrier Function (CBF) for system (1) with associated
safe-set Xsafe ⊂ X if the following three conditions are satisfied:
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B(x) ≥ 0 ∀x ∈ Xsafe, (2)

B(x) < 0 ∀x ∈ X \ Xsafe, (3)

∃u ∈ U s.t. Ḃ(x, u) + γ(B(x)) ≥ 0 ∀x ∈ X , (4)

where γ : R→ R is an extended class K∞ function.

The existence of a CBFB guarantees that for system (1) any Lipschitz continuous control policy
π satisfying

π(x) ∈ {u ∈ U : ∇B(x)[f(x) + g(x)u]︸ ︷︷ ︸
=Ḃ(x,u)

+γ (B(x)) ≥ 0} (5)

will render the set Xsafe forward invariant (Ames et al., 2017, Corollary 2).
For a given task-specific reference controller πref : X → U that might be safety-agnostic, the

condition of (5) can be used to formulate an optimization problem that, when solved at every time-
step, yields a minimally-invasive policy safety filter (Ames et al., 2014):

πCBF(x) = argmin
u∈U

‖u− πref(x)‖2 (CBF-QP)

s.t. ∇B(x)[f(x) + g(x)u] + γ(B(x)) ≥ 0.

Assuming that the actuation constraints that define U are linear in u, this problem is a quadratic
program (QP). This is a consequence of the dynamics of the system (1) being control-affine, and it
practically means that the problem can be solved to a high precision very quickly (around 103Hz).
This is critical since the CBF-QP needs to be solved at the real-time control frequency.

4. Problem Statement

The CBF-QP constitutes a very appealing approach for practitioners: it provides a task-agnostic
minimally invasive filter that can wrap safety around any given policy πref, and therefore rewrite
any unsafe control input that πref could output at any time. However, designing a valid CBF is
nontrivial. In fact, it is still an active research topic even when assuming perfect knowledge of the
dynamics of the system (Dai and Permenter, 2022; Choi et al., 2021; Wang et al., 2022). The two
main difficulties in the design of a CBF are the following: first, a control-invariant set Xsafe must be
obtained (which in general is different from the geometric constraint set that could be obtained, for
instance, from a signed-distance field) and, second, a function that satisfies condition (4) must be
found for that set. Furthermore, even after obtaining a CBF, solving the CBF-QP requires perfect
state and dynamics knowledge.

With our framework, we take initial steps towards building a safe policy filter from high-
dimensional observations. Specifically, we take inspiration from CBFs to design an end-to-end
learning framework to constrain deep learning models to remain in-distribution of the training data.
We take as input a dataset of high-dimensional observations of different safe demonstrations, and
build a neural CBF-like function that encourages the system to always stay in-distribution with re-
spect to the observations from the safe demonstrations. This, in turn, significantly improves the
safety of the system during deployment.

More concretely, for a given dataset of N safe trajectories D =
{(
Iit , u

i
t

)t=Ti
t=0

}i=N
i=1

sampled
from the data-generating distribution of the demonstrator, we tackle the problem of designing a
policy filter that can be applied to any reference controller πref to detect and override actions from
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πref that lead to OOD states. We denote Iit and uit the high-dimensional observation and control
input, respectively, measured at time t for the ith trajectory. Furthermore, Ti is the final time-step
of trajectory i. The demonstrations in the dataset D might correspond to different tasks and they do
not need to be optimal with respect to any objective. In fact, our only assumption is that the dataset
only contains safe demonstrations (in the sense that these trajectories should not contain any states
from which the system is deemed to fail, even if it has not failed yet), so that we can encourage
long-term constraint satisfaction using CBFs.

5. In-Distribution Barrier Functions

In this section, we introduce a self-supervised approach for synthesizing neural CBF-like functions
whose aim is to constrain the system to remain in-distribution with respect to an offline dataset of
safe demonstrations. We call these functions in-Distribution Barrier Functions (iDBFs). We will
for now assume that we have a parametric continuous-time control-affine model of the dynamics of
the system in a state-space X ⊂ Rn

ẋ = fθ(x) + gθ(x)u, (6)

and present the iDBF learning procedure for this system. Furthermore, for this section we assume

that the dataset D of safe trajectories contains true state measurements, i.e., D =
{(
xit, u

i
t

)t=Ti
t=0

}i=N
i=1

,

where xit and uit are the state and control input, respectively, measured at time t for the ith trajec-
tory. In Section 6, we will provide details on how to learn a dynamics model of this form in a latent
state-space when we have a dataset containing high-dimensional sensory observations.

We parameterize an iDBF Bφ : X → R as a neural network with parameters φ, and construct
an empirical loss function that encourages it to satisfy the three CBF conditions (2), (3) and (4)
with respect to a set Xsafe that is also implicitly learned through self-supervision. To design the
loss function, we take inspiration from previous literature on learning CBFs (Dawson et al., 2022;
Qin et al., 2022; Chang et al., 2019). Nevertheless, instead of assuming that the safe-set Xsafe is
given and that we can sample from it and from its unsafe complement Xunsafe

.
= X \ Xsafe, we

build our loss function in a self-supervised manner just from the dataset of safe demonstrations. We
accomplish this by leveraging ideas from contrastive learning (Gutmann and Hyvärinen, 2010; Oord
et al., 2018; Chopra et al., 2005; Weinberger and Saul, 2009; Schroff et al., 2015). In particular, as
we explain in detail later, we build a contrastive distribution from which to sample candidate unsafe
states, given that we do not have any unsafe demonstrations in our dataset. The loss function we
propose for learning an iDBF takes the following form:

LiDBF =
wsafe

Nsafe

∑
xsafe

[εsafe −Bφ(xsafe)]
+
+
wunsafe

Nunsafe

∑
xunsafe

[εunsafe +Bφ(xunsafe)]
+
+

wascent

Nsafe

∑
(xsafe,usafe)

[
εascent −

(
∇Bφ(xsafe)[fθ(xsafe) + gθ(xsafe)usafe] + γ(Bφ(xsafe))

)]+
, (7)

where [·]+ := max(0, ·); (xsafe, usafe) are a batch of Nsafe samples from the empirical distribution
of the dataset D; xunsafe are Nunsafe samples from a contrastive distribution that we will define soon;
wsafe, wunsafe and wascent are the weights of each loss term; and εsafe, εunsafe and εascent are positive
constants that serve to enforce strictly the inequalities and generalize outside of the training data.

The goal of the first two terms in the loss function is to learn an iDBF that has a positive value
in states that belong to the data distribution of safe demonstrations, and negative everywhere else
(aligning with conditions (2) and (3) of the definition of CBF). Note that this classification objective
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is very related to the notion of energy-based models (EBMs)—neural density models that assign a
low energy value to points close to the training data distribution and a high value to distant ones
(Hinton, 2002). In fact, we took inspiration from the Noise Contrastive Estimation (NCE, Gutmann
and Hyvärinen (2010)) training procedure of EBMs, in particular the InfoNCE loss (Oord et al.,
2018), to design (7). Intuitively, these methods use a noise contrastive distribution to generate
candidate examples where to increase the value of the energy of the EBM, while decreasing the
energy at the training data points. We precisely aim for the reverse result: a high value of Bφ on
the training data distribution, and a low value everywhere else. However, we have one additional
requirement, which is that the iDBF should have a value of zero at the boundary, as set by conditions
(2) and (3). Hence, we design the two first terms of the loss function using the [·]+ operator.

In the third term of the loss (7), note that we do not encourage the satisfaction of condition (4)
over the entire state-space, but only over the dataset of safe demonstrations. However, even if condi-
tion (4) is only satisfied ∀x ∈ Xsafe instead of ∀x ∈ X , a CBF still guarantees the control-invariance
of Xsafe. Thus, we use our empirical data distribution of safe demonstrations as a sampling distri-
bution covering the set Xsafe, which we are also implicitly learning as the zero-superlevel set of Bφ.
Furthermore, unlike prior approaches that encourage the satisfaction of condition (4) for a single
policy (Dawson et al., 2022; Qin et al., 2022), we instead use all pairs (xsafe, usafe) present in the
dataset D to compute this term of the loss. This way, we force the set of admissible control inputs
(5) to be as large as our dataset allows, reducing the conservatism of the learned iDBF.

In order to generate the contrastive distribution from which to sample xunsafe, as we ultimately
want to learn the iDBF in a latent state-space in which it might not be intuitive how to construct a
noise distribution, we take the following steps. 1) Based on the dataset of safe demonstrations D,
we train a neural behavioral cloning (BC) model that outputs a multi-modal Gaussian distribution
over actions conditioned on the state, with density πBC(u|x). 2) Then, during the training process
of the iDBF, for each xsafe state sampled from D we randomly takeNcandidate control inputs ucandidate
and evaluate their density value based on the BC model πBC(ucandidate|xsafe). 3) If the value of
the density falls below a threshold, then that control input is forward-propagated for one timestep
using the dynamics model (6) to generate a sample xunsafe. This way, we generate a contrastive data
distribution by propagating actions that are unlikely present in the dataset of safe demonstrations.
Furthermore, by only propagating these actions for one timestep, the contrastive distribution is close
to the training data, which is desirable for the learning process (Gutmann and Hirayama, 2011).

This contrastive learning approach to distinguish between safe and unsafe states scales to large
datasets, unlike algorithmic boundary-detection methods as in Lindemann et al. (2021).

6. Learning iDBFs from High-Dimensional Observations

After introducing the training procedure for an iDBF when the state representation and dynamics
model (6) are given, we now relax these assumptions and present an approach to learn a latent
state-space representation and a continuous-time dynamics model of the form (6), suitable to be
integrated in the same end-to-end learning framework. We therefore now consider precisely the
problem setting described in Section 4, in which we only assume having access to a dataset contain-

ing observation-action pairs of safe demonstrations D =
{(
Iit , u

i
t

)t=Ti
t=0

}i=N
i=1

.
We use an autoencoder architecture to obtain the latent state-space representation, and employ

the training procedure of Neural Ordinary Differential Equations (Neural ODEs, Chen et al. (2018))
to learn a dynamics model of the form (6) in the latent state-space. Note that by enforcing the
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Figure 1: Our framework’s inference diagram. At each timestep, based on the current observation Ik and the previous
latent state xk−1 and action uk−1, the encoder network Eψ outputs a new latent state xk. Then, the iDBF and dynamics
networks give the values of Bφ(xk), fθ(xk) and gθ(xk) which are passed on to the iDBF-QP policy filter. The iDBF-
QP takes a reference control input for the current timestep πref(xk) and returns the closest action that keeps the system
in-distribution with respect to the offline-collected dataset of safe demonstrations. For both of the examples of Section 7,
the total inference time (NN Inference + solving the iDBF-QP) of our framework is less than 5 milliseconds.

continuous-time control-affine structure of the dynamics model, we ensure that the iDBF-QP policy
filter (equivalent to the CBF-QP, see Figure 1) obtained with the learned iDBF and dynamics model
will also be a quadratic program.

The inference procedure of our end-to-end learning framework is depicted in Figure 1. We use a
recursive encoder network Eψ that takes the current measurement Ik, as well as the previous latent
state xk−1 and action uk−1 to generate the new latent state xk at each time-step k. The decoder
network Dξ generates a reconstructed observation Îk for each latent state xk. The proposed loss
function for the latent state-space representation and dynamics model penalizes both the prediction
error of the dynamics model and the observation reconstruction error:

Ldyn =
1

Ndyn(Tpred + 1)

Ndyn∑
j=1

Tpred∑
k=0

[
wstate

∥∥∥x̃tj+k|tj − xtj+k∥∥∥2+wrec1

∥∥∥Ĩtj+k|tj − Itj+k∥∥∥2+wrec2

∥∥∥Îtj+k − Itj+k∥∥∥2 ]. (8)

Here, xtj+k = Eψ(Itj+k, xtj+k−1, utj+k−1) is the latent state at timestep tj + k. x̃tj+k|tj denotes
the latent state prediction obtained by forward-propagating the dynamics model (6) to timestep
tj + k starting from the state xtj and using zero-order hold on the sequence of control inputs
(utj , utj+1, ..., utj+k−1). Additionally, Ĩtj+k|tj := Dξ(x̃tj+k|tj ) is the reconstructed observation
from the dynamics prediction for timestep tj + k. Finally, Îtj+k := Dξ(xtj+k) is the encoded-
decoded observation at timestep tj + k.

Note that we use a multiple-shooting error for the loss (8), as the prediction horizon Tpred does
not need to coincide with the length of the trajectories in the dataset D. In particular, the loss (8)
is computed by sampling a batch of trajectories from D and then splitting them into Ndyn portions
of length Tpred. The initial timestep of each portion j = 1, ..., Ndyn is denoted as tj . The first two
terms in the loss function are then penalizing the state and reconstruction error of the multistep
predictions of the dynamics model from each initial state xtj . The last term in the loss function
penalizes the reconstruction error of the autoencoder directly, without using the dynamics model.
The recent results of Beintema et al. (2021) show that multiple shooting loss functions lead to more
accurate predictions compared to single-step prediction losses, and to better conditioned learning
problems compared to single-shooting propagation losses.

An iDBF can be learned together with the autoencoder and dynamics model by optimizing
jointly the losses (7) and (8). For the iDBF loss, each xsafe is obtained by encoding the observations
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BC Filter Ensemble Filter
πref Ours

plow pmid phigh δlow δmid δhigh

Collision
Rate (%)

46.72± 8.36 0.28± 0.27 35.60± 7.20 13.86± 4.96 2.48± 1.57 43.92± 7.90 43.82± 7.41 42.88± 7.41
Top-Down
Navigation

Cumulative
Intervention

0.0± 0.0 109.2± 20.1 85.6± 6.8 146.4± 9.6 189.1± 11.6 150.2± 19.3 94.5± 16.3 52.7± 11.5

Collision
Rate (%)

81.00± 0.23 1.56± 1.20 21.94± 1.85 14.44± 2.69 8.78± 1.86 78.74± 0.20 78.60± 1.63 81.50± 0.27
Egocentric
Driving

Cumulative
Intervention

0.0± 0.0 278.1± 32.6 713.8± 1.4 726.7± 2.6 750.8± 6.9 28.7± 2.1 42.8± 3.6 208.9± 5.7

Table 1: Evaluation of the collision rate and cumulative filter intervention (a measure of how intrusive the filter is with
respect to the reference controller) for the top-down view robotic navigation example (over 20 simulations of 5-seconds
each with random initial and goal states) and for the egocentric view autonomous driving example (over 20 simulations of
50-seconds each with random initial heading angles). For the BC and ensemble filters, we provide results for 3 different
threshold values: (plow, pmid, phigh) = (0.32, 0.35, 0.38) for the navigation example, and (0.2, 0.5, 0.8) for driving; and
(δlow, δmid, δhigh) = (0.0005, 0.001, 0.002) for both examples.

sampled from the dataset D, and xunsafe is obtained by forward propagating the actions that have a
low probability according to the pretrained BC model, as explained at the end of last section.

Once the iDBF Bφ; dynamics model fθ and gθ; and encoder Eψ networks are trained, we can
construct a policy filter —which we call iDBF-QP in Figure 1— in an equivalent manner to the
CBF-QP that was introduced in Section 3.

Remark 2 It is important to note that our iDBF training procedure encourages the satisfaction of
the CBF conditions (2), (3) and (4) only at a discrete set of training points (which has measure zero).
Because of this, we do not have control invariance guarantees for any particular set, and solving
the iDBF-QP does not theoretically assure that the system will remain in-distribution. Although
obtaining rigorous theoretical guarantees should be a priority for future work, the empirical results
of Section 7 show that our framework takes a promising first step towards building effective policy
filters from raw high-dimensional observations.

7. Examples

In this section, we present the empirical evaluation of our framework on two different simulation
environments: a toy example of a robot navigation task using top-down images of the scene, and an
autonomous driving scenario with egocentric image observations. For both cases, given a safety-
agnostic reference controller πref, we use our iDBF-QP at each timestep with the latest image mea-
surement to find the closest control input to πref among those that prevent the system from entering
OOD states (see Figure 1). For each environment, we train the iDBF, autoencoder and dynamics
model using a dataset containing 64× 64 RGB images of offline-collected trajectories.

Robot Navigation with Top-Down View Images: In this example, a circular robot with radius
of 1 meter navigates inside of a 10 × 10 meter room that has a square-shaped 4 × 4 meter static
obstacle in the middle, as shown in Figure 2 (left). The underlying dynamics of the robot are those
of a 2D single integrator, with two control inputs corresponding to the x and y velocity commands,
although we do not assume having access to that knowledge. Instead, we only have a dataset of
image-action pairs corresponding to 5000 trajectories of 100 points each (corresponding to 2 sec-
onds since the time-step is 0.02s). These trajectories satisfy two requirements: 1) the robot should
never collide against the obstacle, and 2) the center of the robot should never leave the room limits.
The trajectories are collected applying random actions at each time-step, and we check both condi-
tions before adding a trajectory to the dataset. We use our framework to train an autoencoder with
latent state-space of dimension 3, a dynamics model, and an iDBF. The reference policy πref simply
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Figure 2: Example result using our proposed policy filter for a robot top-down visual navigation task. The reference
controller simply tries to bring the robot (blue circle) to a goal state (denoted with ×). Our proposed filter, by keeping the
system in-distribution, prevents the robot from colliding against the obstacle (orange square) and keeps its center-point
inside the limits of the image. A video with several demonstrations of our approach for this task can be found in this link.

applies a velocity in the direction of a goal-point, with magnitude proportional to the distance. In
Figure 2, we show the results of applying our iDBF-QP when the goal state (marked with an ×) is
outside of the room limits and at the other side of the obstacle. Even though the reference controller
is trying to take the shortest path, which would go through the obstacle, the iDBF-QP prevents the
robot from first, colliding with the obstacle, and second, from having its center exit the room limits.

Autonomous Driving with Egocentric View Images: We use the environment provided by
Kahn et al. (2018), which is based on the Bullet physics simulator and the Panda3d graphics engine
(Goslin and Mine, 2004) to obtain egocentric RGB image measurements. The car navigates in a
corridor which has four 90-degree turns to form a square-shaped center-line. One of such turns is
shown in the snapshots of Figure 3. The car has two control inputs: the desired forward velocity
and the steering angle. Given the high-order dynamics of the simulator, we collect data manually
to make sure no trajectories included in the dataset are deemed to collide with any of the walls.
We split the collected data into 450 trajectories of 100 points each (5 seconds since the timestep is
0.05s). This makes for a much sparser and less diverse (since it is collected by a human) dataset
compared to the previous example. During deployment, we use a reference controller πref that
simply drives the car forward at a constant speed of 3.5m/s. Our iDBF-QP framework of Figure 1,
taking the latest egocentric RGB measurement as input and using a latent state-space of dimension
3, is very effective at preventing the car from colliding against the walls, as shown in Table 1.
Figure 3 contains snapshots of how our iDBF-QP forces the car to turn as it approaches a corner,
even though the reference command is to drive forward.

Using these simulation environments we also aim to compare our proposed approach with other
techniques for avoiding distributional shift. Other works that consider this problem use data density
models to constrain the learned policies (Richter and Roy, 2017; McAllister et al., 2019; Wu et al.,
2019), or use uncertainty estimation schemes, such as ensemble models, to avoid taking actions that
lead to highly uncertain states (Chua et al., 2018). We build our baselines upon a conditional BC
density model of the training data and an ensemble of latent state-space dynamics models:

BC Density Filter Baseline: As explained in Section 5, we train a BC multi-modal Gaussian
model that is used to generate the contrastive training distribution for the iDBF. For any state, the
BC model outputs a probability distribution over actions, with density function πBC(u|x). We train
this BC model using privileged true-state information of the system, and use its density values to
build a filter that serves as an apples-to-apples baseline comparison to our approach. Specifically,
the baseline also takes the reference controller πref and, at every timestep, it finds the closest control
action to πref(x) that satisfies πBC(u|x) ≥ p, out of 200 randomly sampled actions. Note that this
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Figure 3: Snapshots of egocentric view images of a driving simulation when the car is approaching a corner. The
reference controller just commands the car to drive straight, but our iDBF-QP policy filter forces a left turn as the car
approaches the corner. Therefore, our filter prevents a collision as a result of staying in-distribution with respect to the
safe training data. A video with several demonstrations of our approach for this task can be found in this link.

means that the baseline has access to true-state information at test-time, while our framework lacks
this advantage. If no control action satisfying that condition is found, the reference control input is
applied without filtering. Given the baseline’s dependence on the threshold value p, we test multiple
p values and present the outcomes for three representative cases plow, pmid, phigh in Table 1.

Ensemble Variance Filter Baseline: We also train an ensemble of independent latent state-
space dynamic models (fθ and gθ), keeping the rest of the framework introduced in Section 6 un-
changed. During deployment, at every timestep we look for the closest control action to πref(x)
that keeps the variance σ2ens(x, u) of the predicted dynamics fθ(x) + gθ(x)u under a threshold δ.
As in the previous baseline, we also look over 200 randomly sampled actions at each timestep, and
different threshold levels δlow, δmid and δhigh. Again, if no control action satisfying the threshold
condition is found, the reference control input is applied without filtering.

In Table 1, we provide a summary of the comparison results for both environments. We use the
collision rate as a proxy for distributional shift, since the training data only includes collision-free
trajectories. The collision rate for the robot navigation example is computed as the fraction of time
that the robot spends either in collision with the obstacle or having its center-point outside of the
room limits. For the driving scenario, the collision rate is the fraction of time that the robot is in
collision with any of the walls. For both examples, our method drastically reduces the collision
rate compared to using the reference (unfiltered) controller. Furthermore, we achieve the lowest
collision rates when compared to the baselines. From the baselines, only the BC density filter (with
a very restrictive threshold phigh) manages to achieve small collision rates, at the cost of a very high
cumulative filter intervention rate. The filter intervention rate is computed for both examples as∑

t ‖ut − πref(xt)‖2, where each control input dimension is normalized between −1 and 1.

8. Conclusion

In this work, we take first-steps towards merging control-theoretic CBFs with practical robotic tasks
that involve high-dimensional perception modules. We consider a realistic problem setting in which
no unsafe demonstrations are available, and take a self-supervised learning approach to learn a
function that effectively restricts the system from diverging towards OOD states. By learning this
function in a latent state-space, our framework should be flexible-enough to be applicable to a wide
variety of visuomotor tasks, and should be compatible with the use of large-scale pretrained repre-
sentation learning models. Another important direction for future work would be to use probabilistic
encoding and dynamics models to be able to robustify our proposed filters with respect to prediction
uncertainties. Additionally, exploring the use of loss functions that are not based on reconstruction,
by exploiting the value function nature of the iDBF, could be another promising direction.
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