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ABSTRACT

Feedback Control of a Bipedal Walker and Runner with Compliance

by

Koushil Sreenath

Chair: Jessy W. Grizzle

This dissertation contributes to the theoretical foundations of robotic bipedal locomotion

and advances the experimental state of the art as well. On the theoretical side, a mathemat-

ical formalism for designing provably stable, walking and running gaits in bipedal robots

with compliance is presented. A key contribution is a novel method of force control in robots

with compliance. The theoretical work is validated experimentally on MABEL, a planar

bipedal testbed that contains springs in its drivetrain for the purpose of enhancing both

energy efficiency and agility of dynamic locomotion. While the potential energetic benefits

of springs are well documented in the literature, feedback control designs that effectively

realize this potential are lacking. The methods of virtual constraints and hybrid zero dy-

namics, originally developed for rigid robots with a single degree of underactuation, are

extended and applied to MABEL, which has a novel compliant transmission and multiple

degrees of underactuation. A time-invariant feedback controller is designed such that the

closed-loop system respects the natural compliance of the open-loop system and realizes

exponentially stable walking gaits. A second time-invariant feedback controller is designed

such that the closed-loop system not only respects the natural compliance of the open-loop

system, but also enables active force control within the compliant hybrid zero dynamics

and results in exponentially stable running gaits.

Several experiments are presented that highlight different aspects of MABEL and the

xii



feedback design method, ranging from basic elements such as stable walking, robustness

under perturbations, energy efficient walking to a bipedal robot walking speed record of 1.5

m/s (3.4 mph), stable running with passive feet and with point feet. On MABEL, the full

hybrid zero dynamics controller is implemented and was instrumental in achieving rapid

walking and running, leading upto a kneed bipedal running speed record of 3.06 m/s (6.8

mph).
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CHAPTER I

Introduction

A central challenge in legged locomotion for machines is that of coordinating a multi-

joint electromechanical system so that it realizes walking and running gaits that are stable,

agile, energy efficient, and fast. One part of the difficulty in meeting this challenge is the

high degree of freedom and overall dynamical complexity of typical legged robots. A second

difficulty arises from underactuation. One source of underactuation is the impracticality of

actuating each degree of freedom in a legged robot, due to the weight of the actuators, power

budget, expense, and other factors. Underactuation can also arise from the unilateral nature

of ground contact forces. Specifically, because feet cannot pull against the ground, large

moments at the ankle can cause foot rollover, which typically increases the underactuation

of a mechanism.

Animals are able to move with great elegance and efficiency, having solved the problem

of limb coordination through appropriate biomechanics, hierarchal neuronal control, and

adaptation. An objective of the legged robotics community is to realize similar capabilities

in legged machines. However, it must be noted that the material and components available

to an engineer for creating a bipedal robot are quite different from those provided by biology,

and consequently, we intend to imitate only the capabilities and not necessarily the solutions

that are present in nature.

The presence of a compliant element in biological and man-made bipedal systems has

been argued to be not merely an important characteristic of running, but rather a defining

feature of running, without which running is very difficult, or even impossible to realize

[15]. Indeed, the absence of a compliant element contributed to the inability of sustaining
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a stable running gait on RABBIT [132]. To overcome this, MABEL a bipedal testbed at

The University of Michigan, was developed with a novel powertrain that introduces series

compliance.

This thesis work is directed toward developing a mathematical formalism for designing

provably stable, walking and running gaits in bipedal robots with compliance, and demon-

strating control solutions for walking and running on MABEL. In the first part of the

thesis, the analytical work on compliant hybrid zero dynamics that was initiated in [92] for

monopedal hoppers is shown to be relevant for bipedal walkers. The novel contributions are

primarily on the experimental side, where excellent robustness, speed, and energy efficiency

are demonstrated on MABEL. In the second part of the thesis, which addresses running,

active force control is incorporated into the mathematical formalism of the compliant hybrid

zero dynamics. The importance of the analytical contribution is demonstrated through an

experimental implementation of the controller that achieves stable running with passive feet

and with point feet. The running that is realized has a very natural and elegant appearance

with a significant part of the gait spent in flight and with good ground clearance.

1.1 MABEL

MABEL is a bipedal testbed at the University of Michigan. The robot is planar, with

a torso, two legs with revolute knees, and four actuators. MABEL was designed to be both

a robust walker and a fast runner. A detailed description of the robot has been presented

in [59, 60, 58], and the identification of its dynamic model is reported in [50].

MABEL was designed by Jonathan Hurst as part of his doctoral research [58]. The

robot’s drivetrain uses a set of differentials to create a virtual prismatic leg between the hip

and the toe such that one actuator controls the angle of the virtual leg with respect to the

torso, and another actuator controls the length of the virtual leg. Moreover, the drivetrain

also introduces a compliant element, a unilateral spring present in the transmission, that

acts along the virtual leg in series with the actuator controlling the leg length. With this

design, it is possible to place all of the actuators in the torso, thereby making the legs

relatively light and enabling rapid leg motion. More details on the design philosophy are

2



Figure 1.1: MABEL, an experimental testbed for bipedal locomotion. The robot is planar,
with a boom providing stabilization in the sagittal plane. The robot’s drivetrain
contains springs for enhanced power efficiency.

available in [49, 58].

The MABEL bipedal testbed is being used to continue a control design philosophy

initiated with RABBIT [16]: Hypothesis-driven (i.e., theorem-proof) control design methods

are developed for a class of robots, and their validity is evaluated on the testbeds.

1.2 Contributions

The key results of the thesis are summarized next.

(a) Walking Control Design: A Hybrid Zero Dynamics (HZD)-based controller is designed

for walking such that the natural compliant dynamics is preserved in the closed-loop

system (robot plus controller). This ensures that the designed walking gait uses the

compliance to do negative work at impact, instead of it being done by the actuators,

thereby improving the energy efficiency of walking. Stability analysis using the method

of Poincaré is then carried out to check stability of the closed-loop system. Prior to

experimentally testing the controller, simulations with various model perturbations are

performed to establish robustness of the designed controller. The controller is then

experimentally validated on MABEL.

3



(b) Energy Efficient Walking : Walking gaits are designed to optimize the energetic cost of

mechanical transport [26, 27]. This results in a gait that is more than twice as efficient

on the testbed than a gait that we had designed by hand and reported in [49]. The

resulting cost of mechanical transport is approximately three times more efficient than

RABBIT, and 12 times better than Honda’s ASIMO, even though MABEL does not

have feet. This puts MABEL’s energy efficiency within a factor of two of T.U. Delft’s

Denise and within a factor of three of the Cornell Biped, none of which can step over

obstacles or run; it is also within a factor of two of the MIT Spring Flamingo which

can easily step over obstacles but cannot run, and within a factor of three of humans,

who can do all of the above.

(c) Fast Walking : In preparation for running experiments, fast walking is attempted, where

each step may be on the order of 300 to 350 ms. Very precise control is needed for

accurately implementing the virtual constraints of an HZD controller with these gait

times. All experimental implementations of the virtual constraints reported to date

have relied on local PD controllers [132]. The zero dynamics controllers provide great

tracking accuracy in theory, but are often criticized for being overly dependent on

high model accuracy, and for being too complex to implement in real-time. Here we

demonstrate, for the first time, an experimental implementation of a compliant HZD

controller. The tracking accuracy attained is far better than the simple PD controllers

used earlier. With a zero dynamics controller, a top sustained walking speed of 1.5 m/s

(3.4 mph) is attained experimentally.

(d) Running Controller Design: A running controller is designed based on virtual con-

straints by creating a compliant hybrid zero dynamics. By defining only three virtual

constraints (on a system with four actuators) in the stance phase of running, an ac-

tuated HZD is created which enables using force control within the HZD. With active

force control, a virtual compliant element is created to enable active tuning of the phys-

ical compliance. An optimization problem is then posed to find a periodic running gait.

Two outer-loop event based controllers are designed to (i) exponentially stabilize, and

(ii) increase the domain of attraction of the limit cycle representing the periodic run-
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ning gait. The designed controller is validated on a complex model of the system that

incorporates cable stretch as part of the model. The controller is finally experimentally

deployed.

(e) Running with Passive Feet : With a modification to the hardware, by installing passive

feet, stable running is demonstrated on MABEL with an experiment consisting of 100

consecutive running steps at an average speed of 1.07 m/s, with a corresponding flight

phase that is 30% of the gait and an estimated ground clearance of 2 inches (5 cm).

(f) Running with Point Feet : Stable running with point feet is demonstrated on MABEL

with an experiment consisting of 113 consecutive running steps at an average speed of

1.95 m/s, and a peak speed of 3.06 m/s. The estimated ground clearance is 3−4 inches

(7.5 − 10 cm). At 2 m/s, the flight phase is 35% of the gait, and at 3 m/s, the flight

phase is 39% of the gait.

1.3 Organization of the Thesis

To effectively utilize compliance when present in bipedal robots, this thesis develops

feedback controllers based on compliant hybrid zero dynamics for achieving stable walking

and running. The control designs are experimentally validated on MABEL. With this goal

in mind, the remainder of the thesis is organized as follows.

Chapter II presents a brief survey of relevant literature and places in perspective work

presented in this thesis.

Chapter III presents the general features of MABEL’s morphology, and points out key

ideas behind the design of the biped. Fully comprehending the philosophy behind the

design is imperative, as it provides a means of constructing simpler models of the biped,

and also provides intuition into designing controllers that respect the natural dynamics

of the system. The mathematical model for the planar biped is developed, based on the

Lagrangian framework. The full, unconstrained, nine-degree-of-freedom (DOF) model is

obtained. Then, by imposing various holonomic constraints for the stance and flight phases,

the corresponding constrained dynamics are obtained. The transition maps between the

stance and flight phases are developed to model the corresponding discrete transitions.
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Finally the continuous-time dynamics and the transition maps are assembled to arrive at

hybrid models for walking and running. These models are used for control design.

Chapter IV provides a systematic procedure, based on virtual constraints, to design a

suite of walking gaits. The idea behind the choice and design of the virtual constraints

is presented and motivated. Optimization cost criteria are presented to both optimize for

electrical energy consumed, and positive mechanical work done. The design and stability

analysis of two stabilizing controllers to realize the designed gaits is presented next. These

controllers are a simple feedforward-plus-PD controller, developed with the idea of simplicity

in experimental implementation, and the full hybrid-zero-dynamics controller, which creates

hybrid invariance. Finally, the robustness of the simple feedforward-plus-PD control to

various model perturbations is studied to analyze experimental worthiness of the controller.

Chapter V presents the experimental testbed used for validating the designed controllers.

Several experiments are presented to demonstrate the validity and robustness of the designed

controllers. This includes experiments illustrating the walking efficiency and fast walking

speed obtained through the designed controllers. Finally a discussion of various aspects of

the robot and the feedback controllers revealed by the experiments is presented.

Chapter VI presents a control design for achieving stable running. Virtual constraints

are presented for the stance phase of running that result in a restricted dynamics that is

actuated. Virtual compliance is introduced as a means of varying the effective compliance

of the system in the stance phase. Virtual constraints for the flight phase of running are

presented along with a fixed point representing a periodic running gait. The controller

structure is presented, which includes a continuous-time nonlinear controller based on com-

pliant hybrid zero dynamics, and two outer-loop event based controllers for exponentially

stabilizing and increasing the domain of attraction of the fixed point representing the peri-

odic running gait. Finally, additional controller parameter modifications are presented that

will address the cable stretch present in the experimental testbed.

Chapter VII presents experimental results to demonstrate the validity and robustness

of the designed running controller.

Chapter VIII provides concluding remarks and briefly summarizes research accomplished

in this dissertation.

6



Appendix A presents a framework of using Bézier polynomials for virtual constraints

with subphases. Further details are provided on how to choose the coefficients for various

subphases for all the virtual constraints for the stance phase of walking. Appendix B

presents a sequence of steps to be followed as part of the optimization process to find

fixed points. Various constraints that need to be satisfied are also presented. Appendix C

presents an overview of the behind the scenes work that was carried out in constructing

the bipedal testbed, and briefly summarizes the system identification process carried out to

identify the robot model.
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CHAPTER II

Literature Survey

A very broad spectrum of approaches and ideas exist for achieving stable bipedal lo-

comotion. The aim of this chapter is to categorize and present a relevant cross-section of

these approaches that serve to motivate and place the work presented in this thesis in per-

spective. Towards accomplishing this, prior research is broadly classified into categories and

the categories are grouped into layers based on their relevance to the work presented in this

thesis, as clearly illustrated in Figure 2.1. Here, we briefly describe each of the categories

and in subsequent sections present the literature review.

First, we review broad categories that are relevant to the field of legged locomotion,

but do not specifically address the work being presented in this thesis. Three classes of

research in bipedal locomotion are considered: (a) The zero moment point criterion, (b)

Dynamic running, and (c) Passive dynamics. To achieve upright, stable bipedal locomotion

on existing humanoid robots, without having to address the difficulties in formulating ana-

lytical controllers for nonlinear, multi-phase, and hybrid models, several researchers resort

to studying static or quasi-static walking using control schemes based on regulating the

zero moment point (ZMP). This essentially boils down to making online modifications to

the gait so as to maintain the center of pressure of the ground reaction forces on the stance

foot strictly within the support polygon, and results in slow, flat-footed quasi-static walking

gaits. ZMP based control schemes have also been used to make robots run, but the resulting

running gait is distinctly robot-like, with short strides, small flight times, and little ground

clearance. Early dynamically stable running robots on the other hand employed the natu-

ral dynamics of the system through simple intuitive controllers to achieve life-like running
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Figure 2.1: Prior research is broadly classified into categories and grouped into layers based
on their relevance to the work presented in this thesis.
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gaits. However, these machines usually have light legs with a trivial torso. Taking the

idea of employing natural dynamics further, passive dynamics research deals with designing

mechanical systems whose natural dynamics cause the system to evolve in such a manner so

as to create dynamically stable walking or running gaits down gentle slopes. Although such

machines are energy efficient, they are not robust to perturbations and are very sensitive

to initial conditions.

Next, we review a narrower set of categories that relate more closely to a particular as-

pect of the work presented in this thesis: (a) Energy efficient locomotion, (b) Simple models

for walking and running, and (c) Reduction-based control design. Based on the idea of pas-

sive dynamics for walking down gentle slopes, minimally actuated robots were developed

that could walk on flat ground, have a larger domain of attraction in comparison to their

passive counterparts, and still retain good energy efficiency. As another means of improv-

ing energy efficiency, compliance in the system has been introduced to minimize the loss of

energy at impact. From biomechanical studies, animals are remarkably energy-efficient. To

explain the remarkable similarity of ground reaction profiles measured in experiments with

diverse animals, which suggests common energy-saving mechanisms in animals, researchers

proposed simple underlying models, whose purpose is to capture the dominant locomotion

behavior resulting from complex, high-dimensional, nonlinear, dynamically coupled interac-

tions between an organism and its environment. These models have been extensively ana-

lyzed mathematically, and several controllers have been proposed to achieve stable walking

and running gaits. On a similar note, with the promise of analytical tractability of simple

models, researchers have tried to find properties, whose invariance (possibly through feed-

back) leads to the reduction of a higher-dimensional model to a lower-dimensional model,

wherein the behavior of the higher-dimensional complex model can be explained by the

behavior of the lower-dimensional simpler model and vice versa. This results in control

design which is based on reduction.

Finally, we review literature on which the work presented in this thesis is directly based:

(a) Hybrid zero dynamics, and (b) Compliant hybrid zero dynamics. Hybrid zero dynamics

is a form of dynamic reduction through feedback control, where the feedback imposes virtual

constraints and enables studying the stability properties of a higher-dimensional model by
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studying the stability properties of a restricted (that is, respecting the virtual constraints)

lower-dimensional model. An extension of hybrid zero dynamics on systems with compliance

is to preserve the physical compliance of the system as part of the reduced system. This is

achieved by creating a hybrid zero dynamics which is compliant.

The following sections examine each of the logical categories of work identified above in

greater detail. Several other categories of research on achieving stable bipedal locomotion

exist, such as neuronal control [76, 98], learning based controllers [102], sliding mode con-

trollers [119], energy shaping controllers [113, 54] and port Hamiltonians based controllers

[30]. These categories are not discussed further to keep the survey focused. For a more

complete, exhaustive survey and history of dynamic robotic legged locomotion up until the

present, see [118, 95, 126, 81, 56, 55, 130, 135, 17].

2.1 The Zero Moment Point Criterion

Early attempts at designing legged machines led to slow moving, statically stable robots.

Static walking occurs when the ground projection of the center of mass of the system lies

within the support polygon. This class of legged robots generally has large and heavy feet.

Several robots of this type utilize the zero moment point1 (ZMP) criterion to achieve a

quasi-stable walking gait. The ZMP criterion is well surveyed in the anniversary paper

[125], and states that when the ZMP is contained within the interior of the robot’s support

polygon formed by the robot’s feet, the robot is stable, i.e., will not topple by rotating on

an edge of its feet. Researchers have also used the ZMP as a simple metric for robustness.

By looking at how close the ZMP is to the boundary of the support polygon, one can arrive

at an estimate of how close the robot is to tipping over. Other related notions include the

Foot Rotation Index (FRI) [41] and the center of pressure (CoP) [107].

The ZMP criterion has been employed to design walking gaits so as to regulate the ZMP

to a desired value within the support polygon [65]. By keeping the ZMP within the support

polygon, a degree of underactuation is avoided at the ground-foot interface. Some of the

notable robots employing the ZMP criterion are Honda’s ASIMO [104], Sony’s QRIO [37],

1The ZMP is defined to be the point on the ground where the net moment of the gravity and inertia
forces on the robot is zero.
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and the HRP series [68]. To be able to control the position of the ZMP, these robots need

to be fully actuated.

With the ZMP-based control design, researchers do not have to address the difficulties in

formulating analytical controllers for nonlinear, multi-phase, and hybrid models. However,

the resulting walking gaits are flat-footed, generally not robust to external perturbations

(a modest push could saturate the ankle actuators, resulting in an inability to regulate

the position of the ZMP) and the achieved energy efficiency is low [27]. Furthermore, as

shown by Choi [22], the satisfaction of the ZMP criterion is not a sufficient condition for

stability. Neither is it necessary for stability as shown by analysis and walking experiments

on RABBIT [132], and MABEL [115].

The ZMP criterion has also been employed to demonstrate running on Sony’s QRIO

[86], Honda’s ASIMO, Toyota’s humanoid robot [116] (with running at a top speed of 1.94

m/s), HRP-2LR [67] and HRP-2LT [66]. Some form of ZMP regulation is used during the

stance phase to prevent the foot from rolling. The obtained running gait is robot-like, has

small flight times and with little ground clearance during flight. In the next section, we will

explore dynamic running motions with non-trivial flight times.

2.2 Dynamic Running

While the ZMP based robots are quasi-statically stable with slow, robot-like motions,

early dynamically stable running robots on the other hand employed the natural dynamics

of the system through simple intuitive controllers to achieve life-like running gaits. Research

on powered-legged robots that are dynamically stable began with Raibert’s groundbreaking

work in the 1980’s [95]. Raibert pioneered the use of natural dynamics in the design and

control of legged robots. He employed intuitive ideas to break up the control design into

the regulation of three variables, the touchdown leg angle, body angle, and hopping height.

A 3D hopper built by Raibert was able to hop, reaching top speeds of 2.2 m/s. Raibert’s

controller structure has been used to demonstrate running gaits on two and four-legged

robots with compliance by using a virtual leg approach, [53, 10]. Essentially, enhanced

agility has been demonstrated on hopper-style robots (i.e., springy, prismatic leg) employing
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intuitive controllers. These robots are highly underactuated, though for the most part, their

control systems did not have to deal with stabilization of significant torso dynamics; indeed,

if a torso was present, its center of mass was coincident with the hip joint [92]. Thus, the

use of Raibert’s controllers to achieve stable running is possible on robots with favorable

natural dynamics and appropriate morphology. However, a few complex legged robots have

demonstrated running motions using Raibert’s controllers (see BigDog [96], Thumper [58].)

In continuation of a Raibert-style control design, Controlled Passive Dynamic Running

(CPDR)-based controller [2] has been introduced by Buehler. The CPDR controller ex-

ploits the system’s passive dynamics by imposing desired trajectories via inverse dynamics

to reduce energy spent for locomotion. The controller successfully demonstrated one-legged

running on Monopod I [1], Monopod II [43, 2] at speeds of 1.2 m/s, 1.25 m/s respectively.

However, the experimental system had a trivial torso, and a prismatic leg with series com-

pliance.

Another robot that exhibited planar stable hopping, and could also hop over an unknown

rough terrain with ground variations of up to 25% of the leg length of the robot is presented

in [7]. The control strategy is based on active energy addition and removal, wherein, energy

is removed from the system by leg actuation during leg compression and is added to the

system during leg extension. This is done in a feedforward manner, as a function of time.

Once again, the experimental system has a trivial torso, and a prismatic leg with series

compliance, which is driven by a crank.

2.3 Passive Dynamics

The Raibert-style controller presented in the previous section employs favorable natural

dynamics of the system to achieve running gaits. Taking the idea of using natural dynamics

further, Tad McGeer inspired a new direction in bipedal robot design based on passive

dynamics [78, 77]. McGeer drew inspiration from the Wright brothers, who first mastered

the art of gliding (adding a propeller then became a minor technicality.) Passive dynamic

machines are dynamically stable robots with no active feedback control or energy input

aside from gravity, and walk or run on gentle slopes (see [25, 87]), with energy lost at each
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foot collision being balanced by the conversion of potential energy to kinetic energy in going

down a slope.

Detailed analysis of passive dynamic bipedal walking has been carried out by several

researchers to demonstrate stable one-period gaits, period doubling phenomenon, and bi-

furcations leading to chaos [35, 40]. Experimental implementations of machines capable

of walking and running down gentle slopes, with no power or actuation are presented in

[78, 77].

Although passive dynamics based machines are energy efficient, however, in the absence

of any control for making corrections, the constructed robot is not robust to perturbations,

and in general cannot walk on flat ground2. Furthermore, A significant amount of theoretical

modeling and stability analysis is carried out before a passive dynamic based machine is

even built.

2.4 Energy Efficient Locomotion

As discussed in the previous section, passive dynamics based robots are energy efficient,

however, they tend to be very dependent on initial conditions and small variations in ground

slope. As suggested by Kuo [72], energy efficiency is a chief requirement that needs to be

satisfied for bipedal robots to be practical. Improved energy economy will provide legged

robots with greater range, and independence, and provide a better ability to carry large

loads or perform tasks for long durations of time. Thus, there is a need to improve energy

efficiency of bipedal locomotion. The excellent article, [72], highlights the tradeoffs between

performance and versatility in legged locomotion and examines the means by which energy

economy can be enhanced in dynamic walking robots.

The efficiency of bipedal robots is being enhanced by using minimal actuation, incor-

porating compliance, or a combination of the two. Motivated by passive dynamic walkers,

researchers have devised efficient means of walking on flat ground by injecting minimal

amounts of energy at key points in the gait [26]. Kuo’s detailed analysis in [71] of energet-

2A very recent article by Gomes and Ruina [39] suggests that they have found periodic collisonless
motions of a walking model. Collisional losses are avoided by employing appropriate synchronized internal
oscillations, such that the foot-strike velocity at impact is zero. This model is capable of walking on flat
ground with non-zero, non infinitesimal speed and with zero energy input.
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ics of walking, suggests that employing ankle push-off is more energetically efficient than

employing hip torque on the stance leg. Another means of enhancing energy efficiency is

by introducing compliant elements. The energetic benefits of springs in legged locomotion

are well documented [3]. Springs can be used to store and release energy that otherwise

would be lost as actuators do negative work, and springs can be used to isolate actuators

from shocks arising from leg impacts with the ground. Although these benefits are more

pronounced in running, compliance can also be used beneficially in walking [38, 62, 63].

Enhanced energy efficiency was shown using pneumatic artificial muscles in [120, 121, 117],

using springs in series with motors in [93, 108], and using springs in parallel with motors

in [136]. A combination of both methods, minimalistic actuation and compliant elements,

is employed in the Cornell Biped [27], and the T.U. Delft bipeds TUlip and Flame [52] in

order to improve efficiency. The drawbacks of these highly efficient walkers are that they

cannot lift their legs over obstacles, readily change speeds, or run.

2.5 Simple Models for Walking and Running

The previous section explored different means of enhancing energy efficiency for walking

and running. Here we will see how the energy exchange between the kinetic and potential

energies for walking and running will motivate simple models.

As put forth by Cavagna et al. [15], in walking, the center of mass is highest in mid-

step, when the hip of the stance leg passes over the ankle. Thus in walking, changes in

potential and kinetic energies are out of phase. In running, by comparison, the center of

mass is lowest at mid-step, and changes in forward kinetic energy and gravitational potential

energy are in phase. Remarkably, these basic energy transformation mechanisms exist in the

gaits of birds, quadrupedal mammals, as well as humans [14]. In an effort to capture these

extraordinary similarities, researchers proposed simple underlying models, whose purpose

was to capture the dominant locomotion behavior resulting from complex, high-dimensional,

nonlinear, dynamically coupled interactions between an organism and its environment.

For instance, it has been suggested that during walking the center of mass (COM)

vaults over the stance leg analogous to an inverted pendulum [14], whereas in running, the
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COM bounces analogous to bouncing on a pogo stick [34]. Engineers have encoded these

observations in conceptual leg models such as the inverted pendulum (IP), consisting of

a point mass atop a stiff massless rod, and the spring-loaded inverted pendulum (SLIP),

consisting of a point mass atop a massless, compliant, prismatic leg; see [4, 34]. Further,

the SLIP has been used to explain not only the basic dynamics of running, but that of

walking as well [38]. This is due to the fact that a compliant leg is essential to incorporate

the double support phase as a characteristic part of the walking motion.

These simple models have been extensively analyzed mathematically [69], and several

controllers have been proposed to achieve stable walking [62] and running gaits [109] on

these models. The SLIP has been used as a reference model for control design, and the

designed controller is applied to complex systems [105, 106], whose dominant dynamics are

those of the SLIP, with the intent of obtaining a closed-loop behavior that is predicted by

the closed-loop SLIP model.

While the SLIP model is mathematically elegant and appears to describe the “center

of mass” dynamics of many animals [9], it does not account for many features present in

legged machines, namely legs that have non-zero mass, non-trivial torsos, and large rotating

inertias typical of electric motors and gear drives [90].

Several extensions to the idealized SLIP model have been proposed to bring the model

closer to reality. In TD-SLIP [8], a damper is introduced in addition to the compliance

along with a torque driven hip. Rummel and Seyfarth introduce a segmented leg instead of

the prismatic leg, and study the effect of compliance at the knee joint on the stability of the

system. The SLIP has a point mass at the hip. Even if a torso is introduced, the COM of

the torso is made coincident with the hip. Adding a torso with significant dynamics results

in the ASLIP [61], where the COM of the torso is no longer coincident with the hip.

Next, looking ahead towards obtaining robust running, we look at how animals trans-

verse unknown rough terrain with varying stiffness, and varying ground profiles, and see

how these simple models can be used to explain robustness to ground variations. Biome-

chanics studies show that animals are able to robustly handle variations in ground height,

and ground stiffness by varying their leg stiffness [31, 32, 29, 28]. Motivated by this, active

force control has been suggested as a way to increase robustness to perturbations in ground
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height and ground stiffness in [70]. Moreover, [32] suggests that incorporating an adjustable

leg stiffness in the design of running robots is important if they are to match the agility

and speed of animals on varied terrain.

2.6 Reduction-based Control Design

In the previous section, we have seen the SLIP serve as a reduced target model for a

more complex anchor model [34]. The idea being that the dominant behavior of the complex

system can be explained by the behavior of the simple model. Controllers designed on the

target model then exhibit similar characteristics on the anchor.

On a similar note, and with the promise of analytical tractability, and numerical feasibil-

ity of lower-dimensional models, researchers have tried to find properties, whose invariance

(possibly through feedback) leads to the reduction of a higher-dimensional model to a lower-

dimensional model, wherein the behavior of the higher-dimensional complex model can be

explained by the behavior of the lower-dimensional simpler model and vice versa. This

results in control design which is based on reduction.

Spong and Bullo [114] introduce the concept of controlled symmetries, where the La-

grangian of the system is invariant under a particular group action. Considering the group

action SO(3) representing a ground slope change, it is shown that the kinetic energy and the

impacts are invariant under this group action. The potential energy is then made invariant

under this group action by using feedback control to achieve potential shaping, with the

end result being the invariance of the Lagrangian. With this, a passive walking gait can be

made to walk on a ground of any slope using active control. This approach requires a fully

actuated biped.

Ames et. al. [6] utilize controlled symmetries and introduce the concept of functional

Routhian reduction, where conserved quantities are functions of cyclic variables rather than

constants. Extending the functional Routhian reduction to a hybrid setting, a geometric

reduction can be achieved. This is applied to a fully actuated biped to achieve stable walking

gaits. Gregg and Spong [42] present controlled reduction, a variant of functional Routhian

reduction, to decouple a 3D biped’s sagittal-plane motion from the yaw and lean modes.
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The tutorial paper [47] develops a comprehensive hybrid model of a 3D biped and presents

control designs based on hybrid zero dynamics and functional Routhian reduction.

The next section introduces hybrid zero dynamics, which is a form of dynamic reduc-

tion through feedback control, where the feedback imposes virtual constraints and enables

studying the stability properties of a higher-dimensional model by studying the stability

properties of a restricted (that is, respecting the virtual constraints) lower-dimensional

model.

2.7 Hybrid Zero Dynamics

Ground-breaking work on formal stability analysis of bipedal locomotion began with

research on RABBIT leading to [46], where systems with impulse effects are used to char-

acterize the hybrid dynamics of bipedal walking, and the method of Poincaré is employed

to reduce the stability of a limit cycle corresponding to a walking gait to the stability of a

discrete map. The bipedal robot RABBIT was planar, had revolute knees, and a non-trivial

torso [16]. It was deliberately designed to have point feet in order to inspire new analytical

control approaches to stabilizing periodic motion in underactuated mechanical systems, and

hence move beyond flat-footed walking gaits. This research gave rise to the methods of vir-

tual constraints and hybrid zero dynamics [46, 131, 134, 16, 82, 130]. Virtual constraints are

holonomic constraints on a robot’s configuration that are asymptotically achieved through

feedback control and are used to synchronize the evolution of the various links throughout

a stride. Virtual constraints lead to a family of feedback laws that accomplishes two things:

(i) the creation of a low-dimensional surface that is hybrid invariant (i.e., invariant under

both the closed-loop continuous dynamics and the impact map); and (ii) the surface is ren-

dered exponentially attractive in the closed-loop hybrid system. The restriction dynamics

associated with the invariant surface is called the Hybrid Zero Dynamics (HZD). The HZD

is used as a means of stripping away as much of the complexity of dynamic locomotion prob-

lems as possible in order to find the essential dynamics of walking and running. The initial

work applied to robots with rigid links and one degree of underactuation, the canonical

example being a planar bipedal robot with N ≥ 2 rigid links, N − 1 independent actuators,
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and the legs terminated in passive point feet; fully-actuated robots (i.e., feet with actuated

ankles) have also been studied [23, 108, 18]. Hybrid zero dynamics based controllers have

also been employed to theoretically design stable gaits for running on planar bipeds [21, 85],

walking on 3D (spatial) bipeds [48, 19], and steering of a 3D bipedal robot [20].

A related approach based on designing a linear feedback controller that stabilizes the

time-varying transverse linearization of a hybrid system along a periodic orbit has been

developed in [75, 111, 110, 112].

2.8 Compliant Hybrid Zero Dynamics

Using the theory of hybrid zero dynamics, RABBIT was established as a very successful

walker [132, 103]. However steady state running was never achieved. In [85], it was conjec-

tured that this was due to actuator saturation: upon transition from the flight phase to the

stance phase, the actuators in the stance leg had to perform large amounts of negative work

to decelerate the robot’s center of mass, and then do positive work to redirect it upward for

the subsequent flight phase. This motivated the inclusion of a spring in MABEL so that

much of this work could be done passively. Further analysis in [92] suggests that including

compliance in the leg length direction has an additional benefit: it can create more favorable

unilateral ground contact conditions to avoid slipping.

The presence of compliance has led to new control challenges that cannot be met with

the initial theory developed for RABBIT. On the mathematical side, compliance increases

the degree of underactuation, which in turn makes it more difficult to meet the invariance

condition required for a hybrid zero dynamics to exist. This technical difficulty was overcome

in [84] with a technique called a “deadbeat hybrid extension”.

A second challenge arising from compliance is how to use it effectively. A first attempt

in [83] at designing a controller for a biped with springs took advantage of the compliance

along a steady state walking gait, but “fought it” during transients; the compliance was

effectively canceled in the HZD (for details, see [92, p. 1790]). The problem of ensuring that

the feedback action preserves the compliant nature of the system was studied in [92, 91, 90]

for the task of hopping in a monopod, where the HZD itself was designed to be compliant,
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resulting in compliant hybrid zero dynamics.

2.9 Summary

The survey reported in this chapter sets the stage for the thesis. MABEL was designed

with compliance to primarily enable it to run. Drawing from the literature survey just

presented, we can make the following observations. (a) Compliance can also be used for

walking, (b) Compliance can be effectively utilized for improving energy efficiency of the

walking gait, (c) Hybrid zero dynamics based controllers can be formulated to preserve the

natural compliance of the system as part of the restricted dynamics, and achieve stable

walking and running, and (d) If we can vary the leg stiffness, essentially the compliance

in the restricted dynamics, then we can obtain running gaits that are robust to ground

variations and ground stiffness. The end result would then be stable, efficient walking, and

stable, robust running.

The work presented in the thesis shows how this is achieved. Chapter IV extends the

compliant HZD based control design to achieve stable, efficient, and fast walking. Chapter

VI presents a control design for embedding active force control within the compliant HZD

framework to enable dynamically varying the effective leg stiffness to achieve stable and

running.
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CHAPTER III

Control-Oriented Model of MABEL

This chapter presents details about the morphology of MABEL, and develops the ap-

propriate mathematical models for the study of walking and running.

3.1 Description of MABEL

MABEL is a planar bipedal robot comprised of five links assembled to form a torso

and two legs with knees; see Figure 1.1. The robot weighs 65 kg, is 1 m at the hip, and

mounted on a boom of radius 2.25 m. The legs are terminated in point feet. All actuators

are located in the torso, so that the legs are kept as light as possible; this is to facilitate

rapid leg swinging for running. Unlike most bipedal robots, the actuated degrees of freedom

of each leg do not correspond to the knee and hip angles. Instead, for each leg, a collection

of cable-differentials is used to connect two motors to the hip and knee joints in such a way

that one motor controls the angle of the virtual leg consisting of the line connecting the hip

to the toe, and the second motor is connected in series with a spring in order to control the

length or shape of the virtual leg; see Figure 3.1. The reader is referred to [50, 49, 58] for

more details on the transmission.

The springs in MABEL serve to isolate the reflected rotor inertia of the leg-shape motors

from the impact forces at leg touchdown and to store energy in the compression phase of

a running gait, when the support leg must decelerate the downward motion of the robot’s

center of mass; the energy stored in the spring can then be used to redirect the center of

mass upwards for the subsequent flight phase, when both legs are off the ground. These
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Figure 3.1: MABEL’s powertrain (courtesy of Hae-Won Park.) The powetrain is comprised
of three cable differentials (same for each leg), all housed in the torso. Two
motors and a spring are connected to the traditional hip and knee joints via
three differentials. On the robot, the differentials are realized via cables and
pulleys [58] and not via gears. They are connected such that the actuated
variables are leg angle and leg shape, see Figure 1.1, and so that the spring is in
series with the leg shape motor. The base of the spring is grounded to the torso
and the other end is connected to the pulley Bspring via a cable, which makes
the spring unilateral. When the spring reaches its rest length, the pulley hits
a hard stop, formed by a very stiff damper. When this happens, the leg shape
motor is, for all intents and purposes, rigidly connected to leg shape through a
gear ratio.

properties (shock isolation and energy storage) enhance the energy efficiency of running

and reduce the overall actuator power requirements. This is also true for walking as we will

demonstrate experimentally. MABEL has a unilateral spring which compresses but does not

extend beyond its rest length. This ensures that springs are present when they are useful

for shock attenuation and energy storage, and absent when they would be a hindrance for

lifting the legs from the ground.
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3.2 MABEL Model

A hybrid model appropriate for a walking gait, comprised of a continuous single support

phase and an instantaneous double support phase, is developed next. The impact model

at double support is based on [57]. The single support model is a pinned, planar, 5-link

kinematic chain with revolute joints and rigid links. Because the compliance is unilateral,

it will be more convenient to model it as an external force when computing the Lagrangian,

instead of including it as part of the potential energy.

3.2.1 MABEL’s Unconstrained Dynamics

The configuration space Qe of the unconstrained dynamics of MABEL is a simply-

connected subset of S7×R
2: five DOF are associated with the links in the robot’s body, two

DOF are associated with the springs in series with the two leg-shape motors, and two DOF

are associated with the horizontal and vertical position of the robot in the sagittal plane.

A set of coordinates suitable for parametrization of the robot’s linkage and transmission is

qe := ( qLAst ; qmLSst ; qBspst ; qLAsw ; qmLSsw ; qBspsw ; qTor; p
h
hip; p

v
hip ), the subscripts st and sw

refer to the stance and swing legs respectively. As in Figure 1.1 and Figure 3.1, qTor is the

torso angle, and qLAst , qmLSst , and qBspst are the leg angle, leg-shape motor position, and

Bspring position, respectively for the stance leg. The swing leg variables, qLAsw , qmLSsw and

qBspsw are defined similarly. For each leg, qLS is determined from qmLS and qBsp by

qLS = 0.0318qmLS + 0.193qBsp. (3.1)

This reflects the fact that the cable differentials place the spring in series with the motor,

with the pulleys introducing a gear ratio. The coordinates phhip, p
v
hip are the horizontal

and vertical positions of the hip in the sagittal plane. The hip position is chosen as an

independent coordinate instead of the center of mass because it was observed that this choice

significantly reduces the number of terms in the symbolic expressions for the dynamics.

The equations of motion are obtained using the method of Lagrange. The Lagrangian
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for the unconstrained system, Le : TQe → R is defined by

Le = Ke − Ve, (3.2)

where, Ke : TQe → R and Ve : Qe → R are the total kinetic and potential energies of

the mechanism, respectively. The total kinetic energy is obtained by summing the kinetic

energy of the linkage, Klink
e , the kinetic energy of the stance and swing leg transmissions,

Ktransst
e ,Ktranssw

e , and the kinetic energy of the boom, Kboom
e ,

Ke (qe, q̇e) = Klink
e (qe, q̇e) +Ktransst

e (qe, q̇e)+

Ktranssw
e (qe, q̇e) +Kboom

e (qe, q̇e) .

(3.3)

The linkage model is standard. Physically, the boom constrains the robot to move on the

surface of a sphere, and a full 3D model would be required to accurately model the robot

and boom system. However, we assume the motion to be planar and, as in [129, p. 94],

only consider the effects due to mass and inertia of the boom. This will introduce some

discrepancies between simulation and experimental results. The symbolic expressions for

the transmission model are available online at [44].

Similar notation is used for the potential energy,

Ve (qe) = V link
e (qe) + Vtransst

e (qe)+

Vtranssw
e (qe) + Vboom

e .

(3.4)

Due to its unilateral nature, the spring is not included in the potential energy of the trans-

mission; only the mass of the motors and pulleys is included. The unilateral spring is

considered as an external input to the system.

With the above considerations, the unconstrained robot dynamics can be determined

through Lagrange’s equations

d

dt

∂Le

∂q̇e
−

∂Le

∂qe
= Γe, (3.5)
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where, Γe is the vector of generalized forces acting on the robot and can be written as,

Γe = Beu+ Eext (qe)Fext+

Bfricτfric (qe, q̇e) +Bspτsp (qe, q̇e) ,

(3.6)

where the matrices Be, Eext, Bfric, and Bsp are derived from the principle of virtual work

and define how the actuator torques u, the external forces Fext at the leg, the joint friction

forces τfric, and the spring torques τsp enter the model, respectively.

Applying Lagrange’s equations (3.5), with the kinetic and potential energies defined by

(3.3) and (3.4), respectively, results in the second-order dynamical model

De (qe) q̈e + Ce (qe, q̇e) q̇e +Ge (qe) = Γe (3.7)

for the unconstrained dynamics of MABEL. Here De is the inertia matrix, the matrix Ce

contains Coriolis and centrifugal terms, and Ge is the gravity vector.

3.2.2 Dynamics of Stance

For modeling the stance phase, the stance toe is assumed to act as a passive pivot

joint (no slip, no rebound and no actuation). Hence, the Cartesian position of the hip,
(

phhip, p
v
hip

)

, is defined by the coordinates of the stance leg and torso. The springs in the

transmission are appropriately chosen to support the entire weight of the robot, and hence

are stiff. Consequently, it is assumed that the spring on the swing leg does not deflect, that

is, qBspsw ≡ 0. It follows from (3.1) that qmLSsw and qLSsw are related by a gear ratio; qmLSsw

is taken as the independent variable. With these assumptions, the generalized configuration

variables in stance are taken as qs :=
(

qLAst ; qmLSst ; qBspst ; qLAsw ; qmLSsw ; qTor
)

.

The stance dynamics is obtained by applying the above holonomic constraints to the

model of Section 3.2.1. The stance configuration space is therefore a co-dimension three

submanifold of Qe, i.e., Qs :=
{

qe ∈ Qe | qBspsw ≡ 0, phtoest ≡ 0, pvtoest ≡ 0
}

. For later use, we

denote by

qe = Υs (qs) (3.8)
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q̇s ∈ TqsQs q̇s ∈ TqsQs

q̇e ∈ TΥs(qs))Qe

(fiber)

idTqsQs

(DΥs)qs (DΠs)Υs(qs)

(a)

qs ∈ Qs qs ∈ Qs

qe ∈ Qe

(base)

idQs

Υs Πs

(b)

Figure 3.2: Stance commutative diagrams

the value of qe when qs ∈ Qs, and by

qs = Πs (qe) (3.9)

the value of qe projected onto Qs ⊂ Qe, such that, Πs ◦ Υs = idQs as suggested by the

commutative diagram of Figure 3.2. Further, the unconstrained velocity q̇e can be obtained

from the stance velocity q̇s through the differential of the map Υs at the point qs ∈ Qs, i.e.,

q̇e = (DΥs)qs (q̇s) , (3.10)

where (DΥs)qs : TqsQs → TΥs(qs)Qe. Similarly, the stance velocity can be obtained from the

unconstrained velocity through the differential of the map Πs at the point qe ∈ Qe, i.e.,

q̇s = (DΠs)qe (q̇e) , (3.11)

where (DΠs)qs : TqeQe → TΠs(qe)Qs. Moreover, (DΠs)Υs(qs)
◦ (DΥs)qs = idTqsQs .

The resulting constrained Lagrangian Ls : TQs → R can be expressed as

Ls := Le (qe, q̇e) |{qBspsw
≡0,phtoest

≡0,pvtoest
≡0}, (3.12)

and the dynamics of stance are obtained through Lagrange’s equations, expressed in stan-
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dard form as

Ds (qs) q̈s + Cs (qs, q̇s) q̇s +Gs (qs) = Γs, (3.13)

where, Γs := Bsu+Bfricτfric (qs, q̇s)+Bspτsp (qs, q̇s) is the vector of generalized forces acting

on the robot.

The state-space form of the stance dynamics, with the state vector xs := (qs; q̇s) ∈ TQs,

can be expressed as,

ẋs :=







q̇s

q̈s






=







q̇s

−D−1
s Hs






+







0

D−1
s Bs






u

=: fs(xs) + gs(xs)u,

(3.14)

where, fs, gs are the drift and input vector fields for the stance dynamics, and Hs :=

Cs (qs, q̇s) q̇s +Gs (qs)−Bfricτfric (qs, q̇s)−Bspτsp (qs, q̇s).

3.2.3 Stance to Stance Transition Map

An impact occurs when the swing leg touches the ground, modeled here as an inelastic

contact between two rigid bodies. In addition to modeling the impact of the leg with the

ground and the associated discontinuity in the generalized velocities of the robot as in [57],

the transition map accounts for the assumption that the spring on the swing leg is at its

rest length, and for the relabeling of the robot’s coordinates so that only one stance model

is necessary. In particular, the transition map consists of three subphases executed in the

following order: (a) standard rigid impact model [57]; (b) adjustment of spring rest length

in the new swing leg; and (c) coordinate relabeling.

Before entering into the details, the spring is discussed. To meet our modeling assump-

tion of Section 3.2.2, the post-transition spring position on the new swing leg has to be

non-deflected. This requirement makes the pre and post-transition position coordinates not

identical. Physically, the spring being non-deflected is a well-founded assumption because

as soon as weight of the robot comes off the former stance leg, the spring rapidly relaxes

and the pulley qBsp comes to rest on the hard stop. This causes a change in torque on

the leg-shape motor, and either the motor shaft or the leg shape needs to reposition to

maintain a balance of torques in the leg shape differentials. Because the leg shape has a
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high reflected inertia at the motor, it is the motor that repositions. Further, since qLS is a

linear combination of qmLS and qBsp per (3.1), we can assume the spring and motor position

change appropriately such that the linkage positions q+LS, q
−

LS are still identical. Thus, the

pre and post-transition linkage coordinates still remain identical.

The robot physically transitions from one stance phase to the next when the swing

toe contacts the ground. It is assumed that there is no rebound or slip at impact, and

that the old stance leg lifts off from the ground without interaction. The external forces

are represented by impulses, and since the actuators cannot generate impulses, they are

ignored during impact. Mathematically, the transition then occurs when the solution of

(3.14) intersects the co-dimension one switching manifold defined by the zero level set of

the threshold function Hs→s : TQs → R,

Ss→s := {xs ∈ TQs | Hs→s(xs) = 0} , (3.15)

with Hs→s(xs) = pvtoesw , where pvtoesw is the vertical position of the swing toe.

The stance to stance transition map, ∆s→s : Ss→s → TQs, is defined as

∆s→s

(

x−s
)

:=







∆q
s→s(q−s )

(∆q̇
s→s)q−s (q̇

−
s )






, (3.16)

where, x−s = (q−s ; q̇
−
s ) ∈ Ss→s is the final state of the stance phase and the base and fiber

components, ∆q
s→s : Qs → Qs, (∆

q̇
s→s)qs : TqsQs → T∆q

s→s(qs)
Qs define the transition maps

for the configuration variables and their velocities, respectively. The initial state of the

stance phase, x+s ∈ TQs, is the post impact state and is obtained as,

x+s = ∆s→s

(

x−s
)

. (3.17)

The impacts being modeled here are those of the swing foot with the ground and that

of the stance spring hitting the hard stop when the stance leg comes off the ground. Here

we model both these impacts to occur at precisely the same instant1. Mathematically, the

1We have checked that first doing the standard impact for the swing leg, and then doing a second impact
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q̇−e ∈ TΥs(q
−

s )Qe q̇+e ∈ T∆q

GndStp
◦Υs(q

−

s )Qe

q̇−s ∈ Tq−s
Qs q̇+s ∈ T∆q

s→s(q
−

s )Qs

(fiber)

(∆q̇
GndStp)Υs(q

−

s )

(DΥs)q−s
(DΠs)∆q

GndStp
◦Υs(q

−

s ) ◦R

(∆q̇
s→s)q−s

(a)

q−s ∈ Qs q+s ∈ Qs

q−e ∈ Qe q+e ∈ Qe

(base)

∆q
s→s

Υs Πs ◦R

∆q
GndStp = ΠBsp

(b)

Figure 3.3: Stance to Stance commutative diagrams

simultaneous impact with the ground and the impact with the hard stop are abstracted by

the impact map ∆GndStp : TQe → TQe. The base and fiber components of the stance to

stance transition map can then be expressed using the impact map as,

∆q
s→s = Πs ◦R ◦∆q

GndStp ◦Υs, (3.18)

(∆q̇
s→s)q−s = (DΠs)∆q

GndStp
◦Υs(q

−

s ) ◦R ◦ (∆q̇
GndStp)Υs(q

−

s ) ◦ (DΥs)q−s , (3.19)

such that diagram of Figure 3.3 commutes. Υs, Πs are as in (3.8), (3.9) respectively, and R

is a linear operator representing coordinate relabeling as found in [130, p. 57].

The rest of this section will focus on deriving the base and fiber components of the

impact map ∆GndStp.

As per earlier discussions, the linkage positions (qLA, qLS on either leg, and qTor) are

invariant with respect to an impact with the ground. However, the impact of the pulley

Bspringwith the hard stop requires a change in the position of the transmission variable

(specifically qmLSst) such that the linkage positions are invariant. Thus the impact map for

for qBsp hitting the hard stop, with the constraint that the new stance leg end velocity remains zero, gives
the same result as the model presented here.
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the coordinates can be expressed as

∆q
GndStp := ΠBsp. (3.20)

ΠBsp is a projection from Qe onto the co-dimension two submanifold {qe ∈ Qe | qBspst ≡

0, qBspsw ≡ 0} such that the linkage coordinates (qLA, qLS, qTor) remain invariant under the

projection. Thus ΠBsp resets the spring to its rest position by modifying the leg-shape

motor position such that the leg-shape position itself is unchanged.

Next, the impact map for the velocities is derived as follows. Let IR be the impulsive

force on the foot due to the ground-foot impact and let τR be the impulsive torque on the

spring due to pulley Bspring hitting the hard stop. Then the generalized external impulsive

force acting on the system is obtained from the principle of virtual work as,

Fext =

(

∂ptoesw
∂qe

)T

IR +

(

∂qBspst

∂qe

)T

τR. (3.21)

We have three constraints that need to be satisfied at impact. The first condition is for

the new swing leg to have zero spring velocity. The second condition is for the new stance

toe to have zero velocity. The third constraint is obtained by integrating the unconstrained

dynamics, (3.7), over the duration of the instantaneous event. These conditions are

q̇+Bspst
= 0 =⇒

∂qBspst

∂qe
q̇+e = 0, (3.22)

ṗ+toesw = 0 =⇒
∂ptoesw
∂qe

q̇+e = 0, (3.23)

De

(

q+e
)

q̇+e −De

(

q−e
)

q̇−e = Fext. (3.24)

By assembling the constraints (3.22)-(3.24), and solving for the post-impact velocity, we
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obtain the map,

(

∆q̇
GndStp

)

q−e

(

q̇−e
)

=

[

I 0 0

]













∂qBspst
∂qe

0 0

∂ptoesw
∂qe

0 0

De

(

∆q
GndStp(q

−
e )

)

−∂ptoesw
∂qe

T
−

∂qBspst
∂qe

T













−1 











0

0

De (q
−
e ) q̇

−
e













,

(3.25)

where ∆q
GndStp is as defined in (3.20). With this, the base and fiber components of the

stance to stance transition map, (3.16), are completely defined.

3.2.4 Hybrid Model of Walking

The hybrid model of walking is based on the dynamics developed in Section 3.2.2 and

transition map derived in Section 3.2.3. The continuous dynamics with discrete state tran-

sitions is represented as,

Σw :











































Xs = TQs

Ss→s = {xs ∈ Xs | Hs→s(xs) = 0}

ẋs = fs(xs) + gs(xs)u, x−s /∈ Ss→s

x+s = ∆s→s(x
−
s ), x−s ∈ Ss→s.

(3.26)

3.2.5 Dynamics of Flight

In the flight phase, both the feet are off the ground, and the robot follows a ballistic

motion under the influence of gravity. Thus the flight dynamics can be modeled by the

unconstrained dynamics developed in the previous section. Further, for reasons mentioned

for the swing leg during the stance phase, and the fact that neither leg is in contact with

the ground during the flight phase, it will be assumed that the springs on each leg do

not deflect during the flight phase. Therefore, qBspst ≡ 0, qBspsw ≡ 0. This assumption

is computationally advantageous since it eliminates the stiffness in the model while inte-

grating the differential equations. Thus, the configuration space of the flight dynamics is

a co-dimension two submanifold of Qe, i.e., Qf :=
{

qe ∈ Qe | qBspst ≡ 0, qBspsw ≡ 0
}

. It
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q̇f ∈ TqfQf q̇f ∈ TqfQf

q̇e ∈ TΥf(qf ))Qe

(fiber)

idTqf
Qf

(DΥf)qf (DΠf)Υf (qf)

(a)

qf ∈ Qf qf ∈ Qf

qe ∈ Qe

(base)

idQf

Υf Πf

(b)

Figure 3.4: Flight commutative diagrams

follows that, the generalized configuration variables in the flight phase can be taken as

qf :=
(

qLAst ; qmLSst ; qLAsw ; qmLSsw ; qTor; p
h
hip; p

v
hip

)

. For later use, we denote by

qe = Υf (qf) , (3.27)

the value of qe when qf ∈ Qf , and

qf = Πf (qe) , (3.28)

the value of qe projected onto Qf ⊂ Qe, such that, Πf ◦ Υf = idQf
as suggested by the

commutative diagram of Figure 3.4. Further, the unconstrained velocity q̇e can be obtained

from the flight velocity q̇f through the differential of the map Υf at the point qf ∈ Qf , i.e.,

q̇e = (DΥf)qf (q̇f) , (3.29)

where (DΥf)qf : TqfQf → TΥf(qf )Qe. Similarly, the stance velocity can be obtained from the

unconstrained velocity through the differential of the map Πf at the point qe ∈ Qe, i.e.,

q̇f = (DΠf)qe (q̇e) , (3.30)

where (DΠf)qf : TqeQe → TΠf (qe)Qf . Moreover, (DΠf)Υf(qf)
◦ (DΥf)qf = idTqf

Qf
.
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Thus, the resulting Lagrangian Lf : TQf → R in the flight phase can be expressed as

Lf (qf , q̇f) = Le (qe, q̇e) |qBspst
≡0,qBspsw

≡0, (3.31)

and the flight dynamics can be expressed in the standard form as

Df (qf) q̈f + Cf (qf , q̇f) q̇f +Gf (qf) = Γf , (3.32)

where, Γf := Bfu+Bfricτfric (qf , q̇f)+Bspτsp (qf , q̇f) is the vector of generalized forces acting

on the robot.

The state-space form of the flight dynamics, with the state vector xf := (qf ; q̇f) ∈ TQf ,

can be expressed as,

ẋf :=







qf

q̇f






=







q̇f

−D−1
f Hf






+







0

D−1
f Bf






u

=: ff(xf) + gf(xf)u

(3.33)

where, ff , gf are the drift and input vector fields for the flight dynamics, andHf = Cf (qf , q̇f) q̇f+

Gf (qf)−Bfricτfric (qf , q̇f)−Bspτsp (qf , q̇f).

3.2.6 Stance to Flight Transition Map

Physically, the robot takes off when the normal component of the ground reaction force

acting on the stance toe, FN
toest , becomes zero. The ground reaction force at the stance toe

can be computed as a function of the acceleration of the COM and thus depends on the

inputs u ∈ U of the system described by (3.14). To formally express the takeoff event, we

first define a trivial fiber bundle,

π : B → TQs, (3.34)

where B = TQs ×U . Mathematically, takeoff occurs when the solution of ( 3.14) intersects

the co-dimension one switching manifold Ss→f in the fiber bundle (3.34), defined as,

Ss→f := {(xs, u) ∈ TQs × U | Hs→f(xs, u) = 0} , (3.35)
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where the threshold function Hs→f : TQs × U → R is defined as Hs→f(xs, u) = FN
toest , with

FN
toest being the normal component of the ground reaction force at the stance foot.

The stance to flight transition map, ∆s→f : Ss→f → TQf , is defined as

∆s→f

(

x−s , u
−
)

:=







∆q
s→f(q

−
s )

(∆q̇
s→f)q−s (q̇

−
s , u

−)






, (3.36)

where, x−s = (q−s ; q̇
−
s ) ∈ TQs is the final state of the stance phase and u− ∈ U is the input

at this instant. The base and fiber components, ∆q
s→f : Qs → Qf , (∆

q̇
s→f)qs : TqsQs × U →

T∆q

s→f (qs)
Qf define the transition maps for the configuration variables and their velocities,

respectively. The initial state of the flight phase, x+f ∈ TQf , is the post transition state and

is obtained as,

x+f = ∆s→f

(

x−s , u
−
)

. (3.37)

On transition from the stance to flight phase, the stance leg comes off the ground and

takeoff occurs. During the stance phase, the spring is compressed. When the stance leg

comes off the ground, the spring rapidly decompresses until it reaches its rest position. At

this instant, there is an impact of the pulley Bspring hitting the hard stop. Mathematically,

this is captured by the impact map ∆Stp : TQe → TQe representing the impact with the

hard stop. The base and fiber components of the stance to flight transition map can then

be expressed using the impact map as,

∆q
s→f = Πf ◦∆

q
Stp ◦Υs, (3.38)

(∆q̇
s→f)q−s = (DΠf)∆q

Stp
◦Υs(q

−

s ) ◦ (∆
q̇
Stp)Υs(q

−

s ) ◦ (DΥs)q−s ◦ π, (3.39)

such that diagram of Figure 3.5 commutes. Υs, Πf are as in (3.8), (3.28) respectively, and

π is as defined in (3.34).

The rest of this section will focus on deriving the base and fiber components of the

impact map ∆Stp.

As per earlier discussions, the impact of the pulley Bspringwith the hard stop requires a

change in the position of the transmission variable (specifically qmLSst) such that the linkage
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q̇−e ∈ TΥs(q
−

s )Qe q̇+e ∈ T∆q
Stp

◦Υs(q
−

s )Qe

(q̇−s , u) ∈ Tq−s
Qs × U q̇+f ∈ T∆q

s→f (q
−

s )Qf

(fiber)

(∆q̇
Stp)Υs(q

−

s )

(DΥs)q−s ◦ π (DΠf)∆q
Stp

◦Υs(q
−

s )

(∆q̇
s→f)q−s

(a)

q−s ∈ Qs q+f ∈ Qf

q−e ∈ Qe q+e ∈ Qe

(base)

∆q
s→f

Υs Πf

∆q
Stp = ΠBsp

(b)

Figure 3.5: Stance to Flight commutative diagrams

positions are invariant. Thus the impact map for the coordinates can be expressed as

∆q
Stp := ΠBsp, (3.40)

where ΠBsp is as discussed in Section 3.2.3.

Next, the impact map for the velocities is derived as follows. Let τR to be the impulsive

torque being applied at the pulley Bspring due to the stopper. Then the generalized external

impulsive force acting on the system is obtained from the principle of virtual work as,

Fext =
∂qBspst

∂qe

T

τR. (3.41)

We have two constraints that need to be satisfied. The first condition is the trivial post

impact velocity of the spring on the stance leg to be zero. The second condition is obtained

by integrating the unconstrained dynamics, (3.7), over the duration of the instantaneous

event. These conditions then are,

q̇+Bspst
= 0 =⇒

∂qBspst

∂qe
q̇+e = 0. (3.42)
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De

(

q+e
)

q̇+e −De

(

q−e
)

= Fext, (3.43)

From (3.43), (3.42), assembling the constraints and solving for the post-impact velocity,

we obtain the map,

(

∆q̇
Stp

)

q−e

(

q̇−e
)

=

[

I 0

]







∂qBspst
∂qe

0

De

(

∆q
Stp(q

−
e )

)

−
∂qBspst
∂qe

T







−1 





0

De (q
−
e ) q̇

−
e






,

(3.44)

where ∆q
Stp is as defined in (3.40). With this, the base and fiber components of the stance

to flight transition map, (3.36), are completely defined.

3.2.7 Flight to Stance Transition Map

The robot physically transitions from flight phase to stance phase when the swing toe

contacts the ground surface. It is assumed that there is no rebound or slipping when this

contact occurs. Thus, mathematically, this transition occurs when the solution of (3.33)

intersects the co-dimension one switching manifold defined as,

Sf→s := {xf ∈ TQf | Hf→s(xf) = 0} , (3.45)

where the threshold function Hf→s : TQf→s → R is defined as Hf→s(xf) = pvtoesw , with pvtoesw

being the vertical component of the swing toe.

The flight to stance transition map, ∆f→s : Sf→s → TQs, is defined as

∆f→s

(

x−f
)

:=







∆q
f→s(q

−

f )

(∆q̇
f→s)q−f

(q̇−f )






, (3.46)

where, x−f =
(

q−f ; q̇
−

f

)

∈ TQf is the final state of the flight phase. The base and fiber

components, ∆q
f→s : Qf → Qs, (∆

q̇
f→s)qf : TqfQf → T∆q

f→s(qf)
Qs define the transition maps

for the configuration variables and their velocities, respectively. The initial state of the
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q̇−e ∈ TΥf (q
−

f )Qe q̇+e ∈ T∆q

Gnd
◦Υf(q

−

f )Qe

q̇−f ∈ Tq−f
Qf q̇+s ∈ T∆q

f→s(q
−

f )Qs

(fiber)

(∆q̇
Gnd)Υf (q

−

f )

(DΥf)q−f
(DΠs)∆q

Gnd
◦Υf(q

−

f ) ◦R

(∆q̇
f→s)q−f

(a)

q−f ∈ Qf q+s ∈ Qs

q−e ∈ Qe q+e ∈ Qe

(base)

∆q
f→s

Υf Πs ◦R

∆q
Gnd = idQe

(b)

Figure 3.6: Flight to Stance commutative diagrams

stance phase, x+s ∈ TQs, is the post impact state and is obtained as,

x+s = ∆f→s

(

x−f
)

. (3.47)

The impact being modeled here is that of the swing leg impacting the ground. Mathe-

matically, this is captured by the impact map ∆Gnd : TQe → TQe representing the impact

with the ground. The base and fiber components of the flight to stance transition map can

then be expressed using the impact map as,

∆q
f→s = Πs ◦R ◦∆q

Gnd ◦Υf , (3.48)

(∆q̇
f→s)q−f

= (DΠs)∆q

Gnd
◦Υf (q

−

f ) ◦R ◦ (∆q̇
Gnd)Υf (q

−

f ) ◦ (DΥf)q−f
, (3.49)

such that diagram of Figure 3.6 commutes. Υf , Πs are as in (3.27), (3.9) respectively, and

R is the coordinate relabeling operator introduced earlier.

The rest of this section will focus on deriving the base and fiber components of the

impact map ∆Gnd.

As per earlier discussions, the impact with the ground does not result in a change in

37



the linkage positions. Further since both legs are off the ground, the springs are at their

rest positions and thus the position of the transmission variables are invariant under this

impact. Thus the impact map for the coordinates can be expressed as

∆q
Gnd := idQe . (3.50)

Next, the impact map for the velocities is derived as follows. Let IR to be the impulsive

force on the foot due to the ground-foot impact. Furthermore let τR be the constraint force

at the pulley Bspring to maintain the spring at its rest position (This is not an impact torque,

but just a torque required to continue to enforce the constraint). Then the generalized

external impulsive force acting on the system is obtained from the principle of virtual work

as,

Fext =
∂ptoesw
∂qe

T

IR +

(

∂qBspst

∂qe

)T

τR. (3.51)

We have three constraints that need to be satisfied at impact. The first condition is for

the new swing leg to have zero spring velocity. The second condition is for the new stance

toe to have zero velocity. The third constraint is obtained by integrating the unconstrained

dynamics, (3.7), over the duration of the instantaneous event. These conditions then are,

q̇+Bspst
= 0 =⇒

∂qBspst

∂qe
q̇+e = 0. (3.52)

ṗtoesw = 0 =⇒
∂ptoesw
∂qe

q̇+e = 0, (3.53)

De

(

q+e
)

q̇+e −De

(

q−e
)

= Fext, (3.54)

From (3.53)-(3.54), assembling the constraints and solving for the post-impact velocity,

we obtain the map,

(

∆q̇
Gnd

)

q−e

(

q̇−e
)

=

[

I 0 0

]













∂qBspst
∂qe

0 0

∂ptoesw
∂qe

0 0

De

(

∆q
Gnd(q

−
e )

)

−∂ptoesw
∂qe

T
−

∂pBspst
∂qe

T













−1 











0

0

De (q
−
e ) q̇

−
e













,

(3.55)
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where ∆q
Gnd is as defined in (3.50). With this, the base and fiber components of the flight

to stance transition map, (3.46), are completely defined.

3.2.8 Hybrid Model of Running

The hybrid model of running is based on the dynamics developed in Sections 3.2.2, 3.2.5,

and transition maps derived in Sections 3.2.6, 3.2.7. The continuous dynamics with discrete

state transitions between the stance and flight phases is represented as,

Σs :











































Xs = TQs

Ss→f = {(xs, u) ∈ Xs × U | Hs→f(xs, u) = 0}

ẋs = fs (xs) + gs (xs)u, (x−s , u
−) /∈ Ss→f

x+f = ∆s→f

(

x−s , u
−
)

, (x−s , u
−) ∈ Ss→f

(3.56)

Σf :











































Xf = TQf

Sf→s = {xf ∈ Xf | Hf→s(xf) = 0}

ẋf = ff (xf) + gf (xf)u, x−f /∈ Sf→s

x+s = ∆f→s

(

x−f
)

, x−f ∈ Sf→s
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CHAPTER IV

Control Design for Walking

This chapter presents a feedback controller for achieving asymptotically stable, periodic

walking gaits on MABEL. In addition to orbital stability, a key objective is to take advantage

of the spring in the robot’s drivetrain that is placed in series with the leg-shape motor and

qLS. Inspired by analysis in [92, p. 1784] and [90, Chap. 6] for monopedal hoppers with

compliance, this will be accomplished by controlling variables on the motor end of the spring

and letting the joint end of the spring, which sees the large ground reaction forces, remain

passive. In this way, the robot in closed-loop with the controller responds to impulsive

forces at impact in a manner similar to a pogo stick. In particular, the closed-loop system

will use the compliance to do negative work at impact (i.e., decelerating the center of mass

and redirecting it upward1), instead of it being done by the actuators, thereby improving

the energy efficiency of walking.

It will be shown that the method of virtual constraints and hybrid zero dynamics [130] is

flexible enough to accomplish the control objectives outlined above. The method of Poincaré

[82] is used to verify stability of the closed-loop system. Prior to experimentally testing

the controller, simulations with various model perturbations are performed to establish

robustness of the designed controller. The controller is then experimentally validated on

MABEL.

The rest of the chapter is as follows: Section 4.1 presents the virtual constraint de-

sign for walking, Section 4.2 presents the compliant zero dynamics for MABEL, Section

1The double support phase of human walking is spring-like in the vertical direction and redirects the
center of mass [97, 38]. The COM redirection is obtained here without a double support phase.
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4.3 mathematically formalizes the event transitions between the subphases of the virtual

constraints, Section 4.4 presents two cost functions for optimization and, finally, Section 4.5

presents the fixed points obtained by optimization.

4.1 Virtual Constraint Design for Walking

Recall that virtual constraints are holonomic constraints on the robot’s configuration

variables that are asymptotically imposed through feedback control. They are used to

synchronize the evolution of the robot’s links throughout a stride in order to synthesize a

gait [130]. One virtual constraint is designed per independent actuator.

The virtual constraints are parametrized by θ, a strictly monotonic function of the joint

configuration variables, and can be expressed in the form

y = h (qs) = H0qs − hd (θ) , (4.1)

where H0qs are the controlled variables, the variables on which the constraints are imposed,

and hd (θ) is the desired evolution of the each of the controlled variable.

If a feedback can be found such that y is driven asymptotically to zero, then H0qs →

hd (θ) and thus the controlled variables H0qs evolve according to the constraint H0qs =

hd (θ). Here, the controlled variables are selected to be the rotor angle of the stance leg-

shape motor, qmLSst , the swing leg variables, qLAsw , qmLSsw , and the absolute torso angle

qTor. From hereon, the rotor angle of the stance leg-shape motor is simply referred to as

stance motor leg shape.

4.1.1 Deciding What to Control

The torso is selected as a controlled variable instead of the stance leg angle, because, for

MABEL, the torso represents over 65% of the mass of the robot, and hence the position of

the torso heavily influences the gait. The stance motor leg shape, qmLSst , is chosen instead of

the stance leg shape, qLSst , so that the joint side of the spring remains passive, as discussed

above. Mathematically, with this choice, the spring variable will become a part of the zero

dynamics, thereby rendering the zero dynamics compliant. From (3.1), if qmLSst is held
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constant, then qLSst responds to the spring torque through qBspst . On the other hand, if

qLSst were selected as a controlled variable, then the actuator is forced to cancel the spring

dynamics.

The swing leg virtual constraints are similar to the controlled variables on RABBIT, a

robot without compliance. This is because under the assumption that the swing spring is

at its rest position throughout stance, qBspsw ≡ 0, which from (3.1) shows that the motor

leg shape, qmLSsw , is related to the leg shape, qLSsw , through a gear ratio.

In summary, the controlled variables are

H0qs =



















qmLSst

qLAsw

qmLSsw

qTor



















, (4.2)

The desired evolution of each of the controlled variables are denoted by hdmLSst
, hdLAsw

,

hdmLSsw
, and hdTor respectively, and assembled as

hd (θ) =



















hdmLSst
(θ)

hdLAsw
(θ)

hdmLSsw
(θ)

hdTor (θ)



















. (4.3)

For MABEL, we choose θ to be the absolute angle formed by the virtual compliant leg

relative to the ground. This is indicated in Figure 4.1 and defined as

θ (qs) = π − qLAst − qTor. (4.4)

4.1.2 Specification of the Constraints

Virtual constraints for the stance phase of MABEL are inspired by the constraints

designed for Thumper in [90, 91]. The stance phase is broken up into subphases: the motor-
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−q
Tor

q
LA

q
LS

Virtual
Compliant Leg

−θs

Figure 4.1: The coordinate system used for the linkage is indicated. Angles are positive
in the counter clockwise direction. The virtual compliant leg is created by the
drivetrain through a set of differentials.

compression phase (mc), the stance-compression phase (sc), the stance-injection phase (si),

and the stance-decompression phase (sd). The details of these subphases are given later

in the section. Figure 4.2 illustrates the evolution of each of these constraints on qmLSst ,

qLAsw , qmLSsw , and qTor.

The reason behind breaking up the stance phases into four subphases is to facilitate the

design of virtual constraints that effectively make use of the compliance. A key idea is to

hold the stance motor leg shape at a constant value shortly after impact in order to allow

the spring (which is in series with this actuator) to absorb the impact shock entirely. Note

that if the motor position is held constant, then its velocity is zero and the motor performs

no mechanical work. The spring then does the negative work of decelerating the center of

mass and redirecting it upwards; in other words, the spring stores the impact energy and

returns it later to the gait instead of the actuator doing negative work and dissipating it as

heat. This effectively preserves the natural compliant dynamics of the system and prevents

the actuator from fighting the spring.

Another key subphase involves the torso. Because it is heavy, we have observed that

making the pre-impact torso velocity close to zero at the end of the gait helps in avoiding

excessive forward pitching of the torso just after swing leg impact. This is achieved by

designing the torso virtual constraint such that, before impact, the torso position is constant

and its velocity is zero; see phase sd in Figure 4.2.
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Remark 4.1. The choice of the variables to be controlled in the virtual constraints makes

the zero dynamics compliant. The choice of the evolution of the virtual constraints facilitates

efficient use of the compliance.

In our design of the virtual constraints for MABEL, we use the framework for virtual

constraints with subphases developed in Appendix A, with the index set for the subphases

given by

P := {mc, sc, si, sd}, (4.5)

and with the index set for the virtual constraints given by

V := {mLSst,LAsw,mLSsw,Tor}. (4.6)

Further, we choose M = 5 in (A.2), and impose C1 continuity between successive subphases.

This ensures continuity of position and velocity at the boundary of two phases of a virtual

constraint. However, acceleration, and consequently, the actuator torques, are allowed to

be discontinuous at phase boundaries.

4.1.3 Stance Motor Leg-shape Virtual Constraint

The desired evolution of the stance motor leg-shape position, hdmLSst
, is as follows. Dur-

ing the motor-compression phase, the velocity of the motor leg-shape immediately after

impact, q̇+mLSst
, is usually nonzero and is smoothly brought to zero by the end of the motor-

compression phase, i.e., q̇mc−
mLSst

= 0.

Throughout the stance-compression phase, the leg-shape motor position is kept at a

constant angle qscmLSst
. With the motor position locked, the bending of the stance knee

compresses the spring. The phase lasts until qBspst = qsc+Bspst
with q̇Bsp < 0, the point at

which the spring decompresses to a value near the nominal spring compression at mid-

stance, a typical value being five degrees. This ensures that the impact kinetic energy is

first stored in the spring and then returned to the gait without the actuator performing

unnecessary negative work on the leg shape, qLSst .

The stance-injection phase starts with the spring just decompressed to qsc+Bspst
. The ac-
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q+mLSst

qscmLSst

q+Tor = q−Tor

q+mLSsw

q+LAsw

q−mLSst

q−mLSsw

q−LAsw

hdmLSst
(θ)

hdTor (θ)

hdmLSsw
(θ)

hdLAsw
(θ)

θ

θ

θ

θ
θ+ θ−

θmc+

θmc− θsc+ θsc− θsi+ θsi− θsd+ θsd−

mc sc si sd

q̃+mLSst

q̃+Tor

q̃+mLSsw

q̃+LAsw

(θ− − θ+) /2

(

θsi− − θ+
)

/2

Figure 4.2: The general shape of the stance phase virtual constraints. The thick solid
lines illustrate the evolution of the virtual constraints as a function of θ. Each
virtual constraint is broken into subphases (mc, sc, si, sd) and each subphase
is locally expressed by a 5th order Bézier polynomial. The thin lines show the
evolution of corresponding local s that parametrizes the local Bézier curve and
goes from 0 to 1. The subphases can be combined as, for instance, in the
torso virtual constraint, which lumps the first three subphases together and
normalizes s appropriately. The swing leg virtual constraints combine all four
phases. The thick dashed lines are correction polynomials introduced to create
hybrid invariance of the zero dynamics and are discussed in Section 4.6.
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tuator then rapidly repositions the motor shaft to a new desired position, q−mLSst
. Under

nominal conditions, this straightens the leg during mid-stance for ground clearance of the

swing leg. Under large perturbations, this motion will cause the actuator to inject (or re-

move) energy through compression (or decompression) of the spring by rapidly repositioning

the motor end of the compliance.

Following the stance-injection phase, the motor shaft is maintained at the position q−mLSst

throughout the stance-decompression phase, waiting for the spring to decompress again in

preparation for leg touchdown.

The virtual constraints for the stance motor leg shape are depicted in Figure 4.2. The

thick solid line is the virtual constraint, and the thin line is the local s that parametrizes

the local Bézier polynomial. The figure also shows the virtual constraints for the other

controlled variables. Appendix A provides further details regarding choosing the the Bézier

polynomial coefficients for each subphase.

4.1.4 Torso Virtual Constraint

The desired evolution of the torso angle, hdTor, does not need to be as finely specified;

it’s evolution will be primarily left to optimization, which will be discussed in Section 4.4.

The motor-compression, stance-compression, and stance-injection phases, are combined into

a single phase. This phase serves as a transient phase that drives the torso in a smooth

manner from the initial configuration,
(

q+Tor, q̇
+
Tor

)

, to the final configuration,
(

q−Tor, q̇
−

Tor = 0
)

,

in preparation for impact.

During the stance-decompression phase, the torso is held constant in preparation for

impact. Simulations with the model and experiments with a simpler PD controller detailed

in [49] showed that achieving a nearly zero pre-impact velocity tends to prevent the heavy

torso from excessively pitching after impact.

4.1.5 Swing Leg Virtual Constraints

The desired evolution of the swing leg angle, hdLAsw
, and motor leg shape position,

hdmLSsw
are the simplest of all of the constraints as no subphases are used. A single virtual

constraint on swing leg angle is designed to bring the leg forward, preparing it for impact
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with a desired step length. The constraint on swing motor leg shape is responsible for lifting

the swing leg from the ground, avoiding foot scuffing during the gait, and extending the leg

before impact. These two constraints are similar to RABBIT [132].

4.1.6 Discussion

The use of subphases in the evolution of the stance motor leg shape and torso intro-

duces additional independent parameters to be specified in the constraint design. One

benefit is that it approximately decouples the evolution of these angles from one phase to

another; changing the evolution in one phase does not strongly affect the other as long as the

boundary condition is maintained. This facilitates intuitively specifying the initial shape

of the virtual constraints and makes the optimization task easier. For a list of independent

parameters to be found by optimization, refer to Table B.1 in Appendix B.

For later use, we can organize the virtual constraints for each phase separately. For each

p ∈ P, we can define the output,

yp = hp (qs, αp) = Hp
0 (qs)− hpd (θ, αp) , (4.7)

and,

hpd (θ, αp) =



















hd,pmLSst
(θ)

hd,pLAsw
(θ)

hd,pmLSsw
(θ)

hd,pTor (θ)



















. (4.8)

The Bézier coefficients for each phase can be organized as,

αp =



















αp
mLSst

αp
LAsw

αp
mLSsw

αp
Tor



















. (4.9)

Remark 4.2. Both the local virtual constraint hpd and the local selection of the controlled

variables Hp
0 can be modified for each subphase resulting in (4.7). Here we only change the
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parameters used in the Bézier polynomials αp
v and leave Hp

0 = H0 as defined in (4.2), and

hpd = hd as defined in (4.3), for each phase p ∈ P.

4.2 Zero Dynamics for Walking

The organization of the stance phase into four subphases creates four continuous dy-

namics and discrete transitions between them. As discussed in Section 4.1.6, for each phase

p ∈ P, an output function yp has been associated with the continuous stance dynamics

defined in (3.14). The zero dynamics is defined as the maximal internal dynamics of the

system that is compatible with the output being identically zero [64]. Differentiating the

output twice with respect to time results in

d2yp
dt2

= L2
fs
hp (xs, αp) + LgsLfshp (qs, αp)u, (4.10)

where LgsLfshp (qs, αp), the decoupling matrix, has full rank. Under the conditions of [130,

Lemma 5.1],

u∗ (xs, αp) := − (LgsLfshp (qs, αp))
−1 L2

fs
hp (xs, αp) , (4.11)

is the unique control input that renders the smooth four-dimensional embedded submanifold

Zαp = {xs ∈ TQs | hp (qs, αp) = 0, Lfshp (xs, αp) = 0} (4.12)

invariant under the stance dynamics (3.14); that is, for every z ∈ Zαp ,

f∗
p (z) := fs (z) + gs (z)u

∗ ∈ TzZαp . (4.13)

Achieving the virtual constraints by zeroing the corresponding outputs reduces the dimen-

sion of the system by restricting its dynamics to the submanifold Zαp embedded in the

continuous-time state space TQs. Zαp is called the zero dynamics manifold and the restric-

tion dynamics ż = f∗
p |Zαp

(z) is called the zero dynamics.

From Lagrangian dynamics (the derivation is standard [130, Chap. 5] and skipped for
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sake of brevity), a valid set of coordinates on Zαp is

xpzd =



















ξ1

ξ2

ξ3

ξ4



















=























θ

qBspst

∂Ls
∂q̇Bspst

∂Ls
∂q̇Tor























. (4.14)

This set of coordinates explicitly contains the Bspring variable, which illustrates clearly that

the zero dynamics is compliant:

ẋpzd =



















ξ̇1

ξ̇2

ξ̇3

ξ̇4



















=























Lfsθ

LfsqBspst

∂Ls
∂qBspst

+ τsp

∂Ls
∂qTor























. (4.15)

4.3 Event Transitions

The division of the stance phase into subphases when specifying the virtual constraints

in Section 4.1 necessitates the specification of the transition maps between the subphases.

In preparation for the next section, we model the hybrid dynamics on the zero dynamics

manifold by concatenating the solutions of the parameter-dependent hybrid systems for

each subphase

Σp :















































xp ∈ Zαp

Sp→q =
{

xp ∈ Zαp | Hp→q (xp) = 0
}

ẋp = f∗
p (xp) , x−p /∈ Sp→q

x+q = ∆p→q

(

x−p
)

, x−p ∈ Sp→q.

The model captures the continuous-time dynamics of the system in phase p ∈ P and the

discrete transition to phase q ∈ P, with the only valid choice of transitions for walking

being (p, q) ∈ {(mc, sc) , (sc, si) , (si, sd) , (sd,mc)}.
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Figure 4.3: The hybrid system for walking with continuous-time phases and discrete event
transitions.

The switching surfaces, Sp→q, for the transitions for walking are defined by the zero

level sets of the corresponding threshold functions Hp→q : TQs → R, which are given below,

Hmc→sc := θ − θmc−

Hsc→si := qBspst − 5◦

Hsi→sd := θ − θsi−

Hsd→mc := pvtoesw .

(4.16)

The transition maps, ∆p→q : Sp→q → TQs, provide the initial conditions for the ensuing

phase q ∈ P, and are given below,

∆mc→sc := id

∆sc→si := id

∆si→sd := id

∆sd→mc := ∆s→s,

(4.17)

where id is the identity map and ∆s→s is defined in (3.16).

The event transitions are indicated in Figure 4.3. To find a set of values for the inde-

pendent parameters of the constraint design specified in Section 4.1, we employ the above
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hybrid system and formulate the problem as a constrained optimization.

4.4 Gait Design Through Optimization

A periodic walking gait is designed by selecting the free parameters in the virtual con-

straints. As in [134, 130], this is most easily done by posing an optimization problem, such

as minimum energy per step length, subject to constraints to meet periodicity, workspace

and actuator limitations, and desired walking speed. The equations of the compliant zero

dynamics, which are of reduced dimension compared to the full dynamics, are employed in

the optimization for efficiency of computation.

The nonlinear constrained optimization routine fmincon of MATLAB’s Optimization

Toolbox is used to perform the numerical search for desired gaits. The quantities involved

in optimization are the scalar cost function to be minimized, J , the vector of equality con-

straints, EQ, and the vector of inequality constraints, INEQ. The optimization algorithm,

equality and inequality conditions are given in Appendix B and the list of optimization

parameters is specified in Table B.1.

Several popular cost functions for bipedal gait design are given in [130, Sec. 6.3.3].

Here, two cost criteria are used in in the optimization process. First we use a nominal

cost function, as used in RABBIT in [132], consisting of the integral over a step of squared

torque divided by distance traveled,

Jnom (α) =
1

phtoesw
(

q−s
)

∫ TI

0
||u(t)||2dt, (4.18)

where TI is the step duration and phtoesw is the step length. Minimizing this cost function

tends to reduce peak torque demands and minimizes the electrical energy consumed per

step.

Next we use a cost function that quantifies the mechanical energy consumed. The

specific mechanical cost of transport, cmt is introduced in [26, 27] as means of quantifying

energy consumed for bipedal locomotion. cmt is the energy consumed per unit weight per
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unit distance traveled and can be defined as a cost function,

Jcmt =

∫ TI

0

∑4
i=1Ei (t) dt

Mgd
, (4.19)

where M is the mass of the robot, g is the acceleration due to gravity, d is the distance

traveled, and

Ei (t) =











ui (t) q̇i (t) ui (t) q̇i (t) > 0

0 ui (t) q̇i (t) ≤ 0
(4.20)

Mechanical power can be either positive (energy is injected) or negative (energy is ab-

sorbed). Some authors, [51], consider the absolute mechanical power while defining the

cmt, whereas the definition in (4.19), (4.20) does not take into account any negative work

that is performed by the actuators, the idea being that if the actuators were redesigned,

energy could be absorbed mechanically through a friction brake or electronically through

regenerative breaking.

4.5 Fixed Point for Walking

This section presents a nominal fixed point of 0.8 m/s obtained by applying the opti-

mization procedure outlined in Section 4.4 to the virtual constraints of Section 4.1, and

with the cost function (4.18). Figure 4.4 illustrates the nominal evolution of the virtual

constraints and other configuration variables for one step. It is seen that the stance motor

leg shape is held constant for the first part of the gait right after impact, and both the

stance motor leg shape and the torso are held constant towards the final part of the gait.

Interestingly, the torso moves less than two degrees throughout the step.

Figure 4.5 illustrates the evolution of the leg shape and the stance Bspring variables.

Notice that the spring compresses to its peak value, and the sc → si transition is triggered

as the spring decompresses to five degrees. The injection of energy in the si-phase causes

the spring to compress again. Figure 4.6 illustrates the actuator torques used to realize the

gait. These torques are small in comparison to the peak torque capacities of the actuators:

30 Nm at umLA and 55 Nm at umLS. The torques are discontinuous at phase boundaries,

as noted earlier, due to the choice of the virtual constraints being C1 at phase boundaries.
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Figure 4.4: Evolution of the virtual constraints and configuration variables for a nominal
fixed point (periodic walking gait) at a speed of 0.8 m/s and step length 0.575
m. The dots on the stance motor leg-shape virtual constraint illustrate the
location of transition between consecutive subphases.

Figure 4.7 illustrates the evolution of the swing leg height and the vertical position of

the center of mass (COM) of the robot. The COM moves downward immediately after

impact, before reversing course and following a roughly parabolic path. Such a trajectory

more closely resembles that of a human [73] than that of a robot with rigid links and rigid

gearing. Figure 4.8 illustrates the vertical component of the ground reaction force at the

stance leg. A double hump is observed and can be related to what is predicted for walking

with compliant legs in [38]. The specific cost of mechanical transport for this nominal gait

is, cmt = 0.0452. The corresponding power plot is very similar to the power plot for the

next designed gait and is not shown.

A second walking gait was designed, this time using cost function (4.19), which optimizes

for the specific cost of mechanical transport. The optimization terminated with a value of

cmt = 0.0385 which is over 10% lower than that for the nominal gait. For this fixed point,

Figure 4.9 compares the total power provided by the stance leg shape motor to the total

power at stance leg shape, where the latter is the sum of the actuator and compliance power.

It is clear that the spring is doing the vast majority of the negative work that is necessary

on the stance leg.
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4.6 Closed-loop Design and Stability Analysis

The feedback presented in (4.11) renders the zero dynamics manifold invariant under

the stance phase dynamics. It is used in the optimization process of gait design in order to

evaluate the torques along a solution of the model respecting the virtual constraints. The

feedback (4.11) does not however render the solution stable or attractive in any way. In the

following, two controllers based on the classic input-output linearizing controller

u = u∗ (xs, αp)− LgsLfshp (qs, αp)
−1

(

Kp,P

ǫ2
y +

Kp,D

ǫ
ẏ

)

, (4.21)

where p ∈ {mc, sc, si, sd}, are discussed.

4.6.1 A PD + Feedforward Controller

With an eye toward experimental implementation, we look at successful controllers that

have been employed to enforce virtual constraints in experiments. For RABBIT, it was

possible to implement the virtual constraints through a simple PD controller [132], per

u = −KP y −KDẏ

for y given by (4.1), and ẏ computed numerically. On MABEL, such a controller (employed

in experiments in [49]) resulted in virtual constraints that were not accurately achieved due

to large tracking errors, and attempts at reducing the errors with high controller gains were

unsuccessful. See Section 5.2.6 for discussion of this point.

To address this, the vector of nominal control torques u∗ from (4.11) is incorporated as

a feedforward term in the PD controller. In particular, along the nominal orbit, for each of

the actuated variables m ∈ M and for each of the phases p ∈ P, u∗ is regressed against θ

with 5th order Bézier polynomials to obtain the Bézier coefficients βm
p and resulting in the

controller

uexp = u∗ (θ, β)−KP y −KDẏ, (4.22)

where, y is as defined in (4.1), ẏ still computed numerically, and β =
(

βm
p

)

.
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The stability of the fixed-points with the proposed closed-loop controller (4.22) can be

tested numerically using a Poincaré map P : S → S with the switching surface taken to be

the switching surface at the si → sd event transition, i.e., S = Ssi→sd, and

P (xs) = φ (TI ◦∆si→sd (xs) ,∆si→sd (xs)) , (4.23)

where, φ (t, x0) denotes the maximal solution of (3.14), with initial condition x0 at time

t0 = 0 and with u as defined in (4.22). Finally, TI is the time-to-impact function defined in

the usual way [130, p. 94].

Using the Poincaré return map (4.23), we can numerically calculate the eigenvalues of

its linearization about the fixed-point. The analysis shows that the walking gait obtained

by optimizing (4.18) and with the closed-loop controller (4.22) is exponentially stable with

a dominant eigenvalue of 0.6921.

Similarly, the gait obtained from optimizing (4.19) is also exponentially stable, with a

dominant eigenvalue of 0.8194.

4.6.2 Hybrid Invariance

The above controllers are not hybrid invariant. It was discovered in [83, 84] that,

in the presence of compliance, while the feedback controller (4.21) will render the zero

dynamics manifold of a given phase invariant under the continuous dynamics, it will not

necessarily render it invariant under the transition maps, that is, at transitions from one

phase to another, invariance is lost. The loss of invariance manifests itself as an impulsive

disturbance to the control law at each transition off the periodic orbit. These perturbations

do not prevent asymptotic stability from being achieved, but they do cause the actuators

to do more work. The reference [84] proposed a supplemental event-based controller that

eliminates this issue and, in fact, creates a hybrid zero dynamics for the closed-loop system,

that is, the zero dynamics manifold is invariant under the continuous dynamics as well as

the transition maps.

For the related robot, Thumper, [90, 91] propose an event-based control at each phase

transition. This is not practical here, however, because we have certain phases with ex-
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tremely small duration (the mc phase for instance). Instead, we create a hybrid zero dy-

namics by updating parameters only at the impact event (swing leg contacts the ground).

Following [84, 48], the virtual constraints are modified stride to stride so that they are

compatible with the initial state of the robot at the beginning of each step. The new output

for the feedback control design is,

yc = h
(

qs, y
s+, ẏs+

)

= H0qs − hd (θ)− hc
(

θ, ys+, ẏs+
)

.

(4.24)

The output consists of the previous output, (4.1), and an additional correction term that

depends on the previous output evaluated at the beginning of the step, specifically, ys+ =

H0q
+
s −hd (θ

+), and ẏs+ = H0q̇
+
s − ∂hd(θ)

∂θ
θ̇+. The values of ys+, and ẏs+ are determined at

the beginning of each step and held constant throughout the step. The function hc is taken

here as

hc (θ) =



















0

hcLAsw
(θ)

hcmLSsw
(θ)

hcTor (θ)



















, (4.25)

with each hcv (θ), v ∈ V\{mLSst} taken to be twice continuously differentiable functions of

θ such that,






























hcv (θ, y
s+, ẏs+) = ys+

∂hc
v

∂θs
(θ+) = ẏs+

θ̇+s

hcv (θ, y
s+, ẏs+) = 0, θ

++θmc+
v

2 ≤ θ ≤ θmc−
v

. (4.26)

With hcv designed this way, the initial errors of the output and its derivative are smoothly

joined to the original virtual constraint at the middle of the first phase of the corresponding

virtual constraint. By the choice of θmc−
LAsw

, θmc−
mLSsw

and θmc−
Tor (defined in Section 4.1), the

joining of the swing leg virtual constraints occurs at the middle of the step, while the joining

for the torso virtual constraint occurs earlier, at the middle of the combined phases mcscsi.

This is illustrated in Figure 4.2 with thick dashed lines.

As noted in the definition of hc in (4.25), we have selected hcmLSst
≡ 0 since the mc phase
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is too short to handle significant transients without large actuator torques, and further we

want to enforce the virtual constraint in the sc phase to be constant in order to effectively

use the compliance. To overcome this, we propose an event-based control action specific for

the mLSst virtual constraint that updates αmc
mLSst

, αsc
mLSst

, αsi
mLSst

at the beginning of each

step such that during the mc phase, the virtual constraint only drives the motor leg shape

velocity to zero, and during the sc phase, the virtual constraint keeps the motor shaft locked

at a constant position. Not until the si phase does the modified virtual constraint smoothly

join the nominal virtual constraint. This correction term is also illustrated in Figure 4.2

with thick dashed lines.

Under the new control law defined by (4.24), the behavior of the robot is completely

defined by the event transition maps and the swing phase zero dynamics, with hd replaced

by hd + hc. The stability of the fixed-point x∗ can now be tested numerically using a

restricted Poincaré map ρ : S ∩Z → S ∩Z where Z = {xs ∈ TQs | yc (qs) = 0, ẏc (qs) = 0},

the switching surface is taken to be the switching surface at the si → sd event transition,

i.e., S = Ssi→sd, and

ρ (xs) = φ (TI ◦∆si→sd (xs) ,∆si→sd (xs)) , (4.27)

where, φ (t, x0) denotes the maximal solution of (3.14), with initial condition x0 at time

t0 = 0 and u as defined in (4.21). Hybrid invariance is achieved because the transition map

for these events, ∆si→sd is the identity map, and ∆si→sd (Ssi→sd ∩ Z) ⊂ Ssi→sd ∩ Z.

Using the restricted Poincaré return map (4.27), we can numerically calculate the eigen-

values of its linearization about the fixed-point. For the gait obtained by optimizing (4.18),

we obtain the eigenvalues

eig

(

∂ρ (xs)

∂xs

)

=















0.7258

2.6380e− 5

−1.8001e− 6















. (4.28)

From [84, Cor. 2], the feedback (4.21) and (4.24) renders the periodic orbit of the closed-
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loop system exponentially stable for ǫ in (4.21) sufficiently small, and KP , KD such that

λ2 +KDλ+KP = 0 is Hurwitz.

The orbit obtained from optimizing (4.19) is also exponentially stable, with a dominant

eigenvalue 0.7065.

4.6.3 Robustness Study of PD Controller

In this section we study the robustness of the controllers proposed in the previous

section. With an eye towards controller simplicity for experimental implementation, we only

consider the simplest controller among the proposed controllers. This is the feedforward

plus PD controller (4.22) developed in Section 4.6.1. We study the robustness of (4.22)

to various perturbations in the model. First, a full state feedback is performed with the

feedforward plus PD controller, providing a best case scenario for the controller. Next,

the positions variables are quantized, corresponding to the physical quantization due to

the finite resolution of the encoders, and the velocities are estimated from the quantized

position using numerical differentiation. Following this, several model perturbations are

introduced sequentially. These include perturbations such as errors in the torso mass,

spring stiffness, torso center of mass position, and deviations in initial conditions. Figures

4.10, 4.11 illustrates the corresponding outputs and torques under the various perturbations

respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Outputs obtained by simulation of the system with the feedforward plus PD
controller with (a) full state feedback, (b) q quantized, q̇ estimated, (c) torso
mass increased by 5%, (d) spring constant increased by 10%, (e) torso COM
rotated forward by 5◦, and (f) initial condition changed for Torso to lean back
by 10◦. In (c) - (e), q was quantized, and q̇ estimated
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Torque obtained by simulation of the system with the feedforward plus PD
controller with (a) full state feedback, (b) q quantized, q̇ estimated, (c) torso
mass increased by 5%, (d) spring constant increased by 10%, (e) torso COM
rotated forward by 5◦, and (f) initial condition changed for Torso to lean back
by 10◦. In (c) - (e), q was quantized, and q̇ estimated
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CHAPTER V

Walking Experiments

This chapter documents experimental implementations of the controllers of Section 4.6

in various walking scenarios. Figure 5.1 depicts the experimental setup. To illustrate the

power and limitations of the proposed methods, five experiments are presented. First, the

robustness and efficiency of walking motions, resulting from enforcing the virtual constraints

of Section 4.1 through a feedforward plus PD controller developed in Section 4.6.1, is eval-

uated. Then, to achieve fast walking motions, the full compliant HZD controller developed

in Section 4.6.2 is implemented.

5.1 Experiments

For each experiment, the controller was first coded in C++ and evaluated on a detailed

simulation model of the robot that included encoder quantization and numerical estima-

tion of velocity variables from encoder measurements. As discussed in Section 4.6.3, the

controller was tested under various model perturbations, such as errors in the torso mass,

spring stiffness, torso center of mass position, and deviations in initial conditions. The

simulation model was then replaced with the physical robot. The experimental protocol

is identical to the one used in [132, Sect. 4]. The experiments varied in duration from 78

steps to 265 steps, and were ended in each case by the experimenter stopping the robot and

killing the power.

The results of the experiments are presented in Figures 5.2-5.10. In order to facilitate

comparisons, Figures 5.2-5.4 assemble results from Exp. 1, 4 and 5; the remaining figures
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Figure 5.1: Experimental setup of the bipedal testbed MABEL.

pertain to individual experiments. In the experiments, the left leg refers to the inner leg,

which is closer to the center boom, and the right leg refers to the outer leg, which is farther

from the center boom. All walking speeds are measured with respect to the center point of

the hip between the two legs. Videos of the experiments are available on YouTube [45].

5.1.1 Exp. 1: Nominal Walking at a Fixed Speed

This experiment approximately implements the virtual constraints depicted in Figure 4.4

with the feedforward plus PD controller given in (4.22). It was noticed in early experiments

that the transition from the sc phase to the si phase given by (4.16) did not always occur.

The spring was not decompressing to the 5◦ trigger point, and was probably due to the

initial few steps being far away from the nominal orbit, and also because of inability of the

controller to accurately track the stance motor leg shape virtual constraint. To ensure that

the transition from the sc phase to the si phase always occurred in the experiments, the

switching surface for this transition is modified to have a guard around the nominal value

of θ−
sc, such that the transition is guaranteed to occur for θ ∈ (θ−

sc− γ, θ−
sc+ γ], with γ being
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a small positive quantity. The modified switching surface is

Sexp
sc→si := (Ssc→si ∩ {xs ∈ TQs | θ ∈

(θsc− − γ, θsc− + γ]
})

∪

{

xs ∈ TQs | θ = θsc− + γ
}

(5.1)

This controller led to successful walking, as illustrated in Figures 5.2 through 5.6. The

evolution of the desired and achieved virtual constraints is depicted for the swing leg vari-

ables in Figure 5.2(a) and for the torso and stance leg motor positions in Figure 5.3(a).

The nominal tracking in the swing leg is very good, whereas considerable errors occur in

the torso and stance leg motor position. This is consistent with the fact that the swing leg

is unloaded and lightweight, and hence much easier to control. The torques are given in

Figure 5.4(a).

Figure 5.5 depicts the evolution of the torso angle and the evolution of Bspring for the left

and right legs in stance, respectively, over 52 of the 78 steps in the experiment. Each of these

is compared to the nominal fixed point. There is a pronounced asymmetry in the robot, as

was noted in [49]. This asymmetry is due to the boom radius not being large enough and

is currently not included as part of the model. It is also evident that the experimental gait

is faster than the designed value: the nominal fixed point is 0.8 m/s, whereas the average

experimental speed is approximately 1.0 m/s. One possible reason for the speed discrepancy

is the impact model; see [132, p. 569]. This is discussed in Section 5.2. Another possible

reason is the large errors in tracking the virtual constraints. As will be seen, controllers

in subsequent experiments will reduce these errors and the walking speed will be closer to

that of the fixed point.

Finally, Figure 5.6 illustrates the evolution of the Bspring-pulley for the stance and swing

legs. Notice that the sc → si transition does not occur at five degrees as on the nominal

orbit, and that in the swing phase, Bspring is not fixed at zero as assumed in the model.
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Figure 5.2: Tracking for the swing-leg virtual constraints for (a) PD + Feedforward con-
troller in Exp. 1, and (b) Decentralized zero dynamics controller in Exp. 5. The
tracking for PD + Feedforward controller is quite good, whereas the tracking for
decentralized zero dynamics controller is worse right after impact and recovers
quite well near impact.
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Figure 5.3: Tracking for the stance-leg virtual constraints for (a) PD + Feedforward con-
troller in Exp. 1, (b) Compliant zero dynamics controller in Exp. 4, and (c) De-
centralized zero dynamics controller in Exp. 5. The PD + Feedforward controller
produces significant tracking errors. The tracking fidelity is much improved us-
ing the compliant zero dynamics controller. However, there are significant os-
cillations in tracking the motor leg shape, corresponding to a peak variation of
approximately 1.3◦ in qLS. The decentralized zero dynamics controller improves
the tracking even further, with the oscillations nearly eliminated.
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Figure 5.4: Motor torques for (a) PD + Feedforward controller in Exp. 1, (b) Compliant zero
dynamics controller in Exp. 4, and (c) Decentralized zero dynamics controller
in Exp. 5. The torques for the PD + Feedforward controller are noisy, but are
comparable in magnitude to the nominal predicted values presented in Figure
4.6. The torques for the compliant zero dynamics controller appear more ‘noisy’
and experience significant saturation (saturation limits were set to 6 Nm on leg
angle motors and 10 Nm on leg-shape motors). For the decentralized zero
dynamics controller, the leg angle motor torques are far less ‘noisy’ than those
for the compliant zero dynamics controller, while the leg shape motor torques
are still a little ‘noisy’, but still much reduced when compared to the compliant
zero dynamics controller.
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Figure 5.5: This figure compares the evolution of qBsp for the left and right legs in stance
for Exp. 1 and the evolution of the torso, over 52 steps, and compares them
with the corresponding values for the nominal fixed point. The step times for
the left and right legs vary, with the robot walking faster when the right (i.e.,
inside) leg is stance, and both step times are shorter than the fixed point. This
is evident when we compare the average walking speed in the experiment, 1.0
m/s, with the designed fixed point walking speed of 0.8 m/s. Possible reasons
for this discrepancy are discussed in the text. Next notice in the qBsp plot,
right after impact, in the experiments the spring compresses more slowly than
in the fixed point. This is possibly due to a non-instantaneous double support
phase in the experiments. (The duration of the double support in the walking
experiments is around 20 ms.)
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Figure 5.6: Stance and swing Bspring evolution for nominal walking experiment. The as-
terisks indicate the locations of the transitions from subphase sc to subphase
si. This transition occurs before the qBsp = 5◦ event due to the presence of the
additional guards in the experiments, (5.1). It is also seen that the swing Bspring

angle is not at 0◦ as assumed in the model. This deviation is significant right
after impact, but appears to quickly die out to a small value for the remaining
part of the gait.
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5.1.2 Exp. 2: Demonstration of Robustness to Perturbations

To test the robustness of the controller used in Exp. 1, external, short duration forces

are applied at the hip at various instants of time. The results are depicted in Figure 5.7.

Initially, the robot is pushed forward by the experimenter, causing the robot to speed up

by roughly 45%. During the subsequent ten steps, the speed slowly converges back to the

nominal. Next, a retarding force is applied, causing the robot to slow down by roughly 45%.

Over the next three steps, the robot’s speed has essentially returned to the unperturbed

value. This experiment demonstrates the robustness of the robot in closed loop with the

feedback controller given by (4.22) to external disturbances and illustrates an asymmetry

in the rejection of the speed perturbation. A simulation of the model was carried out to

estimate the force applied. A constant force over the second half of the gait was assumed to

be applied at the end of the boom. In order to achieve similar speed gains and speed drops,

the required force from simulation is around 78 N in the forward direction, and around 71

N in the reverse direction, respectively.

When the robot is pushed forward (external energy is injected into the system), the

speed of the robot increases, and the robot takes a large number of steps to recover. One

would expect that, due to the increased speed, larger amounts of energy would be dissipated

at impacts after the forward push perturbation. This would cause the robot to converge

to its nominal motion faster. However, this is not the case in the experiment, indicating

that the energy loss at impact is fairly small. Thus a large number of steps are needed to

dissipate the extra energy injected into the system by the push. This is also what we see

in simulation in Section 5.2.2. This indicates that the compliance plays an important role

in the impacts. For pushes in the opposite direction, additional energy is quickly injected

into the system by the actuators.

5.1.3 Exp. 3: Efficient Walking

The fixed point obtained by optimizing for the specific energetic cost of mechanical

transport (4.19) is implemented experimentally using the feedforward plus PD controller

(4.22). The designed fixed point has a cost of cmt = 0.0385 and nominal walking speed of
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Figure 5.7: Speed at each step for Exp. 2. An external disturbance in the form of a forward
push is applied on step 9 (thick line), and the speed of the subsequent ten steps
is faster than the nominal. An external disturbance in the form of a backward
push is applied on step 32 (thick line), and the speed of the subsequent three
steps is slower than the nominal. In both cases nominal speed is recovered.
Interestingly, it takes more steps for the robot to lose energy and slow down
rather than for the robot to gain energy and speed up. This indicates that very
little energy is lost at impact.
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Figure 5.8: Power plot of Exp. 3 implementing a fixed point obtained by optimizing for cmt

(4.19). The plots are obtained by averaging the power over 77 steps (39 steps
with the left leg as stance and 38 steps with the right as stance). The vertical
lines indicate mean phase transition instants. Most of the negative work is done
by the compliance instead of the actuator.

0.8 m/s.

Figure 5.8 depicts the power plots for the inside and outside legs obtained by averaging

the experimental data over 77 steps. The realized energetic cost of mechanical transport

is cmt = 0.141. For comparison purposes, Figure 5.9 shows the power plot for the hand-

tuned virtual constraints reported in [49]. It is clear that the new control design makes

more efficient use of the compliance available in the open-loop plant than the controllers

previously designed.

The experimentally realized cmt is approximately three times the designed value. This

is discussed in Section 5.2.3.

5.1.4 Exp. 4: Compliant Zero Dynamics Controller

This section focuses on achieving greater fidelity in the tracking of the virtual constraints.

Background: An important goal of MABEL is running. As an intermediate goal, we

have started looking at fast walking. We consequently designed new fixed points using the

methods of Sections 4.1 and 4.4, for walking at 1.0 and 1.2 m/s, and implemented them

using the controller structure of (4.22). Experiments were unsuccessful, even when the

transition controller of [130, Chap. 7] was added. The experimental data showed poor

1This is around 10% lower than the realized energetic cost of mechanical transport for Exp. 1, which was
cmt = 0.15. The designed values of the energetic cost of mechanical transport for the corresponding fixed
points also differ by the same amount.
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Figure 5.9: Power plot for the hand-tuned virtual constraints experiment reported in [49].
The plots are obtained by averaging the power over 32 steps. Immediately after
impact and during the first 10% of the gait, we can see the motor actually fights
the spring. In the rest of the gait, the motors do almost all the work.

tracking of the torso and stance motor leg shape virtual constraints and led us to conclude

that more precise control was needed in order to achieve these higher speeds.

We thus stepped away momentarily from the problem of fast walking and concentrated

on achieving a higher fidelity implementation of the virtual constraints. We decided to use

the full I/O linearizing controller (4.21), with correction polynomials as in (4.24). Although

zero dynamics based controllers are great in theory, all experimental implementations to

date had been with simple PD controllers [132, 85]. Zero dynamics controllers are often

criticized for being overly dependent on the model being accurate, and for being too complex

to implement in real time.

Results: We report, for the first time, an experimental implementation2 of the full

compliant hybrid zero dynamics controller to successfully achieve walking on MABEL. The

virtual constraints of Exp. 1 are used here. The tracking accuracy obtained is far better than

the feedforward plus PD controller used previously. The compliant zero dynamics controller,

(4.11), (4.21), with the correction terms, (4.24), and with the modified event transition

surface, (5.1), is deployed. The output coordinates are normalized to approximately the

same magnitude for better conditioning of the decoupling matrix. Unlike in Section 5.1.1,

u∗ is computed from the dynamics directly and is not approximated. (Recall that in Section

4.6.1, u∗ was regressed against θ to obtain a Bézier polynomial u∗ (θ, β). This approximated

2To enable computing all terms of the zero dynamics based controller within a 1ms sample time, an
extremely efficient matrix library based on C++ expression templates [123, 5] was used.
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Figure 5.10: Bspring evolution for the compliant zero dynamics controller in Exp. 4. The
asterisks indicate location of transition from the stance-compression (sc) to
the stance-decompression (sd) phase. The transitions appear to be closer to
the nominal value of qBsp = 5◦ when compared to the PD controller, Figure
5.6.

u∗ along the periodic orbit as a function of θ but provides no velocity correction.)

The tracking of the swing virtual constraints is at least as good as that obtained in

Figure 5.2(a) with the PD controller and is not shown. Figures 5.3(a) and 5.3(b) compare

the tracking of qTor and qmLSst under the effect of the PD and the compliant zero dynamics

controllers, respectively. The tracking is greatly improved, where the error on qTor reduced

from a peak of 3.1◦ to 2.4◦, with a reduction in root mean square error (RMSE) from 1.44◦ to

0.89◦. Similarly, the error on qmLSst reduced from a peak of 59.1◦ to 39.5◦, with a reduction

in RMSE from 29.82◦ to 0.28◦ (when scaled by a gear ratio of 31.42, this translates to a

reduction in error for qLSst from a peak of 1.9◦ to 1.3◦, with a reduction in RMSE from

0.95◦ to 0.009◦.)

Figure 5.10 illustrates the stance and swing Bspring values over a few steps. Notice that

the sc → si transition occurs more closely to the designed value. Figure 5.4(b) depicts the

control torques at the actuators. These are noisier than with the PD control torques. This

issue will be resolved in the next section.

The average walking speed for this experiment is 0.9 m/s. This is closer to the designed

walking speed than in Exp. 1. The reduction in errors in the virtual constraint improves

the correlation between the desired and realized walking speeds.

5.1.5 Exp. 5: Fast Walking

We return to the problem of achieving fast walking. A decentralized zero dynamics

controller is implemented using the virtual constraints of Exp. 1. This is simply the zero
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dynamics controller as implemented in Exp. 4, with the off-diagonal elements of the de-

coupling matrix, LgsLfsh, set to zero. This was observed to reduce the ‘cross-talk’ in the

control signal due to errors in one output being transferred to another. Figures 5.2(b) and

5.3(c) illustrate the virtual constraint tracking achieved with the decentralized zero dynam-

ics controller. Figure 5.4 compares the torques obtained under the effect of the presented

controllers. The torques for the decentralized zero dynamics controller are less noisy when

compared to the torques for the compliant zero dynamics controller.

With this controller, MABEL started walking at around 1.15 m/s. The torso was

gradually leaned forward to increase the speed. A top walking speed of 1.52 m/s was

achieved with a sustained walking speed of 1.5 m/s (3.4 mph.) This made MABEL “the

fastest walking biped of any size” in the world on October 31, 2009, and the record was

held until April 22, 2010, when PETMAN [94] reclaimed the speed record with a 1.97 m/s

walking gait; the video was posted to YouTube [45].

Section 5.2.4 compares the walking speed of several bipedal robots.

5.2 Discussion of the Experiments

This section discusses various aspects of the robot and the feedback controllers revealed

by the experiments.

5.2.1 Asymmetry

The model used in the feedback designs has assumed a planar robot; in particular, this

is predicated on the robot’s dynamics being identical when the left leg is in stance or the

right leg is in stance. The data shows clearly that this is false. The robot itself is nearly

symmetric. The asymmetry arises from the boom used to constrain the robot to the sagittal

plane. The facility housing the robot only permits a boom of length 2.25 m from the center

of the floor to the center of the robot. The width of MABEL’s hips is 0.24 m, which is

approximately 10% of the boom. For comparison, RABBIT has a boom of length 1.7 m,

with a hip width of 0.074 m, which is approximately 4% of the boom. The robot plus boom

may need to be modeled as a 3D system.
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It was noted that the experimental walking speed for Exp. 1 in Section 5.1.1 was 1.0

m/s. The average speed with the left (inner) leg as stance is 0.98 m/s while the average

speed with the right (outer) leg as stance is 1.02 m/s. The ratio of left and right stance

speeds is nearly equal to the ratio of distance of left and right legs to the center column.

5.2.2 Impact Model

For legged robots, the accuracy of the model of the leg end (foot) impact with the walking

surface is difficult to ascertain and to improve. The vast majority of researchers adopt an

instantaneous double support model, and use [57] to build the corresponding mathematical

model. Several researchers have used or proposed compliant ground models [130, p. 278],

[89, 13, 33, 12, 11, 88, 127, 128], [100, Chap. 5] yielding a double support phase of nonzero

duration. Results exist in the literature in which rigid impact models have also been used

to obtain non-trivial double support phases [80, 99]. While the compliant models seem

more physically realistic, the uncertainty present in the parameters of such models does not

necessarily yield a more accurate result, and it certainly does add considerable complexity

to the model via numerical stiffness and / or non-Lipschitz continuous dynamics.

The bottom line is that when comparing theoretical predictions to experiments, the

impact model should be considered as one possible source of error. In all of the experiments

reported here, the robot walked faster than predicted by the dynamic model. The reference

[132, Fig. 9] suggested that this could be accounted for by scaling the post-impact velocity

predicted by (3.19). The scaling is performed here in such a way that the post-impact

velocity still respects the constraints (3.22), (3.23), (3.24). The impact scaling is achieved

by replacing q̇+e with ηq̇+e in these constraints, where η is an impact scaling factor. Table 5.1

shows various steady-state walking speeds for different values of the impact scaling factor.

It is notable that for the simulation to match the experimental walking speed, we require

η = 0.966, a change of less than 4% to the impact map. Figure 5.11 compares the nominal

walking experiment with a simulation with this impact scaling factor.
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Table 5.1: Effect of Impact map scaling on walking speed.
Impact map scaling factor η Steady-state walking speed

1.0 0.80 m/s
0.99 0.86 m/s
0.98 0.92 m/s
0.97 0.98 m/s
0.966 1.00 m/s
0.96 1.04 m/s
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Figure 5.11: This figure shows the plots of the Bspring and the Torso separately for the left
and right legs as stance for Exp. 1 and compares with a simulation of the
nominal fixed point with an impact scaling factor, η = 0.966.

5.2.3 Exp. 3: Efficient Walking

As mentioned in Section 5.1.3, the experimentally realized cmt is approximately three

times the designed value.

One may suppose that this discrepancy is due to the existence of non-negligible motion

of the motor shaft during the sc and sd phases, a consequence of the inability of the actuator

to function as an ideal brake. However, this is not the case. Detailed examination of the

mechanical work performed in the sc and sd phases reveals that the stance motor leg-

shape already does little work in the experiment. Introducing a brake in the experimental

setup would then have little effect in improving the cmt value. After several simulations,

perturbing different parts of the model, such as increasing friction and introducing cable

stretch, we have observed that both friction and cable stretch contribute significantly to

increase the specific cost of mechanical transport.

Table 5.2 illustrates the (mechanical) energy efficiency of several bipedal robots, and

is sorted by cmt. Although the experimentally obtained cmt value for MABEL is not as
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Table 5.2: Efficiency numbers for various bipedal robots and various controllers on MABEL.
Robot cmt

Honda’s ASIMO* 1.60
RABBIT [129, Sec. 6.5.1] 0.38
MABEL - Hand designed VC [49] 0.29
MABEL - 0.8 m/s FP, HZD Ctrl (Exp. 4) 0.18
MABEL - 0.8 m/s FP (Exp. 1) 0.15
MABEL - cmt = 0.0385 FP (Exp. 3) 0.14

T.U. Delft’s Denise* [27] 0.08
MIT’s Spring Flamingo [27] 0.07

Cornell Biped* [26] 0.055
McGeer’s Dynamite [27] 0.04

*3D, autonomous and untethered.

good as the designed value, it is 12 times better than that of Honda’s ASIMO, over 2.75

times better than RABBIT and twice better than the hand-tuned virtual constraints based

controller on MABEL. This puts MABEL’s energy efficiency within a factor of two of T.U.

Delft’s Denise and a factor of three of the Cornell Biped, none of which can step over

obstacles or run; it is also within a factor of two of the MIT Spring Flamingo which can

easily step over obstacles but cannot run, and within a factor of three of humans, who can

do all of the above.

5.2.4 Exp. 5: Fast Walking

In order to compare MABEL’s walking performance with other bipedal robot designs

and control methods, Table 5.3 lists robot parameters, peak walking speed, and the dimen-

sionless velocity3. The table is sorted by peak speed. Of note is the bipedal robot RunBot

[76, 36], which is the fastest walker measured by dimensionless velocity and leg lengths per

second. MABEL was the fastest walker in terms of absolute speed from October 31, 2009

until April 22, 2010, when PETMAN took the record.

Notice that MABEL and it’s predecessor, RABBIT, are the only ones in this list without

ankles and feet. It has been suggested in [74] that ankles and even toes, in humans, are

very useful to provide a push-off to increase speed. The effect of push-off in bipedal robots

3The dimensionless velocity serves as a speed metric and is defined as the square root of the Froude
number, with the Froude number being the ratio of the centrifugal force due to motion about the foot and
the weight of the robot [122].
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Table 5.3: Top walking speeds of bipedal robots; this table is motivated by [76, Figure 1].

RunBot RABBIT Spring Flamingo MABEL PETMAN Olympic Record
Mass (Kg) 0.53 32.00 14.20 65.00 - ≈ 70.00
Leg Length (m) 0.23 0.80 0.90 1.00 - 0.9 ≈ 1.15
Peak Speed (m/s) 0.80 1.20 1.25 1.50 1.97 4.60
Dimensionless Velocity 0.53 0.43 0.42 0.48 - 1.4 ≈ 1.5
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Figure 5.12: Cable stretch as measured by qLA−qmLA/23.53 for the right (outer) leg over two
consecutive swing and stance phases for the fast walking experiment, Exp. 5.
Negative cable stretch values are not to be interpreted as cable compression.
Cable differentials require two sets of cables to ‘pull’ in either direction. The
negative cable stretch values in the figure refer to cable stretch in the second
cable.

is studied in [71] and is established as an energy efficient way to increase speed.

5.2.5 Cable Stretch

The differentials in MABEL’s drivetrain, c.f. Figure 3.1, are realized by a series of cables

and pulleys. The reader is referred to [58, 50] for details. The robot was designed under

the assumption that the cables undergo zero deformation, and this assumption has been

used in developing the dynamic model of the robot that we used for control design. In the

experiments, it has been observed that there is significant cable stretch. A representative

plot of the cable stretch in the leg angle is shown in Figure 5.12, where the variable qLA +

qmLA/23.53 is plotted in degrees. If the cables were rigid, this variable would be identically

zero4.

4Encoders are present to directly measure both qLA and qmLA.
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5.2.6 Zeroing the Virtual Constraints

The theorems supporting the method of virtual constraints are easier to prove when

an input-output linearizing controller such as (4.21) is used [84, 130, 92]. In practice, the

benefits are achieved by any controller that realizes the constraints h (qs) = H0qs − hd (θ)

with “sufficient accuracy”. This can be formalized using high-gain feedback via singular

perturbations [124]. On RABBIT the actuators were connected to the robot’s linkage

through 50 : 1 gear ratios, and it turned out that a high-gain PD implementation resulted

in sufficiently accurate realization of the virtual constraints. However, on MABEL, this

simple controller was inadequate for fast gaits, motivating the implementation of an input-

output linearizing controller. We believe that three things limited our ability to increase

the PD gains in (4.22) sufficiently high to realize the constraints: lower gear ratios in the

drivetrain5; encoder ‘noise’ when estimating derivatives; and the additional compliance

arising from the cable stretch discussed above.

5MABEL has a gear ratio of 23.53 : 1 and 31.42 : 1 for leg angle and leg-shape coordinates respectively.
For comparison, RABBIT has a gear ratio of 50 : 1 at both the knees and hips.
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CHAPTER VI

Control Design for Running: Embedding Active Force

Control within the Compliant Hybrid Zero Dynamics

This chapter presents a controller for inducing stable running motions on MABEL. The

controller will create an actuated compliant HZD, and enable active force control within

the HZD.

Similar to walking, a set of virtual constraints is chosen so that the open-loop compli-

ance of the system is preserved as a dominant characteristic of the closed-loop system. In

addition, active force control will be introduced as a means of varying the effective com-

pliance of the system. The motivation for this control approach is elaborated in Section

6.1.

This chapter is organized as follows. Section 6.1 motivates the control design for embed-

ding active force control within the compliant HZD framework. Section 6.2 will present a

high-level overview of the control design. Section 6.3 presents the virtual constraints for the

stance phase of running that result in a restricted dynamics that is compliant and actuated;

the associated zero dynamics are given in Section 6.4. Section 6.5 specifies the controller

used for the active force control which provides a means of varying the effective compliance

of the system. Section 6.6 presents the virtual constraints for the flight phase of running and

Section 6.7 presents the associated zero dynamics. Section 6.8 presents the hybrid restricted

dynamics model. Section 6.9 presents the optimization process for gait design. Section 6.10

presents one fixed point representing a periodic running motion. Section 6.11 presents the

closed-loop control design. Section 6.12 presents additional controller modifications that
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need to be done prior to experimental deployment.

6.1 Motivation for Control Design

In the walking experiments reported in Chapter V, the spring on the stance leg com-

presses on impact and decompresses nearly to its rest position within 100 ms. This property

is dependent on the mass of the robot and spring stiffness. Using the same set of springs for

running, and with the control strategy of holding the motor position constant at impact,

would yield stance times of around 100 ms. Since there is no control authority on the torso

in the flight due to the conservation of angular momentum, any errors on the torso posi-

tions have to be corrected during the stance time. Feedback to correct the potentially large

errors for the torso within 100 ms would place large torque requirements on the actuators

and would potentially be infeasible.

Hence, longer stance times are necessary. One solution to obtain longer stance times

would be to reduce the spring stiffness by physically replacing the springs present in MA-

BEL with softer springs. However, as investigated in Rummel and Seyfarth [101], having

compliance in the joint level with segmented legs results in a nonlinear relationship between

leg compression and leg force. Thus, reducing the spring stiffness on MABEL would have

the effect of the robot collapsing at moderate leg compressions owing to the fact that the

less stiff spring is not able to provide sufficient leg force to hold up the robot. This would

significantly reduce the range of impact angles for the knee for which the springs could hold

up the weight of the robot. Thus, there is a need to vary the effective compliance of the leg

in different parts of the stance phase without resorting to softer springs.

We look now at inspiration from biomechanical studies. Ferris et al., [31, 32] carried

out experiments on human runners and found that runners adjust their leg stiffness to

accommodate for variations in surface stiffness, allowing them to maintain similar running

mechanics (e.g., peak ground reaction force and ground contact time) on different surfaces.

Moreover, they suggest that incorporating an adjustable leg stiffness in the design of running

robots is important if they are to match the agility and speed of animals on varied terrain.

Further, in a set of impressive experiments carried out by Daley et al., [29, 28], where guinea
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fowl are subjected to large unexpected variations in ground terrain, it is suggested that the

animals can accommodate this variation in ground height by varying their leg stiffness.

In summary, there is a need for a control strategy which can dynamically vary the

effective compliance of the leg. In addition, active force control has been suggested as

a way to increase robustness to perturbations in ground height and ground stiffness in

[70]. In the following sections, we develop a controller based on virtual constraints and

the framework of hybrid zero dynamics to have the capability of dynamically varying the

effective leg stiffness.

6.2 Overview of the Control Method

The control objective is to design a periodic running gait that is exponentially stable

and has a sufficiently large domain of attraction so as to accommodate inevitable differences

between the model and the robot. Virtual constraints are used to impose constraints on

the robot’s dynamics in the stance and flight phases. By a judicious choice of variables on

which the constraints are to be imposed, the resulting restricted stance dynamics is made

compliant and actuated. The input in the zero dynamics for the stance phase is used to

change the effective compliance of the robot. Discrete-event-based control is then employed

to (a) create hybrid invariance, (b) exponentially stabilize the periodic gait, and (c) increase

the domain of attraction of the periodic gait.

To achieve the control objectives, the feedback controller introduces control on three

levels. Figure 6.1 depicts the overall structure of the running controller. On the first level,

continuous-time feedback controllers Γα
p with p ∈ P := {s, f} are employed in the stance

and flight phases to create invariant and attractive surfaces embedded in the state space for

each of the respective phases. The discrete-time feedback controllers Γαc
p are employed in

the transitions between the phases in order to render these surfaces hybrid invariant. For

later reference, these surfaces are Z(αp,α
p
c ,β,γ)

⊂ TQp.

On the second level, an event-based controller Γβ performs step-to-step parameter up-

dates to render the periodic orbit, representing running and embedded in these surfaces,

exponentially stable. Finally, on the third level, another event-based controller Γγ performs
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Γα
pΓαc

pΓβΓγ

Figure 6.1: Feedback diagram illustrating the running controller structure. Continuous lines
represent signals in continuous time; dashed lines represent signals in discrete
time. The controllers Γα

p and Γαc
p create a compliant actuated hybrid zero

dynamics. The controller Γβ ensures that the periodic orbit on the resulting zero
dynamics manifold is locally exponentially stable. The controller Γγ improves
the domain of attraction of the periodic orbit.

step-to-step parameter updates to increase the domain of attraction of the periodic orbit.

The remaining sections of this chapter will develop the procedure described above in

greater detail and make it mathematically precise.

6.3 Virtual Constraint Design for Stance

Recall that virtual constraints are holonomic constraints on the robot’s configuration

variables that are asymptotically imposed through feedback control. They were used in

Section 4.1 to synchronize the evolution of the robot’s links for synthesizing walking gaits

on MABEL. For walking, one virtual constraint was designed per independent actuator.

For the stance phase of running, the virtual constraints are parametrized by θs, a strictly

monotonic function of the joint configuration variables. As in walking, we choose θs to be

the absolute angle formed by the virtual compliant leg relative to the ground (see Figure

4.1), i.e.,

θs (qs) = π − qLAst − qTor. (6.1)
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The virtual constraints for the stance phase can then be expressed in the form

ys = hs (qs) = Hs
0qs − hsd (θs) , (6.2)

We have two design choices to make: (a) The controlled variables Hs
0qs , and (b) the

constraints hsd (θs).

6.3.1 Deciding What to Control

As motivated in the previous section, we need some means of varying the effective

compliance of the system for designing running gaits that are robust and have stance phases

that are sufficiently long that torso correction is feasible. Since the transmission of MABEL

places a spring in series with the leg shape actuator for the stance leg, umLSst , force control

on this actuator can be employed to vary the effective compliance of the system. To achieve

this, we choose to impose virtual constraints on three controlled variables using three of

the actuators and leave the stance motor leg shape actuator for active force control instead

of using it for imposing an additional virtual constraint. This increases the dimension of

the zero dynamics, which may seem counter-intuitive. Such a strategy was employed in

the past by Choi and Grizzle [24] for the control of fully actuated planar bipeds with feet

by choosing not to impose a virtual constraint using the ankle actuator. Another instance

when one of the actuators was not employed in imposing a virtual constraint is in the work

by Poulakakis and Grizzle [92] on ASLIP, where the leg force actuator is not used to enforce

a virtual constraint, but rather used to achieve a target zero dynamics that is diffeomorphic

to the dynamics of a SLIP.

By choosing to impose three virtual constraints, we have three control variables to

specify. The torso is selected as one of the controlled variables (as was done for walking).

Since the torso represents over 65% of the mass of the robot, the entry conditions for the

torso into the flight phase are imperative for running. Due to the conservation of angular

momentum, there is minimal control authority on the torso position in the flight phase.

The initial conditions at the entry into the flight phase essentially determine the evolution

of the torso in the flight phase. Next, on the swing leg, the controlled variables are as in
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walking. In summary, the controlled variables are

Hs
0qs =













qLAsw

qmLSsw

qTor













. (6.3)

6.3.2 Specification of the Constraints

The stance phase of running is broken into two subphases: stance-compression and

stance-decompression. For the three virtual constraints, the two sub phases are combined

into a single phase. Since all the virtual constraints are specified by combining both the

subphases, the division of the stance phase is artificial with respect to the virtual constraints.

The need for such a breakup is described more fully in Section 6.8. We use the framework

of virtual constraints with subphases as developed for walking (see Appendix A.)

The virtual constraints are parametrized by 5th order Bézier polynomials. The desired

trajectory of each of the controlled variables is denoted by hd,sLAsw
, hd,smLSsw

, and hd,sTor re-

spectively with corresponding Bézier coefficients αs
LAsw

, αs
mLSsw

, and αs
Tor. The desired

trajectories of the virtual constraints are assembled as

hsd (θs, αs) =













hd,sLAsw
(θs, αs)

hd,smLSsw
(θs, αs)

hd,sTor (θs, αs)













, (6.4)

where the Bézier coefficients are organized as

αs =













αs
LAsw

αs
mLSsw

αs
Tor













. (6.5)

Next we discuss the choice of the general shape of the virtual constraints. As mentioned

earlier, the initial conditions of the heavy torso at the entry of the the flight phases is

important for running. For running forward, we expect the torso to be leaning forward

during most of the gait. If in addition, at the entry to the flight, the torso has a forward
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velocity, then due to the conservation of angular momentum, the torso continues to move

forward in the flight phase and on landing the torso may have excessively pitched forward.

Correcting a large error in torso in the relatively small (compared to walking) stance phase

is difficult. To prevent this, the virtual constraint for the torso is designed such that, at the

end of the stance phase, the torso is leaning forward but has a backward velocity.

The swing leg virtual constraints are chosen such that the swing leg angle moves forward

in the stance phase, and the swing motor leg shape lifts the leg higher to provide ground

clearance of the swing leg. These constraints are similar to those designed for walking.

6.4 Stance Zero Dynamics

The open-loop stance-phase dynamics are given by (3.14). By a change of coordinates,

the inputs to the system can be separated into two pairs - the stance motor leg shape input

umLSst with input matrix BmLSst and ũ representing the inputs excluding the stance motor

leg shape input, with corresponding input matrix B̃. With this, the open-loop dynamics

can be written in the standard form as,

Ds (qs) q̈s +Hs (qs, q̇s) = BmLSstumLSst + B̃ũ, (6.6)

where Hs is as in (3.14). By the choice of the virtual constraints, specifically choosing only

three control variables on which the constraints are imposed, the stance motor leg shape

input remains free and is not used for imposing a virtual constraint. We intend to implement

active force control on the stance motor leg shape input, in which case, this becomes a

function of the state, and with an abuse of notation we can write umLSst = umLSst(xs).

With this, the state space representation of the stance dynamics with active force control

on the stance motor leg shape input is

ẋs =







q̇s

−D−1
s Hs +D−1

s BmLSstumLSst






+







0

D−1
s B̃






ũ

:= f̃s (xs) + g̃s (xs) ũ.

(6.7)
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As discussed in Section 6.3, an output function ys has been associated with the con-

tinuous stance dynamics with active force control in (6.7). The zero dynamics is defined

as the maximal internal dynamics of the system that is compatible with the output being

identically zero [64]. Differentiating the output twice with respect to time results in

d2ys
dt2

= L2
f̃s
hs (xs, αs) + Lg̃sLf̃s

hs (qs, αs) ũ, (6.8)

where Lg̃sLf̃s
hs (qs, αs), the decoupling matrix, has full rank. Under the conditions of [130,

Lemma 5.1],

u∗s (xs, αs) := −
(

Lg̃sLf̃s
hs (qs, αs)

)−1
L2
f̃s
hs (xs, αs) , (6.9)

is the unique control input that renders the smooth six-dimensional embedded submanifold

Zαs =
{

xs ∈ TQs | hs (qs, αs) = 0, Lf̃s
hs (xs, αs) = 0

}

(6.10)

invariant under the stance dynamics (6.7); that is, for every zs ∈ Zαs ,

f∗
s (z) := f̃s (z) + g̃s (z)u

∗
s ∈ TzsZαs . (6.11)

Achieving the virtual constraints by zeroing the corresponding outputs reduces the dimen-

sion of the system by restricting its dynamics to the submanifold Zαs embedded in the

continuous-time state space TQs. Zαs is called the zero dynamics manifold and the restric-

tion dynamics żs = f∗
s |Zαs

(z) is called the zero dynamics. As we will see next, the zero

dynamics is actuated.

As was done in walking, from the Lagrangian dynamics, a valid set of coordinates on
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Zαs is

xszd =

































ξs1

ξs2

ξs3

ξs4

ξs5

ξs6

































=







































θs

qBspst

qmLSst

∂Ls
∂q̇Bspst

∂Ls
∂q̇mLSst

∂Ls
∂q̇Tor







































. (6.12)

This set of coordinates explicitly contains the Bspring variable, which illustrates clearly that

the zero dynamics is compliant:

ẋszd =

































ξ̇s1

ξ̇s2

ξ̇s3

ξ̇s4

ξ̇s5

ξ̇s6

































=





































Lf̃s
θs

Lf̃s
qBspst

Lf̃s
qmLSst

∂Ls
∂qBspst

+ τsp

∂Ls
∂qmLSst

∂Ls
∂qTor





































+

































0

0

0

0

umLSst

0

































(6.13)

Since the stance motor leg shape input explicitly appears in the zero dynamics, in addition

to being compliant, the zero dynamics for the stance phase is also actuated. The force

control we intend to implement needs to be a function of the state on the zero dynamics,

i.e., umLSst = umLSst(zs).

6.5 Active Force Control - Virtual Compliance

Through the choice of the virtual constraints, specifically choosing only three control

variables on which the constraints are imposed, the stance motor leg shape input was left

free and not used for imposing a virtual constraint. Thus we have a choice of the feedback

control to impose on this input. Among all the different feedbacks that one can implement,
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we choose something very simple - a virtual compliant element. By defining the feedback,

umLSst (xs) = −kvc (qmLSst − qmLSvc) , (6.14)

a virtual compliant element of stiffness kvc, and rest position qmLSvc is implemented using

the motor leg shape actuator. An additional damping element could be added if desired.

The transmission of MABEL places this virtual compliant element in series with the physical

compliance. Since both these compliances are in series, this method provides a means of

dynamically varying the effective compliance of the system.

This method of creating a virtual compliant element using the choice of virtual con-

straints was instrumental in maintaining good ground contact forces for large step-down

experiments of up to 5 inches (see [50].) In Section 6.12, we show several more uses of

virtual compliance. With this method, we can easily account for cable stretch that was not

part of the model for the control design. Further, as suggested in [101], depending on the

knee angle at impact, the spring force appearing at the stance knee has a nonlinear relation

to the spring compression. Using virtual compliance, one can vary the effective compliance

based on the knee angle at impact to account for this phenomenon, thereby preventing the

stance knee from excessively bending. Virtual compliance can also be used to easily account

for asymmetry in the robot. Further, there is a reduction in the number of parameters to be

found in the optimization problem which will be discussed in Section 6.9. Finally, another

potential benefit would be to use this method for rapid motions, where moving a joint from

one position to another as fast as possible is sought rather than accurately moving it along

a desired trajectory between two points as typically done in virtual constraints.

One potential disadvantage would be that we are trying to implement compliance us-

ing an actuator. On its own, this has several problems associated with high bandwidth

requirements on the actuator, and bad efficiency since the actuator would be required to

do negative work. However, in this case, since the virtual compliance is in series with a

physical compliance, the actual spring would handle the high bandwidth and potentially

perform any negative work. In which case, this is not a severe disadvantage of the proposed

method. Further analysis, beyond the scope of the current work, should be done to confirm
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this.

For future use, we assemble the independent parameters of the virtual compliance as

αvc ∈ R
2 and defined as

αvc =







kvc

qmLSvc






. (6.15)

6.6 Virtual Constraint Design for Flight

During the flight phase, neither foot is in contact with the ground. The stance leg refers

to the leg that was the stance leg in the previous stance phase, and similarly for the swing

leg. For the flight phase, we have four actuators available to impose virtual constraints.

One virtual constraint is designed per independent actuator.

The virtual constraints in the flight phase are parametrized by θf , a strictly monotonic

function of the joint configuration variables. For running, we choose θf to be the horizontal

position of the hip1, i.e.,

θf (qf) = phhip. (6.16)

The virtual constraints for the flight phase can then be expressed in the form

yf = hf (qf) = H f
0qf − hfd (θf) . (6.17)

Next we have a choice of which variables we choose to be the control variables on which

the virtual constraints are imposed. For the flight phase, on the stance leg, the leg angle

and the motor leg shape are chosen. The stance foot needs to be lifted off from the ground

rapidly and this can be achieved by bending the leg by repositioning the stance motor leg

shape, and also by moving the leg backward by repositioning the stance leg angle. On the

swing leg, the swing foot needs to be unfolded in preparation for an impact. This can be

achieved by repositioning the swing motor leg shape. Finally, for directly specifying the

touchdown angle, the absolute leg angle of the swing leg is taken as a control variable. This

1Ideally, the horizontal position of the COM would be a good choice, since it is guaranteed to be strictly
monotonic in the flight phase. However, for experimental convenience, and due the fact that the torso
for MABEL is heavy and the legs relatively light weight, the horizontal position of the hip would also be
monotonic.
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has an added advantage that if the torso pitches forward excessively, the swing leg angle

automatically repositions such that the absolute leg angle is the desired value at touchdown.

In summary, the controlled variables are

H f
0qf =



















qmLSst

qLAsw + qTor

qmLSsw

qLAst



















. (6.18)

The virtual constraints are parametrized by 5th order Bézier polynomials. The de-

sired evolution of each of the controlled variables are denoted by hd,fmLSst
, hd,fLAabssw

, hd,fmLSsw
,

and hd,fLAst
respectively with corresponding Bézier coefficients αf

mLSst
, αf

LAabssw
, αf

mLSsw
, and

αf
LAst

. The desired evolution of the virtual constraints are assembled as

hfd (θf , αf) =



















hd,fmLSst
(θf , αf)

hd,fLAabssw
(θf , αf)

hd,fmLSsw
(θf , αf)

hd,fLAst
(θf , αf)



















, (6.19)

where the Bézier coefficients are organized as

αf =



















αf
mLSst

αf
LAabssw

αf
mLSsw

αf
LAst



















. (6.20)

6.7 Flight Zero Dynamics

The flight zero dynamics is relatively straightforward since all actuators are employed to

enforce virtual constraints. The output function yf is associated with the continuous flight
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dynamics defined in (3.33). Differentiating the output twice with respect to time results in

d2yf
dt2

= L2
ff
hf (xf , αf) + LgfLffhf (qf , αf)u, (6.21)

where LgfLffhf (qf , αf), the decoupling matrix, has full rank. Under the conditions of [130,

Lemma 5.1],

u∗f (xf , αf) := − (LgfLffhf (qf , αf))
−1 L2

ff
hf (xf , αf) , (6.22)

is the unique control input that renders the smooth six-dimensional embedded submanifold

Zαf
= {xf ∈ TQf | hf (qf , αf) = 0, Lffhf (xf , αf) = 0} (6.23)

invariant under the flight dynamics (3.33); that is, for every zf ∈ Zαf
,

f∗

f (zf) := ff (f) + gf (zf)u
∗

f ∈ TzfZαf
. (6.24)

Achieving the virtual constraints by zeroing the corresponding outputs reduces the dimen-

sion of the system by restricting its dynamics to the submanifold Zαf
embedded in the

continuous-time state space TQf . Zαf
is called the zero dynamics manifold and the restric-

tion dynamics żf = f∗

f |Zαf
(zf) is called the zero dynamics.

From Lagrangian dynamics, a valid set of coordinates on Zαf
is

xfzd =

































ξf1

ξf2

ξf3

ξf4

ξf5

ξf6

































=







































qTor

phhip

pvhip

∂Lf
∂q̇Tor

∂Lf

∂ṗhhip

∂Lf
∂ṗvhip







































. (6.25)

This choice of coordinates is different from those chosen for RABBIT in [130, Chap. 9].

Since the flight dynamics for MABEL, developed in Section 3.2.5, incorporates the boom
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dynamics, the angular momentum is not strictly conserved and a different set of coordinates

for the zero dynamics is required. The zero dynamics is then given by

ẋfzd =

































ξ̇f1

ξ̇f2

ξ̇f3

ξ̇f4

ξ̇f5

ξ̇f6

































=







































Lff qTor

Lffp
h
hip

Lffp
v
hip

∂Lf
∂qTor

∂Lf

∂phhip

∂Lf
∂pvhip







































. (6.26)

6.8 Event Transitions

The division of running into the stance and flight phases necessitates the specification

of transition maps between the phases. In preparation for the next section, we introduce

correction polynomials so as to obtain hybrid invariance of the zero dynamics manifolds.

We also model the hybrid dynamics on the zero dynamics manifold by concatenating the

solutions of the parameter dependent hybrid systems for each subphase.

On transition from one phase to another we require the solution to be on the zero

dynamics of the next phase. This ensures the zero dynamics manifold is hybrid invariant

and enables us to study the behavior of the restricted hybrid system. Hybrid invariance is

achieved by introducing correction polynomials [84, 48] which are parametrized by Bézier

coefficients and are updated at event transitions such that the post-transition state lies in

the zero dynamics manifold of the next phase. This is obtained by modifying the virtual

constraint at event transitions by introducing new outputs for each of the the phases p ∈ P

ypc = hp (qp, αp, α
p
c)

= Hp
0qp − hpd (θp, αp)− hpc

(

θp, α
c
p

)

.

(6.27)

The output consists of the previous output (6.2), or (6.17), and an additional correction term

hpc such that the post transition output and its velocity are zero, i.e., yp+c = 0, ẏp+c = 0. This

is achieved by choosing the Bézier coefficients αp
c appropriately. Moreover, the correction
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polynomial is designed in such a way that the modified virtual constraint is smoothly joined

to the original virtual constraint at the middle of the current phase. The zero dynamics

defined in Sections 6.4, and 6.7 can be defined to incorporate the new output with correction

polynomial to obtain the zero dynamics manifolds Zαp,α
p
c
.

Next, the stance phase of running is broken into two subphases: the stance-compression

and the stance-decompression. The division of the stance phase is artificial with respect

to the virtual constraints, since for the three virtual constraints, the two subphases are

combined into a single phase. The purpose of the subphases is to implement a deadbeat

event-based control strategy to only change the parameters of the virtual compliance. The

hybrid zero dynamics model for running that captures the continuous-time dynamics of the

system in stance-compression subphase, stance-decompression subphase, the flight phase,

and the discrete transitions among them, is given by

Σs
zd :















































































































Σsc
zd :















































zs ∈ Zαs,αs
c
, αvc ∈ R

2

żs = f∗
s (zs) , α̇vc = 0

Ssc→sd =
{

zs ∈ Zαs,αs
c
| Hsc→sd (zs) = 0

}

zsd+s = ∆sc→sd (z
sc−
s ) , αsd+

vc = αsd
vc,

Σsd
zd :















































zs ∈ Zαs,αsd
c
, αvc ∈ R

2

żs = f∗
s (zs) , α̇vc = 0

Ssd→f =
{

zs ∈ Zαs,αs
c
| Hsd→f (zs) = 0

}

z+f = ∆sd→f

(

zsd−s

)

,

Σf
zd :















































zf ∈ Zαf ,αf
c

żf = f∗

f (zf)

Sf→sc =
{

zf ∈ Zαf ,αf
c
| Hf→sc (zf) = 0

}

z+s = ∆f→sc

(

z−f
)

, αsc+
vc = αsc

vc,

where αp
vc for p ∈ Ps := {sc, sd} are independent parameters for the virtual compliance and

are to be specified.
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The switching surfaces for the transitions are defined by the zero level sets of the thresh-

old functions given below

Hsc→sd := θs − θsd

Hsd→f := Hs→f

Hf→sc := Hf→s,

(6.28)

where θsd is a independent parameter to be specified, Hs→f and Hf→s are as as defined in

Sections 3.2.6, 3.2.7 respectively. Note that the stance to flight threshold function is defined

as Hs→f : Ss→f × U → R. However, with the inputs all being a function of the state (refer

(6.9), (6.14)), this transition is then essentially defined on the stance to flight switching

surface, Ss→f . The transition maps provide the initial conditions for the ensuing phase and

are given below

∆sc→sd := id

∆sd→f := ∆s→f

∆f→s := ∆f→s,

(6.29)

with ∆s→f , ∆f→s are as defined in Sections 3.2.6, 3.2.7 respectively. Note that the stance

to flight transition function is defined as ∆s→f : TQs × U → TQf . However, as mentioned

earlier, since the inputs are a function of the state, this mapping is essentially from the

stance state space.

To find the set of values for the independent parameters of the constraint design, and

parameters of the virtual compliance, we employ the above restricted lower-dimensional

hybrid system and formulate the problem as a constrained optimization.

6.9 Gait Design Through Optimization

A periodic running gait is designed by selecting the free parameters in the virtual con-

straints, and the virtual compliance. As was carried out for gait design for walking in

Section 4.4, an optimization problem is posed to minimize energy per step length, subject

to constraints to meet periodicity, workspace and actuator limitations. The equations of the

hybrid zero dynamic model developed in the earlier section, which are of reduced dimension

compared to the full dynamics, are employed for efficiency of computation.
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The cost function

Jnom

(

αs, αf , α
sc
vc, α

sd
vc

)

=
1

phtoesw
(

q−f
)

∫ TI

0
||u(t)||2dt, (6.30)

where TI is the step duration (stance plus flight time) and phtoesw is the step length. Mini-

mizing this cost function tends to reduce peak torque demands and minimize the electrical

energy consumed per step.

6.10 Fixed Point for Running

This section presents a nominal fixed point of 1.34 m/s obtained by applying the opti-

mization procedure outlined in Section 6.9 to the virtual constraints of Sections 6.3, 6.6, the

virtual compliance of Section 6.5, and with the cost function (6.30). Figure 6.2 illustrates

the nominal evolution of the virtual constraints for the stance flight phases along with other

configuration variables for one step of running. The squares on the plots indicate the transi-

tion from stance to flight phase. The step time is 525 ms with 69% spent in stance and 31%

in flight. On entry into the flight phase, the torso is leaning forward (negative torso angle)

and is rotating backward (positive torso velocity). The swing leg angle travels roughly 57%

of its total 47.5◦ during the stance phase2 and needs to travel the remaining 43% in the

flight phase which is of smaller duration. Thus the velocities of the joints in the flight are

high compared to those of the stance phase. The instantaneous change in the stance motor

leg shape position on transition to flight is to reset the stance spring to its rest position in

the flight phase.

Figure 6.3 illustrates the evolution of the leg shape and the stance Bspring variables. The

squares in the plot indicate the stance to flight transition and the circle in the spring plot in-

dicates the stance-compression to stance-decompression transition. During the flight phase,

the stance leg shape initially unfolds due to the large velocity of push-off during the final

part of the stance phase as the spring rapidly decompresses. During the stance-compression

phase the spring compresses, reaches its peak value of almost 36◦ and starts to decompress.

2Contrast this to that of humans, where the legs travel rougly 90% of the range of travel during the
stance phase.
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Figure 6.2: Evolution of the virtual constraints and configuration variables for a nominal
fixed point (periodic running gait) at a speed of 1.34 m/s and step length 0.7055
m. The squares illustrate the location of transition between stance to flight
phase.

On transition to the stance-decompression phase, the motor injects energy into the sys-

tem causing the spring to rapidly compress to a peak of 47◦. At lift-off, when the vertical

component of the ground force goes to zero, the spring is compressed to approximately 25◦.

Figure 6.4 illustrates the actuator torques used to realize the gait. The stance and swing

leg angle torques and the swing leg shape torque are small compared to the peak torque

capacities of the actuators: 30Nm. The stance leg shape torque is large, initially to support

the weight of the robot as the stance knee bends and subsequently to provide a large energy

injection in the stance-decompression phase to achieve lift-off. The stance motor leg shape

torque is discontinuous at the stance-compression to stance-decompression transition due

to an instantaneous change in the parameters for the virtual compliance. All torques are

discontinuous on the stance to flight transition due to the impact of the spring with the

hard-stop.

Figure 6.5 illustrates the evolution of the swing leg height and the vertical position of

the center of mass of the robot. The swing foot is over 15 cm above the ground at its

peak to offer good ground clearance for hard impacts. During the stance phase, the COM

undergoes an asymmetric motion with the lowest point of potential energy being around
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Figure 6.3: Evolution of the leg shape and stance Bspring variables corresponding to the
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Figure 6.6: Vertical component of the ground reaction force for the nominal running fixed
point. At the sc to sd event transition (indicated by the circle), the change
in the offset for the virtual compliance causes the spring to compress further
which increases the ground reaction force considerably. Takeoff occurs when the
ground reaction force goes to zero (indicated by the square.)

52% into the stance phase. During the flight phase, the COM has a ballistic trajectory.

Both these motions are dominant characteristics of running. Figure 6.6 illustrates the

vertical component of the ground reaction force. Immediately upon impact, during the

stance-compression phase, there is a peak in the ground reaction force due to the spring

compressing rapidly on impact. During most of the stance-compression phase, the force is

fairly constant. On transition to stance-decompression phase, the energy injection causes

the force to rapidly first increase and then go to zero at which point stance to flight transition

occurs.
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6.11 Closed-loop Design and Stability Analysis

The feedback presented in (6.9), (6.14), (6.22), when used with the modified outputs

(6.27), renders the zero dynamics hybrid invariant. This feedback does not however render

the solution stable or attractive in any way. In the following, we introduce control action

on three levels with an inner-loop and two outer-loops. On the first level, a continuous-time

controller is presented that in addition to rendering the zero dynamics invariant also makes

it attractive. The hybrid invariance is still achieved through the correction polynomials on a

event to event level. On the second level, an outer-loop event-based discrete linear controller

is introduced to exponentially stabilize the periodic orbit representing the running gait.

Finally on the third level, an additional outer-loop event-based discrete nonlinear controller

is introduced to enlarge the domain of attraction of the periodic orbit.

The classic input-output linearizing controller

u = u∗ (xp, αp)− LgpLfphp (qp, αp)
−1

(

Kp,P

ǫ2
ypc +

Kp,D

ǫ
ẏpc

)

, (6.31)

where p ∈ P, renders the zero dynamics both invariant and attractive. The correction

polynomials create hybrid invariance. For ǫ sufficiently small, the stability of the fixed

point under this control action can be analyzed through use of the restricted Poincaré map

[82], i.e., the Poincaré map associated with the invariant hybrid system presented in Section

6.8. We consider Ssc→sd as a Poincaré section. Then, the stability of the fixed point can be

determined by the restricted Poincaré map defined as ρ : Ssc→sd ∩Zαs,αs
c
→ Ssc→sd ∩Zαs,αs

c
.

Using this restricted Poincaré map, we can numerically calculate the eigenvalues of its

linearization about the fixed point. The analysis shows that the running gait obtained by

optimizing (6.30) and with the closed-loop controller (6.31) is unstable3 with a dominant

eigenvalue of 1.1928. Thus, an additional controller needs to be designed to stabilize the

running fixed point.

3In fact all running fixed points that were found were unstable.
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6.11.1 Exponentially Stabilizing Outer-loop Controller

The dominant eigenvalue of the linearization of the restricted Poincaré map about the

fixed point indicates that the fixed point is unstable. An outer-loop discrete event-based

linear controller can be designed to stabilize the discrete linear system representing the

linearized Poincaré map, as was done for Thumper in [91]. We identify certain parameters

that can be varied step-to-step, and which could possibly affect stability of the fixed point.

These are assembled as β ∈ B

β =







































βsc
kvc

βsd
kvc

βTD

βsc
qmLSvc

βsd
qmLSvc

βθf

βTor







































, (6.32)

where βp
kvc

, βp
qmLSvc

are the virtual compliance stiffness and offset for phase p, βTD is the

touchdown angle, βθf is an offset to be added to θ−f , and βTor is the torso offset.

Next, since determining the state zs on the zero dynamics manifold in an experimental

implementation is subject to measurement noise, the full-order Poincaré map is considered

for the design of the outer-loop event-based controller. This map is defined as P : Ssc→sd ×

B → Ssc→sd, such that

xsc−s [k + 1] = P (xsc−s [k], β[k]). (6.33)

The full-order Poincaré map is linearized about the fixed point to obtain the discrete-time

linear system

δxsc−s [k + 1] =
∂P

∂xsc−s

∣

∣

∣

∣

(xsc−∗

s ,0)

δxsc−s [k] +
∂P

∂β

∣

∣

∣

∣

(xsc−∗

s ,0)

β[k], (6.34)

where δxsc−s = xsc−s −xsc−∗
s . Discrete LQR is used to design a linear feedback such that the
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closed-loop eigenvalues are within the unit circle. The feedback can be written as

β[k] = Γβ(xsc−s ) := KLQR(x
sc−
s − xsc−∗

s ). (6.35)

This procedure is carried out numerically, and for the presented fixed point, the dominant

eigenvalue of the Poincaré map with the feedback Γβ is found to be 0.8383, which concludes

that the fixed point is locally exponentially stabilized with this controller.

Next, in preparation for experimental validation, we study the robustness of the con-

troller to perturbations. From the walking experiments, we observe that successful gaits

were when the controller could reject perturbations in the form of external forces (see Sec-

tion 5.1.2), ground variations and structural modifications (see [45]). For running, with the

feedback controller comprised of the continuous-time control Γα
p , the discrete event-based

controller Γαc
p as the inner-loop, and with the discrete event-based controller Γβ as the

outer-loop, the robustness to external perturbations is studied. This controller can reject

an error in torso of up to 6◦ in both directions. This is fairly good robustness to perturba-

tions in torso angle. However, as shown in Figure 6.7(a), the controller is unable to reject

an error in the form of the stance leg shape being bent by 5◦. Thus, there is a need for a

controller that can improve the domain of attraction of the fixed point. This will be crucial

for experimental validation.

6.11.2 Domain of Attraction Enlarging Outer-loop Nonlinear Controller

Although the outer-loop controller, Γβ , exponentially stabilizes the running gait, ob-

taining a larger domain of attraction is not achieved with the LQR method. This section

details a discrete-time event-based control design that acts on the hybrid closed-loop system

with the controllers Γα
µ,Γ

αc
p , and Γβ.

The closed-loop system with the continuous-time and discrete-time controllers Γα
µ,Γ

αc
p

forming the inner loop to create hybrid invariant and attractive surfaces in the stance and

flight state spaces, and the outer-loop controller Γβ exponentially stabilizing the periodic

orbit is considered. The closed-loop hybrid system can be once again sampled using the

method of Poincaré and an event-based controller can be designed. We consider the switch-
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Figure 6.7: Three step simulation of a 5◦ perturbation in the impact value of the leg shape.
(a) With out Γγ outer-loop controller, (b) With Γγ outer-loop controller. The
squares and dots on the plots indicate locations at which the controller transi-
tions to from stance to flight phase, and flight to stance phase, respectively.
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ing surface D := ∆f→s(Sf→s) ⊂ TQs as the Poincaré section. A set of parameters γ ∈ G

is considered and the Poincaré map P : D × G → D is studied. The γ-parameters are

assembled as

γ =



















γsckvc

γTor

γLSsw

γδ
sc→sd



















, (6.36)

where γsckvc is the virtual compliance stiffness for the stance-compression subphase, γTor is

the torso offset, γLSsw is an offset that lifts the swing leg higher, γδ
sc→sd

is an offset that

shifts the stance-compression to stance-decompression transition event.

Further, to keep track of the previous state on the Poincaré section, we define the discrete

map F : D ×D × G → D ×D as







x+s [k + 1]

x+prev
s [k + 1]






= F

(

x+s [k], x
+prev
s [k], γ[k]

)

:=







P (x+s [k], γ[k])

x+s [k]






. (6.37)

A nonlinear controller is designed to modify the γ-parameters based on state on the

switching surface. The control design is motivated by insight into controlling simpler hop-

ping models such as the SLIP. Essentially, the following control actions are performed by the

nonlinear event-based controller, Γγ . Based on the speed difference from the current step

and the fixed point value, γTor is updated to lean the torso to reduce the error in speed. Fur-

ther, with faster speeds, the energy injected during the stance-decompression phase reduces

since the time spent in this phase decreases with faster speeds. To account for this, the po-

sition of the stance-compression to stance-decompression transition is changed, by updating

γδ
sc→sd

, to effectively increase or decrease the time spent in the stance-decompression phase

injecting energy. Next, the knee angle at impact is relatively important. As suggested by

Rummel and Seyfarth in [101], for segmented legs with compliance in the joints, larger leg

compression is required to produce the same leg force when the rest position of the springs

are moved away from that corresponding to straight legs. Since, for MABEL, the rest po-

sition of spring is essentially the impact angle of the knee (the spring is at its rest position
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until there are large forces on the toe,) for a more bent knee at impact, the leg would have

to collapse more to produce spring forces to support the weight of the robot. To account for

this, γsckvc changes the virtual compliance based on the impact angle of the knee. Further in

anticipation of a more bent knee during stance, the swing leg shape is bent further through

γLSsw for good ground clearance.

The control law Γγ is summarized as

γsckvc =































K1
kscvc

(qs+LSst − qs+∗

LSst
), qs+LSst − qs+∗

LSst
> 0

K2
kscvc

(qs+prev
LSst

− qs+∗

LSst
), qs+LSst − qs+∗

LSst
≤ 0, qs+prev

LSst
− qs+∗

LSst
> 0

0, otherwise

γTor =































K1
Tor(sp(x

+
s , x

+prev
s )− sp(x+∗

s )), (speed(x+s , x
+prev
s )− sp(x+∗

s )) > 0

K2
Tor(sp(x

+
s , x

+prev
s )− sp(x+∗

s )), (speed(x+s , x
+prev
s )− sp(x+∗

s )) ≤ 0

0, otherwise

γLSsw =































K1
LSsw

(qs+LSst − qs+∗

LSst
), qs+LSst − qs+∗

LSst
> 0

K2
LSsw

(qs+prev
LSst

− qs+∗

LSst
), qs+LSst − qs+∗

LSst
≤ 0, qs+prev

LSst
− qs+∗

LSst
> 0

0, otherwise

γδ
sc→sd

=















Kδ
sc→sd

(sp(x+s , x
+prev
s )− sp(x+∗

s )), (speed(x+s , x
+prev
s )− sp(x+∗

s )) > 0

0, otherwise

(6.38)

where (sp(x+s , x
+prev
s ) is the average speed of the past step, and sp(x+∗

s )) is the average

speed of the fixed point. The gains Ki
kscvc

,Ki
kscvc

,Ki
LSsw

,Kδ
sc→sd

, with i ∈ {1, 2} are iteratively

found through simulations. Furthermore, the γ-parameters are bounded such that, −γsat ≤

γ ≤ γsat.

With this second outer-loop discrete event-based controller Γγ , the robustness to pertur-

bations is increased and as shown in Figure 6.7(b), is able to reject a perturbation of 5◦ in

the impact leg shape angle. It must be noted that the design of the controllers Γα,Γαc ,Γβ

are carried out through rigorous mathematical techniques, whereas the design of the outer-

loop controller Γγ is rather based on heuristics. Section 8.2 provides additional comments
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in this regard.

6.12 Modifications for Experimental Implementation

The feedback controller design for running presented in the previous sections introduces

control in three levels. On the first level, continuous-time feedback controllers Γα
p with

p ∈ P := {s, f} are employed in the stance and flight phases to create invariant and attractive

surfaces, Z(αp,α
p
c ,β,γ)

⊂ TQp, embedded in the state space for each of the respective phases.

The discrete-time feedback controllers Γαc
p are employed in the transitions between the

phases which render these surfaces hybrid invariant. On the second level, an event-based

controller Γβ performs step to step changes to render the periodic orbit representing running

embedded in these surfaces exponentially stable. Finally on the third level, the event-based

controller Γγ performs step to step changes to increase the domain of attraction of the

periodic orbit. However, this controller on its own will not work in experiments for reasons

that are outlined next along with the required modifications to the controller.

All control design in this thesis is based on the model developed in Section 3.2, hence-

forth called the simple model. However, there are certain discrepancies between this model

and the actual robot, that were only discovered through experiments. For the walking ex-

periments reported earlier in Section 5.1, these discrepancies were relatively minor and did

not adversely effect the experiments. However, based on hopping experiments reported in

[50], these discrepancies are critical for running and need to be accounted for. A new model,

the complex model, was developed to account for these discrepancies. A brief overview of

the differences between the simple and complex models is presented in Appendix C, with

the complete complex model presented in [50]. The simple model is utilized for design,

while the complex model is utilized for validation. Performing optimization directly on the

complex model is not computationally feasible.

The most critical of these model discrepancies is the cable stretch. The model presented

in Section 3.2 assumes the transmission is rigid, i.e., the cables do not stretch. However in

experiments, the cables stretches significantly. For running, cable stretch in the leg shape

joint reaches a peak of almost 30◦ of knee motion during the stance phase, just prior to
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lift-off. Seen in another way, almost 80% of motion in the knee is due to cable stretch. A

controller that can account for this severe cable stretch is required.

The cable stretch in the leg shape joint can be modeled as a spring (with damping) and

placed in series with the virtual compliant leg. This causes the compliance due to cable

stretch to appear in series with the physical compliance and the motor leg shape actuator.

Since the controller presented in the previous sections utilized active force control to create a

virtual compliant element, all three sources of compliance occur in series. The optimization

process produced a particular spring stiffness for the virtual compliance. Using the active

force control, the virtual compliance can be changed such that the compliance due to the

cable stretch and the virtual compliance in series together has the effective compliance of

that designed by the optimization process. With this modification, the effective compliance

of the leg is now the same as that without cable stretch, i.e., cable stretch has been accounted

for by the control design.

With these modifications, the running controller is ready for experimental deployment.

Remark 6.1. Other discrepancies in the model can be attacked in a similar manner. For

instance, due to the boom, there is an asymmetry in the robot - the robot weighs 10%

heavier on the inner leg than on the outer leg. It is hypothesized that by making the

effective compliance of the inner leg to be 10% stiffer by changing the virtual compliance

on the inner leg, the asymmetry could be accounted for.
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CHAPTER VII

Running Experiments

This chapter documents experimental implementations of the running controller devel-

oped in Chapter VI in various running scenarios. To illustrate the power and limitations of

the proposed method, two experiments are presented. The first experiment details a run-

ning experiment with passive feet, while the second experiment details a running experiment

with point feet.

Early running experiments executed on MABEL (without any hardware modifications)

resulted in 10 or more steps of running before the experiment was terminated due to various

reasons; initially, stable running (that is, an experiment resulting in potentially unbounded

number of steps) was not obtained. Most experiments terminated due to one or more of the

following reasons: Feet slipping; severe cable stretch in the leg angle cables; and inability

of the controller to regulate speed, leading to high speed running and eventual failure.

In an attempt to address slipping and possibly speed regulation, hardware modifications

were carried out on MABEL to replace the shins on both legs with a different pair of shins

that terminate in passive feet1 enclosed in a pair of regular running sneakers. The large

surface area of the footprint could potentially prevent slipping and possibly slow down the

robot. The running controller developed in the previous chapter was implemented on this

system and stable running was achieved. An experiment where MABEL took one hundred

running steps is examined in detail.

Once stable running with passive feet was obtained, the insight gained from the exper-

iment was used to design and implement a successful running controller on MABEL with

1The feet were designed by a team led by Hae-Won Park as part of a course project for ME 450.
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point feet. An experiment where MABEL took one hundred and thirteen running steps is

examined in detail.

In both experiments, the controller comprised of the inner-loop continuous-time com-

pliant HZD controller with discrete-time event-based outer-loop controllers developed in

Chapter VI is executed. A few minor differences exist between the two implementations

and the controller design presented in the previous chapter. These differences are in the

transition conditions between the various phases and the outer-loop event-based controllers,

and are documented in detail in the following sections.

7.1 Experiments

As in the walking experiments reported in Chapter V, the controller was first coded

in C++ and evaluated on a detailed simulation model of the robot that included encoder

quantization and numerical estimation of velocity variables from encoder measurements.

The controller was tested under various model perturbations, such as errors in the torso

mass, spring stiffness, torso center of mass position, and deviations in initial conditions.

The simulation model was then replaced with the physical robot.

The results of the experiments are presented in Figures 7.1-7.12. In the experiments,

the left leg refers to the inner leg, which is closer to the center boom, and the right leg refers

to the outer leg, which is farther from the center boom. All running speeds are measured

with respect to the center point of the hip between the two legs. Videos of the experiments

are available on YouTube [45].

7.1.1 Running with Passive Feet

Early running experiments always terminated with a maximum of 10 − 15 running

steps. The experiments failed due to various reasons, either due to slipping, inability to

regulate speed, cable stretch, and other hardware issues. To address the issue of slipping

and potentially that of speed regulation, the following hardware modifications were made

on MABEL. The shins terminating with point feet were replaced with shins terminating in

passive feet. The passive feet were enclosed within regular running shoes. The new shins
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with the feet and shoes are twice the weight of the old shins terminating in point feet, and

being placed far from the hip, significantly change the inertia of the legs.

The passive feet with shoes address the problem of slipping. To understand better the

problem of speed regulation, we take a look at the biomechanics literature. As emphasized

by Cavagna et al. [15], in running, changes of forward kinetic energy and gravitational

potential energy are in phase and therefore cannot exchange with one another to smooth

out fluctuations, i.e., an increase in kinetic energy cannot be rejected by a corresponding de-

crease in potential energy. During the stance-decompression phase, the developed running

controller performs energy injection to primarily increase the potential energy. However,

as discussed, trying to reject an increase in speed by reducing this energy injection in the

stance-decompression phase is not possible. In fact, this was observed in earlier experiments.

At faster speeds, the time spent in the stance-decompression phase decreases, thereby re-

ducing the effective energy injection. However, a speed reduction was not observed. Instead,

the reduction in the energy injection led to a lower apex height in the flight phase. This

led to adding a component to the outer-loop Γγ controller that modifies the location of

the stance-compression to stance-decompression phase so as to maintain a constant energy

injection even at faster speeds. Further, as suggested in [77, 79], animals vary stance leg

stiffness to regulate running speed. Thus, there is a need for the controller to change the

effective leg compliance as a function of speed.

To address this and other issues, the following additional modifications to the running

controller presented in Chapter VI are performed.

Modifications to the event-based controllers Γβ,Γγ: As just discussed, there is a need to

vary the effective leg compliance as a function of speed. To do this, an additional component

is introduced to the Γγ outer-loop event-based controller, which performs an event-based

update of the virtual compliance in response to the error in speed,

γsc,addkvc
=















−Kkscvc

√

(sp(x+s , x
+prev
s )− sp(x+∗

s )), (speed(x+s , x
+prev
s )− sp(x+∗

s )) > 0

0, otherwise

.

(7.1)

Here, sp(x+∗
s ) is the designed speed of the periodic running motion, and sp(x+s , x

+prev
s ) is
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the speed of the last step. γsc,addkvc
is then added to γsckvc computed in (6.38).

Next, to prevent very large values for the outer-loop event-based controller, Γβ, the

β-parameters are bounded such that, −βsat ≤ β ≤ βsat. At slow speeds, a large touchdown

angle could potentially cause the foot to slip, and would require the β parameter corre-

sponding to touchdown, βTD, to be conservatively saturated. At fast speeds, a conservative

saturation on βTD limits how much the robot can slow down. To address this, the saturation

for βTD is changed as a function of the speed and is given by,

βsat
TD =































































2◦, 0 ≤ sp(x+s , x
+prev
s ) < 1.2

1.5◦, 1.2 ≤ sp(x+s , x
+prev
s ) < 1.7

2◦, 1.7 ≤ sp(x+s , x
+prev
s ) < 2

2.5◦, 2 ≤ sp(x+s , x
+prev
s ) < 2.5

4◦, 2.5 ≤ sp(x+s , x
+prev
s )

(7.2)

Modifications to virtual compliance: The impacts of the feet equipped with shoes were

softer than the impacts of the point feet. This resulted in the designed virtual spring

constant k∗vc being too stiff for running with feet. Consequently, the springs were not

compressing sufficiently due to the softer impacts, causing the springs to decompress faster,

thereby resulting in a flight phase with short duration and low ground clearance. To account

for the softer impacts, the nominal virtual spring constant was reduced by 18% of the

designed value.

Modifications to the switching surface Ssc→sd: On transition from the stance-compression

to stance-decompression phase, a change in the rest position of the virtual compliance causes

energy to be injected into the spring, initiating push-off. However, due to the geometry of

the foot in the shoe, when the knee extends to initiate push-off, only the toe is in contact

with the ground and not all of the push-off goes towards lifting the robot off the ground.

This is even more pronounced when the spring is close to the rest position. To address

this, the switching surface from stance-compression to stance-decompression is modified to
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ensure that the transition occurs when the spring is sufficiently compressed,

Sexp
sc→sd := Ssc→sd ∪ {xs ∈ TQs | θs > θ50, qBspst < 20◦}, (7.3)

where, θ50 represents the value of θs at 50% into the stance phase.

Modifications to the controller in the stance-decompression phase: During the stance-

decompression phase, the designed virtual constraint of the torso specifies the torso to

pitch backward with a non-zero velocity. In experiments, due to tracking errors, the torso

is sometimes driven forward to reduce tracking errors. This causes the torso to have a

forward velocity at lift-off, which causes the torso to pitch forward further in the flight phase,

and results in significantly large torso error on impact. To prevent this, the experimental

controller is modified such that in the stance-decompression phase, if the torso velocity is

below a certain value, the torque is set to a constant value, such that the torso is pushed

backward. This essentially means, under certain conditions, the controller for the torso is

switched to push the torso backward instead of trying to enforce a virtual constraint.

Modifications to the switching surface Ssd→f : The following problems are considered. (i)

Typically, towards the end of the stance-decompression phase, the ground reaction forces

at the stance toe are small as we get closer to a lift-off. Since there is a virtual constraint

on the torso, even moderate torques to regulate the torso position towards the end of the

stance-decompression phase could cause the foot to slip. We need some way to ensure that

the transition occurs prior to the foot slipping. One good way would be to use the spring as

an indicator of the ground reaction force. (ii) Further, during the push-off, the stance knee

is extending rapidly and the controller needs to prevent the knee from hyper-extending.

(iii) If the stance knee is far from hyper-extending, we still cannot have a long duration

push-off, since this would result in the hip velocity at take-off being very high, leading to

large flight phases during which the torso could pitch forward significantly. These problems

are addressed by forcing a transition into the flight phase by the following modification on

the stance-decompression to flight switching surface

Sexp
sd→f := Ssd→f ∩ {xs ∈ TQs | qBspst < 15◦, qLSst < 2◦} ∩ {xs ∈ TQs | ṗ

y
hip > ṗy,s−∗

hip }. (7.4)
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Modifications to the hybrid-invariance controller Γαc

f : On initiation of the flight phase,

the event-based controller Γαc

f ensures hybrid invariance of the flight phase zero dynamics

manifold. This is done through correction polynomials hfc as in (6.27). The correction

polynomials are employed to smoothly join the original virtual constraint half-way into the

flight phase. However, in experiments, certain steps have large errors on initiation of the

flight phase. In particular, large errors in the leg angle variables causes the modified leg

angle virtual constraints to have an initial reversal in the direction of motion, leading to

oscillations, which in turn severely stretches the leg angle cables resulting either in impacts

with large errors or the leg angle rapidly shooting towards the hard-stops. To handle

large leg angle errors on initiation of the flight phase, the point at which the correction

polynomials smoothly join the original virtual constraint is modified adaptively based on

the sign and magnitude of the initial error. Errors in one direction are smoothly joined to

the original virtual constraint at either 50%, 75%, or 95% into the flight phase based on the

magnitude of the error in relation to the total travel, while errors in the opposite direction

are always smoothly joined to the orginal virtual constraint at 50% into the flight phase.

This adaptive correction polynomial is instrumental in successfully handling large errors on

initiation of the flight phase.

Modifications to the virtual constraints: A final (trivial) modification to the the swing

leg shape virtual constraint is performed by commanding the swing leg shape to fold by an

additional offset to prevent the toes of the shoes from scuffing the ground during walking

and running.

With the above changes to the hardware, and the running controller, the experiment is

carried out as follows.

First walking is initiated on this modified system with the same walking controller2

developed in Chapter IV. With a torso offset to lean the torso forward, the walking controller

induced stable walking at an average speed of 1.26 m/s.

2The impact model for impacts with feet is significantly different from that of a point foot. Double support
phases can no longer be approximated to be instantaneous. Despite these significant changes, walking was
obtained with the same controller with a clear heal-strike, flat-footed phase, and a toe-off. Thus, with HZD
based control design for walking with point feet, walking with non trivial feet was obtained easily. Going
the other way: Designing controllers for walking with feet and applying them to systems with point feet
may be fairly hard.
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To transition from walking to running, a transition controller based on [133] is devel-

oped which modifies the virtual constraints of the fixed point for walking to bring the virtual

constraint at the end of the walking gait closer to the corresponding virtual constraint at

the beginning of the running gait. Instead of a one-step transition from walking to running

as done in [85], for MABEL, a two-step transition is carried out. Essentially, there are two

transition steps, with the first step being a transition-walk-step, and the second step being

a transition-run-step. A walk-to-run transition then consists of the following: A transition

from the nominal walking gait to the transition-walk-step, followed by a transition from the

transition-walk-step to the transition-run-step, and finally a transition from the transition-

run-step to the nominal running gait. This two-step transition enables a smoother transition

and prevents rapid torso motions, especially on gaits where the ending and beginning val-

ues of the torso virtual constraint differ significantly for the walking and running fixed

points respectively. Figure 7.1 illustrates the transition from the transition-walk-step to the

transition-run-step.

On transition to running, the running controller is executed. The running controller

induced stable running at an average speed of 1.07 m/s. 100 running steps were obtained

and the experiment terminated when a legacy feature in the controller transitioned from

running to walking at the end of 100 consecutive running steps. Figure 7.2 illustrates

snapshots of a typical step of running. Average stance and flight times of 360 ms and 151

ms are obtained respectively, corresponding to a flight phase that is 30% of the gait. An

estimated ground clearance of around 2 inches (5 cm) is obtained.

Figure 7.3 illustrates the time evolution of the torso, the Bspring pulley, the leg angle

and the leg shape coordinates. The location of the squares indicate the instant when the

controller switches from the stance phase to the flight phase. The circles on the torso plot

indicate the locations at which the controller transitions from stance-compression to stance-

decompression subphase. Figure 7.4 illustrates the tracking for the three virtual constraints

in the stance phase of running. Recall that in the stance phase, virtual constraints are

imposed on the torso, the swing leg angle, and the swing motor leg shape. The stance

motor leg shape actuator is not used to impose a virtual constraint, but rather is employed

to perform active force control by implementing a virtual compliant element. Figure 7.4

115



Figure 7.1: Transitioning from walking to running for MABEL with feet. The first step of
the transition and the transition from the transition-walk-step to a transition-
run-step is shown. Snapshots are at an interval of 100 ms.
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Figure 7.2: Typical running step for MABEL with feet. Snapshots are at an interval of 100
ms.
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illustrates the tracking for the four virtual constraints in the flight phase of running. Recall

that in the flight phase, virtual constraints are imposed on the stance (old stance) leg angle

and motor leg shape, the swing absolute leg angle, and the swing motor leg shape. Figure

7.6 illustrates the corresponding motor torques. Figure 7.7 illustrates the cable stretch in

the leg shape direction. A peak of approximately 8◦ in the leg shape coordinates is observed.

This corresponds to the knee bending by 16◦ due to cable stretch. The active force control

is able to account for this significant cable stretch. Finally, Figure 7.8 illustrates the β and

γ-parameters for 70 steps of running.

7.1.2 Running with Point Feet

The insight garnered from obtaining successful steady-state running with passive feet is

used to implement a running controller when the robot is equipped with point feet.

The following additional modifications to the running controller presented in Chap-

ter VI are performed. As suggested in the previous section, for speed regulation, the γ-

parameter corresponding to the virtual compliance stiffness is modified as in (7.1). The

saturation for β-parameter corresponding to the touch down angle is modified as in (7.2).

The saturation for the γ-parameter that modifies the location of the stance-compression to

stance-decompression phase is also modified as a function of the speed and is given as,

γsatδ
sc→sd

=































0.2, 0 ≤ sp(x+s , x
+prev
s ) < 2

0.25, 2 ≤ sp(x+s , x
+prev
s ) < 2.5

0.35, 2.5 ≤ sp(x+s , x
+prev
s )

. (7.5)

At high speeds, the time spent in the stance-decompression phase decreases which results

in less energy being injected and smaller push-offs. With the above modification, a well

defined flight phase is maintained even when running very fast.

The stance-compression to stance-decompression transition is not modified. During the

stance-decompression phase, the torso is pushed back in a similar manner as in the running

with feet experiment. To prevent the stance-decompression phase from causing a lift-off

with a high velocity, the stance-decompression to flight phase switching surface is modified
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Figure 7.3: Evolution of the following coordinates for four steps of the running experiment
with feet: (a) Torso, (b) Bspring, (c) Leg angle, and (d) Leg shape. The squares
indicate the locations at which the controller transitions from the stance phase
to the flight phase. The circles on the torso plot indicate the locations at which
the controller transitions from the stance-compression subphase to the stance-
decompression subphase. The black dots on the torso plot indicate impact on
the left (inner) leg, while red dots indicate impact on the right (outer) leg.
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Figure 7.4: Tracking for the virtual constraints in the stance phase of running. Recall that
the stance phase has three virtual constraints imposed on the torso, and the
swing leg angle and the swing motor leg shape. The swing motor leg shape plot
is graphed by scaling into the leg shape coordinates.
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Figure 7.5: Tracking for the virtual constraints in the flight phase of running. Recall that
the flight phase has four virtual constraints imposed on the stance (old stance)
leg angle and motor leg shape, and the swing absolute leg angle and the swing
motor leg shape.
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Figure 7.6: Motor torques for the running experiment with feet.
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Figure 7.7: Cable stretch in the leg shape direction for the stance leg.

as follows

Sexp
sd→f := Ssd→f ∩ {xs ∈ TQs | ṗ

y
hip > ṗy,s−∗

hip }. (7.6)

During the flight phase, the adaptive correction polynomials as used for the running

with feet experiment are deployed.

With these changes to the controller developed in Chapter VI, the experiment with

point feet is carried out in a similar procedure as in the experiment with non-trivial feet.

The running controller induced stable running at an average speed of 1.95 m/s, and a peak

speek of 3.06 m/s. 113 running steps were obtained and the experiment terminated when

the power to the robot was cut off. At 2 m/s, the average stance and flight times of 233

ms and 126 ms are obtained respectively, corresponding to a flight phase that is 35% of

the gait. At 3 m/s, the average stance and flight times of 195 ms and 123 ms are obtained

respectively, corresponding to a flight phase that is 39% of the gait. An estimated ground

clearance of 3− 4 inches (7.5− 10 cm) is obtained.

Figure 7.9 depicts snapshots at 100 ms intervals of a transition from walking to running.

Figure 7.10 depicts snapshots at 100 ms intervals of a typical running step.

Figure 7.11 illustrates the speeds for each walking and running step. The robot transi-

tions into running on step 21. The outer-loop event based controller parameters are depicted

in Figure 7.12. There is considerable variation in speed. When the speed exceeds 2.5 m/s,

large changes in the touch down angle, βTD, and the γ-parameter that affects the transition

from stance-compression to stance-decompression, γδ
sc→sd

causes the speed to dramatically

drop to under 1 m/s. All this is autonomously handled by the controller with no manual

intervention. The ability of the controller to recover from slow speeds below 1 m/s, and

high speeds above 2.5 m/s illustrates a large domain of attraction of the designed controller.
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Figure 7.8: Parameter plots for the outer-loop controllers employed in running with feet.
(a) Parameters for the Γβ exponentially stabilizing outer-loop controller, (b)
Parameters for the Γγ domain of attraction enlarging outer-loop controller.
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Figure 7.9: Transitioning from walking to running for MABEL with point feet. The sec-
ond step of the transition which transitions from the transition-walk-step to a
transition-run-step is shown. Snapshots are at an interval of 100 ms.
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Figure 7.10: Typical running step for MABEL with point feet. Snapshots are at an interval
of 100 ms.
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represent the running steps.
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Figure 7.12: Parameter plots for the outer-loop controllers employed in running. (a) Param-
eters for the Γβ exponentially stabilizing outer-loop controller, (b) Parameters
for the Γγ domain of attraction enlarging outer-loop controller.
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CHAPTER VIII

Concluding Remarks

8.1 Summary of New Contributions

MABEL contains springs in its drivetrain for the purposes of enhancing energy efficiency

and agility of dynamic locomotion. This thesis has presented a novel analytical design

method to realize the potential of the springs. An extensive set of experiments have been

performed to illustrate and confirm important aspects of the feedback design.

A HZD-based controller was designed to achieve asymptotically stable walking while

recruiting the compliance in the robot’s drivetrain to perform most of the negative work

required to decelerate the downward motion of the robot’s center of mass after impact,

instead of the actuators. This not only improved the energy efficiency of walking, but also

made the gait more natural looking. Stability analysis of the walking gait was performed

using the method of Poincaré.

The analytically derived control law was experimentally validated on MABEL. The

controller was demonstrated to be robust to external disturbances as well as to significant

differences between the design model and the actual robot. In particular, the cables used

to realize the differentials in the robot’s drivertrain exhibited considerable stretch in the

experiments, none of which was considered in the design model. Due to the observations

made as part of these experiments, a more accurate model incorporating cable stretch has

been presented in [50].

A walking gait was designed to optimize for the energetic cost of mechanical transport

cmt and then experimentally evaluated on MABEL. Even though MABEL has no feet, the
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experimentally realized cmt is 12 times better than that of ASIMO, approximately three

times as good as RABBIT, and twice as good as a hand-designed virtual-constraint-based

controller that we had previously implemented on MABEL. This puts MABEL’s energy

efficiency within a factor of two of T.U. Delft’s Denise, and a factor of three of the Cornell

Biped, which are specifically designed mechanically for efficient walking. This demonstrates

the interplay of mechanical design and control design in achieving higher efficiency.

For the first time, a real-time implementation of a complete hybrid zero dynamics based

controller has been demonstrated in experiments. The tracking accuracy attained is far

better than that of simple PD controllers used in prior experiments on RABBIT and MA-

BEL. This removed the restriction of hybrid zero dynamics to theory or simulation, and

establishes hybrid zero dynamics based controllers in the experimental domain.

A controller was implemented on MABEL that realized a sustained walking speed of 1.5

m/s (3.4 mph). This made MABEL “the fastest robotic bipedal walker of any size” as of

October 31, 2009, and the record was held until April 22, 2010.

A running control design is presented that creates a compliant and actuated hybrid zero

dynamics during the stance phase of running, enabling active force control. With force

control, a virtual compliant element is created to enable dynamically varying the effective

leg compliance during stance. An outer-loop event-based controller has been designed to

exponentially stabilize the periodic running gait. An additional outer-loop event-based

controller has been designed to enlarge the domain of attraction of the periodic running

gait.

The running controller has been experimentally deployed and stable running has been

successfully demonstrated on MABEL, both with passive feet and with point feet. The

achieved running is dynamic and life-like with flight phases of significant duration and high

ground clearance. For running with point feet, a peak speed of 3.06 m/s (6.8 mph) was

obtained, making MABEL the fastest kneed bipedal runner as of July 30, 2011.
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8.2 Perspectives on Future Work

Moving Heuristics to Analysis: The running controller developed has multiple loops,

Γα, Γαc , Γβ, and Γγ . The inner-loops, Γα, Γαc , and Γβ, are auto designed using rigorous

analytical techniques. Γα, and Γβ are partly driven by the morphology of the bipedal robot

since the choice of the virtual constraints and the β-parameters is partly dependent on

the morphology. The outer-loop event-based controller, Γγ , is however essentially based

on heuristics. The question that remains unanswered is, can this outer-loop controller be

analytically designed?

Firstly, even in the absence of Γγ , the designed controller creates an exponentially stable

periodic orbit. The outer-loop event-based controller Γγ is added to increase the domain of

attraction of the designed running controller for experimental deployment, and to provide

the capability to address issues that arise due to the discrepancy between the model and the

physical system, such as the issue of speed regulation. If the design model matched more

closely with the physical system, speed regulation would not be an issue, as it would have

been taken care by the exponentially stabilizing event-based controller Γβ . Nevertheless,

analytically estimating the domain of attraction for a periodic solution for a complex system

such as MABEL, and then designing controllers to increase this domain, is an extremely

hard problem.

One way to analytically design the final layer of the controller would be to come up

with the reduced order system, or some mechanical analog, representing the zero dynamics.

Once such a system is available, then analytical methods can be used to design a controller

for this system. However, coming up with the reduced order system is non-trivial. One

way to analytically design a controller to perform speed regulation would be to do carry

out energy regulation [92]. However, this requires estimating the kinetic and potential ener-

gies, typically very noisy quantities in real experiments. Thus, the problem of analytically

designing a practical Γγ domain of attraction enlarging controller is still an open problem

and needs to be investigated further.

Running over Rough Terrain: A natural extension of the work presented in this the-

sis would be to demonstrate running over rough terrain. Since the framework of active
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force control with the compliant hybrid zero dynamics has been setup to be able to vary

the effective leg stiffness, running experiments over rough terrain could be performed. As

suggested in the biomechanics literature, by varying the leg stiffness, robust running over

rough terrain may be obtained.

Finding Periodic Orbits: One weakness of the hybrid zero dynamics framework is the

computation of periodic solutions. On MABEL, this was fairly involved for walking motions,

and really hard for obtaining periodic running motions. For future 3D robots with com-

pliance, which are of higher-dimension compared to MABEL, carrying out an optimization

process may be extremely computationally expensive. Efficient methods and optimization

techniques to find periodic orbits need to be formulated.
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APPENDIX A

Bézier Polynomials for Subphases

This section develops a framework for virtual constraints with subphases and provides

details on how the Bézier polynomials for the stance subphases are obtained.

Framework for Virtual Constraints with Subphases

Let P be an index set representing the subphases of the virtual constraints, and let

p ∈ P denote a particular subphase. Similarly, let V be an index set representing the

virtual constraints, and let v ∈ V denote a particular virtual constraint. In each subphase,

the virtual constraint will be an M th order Bézier polynomial parametrized by θs, where,

θp+v , θp−v are the starting and ending values of θs respectively within phase p of virtual

constraint v. It is convenient to normalize each θs to [0, 1] by defining

spv :=
θs − θp+v

θp−v − θp+v
, (A.1)

where θs goes from θp+v to θp−v during phase p ∈ P. Then, if αp
v is the vector of Bézier

coefficients, then the desired evolution of the virtual constraint v for phase p can be expressed

as

hd,pv (θs) =
M
∑

k=0

αp
v (k)

M !

k! (M − k)!
spv

k (1− spv)
M−k . (A.2)

To ensure Ck continuity between successive subphases p1, p2 ∈ P, a standard property of

Bézier curves specifies how the last k+1 parameters of αp1
v and the first k+1 parameters of
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αp2
v must be related [130, p. 139]. Next, it can be convenient to treat successive subphases

p1, p2, defined over domains
[

θp1+v , θp1−v

]

,
[

θp2+v , θp2−v

]

respectively, as a single combined

phase p1p2 with domain
[

θp1+v , θp2−v

]

. This is particularly useful for virtual constraints that

do not require the resolution of multiple subphases and enables parameterizing with a single

Bézier polynomial over both subphases. To do this, we impose θp1−v = θp2−v , θp2+v = θp1+v ,

and αp1
v = αp2

v =: αp1p2
v in our general framework for virtual constraints with subphases.

Thus we obtain sp1p2v |p1 = sp1v and sp1p2v |p2 = sp2v , with sp1p2v monotonically increasing from

zero to one over both phases p1, p2. With this setup, the transition event from subphase p1

to p2 no longer has any effect on the combined phase p1p2. This phase combination can be

extended to more than two phases, and in fact all of the phases of a controlled variable can

be combined, resulting in a single virtual constraint over the entire stance phase with no

subphases.

Stance Motor Leg-shape Virtual Constraint

In the motor-compression phase, the motor leg-shape position is given by a Bézier poly-

nomial parametrized by smc
mLSst

, with coefficients αmc
mLSst

and θmc+
mLSst

= θs+, θmc−
mLSst

= θmc−.

The boundary conditions
(

qmc+
mLSst

= qs+mLSst
, q̇mc+

mLSst
= q̇s+mLSst

)

, and
(

qmc−
mLSst

= qscmLSst
, q̇mc−

mLSst
= 0

)

specify the starting and the ending two coefficients, and the middle coefficients are free to

be chosen as part of the control design, and are chosen to smoothly transition between

qs+mLSst
and qscmLSst

.

In the stance-compression phase, the motor leg-shape position is given by a Bézier

polynomial parametrized by sscmLSst
, with coefficients αsc

mLSst
all equal to qscmLSst

, and θsc+mLSst
=

θs+, θsc−mLSst
= θsc−.

In the stance-injection phase, the motor leg-shape position is given by a Bézier polyno-

mial parametrized by, ssimLSst
, with coefficients αsi

mLSst
and θsi+mLSst

= θsi+, θsi−mLSst
= θsi−. The

boundary conditions
(

qsi+mLSst
= qscmLSst

, q̇si+mLSst
= 0

)

,
(

qsi−mLSst
= qsc−mLSst

, q̇si−mLSst
= 0

)

specify the

starting and ending two parameters of αsi
mLSst

with the rest being free parameters to be

chosen as part of control design.

In the stance-decompression phase, the motor leg-shape position is given by a Bézier
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polynomial parametrized by ssdmLSst
, with coefficients αsd

mLSst
all equal to qsc−mLSst

, and θsd+mLSst
=

θsd+, θsd−mLSst
= θs−.

Thus, parameters of only αsi
mLSst

are available to be chosen as part of control design.

For notation purposes, we define αmLSst := αsi
mLSst

.

Torso Virtual Constraint

The motor-compression, stance-compression, and stance-injection phases, are combined

into a single phase by setting θmc+
Tor = θsc+Tor = θsi+Tor = θs+, θmc−

Tor = θsc−Tor = θsi−Tor = θsi−, and

αmc
Tor = αsc

Tor = αsi
Tor =: αTor. Thus the torso evolution in this combined phase is given by a

Bézier polynomial parametrized by sTor, with coefficients αTor.

The desired torso evolution in the stance-decompression phase is given by a Bézier

polynomial parametrized by ssdTor, with coefficients αsd
Tor all equal to qs−Tor, and θsd+Tor = θsd+,

θsd−Tor = θs−.

Swing Leg Virtual Constraints

For the swing virtual constraints, all subphases are combined into one by setting θmc+
LAsw

=

θsc+LAsw
= θsi+LAsw

= θsd+LAsw
= θs+, θmc−

LAsw
= θsc−LAsw

= θsi−LAsw
= θsd−LAsw

= θs−, and αmc
LAsw

= αsc
LAsw

=

αsi
LAsw

= αsd
LAsw

=: αLAsw
. Thus the evolution of the swing leg angle is given by a Bézier

polynomial parametrized by sLAsw
, with coefficients αLAsw

. In a completely similar manner,

the swing motor leg shape is parameterized by αmLSsw
.

The Bézier coefficients that are not specified above are free parameters in the virtual

constraints, and are specified by control design. These parameters can be put in a vector

as,

αs =



















αmLSst

αLAsw

αmLSsw

αTor



















. (A.3)
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APPENDIX B

Optimization Details for Walking

Equality and inequality constraints are used during the optimization process to ensure

that the closed-loop system yields a desired behavior. These constraints could be limits on

peak actuator torques, joint space constraints, unilateral ground contact forces, speed of

walking, ground clearance, etc. Further, the general form of the virtual constraints chosen

in Section 4.1 is assumed to be satisfied on the periodic orbit. This enables integrating

the stance zero dynamics over the reduced-order closed-loop system dynamics (established

in Section 4.3) thereby reducing the computation time significantly. The details of the

optimization algorithm are described below.

Algorithm

1. Select θ−∗
s , q−∗

Bspst
, q−∗

LAsw
, q−∗

mLSsw
, q−∗

Tor. Determine q−∗

LAst
using (4.4). Determine q−∗

mLSst

by a Newton-Rhapson search to satisfy pv−∗

toesw = 0 as this ensures that the impact

condition, q−∗ ∈ Ss→s, is met.

2. Select θ̇−∗
s , q̇−∗

Bspst
, q̇−∗

LAsw
, q̇−∗

mLSsw
. Choose q̇−∗

mLSst
= 0, q̇−∗

Tor = 0 to satisfy the virtual

constraints described in section 4.1. Determine q̇−∗

LAst
using (4.4).

3. Using the stance-to-stance transition function, ∆s→s, obtain x+∗
s = (q+∗

s ; q̇+∗
s ), the

state corresponding to the beginning of the subsequent stance phase.

4. Calculate θ+∗
s , θ̇+∗

s using (4.4). Set θ−∗
mc = θ+∗

s + 0.05 (θ−∗
s − θ+∗

s ), and θ−∗

si = θ+∗
s +

0.7 (θ−∗
s − θ+∗

s ) corresponding to 5% and 70% of the stance phase respectively, and
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set qsc∗mLSst
= qs+∗

mLSst
+ sgn

(

q̇s+∗

mLSst

)

max
(

20◦, |q̇s+∗

mLSst
|
)

. This facilitates the use of the

first 5% of the gait to drive non-zero post-impact motor leg shape velocity to zero,

and the last 30% of the gait to hold the torso constant in preparation for impact.

5. Select α∗
s,2, . . ., α∗

s,M−2. Calculate α∗
s,0, α∗

s,1 to satisfy the post-impact conditions,

and calculate α∗
s,M−1, α

∗
s,M to satisfy the pre-impact conditions. Set αmc∗

mLSst,2
, . . .,

αmc∗
mLSst,M−2 to get a smooth transition between qs+∗

mLSst
and qsc∗mLSst

.

6. Integrate the stance dynamics for the motor-correction phase, Σmc, and the stance-

compression phase, Σsc, until the spring undergoes maximum compression and reaches

a decompressed value of five degrees. Set this value of θs as θ
sc−
s . Integrate the stance

dynamics through the stance-injection, Σsi, and stance-decompression, Σsd, phases to

obtain x−s .

7. Evaluate the cost function J, equality constraints EQ, inequality constraints INEQ.

8. Iterate the above steps until J is minimized and the equality and inequality constraints

are satisfied.

Equality constraints, EQ

• Error associated with finding a fixed point ||x−s − x−∗
s || = 0.

• Toe position of the swing leg at the end of the step pvtoesw = 0.

Inequality constraints, INEQ

• Magnitude of the minimum normal force at the stance leg to be positive, min
(

FN
st

)

>

0.

• Maximum of magnitude of coefficient of friction less than one, |max
(

F T
st/F

N
st

)

| < 0.6.

• Walking speed greater than 0.7 m/s.

• Swing leg toe profile to be above the ground throughout the stance phase.

• Swing leg angle not to exceed 220◦.
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Table B.1: The list of independent parameters to be determined by optimization. The
choice of these parameters is non-unique, and depends on the algorithm and
constraints employed in optimization.

Optimization Parameters

θ−∗
s , q−∗

Bspst
, q−∗

LAsw
, q−∗

mLSsw
, q−∗

Tor ∈ R

θ̇−∗
s , q̇−∗

Bspst
, q̇−∗

LAsw
, q̇−∗

mLSsw
∈ R

αs∗
2 , . . . , αs∗

M−2 ∈ R
4

• Stance leg angle not less than 140◦.

• Range of travel of torso less than 5◦.
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APPENDIX C

Robot Construction and System ID

This chapter briefly discusses the behind the scenes work that went on in constructing

the bipedal testbed at The University of Michigan, and summarizes the system identification

work that was carried out to identify the eleven degree model of MABEL.

Robot Construction

When the author first began this work, the design of the bipedal system had terminated,

and various parts were being fabricated. The electronic system was being prototyped and

a design for the various PCB boards was being established. The bipedal lab at The Uni-

versity of Michigan had just a new floor and lots of unopened boxes of various robot parts.

Figure C.1 illustrates the status as on August 2007. A frenzied collaborative activity be-

gan, between the author and colleagues, leading to the mechanically assembling the robot,

testing of motor amplifiers, prototyping of encoder interfaces, fabrication, population, and

debugging of electronic PCBs, wiring of the entire bipedal testbed system, development of

a real-time data acquisition software, and finally the preliminary testing that ensured the

system was working. This activity concluded in March 2008, and Figure C.2 illustrates the

completed testbed. This process had to successfully terminate before being able to run any

soft of controllers for achieving walking.
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(a) (b)

Figure C.1: The status of the bipedal testbed when the author began work in August 2007
(a) the empty lab, (b) various robot parts to be assembled.

Figure C.2: Mechanical assembly of MABEL, all electronic component and wiring success-
fully completed by March 2008 and the testbed was ready for trying out con-
trollers. (From Left to Right, The author, Hae-Won Park, MABEL, Prof.
Ioannis Poulakakis, and Prof. Jessy W. Grizzle.)

139



System Identification

The system identification of a 5-link bipedal robot with compliant transmission has

been performed, as described in [50], to arrive at a eleven degree of freedom model for

MABEL. For each side of the robot, the transmission comprises of three cable differentials

that connect two actuators to indirectly actuate the hip and thigh joints in such a way that

one actuator controls the angle of the virtual leg consisting o fthe line connecting the hip

to the toe, and the second actuator controls the length of the virtual leg. The differentials

also place a compliant element in series with the actuator controlling the virtual leg length.

The robot is equipped with fifteen encoders to measure motor, pulley and joint angles, as

well as contact switches to sense foot contact, and joint configuration limits, and two laser

sensors to accurately measure hip height and torso angle. Neither force sensors, torque

sensors nor accelerometers are available on the robot, and model parameters need to be

identified on the basis of these measurements and commanded torques to the four actuators.

To get around these limitations, the identification procedure took full advantage of the

modular nature of the robot. By selectively disconnecting the cables in the transmission,

various elements can be isolated for identification.

The model parameters consist of the actuator parameters (rotor inertia and torque

constants), the friction coefficients and inertias for the various joints and pulley, and the

spring constants for the compliant elements. An initial a priori estimate of the robot’s

overall dynamic model can be obtained from CAD. So system identifications consists of

finding parameters that are not part of the model (such as the actuator parameters, the

compliance constants, etc.), and improving the CAD estimates for inertias and masses of

the various components making up the transmission and linkage.

The inertia parameters are identified in a modular fashion by starting with just the

actuator and commanding a torque signal, and then following it up with experiments that

sequentially connect more cables of the transmission to include more pulleys and joints.

This phase of the system has all compliant elements disconnected.

Following this, the spring constants for the compliant elements are estimated through

a static experiment. As part of various experiments, it was discovered that MABEL has
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another source of compliance - the cables. Cables that connect different parts of the trans-

mission stretch significantly during heavy loads. The cable stretch can be measured due to

the redundant encoders present on the pulleys and joints, and was identified from a set of

hopping experiments.

A complete dynamic model of the robot is constructed using the parameters identified

in the above process. This overall model of the robot has been validated through a dynamic

hopping experiment that excites all of the dynamics of the model.

Two Models for Design and Verification : Simple vs Complex Model

The model of the robot presented in Section 3.2 makes certain key assumptions: (a)

The ground is modeled as a rigid ground, (b) The cables in the transmission of the robot

are assumed to not stretch, (c) The robot is assumed to be planar. This model is a simple

model that is used for all control design in this thesis. Walking controllers designed based on

the simple model worked relatively well in experiments. However, all attempts at designing

a hopping controller based on the simple model and experimentally validating the control

design failed. The floor in the lab has a layer of rubber, and modeling this as a rigid ground

is inappropriate, especially for hopping gaits where there are large impacts with the ground.

Further in hopping experiments the cables stretch even more than that in walking and can

not be ignored. Finally, due to the hip distance between the legs of the robot being 10%

of the length of the boom, the robot weighed 10% heavier on the inner leg - almost 7 Kg.

Thus, a complex model that dropped the above assumptions was needed. In particular the

complex model includes: (a) A compliant ground, (b) Stretchy cables, (c) A 21
2D model of

the robot. A complete system identification of MABEL, development of the complex model

and a hopping experiment validation using the complex model was briefly discussed in the

previous section and is presented in detail in [50].
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APPENDIX D

Improving Energy Efficiency Further

The energy efficient walking gait obtained by choosing the specific cost of mechanical

transport, cmt, as the cost function improves the cmt of the nominal fixed point by 10%.

As illustarted in Section 5.1.3 an equivalent improvement was observed in the experiments.

However there is a big discrepancy of over 350% between the model predicted value and

the experimentally obtained value of cmt. In this section we present changes in the model

that bring down this large discrepancy down to 10%. We then investigate the effect of

certain controller parameters on energy efficiency to find a way to further improve the

energy efficiency of the efficient walking gait. Finally this is experimentally validated.

Due to the reasons detailed in Appendix C, the control-oriented model developed in

Chapter III is incapable of accurately estimating the specific cost of mechanical transport.

To better estimate the cmt and reduce the above mentioned discrepancy, the complex model

presented in Appendix C is used and a cmt = 0.18 was estimated for the nominal fixed

point for walking. The experimentally obtained cmt for the nominal walking experiment is

within 10% of this value. Thus, the complex model improved the discrepancy of the model

predicted value and the experimentally obtained value of cmt significantly.

Having identified the source of the discrepancy, we next try to use the complex model

for improving the energy efficiency further. As presented in Section 4.5, one way to design

energy efficient gaits is to carry out the optimization procedure for finding stable peri-

odic walking gaits by directly minimizing cmt. However, the optimization procedure only
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produces a local minima. Further carrying out the optimization on the high DOF com-

plex model is computationally infeasible. Instead, we perform parameter sweeps of various

control parameters on the nominal walking fixed point and carry out simulations on the

complex model to try and identify parameters that would likely effect cmt significantly.

These simulations are extremely slow and are run on a grid computer for faster throughput.

Here we present the result of two such parameter sweeps that influence cmt.

The virtual constraints for walking are illustrated in Figure 4.2. The stance injection

to stance decompression transition is fixed at 70% of the gait. A parameter sweep of the

location of this transition was carried out on the nominal walking fixed point on the complex

model. The stance injection to stance decompression transition was varied in the range of

[−12%, 9%] around the nominal 70% of the gait. The resulting cmt values are depicted

in Figure D.1, which clearly shows that changing the location of the stance injection to

stance decompression influences cmt. However, with no change to the nominal location of

the transition (0% change) the cmt is very close to a minima. Thus, although changing

the location of the stance injection to stanace decompression transition does change energy

efficiency, it can not improve the energy efficiency beyond what we aldready have.

Next, an offset is introduced on the torso virtual constraint. This has the effect of

either leaning the heavy torso forward or backward depending on the offset being negative

or positive respectively. Leaning the torso forward moves the COM forward and speeds up

the robot, and similarly leaning the torso backward slows down the robot. A negative torso

offset is also applied to the swing leg angle virtual constraint so as to maintain the same

range of θ for the fixed point. With this in place, a parameter sweep of the torso offset is

carried in the range [−5◦, 6.5◦]. Figure D.2 illustrates the effect of torso offset on cmt. As

is evident, torso offset has a significant effect on cmt. Further, leaning the torso backwards,

or slowing down the robot, appears to reduce cmt until torso offset reaches 6.5◦.

Figure D.2 clearly illustrates that leaning the torso backward could potentially improve

energy efficiency. To immediately validate this in experiment, an existing slow walking

experiment was picked up where the torso offset was swept from 0◦ to 16◦ to lean the torso

backwards and slow down the walking speed. Individual consecutive steps of the walking

experiment are binned by the torso offset and the energy efficiency computed for each bin.
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Figure D.1: Effect of location of stance injection to stance decompression transition on spe-
cific cost of mechanical transport. This is obtained by carrying out a parameter
sweep and simulating the complex model on a grid computer. The thick red
square indicates the value of cmt at the nominal location of stance injection
to stance decompression transition. The nominal transition is at 70% into the
gait, and the indicated offset is applied. The dashed line indicates a second
order polynomial fit of the data. The cmt has a minima very close to the nomial
location of the transition.
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Figure D.2: Effect of torso offset on cmt. This is obtained by carrying out a parameter sweep
and simulating the complex model on a grid computer. A positive torso offset
leans the torso backwards and decreases the walking speed, while a negative
torso offset leans the torso forwards and increases the walking speed. The
thick red square illustrates the value of cmt for the nominal fixed point with
no changes to the torso virtual constraint. The dashed line is a second order
polynomial fit of the data.
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Figure D.3: Specific cost of mechanical transport computed for various values of torso offset
from a slow walking experiment. A slow walking experiment is picked up and
consecutive walking steps with the same torso offset are used to compute the
cmt for that particular torso offset. Positive torso offset values lean the torso
backward, slowing down the walking speed. The number of steps for each torso
offset value vary from 4 steps to 10 steps, and thus the obtained cmt is only
a rough estimate obtained from the relatively small sample set. The thick red
dashed line is a second order polynomial fit of the data. At a torso offset of 8◦,
a cmt = 0.106 is obtained from the polynomial fit. Note that the fixed point
used for this experiment is neither the nominal nor the energy efficient fixed
point.

The number of steps for each torso offset vary from 4 to 10 steps. Since these form a fairly

small sample set, the estimated cmt for each torso offset value is only a rough estimate.

It is to be noted that this slow walking experiment employs a walking fixed point that is

neither the nominal nor the energy efficient fixed point presented in Section 4.5. Figure D.3

plots the experimentally obtained cmt values for each torso offset from this slow walking

experiment. From the polynomial fit of the data points, a minima of cmt = 0.106 is obtained

when the torso offset is 8◦.
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