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Abstract— In this paper, we study the quadrotor UAV attitude
control on SO(3) in the presence of unknown disturbances
and model uncertainties. L1 adaptive control for UAVs using
Euler angles/quaternions is shown to exhibit robustness and
precise attitude tracking in the presence of disturbances and
uncertainties. However, it is well known that dynamical models
and controllers that use Euler angle representations are prone
to singularities and typically have smaller regions of attraction
while quaternion representations are subject to the unwinding
phenomenon. To avoid such complexities, we present a Geo-
metric L1 adaptation control law to estimate the uncertainties.
A model reference adaptive control approach is implemented,
with the attitude errors between the quadrotor model and
the reference model defined on the manifold. Control laws
for the quadrotor and reference models are developed directly
on SO(3) to track the desired trajectory while rejecting the
uncertainties. Control Lyapunov function based analysis is used
to show the exponential input-to-state stability of the attitude
errors. The proposed L1 adaptive controller is validated using
numerical simulations. Preliminary experimental results are
shown comparing a geometric PD controller to the geometric
L1 adaptive controller. Experimental validation of the proposed
controller is carried out on an Autel X-star quadrotor.

I. INTRODUCTION

In recent years, quadrotor unmanned aerial vehicles
(UAVs) have been an area of increasing interest. Due to
their small size and simple mechanical structure, quadrotors
have a large range of potential applications including visual
inspection and transportation, as well as a medium for
testing control techniques for research purposes. Generally,
an attitude controller for a quadrotor uses Euler angles or
quaternions as the attitude states of the system. Instead of
these typical attitude controllers, in geometric control, the
entries of the rotation matrix between the body-fixed frame
and inertial frame are used as the attitude states. Geometric
control can be used for complex flight maneuvers as seen in
[14] and it completely avoids singularities and complexities
that arise when using local coordinates. Geometric control
has also been used in robust tracking [14] and carrying
suspended loads with cables [21], [8], [23].

However, these controllers are model dependent and as-
sume accurate representation of the dynamics. In the pres-
ence of disturbances or uncertainties, the controllers would
result in unstable control or large tracking errors. Lately,
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Fig. 1: An Autel X-star quadrotor system is shown. The
Quadrotor model evolves on SE(3), with the attitude rep-
resented by a rotation matrix R ∈ SO(3), from body-frame
to inertial-frame. The origin of the body-frame {b1, b2, b3}
is at the center-of-mass of the quadrotor. Video link for the
experiments: https://youtu.be/nBDDxpkz6Pg

there has been much work done with adaptive control, to
achieve higher performance and robustness in the presence
of model uncertainties and disturbances.

Model Reference Adaptive Control (MRAC) is a standard
approach to adaptive control, where an ideal reference sys-
tem is simulated, and the differences between the real and
reference systems are used to predict and cancel the distur-
bances in the system [22], [1]. However, this approach has
some important practical drawbacks. If the adaptation rate is
pushed too high, the system is given high-frequency input
commands, which may not be feasible for the system. Also,
high adaptation gain might result in deteriorated closed-
loop stability or unpredictable transient behaviours [24], [3].
Furthermore, the high-frequency commands may excite the
system, which is not desired. Because of this, the adaptation
rate will be low, leading to a long prediction in the system
uncertainties. L1 adaptive control is an extension of MRAC,
where the adaptation and control are decoupled through
the use of a low pass filter. The designer can choose the
cutoff frequency for the low pass filter, removing the high-
frequency components of the adaptation from the control
input. This promotes a very fast adaptation rate while keeping
the control input sufficiently smooth, making L1 a much
more practical adaptive control technique [6], [2].
L1 attitude controllers have been developed for attitude

control of quadrotors, using Euler angles (or quaternions) as
attitude states [24], [18], [5], [16] or for general linear sys-
tems [4]. Geometric adaptive schemes have been previously
developed for quadrotor control in [13], [11]. Similar to [13],
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our work also develops the attitude dynamics and control
laws for the quadrotor directly on the SO(3) manifold with-
out any local simplifications. However, in contrast to [13],
we implement a model reference approach, consider time-
varying disturbances and uncertainties, estimate uncertainties
using a L1 adaptation scheme, and show exponential input-
to-state stability.

In this paper, we study the problem of a quadrotor with un-
known disturbances and model uncertainties. The main focus
of this work is on implementing the L1 adaptation directly
on the SO(3) manifold. In particular, the contributions of
this paper with respect to prior work are,

1) We define attitude tracking errors, between the quadro-
tor model and a reference model (without disturbances),
directly on the tangent bundle of the SO(3) manifold
and develop the control law to show that these attitude
errors exhibit exponential input-to-state stability.

2) We propose a geometric L1 adaptation law to estimate
the uncertainties and formally prove the resulting geo-
metric input-to-state stability.

3) We present numerical results to validate the perfor-
mance of the proposed geometric L1 adaptive control
and show that the proposed control outperforms geo-
metric control without L1 (geometric PD control in
[14]).

4) We also compare the geometric L1 with a traditional
Euler L1 and numerically establish that the Geometric
L1 outperforms the Euler L1.

5) Finally, we present experimental results to show the
tracking performance of the L1 adaptive control w.r.t.
the baseline geometric PD controller (without L1).

The rest of the paper is structured as follows. Section II
revisits the dynamics and control of quadrotor on SE(3).
Section III defines dynamics in the presence of disturbances
and model uncertainties and presents the dynamics in terms
of attitude tracking errors. Section IV proposes a reference
model without any uncertainties and defines attitude errors
between the actual model and reference model. It pro-
poses the Geometric L1 adaptive control method. Section V
shows the simulation results of a quadrotor under various
disturbances and uncertainties, while Section VI presents
the experimental results. Section VII summarizes the work
presented and provides concluding remarks.

II. GEOMETRIC DYNAMICS AND CONTROL OF
QUADROTOR ON SE(3) REVISITED

A. Geometric Dynamics Model

We consider the dynamics of a quadrotor in a coordinate-
free frame-work. Figure 1 illustrates the quadrotor with
reference frames. The coordinate-free dynamic model is
defined using a geometric representation, with the quadrotor
attitude represented by a rotation matrix, R, in SO(3) :=
{R ∈ R3×3 | RTR = I, det(R) = +1}, representing the
rotation from body-frame to the inertial-frame. The center-
of-mass position of the quadrotor, assumed to be at the
geometric center of the quadrotor and denoted by x, is given

m ∈ R Mass of the quadrotor

J ∈ R3×3 Inertia matrix of the quadrotor with respect
to the body-fixed frame

R ∈ SO(3) Rotation matrix of the quadrotor from body-
fixed frame to the inertial frame

Ω ∈ R3 Body-frame angular velocity

x ∈ R3 Position vector of the quadrotor’s center-of-
mass in the inertial frame

v ∈ R3 Velocity vector of the quadrotor’s center-of-
mass in the inertial frame

f ∈ R Magnitude of the thrust of the quadrotor and
is in the direction of −b3

M ∈ R3 Moment vector of the quadrotor in the body-
fixed frame

e1, e2, e3 ∈ R3 Unit vectors along the x,y,z directions of the
inertial-frame

b1, b2, b3 ∈ R3 Body fixed axis of the quadrotor represented
in the inertial-frame; b3 is orthogonal to the
plane of the quadrotor

g ∈ R Acceleration due to gravity, is along the
direction e3

TABLE I: Various symbols used in representing the dynam-
ics of the quadrotor on SE(3).

by the vector from the inertial-frame’s origin to the body-
frame’s origin.

The configuration space of this sytem is, Q := SE(3),
with 6 degrees-of-freedom and 4 inputs corresponding to the
4 rotors. Thrust f ∈ R and moment M ∈ R3 has a one-one
mapping to the 4 rotor inputs as shown in [14] and thus, can
be considered as inputs to the quadrotor.

Equations of motion for the quadrotor discussed in [14]
are given below,

ẋ = v, (1)
mv̇ = mge3 − fRe3, (2)

Ṙ = RΩ×, (3)

JΩ̇ = M − (Ω× JΩ), (4)
where Table I enumerates various symbols used in defining
the dynamics, and the skew-symmetric cross-map (·)× :
R3 → so(3) satisfies ∀x, y ∈ R3, x×y = x×y. For reference,
the vee-map, .∨ : so(3)→ R3 is defined as the inverse of the
cross-map , i.e., (y×)∨ = y. Properties of cross-map useful
in this paper are presented in Appendix A. .

B. Geometric Tracking Control for Quadrotor

The geometric tracking control presented in [14] tracks the
desired quadrotor trajectory xd(t). The position controller
calculates thrust f and a desired orientation Rd, while the
attitude control calculates moment M to track the desired
orientation Rd.

The tracking errors for the attitude dynamics, with desired
orientation Rd and body angular velocity Ωd, are defined on
the tangent bundle of SO(3) as follows. The attitude tracking
error is defined as,

eR =
1

2
(RTdR−RTRd)∨, (5)



and the angular velocity tracking error is calculated on
TRSO(3) as,

eΩ = Ω−RTRdΩd. (6)
The configuration error function between the system atti-

tude and desired attitude is defined as,

Ψ =
1

2
Trace[I −RTdR]. (7)

Note that, Ψ is almost globally positive definite and upper
bounded by 2.

The attitude error dynamics are then given as, see [14] for
details,

ėR = C(RTdR)eΩ, (8)

JėΩ = JΩ̇ + J(Ω×RTRdΩd −RTRdΩ̇d), (9)

= M − (Ω× JΩ)

+ J(Ω×RTRdΩd −RTRdΩ̇d). (10)
where C(RTdR) := 1

2 (Trace[RTRd]I − RTRd). It can be
easily noticed that choosing the control moment M as,
M = µ+ (Ω× JΩ)− J(Ω×RTRdΩd −RTRdΩ̇d), (11)

cancels the nonlinearities in (11). Then a choice of µ as,
µ = −kReR − kΩeΩ, (12)

for any positive constants, kR, kΩ, would result in,
JėΩ = −kReR − kΩeΩ. (13)

For initial conditions that satisfy,
Ψ(R(0), Rd(0)) < 2, (14)

‖eΩ(0)‖2 < 2

λm(J)
kR(2−Ψ(R(0), Rd(0))), (15)

(where λm is the minimum eigenvalue of the matrix and
similarly, λM is the maximum eigenvalue), it is shown in
[14] that the zero equilibrium of the attitude tracking errors
(eR, eΩ) is exponentially stable.

Moreover, a control Lyapunov candidate,

V =
1

2
eΩ · JeΩ + kRΨ(R,Rd) + c2eR · eΩ, (16)

is defined to show that the above error dynamics is exponen-
tially stable for

c2 <

{
kΩ,

4kΩkRλm(J2)

k2
ΩλM (J) + 4kRλm(J2)

,
√
kRλm(J)

}
,

by proving that V̇ ≤ ηTWη, where η = [eR eΩ]T and W
is a positive definite matrix. A detailed proof can be found
in [14].

Having discussed the geometric attitude control, the fol-
lowing section describes the attitude dynamics of quadrotor
in the presence of disturbances and model uncertainties.

III. EFFECTS OF MODEL UNCERTAINTIES AND
DISTURBANCES ON THE ATTITUDE DYNAMICS

As discussed in the previous section, the control moment
M in (11) ensures that the zero equilibrium of the error
dynamics in (8)-(10) is exponentially stable. This controller
assumes an accurate dynamical model of the quadrotor. How-
ever, presence of any uncertainties in the model properties,
like in mass, m, and in inertia, J , can result in large tracking
errors and potential instability. External disturbances on the
system can also result in similar adverse effects.

The unknown external disturbances can be captured in the
attitude dynamics of the quadrotor (3)-(4). In particular, the
attitude dynamics along with the external disturbances are
defined as,

Ṙ = RΩ×, (17)

J̄Ω̇ = M − Ω× J̄Ω + θe, (18)
where θe represents the unknown external disturbance and
J̄ is the true (unknown) inertia of the quadrotor. The corre-
sponding attitude error dynamics (8), (10), whose errors are
defined as (5) and (6), can be modified and represented as
below,

ėR = C(RTdR)eΩ, (19)
J̄ ėΩ = M − (Ω× J̄Ω)

+ J̄(Ω×RTRdΩd −RTRdΩ̇d) + θe. (20)
Remark: 1. Due to the above structure, the external distur-
bance θe becomes a matched uncertainty [9, Chapter 2].

Additionally, the control moment M in (11) assumes
accurate knowledge of inertia of the quadrotor. However, if
the true inertia, J̄ , of the quadrotor is not same as the nominal
inertia of the quadrotor, J , it results in further uncertainties
in the closed-loop system.

In particular, substituting for M from (11) in (20), we
obtain,
J̄ ėΩ = µ+ θe

+ [−Ω× (J̄ − J)Ω + (J̄ − J)(Ω
×
R
T
RdΩd − RTRdΩ̇d)]︸ ︷︷ ︸

,θm

, (21)

where, θm is zero when J = J̄ . We define δJ relating the
true inertia J̄ and the nominal inertia J as, δJ := JJ̄−1−I .
Thus, (21) can be written in the following manner,

JėΩ = µ+ (δJ)µ+ JJ̄−1(θm + θe)︸ ︷︷ ︸
,θ

(22)

where θ is the combined expression for the uncertainties
and disturbances. Therefore, the closed-loop attitude error
dynamics of the quadrotor with control moment M defined
in (11), along with the model uncertainties and disturbances
can be given as,

ėR = C(RTdR)eΩ,

JėΩ = µ+ θ.

(23a)
(23b)

For θ = 0 in (23b), representing no model uncertainity, a
choice of µ as a PD control similar to (12), would result in
a stabilizing control. However, if θ 6= 0, the choice of PD
control alone will not be sufficient to guarantee stability. A
choice of µ that can cancel the uncertainty θ would be helpful
in achieving stability. However, θ is unknown and this cannot
be done. A similar approach for biped robots is developed
in [19], however, they do not address the case of dynamics
evolving on manifolds. Also note that the uncertainty is a
nonlinear function of states R,Ω and control input µ. In
the next section, we propose a Geometric L1 adaptation to
predict the uncertainty θ.



IV. GEOMETRIC L1 ADAPTION FOR ATTITUDE
TRACKING CONTROL

In section III, the attitude dynamics were described in the
presence of model uncertainties. In particular, (23a) & (23b)
present the attitude error dynamics along with the uncertainty
θ and input µ. (Note that the actual control moment M is
calculated using (11).) In this section, we proceed to present
a geometric L1 adaptation law to estimate the uncertainty
θ, and compute the input µ, to track a desired time-varying
trajectory (Rd,Ωd).
Remark: 2. The dynamical model given in (20) with the
controller in (11) resulting in the closed-loop system in (23)
is referred to as true model. States and inputs corresponding
to the true model are given below,

R,Ω, eR, eΩ, θ,M.

A. Reference model

L1 control architecture employs a reference model (also
referred as reference/nominal system or state predictor) to
predict the uncertainty θ in the system. In this paper, we
consider a reference model with a nominal inertia matrix,
J , and without any disturbances θe. Let R̂ be the attitude
of the reference model and Ω̂ be the body-angular velocity
of the reference model. Dynamics of the reference model is
written as,

˙̂
R = R̂Ω̂×, (24)

J
˙̂
Ω = M̂ − Ω̂× JΩ̂, (25)

with control moment M̂ defined similar to (11), i.e.,
M̂ = µ̂+ (Ω̂× JΩ̂)

− J(Ω̂×R̂TRdΩd − R̂TRdΩ̇d). (26)
Here, Rd(t), Ωd(t) are the same desired trajectory (attitude

and body-angular velocity) considered in section III. Similar
to the attitude error vectors defined for the true model,
we define configuration errors for the reference model. The
attitude tracking error is defined as,

êR =
1

2
(RTd R̂− R̂TRd)∨, (27)

and the angular velocity tracking error on TR̂SO(3) is,
êΩ = Ω̂− R̂TRdΩd. (28)

The error dynamics for the reference model is similar to
(8), (10). We present the attitude error dynamics with control
moment defined in (26) below,

˙̂eR = C(RTd R̂)êΩ,

J ˙̂eΩ = µ̂

(29a)

(29b)

Comparing (29b) to (23b), we notice the presence of addi-
tional term θ (uncertainty) in the true model. L1 adaptation
is used to estimate this uncertainty, with θ̂ denoting the
uncertainty. Discussion regarding the uncertainty estimation
and its relevance to the control is presented below,

(i) L1 adaptation makes use of both the true model and
the reference model to estimate the uncertainty θ̂.

Symbol Example Model/Errors

no sub/super-
script

R True model

.d Rd Desired Trajectory

.̂ R̂ Reference model

no sub/super-
script

eR
Error between True model & De-
sired Trajectory

.̂ êR
Error between Reference model &
Desired Trajectory

.̃ ẽR
Error between True model & Ref-
erence model

J̄ True inertia

J Nominal inertia used by the control
law

TABLE II: List of notations used to represent various models
and errors in this paper.

(ii) In-order for the reference model to account for the
uncertainty in the true model, estimated uncertainty θ̂
(or a transported version of θ̂ in case of manifolds) is
included in the control input µ̂.

(iii) Control inputs µ (true model) and µ̂ (reference model)
are used to track a desired trajectory while canceling
the uncertainty.

(iv) Uncertainty is countered by including (−θ̂) in the
control inputs µ and µ̂. However, θ̂ typically contains
high frequency components due to fast estimation.
L1 adaptive control architecture is used to decouple
estimation and adaption [4]. A low-pass filter is used to
exclude the high frequency content in the input. Thus,
(−C(s)θ̂) is included in the control inputs, where C(s)
is a low pass filter and with ‖C(0)‖ = 1. The low-pass
filter is key to the trade-off between the performance
and robustness.

Remark: 3. The reference model is distinguished using the
superscript ·̂. Therefore, states and inputs corresponding to
the reference model are as given below,

R̂, Ω̂, êR, êΩ, θ̂, M̂ .

Table II presents the different notations used in this paper.

B. Errors between the True model and the Reference model

In the previous sections, we presented the true model and
the corresponding reference model to mimic the actual sys-
tem and its uncertainties. The goal of our work is to present
an adaptive controller to reduce the differences between the
true model and the reference model. We, also present a
tracking controller for the reference model, that enables the
true model to track the desired trajectory.

Attitude tracking errors between the true model and
the desired time-varying trajectory are eR and eΩ. Errors
between the reference model and the desired trajectory are
êR and êΩ. Similarly, we define a new set of attitude errors
to capture the difference between the true model and the



reference model as below,

ẽR =
1

2
(RT R̂− R̂TR)∨, (30)

ẽΩ = Ω̂− R̂TRΩ, (31)
and the corresponding configuration error function is given
as,

Ψ̃ =
1

2
Trace[I −RT R̂]. (32)

From (23b) and (11), the uncertainty θ can be canceled
out (if it was known) by the control moment. This shows
that θ lies in the same dual space as the moment M , i.e.,
θ ∈ T ∗RSO(3), and similary, the predicted uncertainty is in
the dual space T ∗

R̂
SO(3). The difference between the actual

uncertainty and the predicted uncertainty is thus calculated
by transporting θ to the space of θ̂,

θ̃ = θ̂ − R̂TRθ. (33)
Having presented the error definitions for orientation ẽR,

angular velocity ẽΩ and uncertainty θ̃ between the true
model and the reference model, we now present the control
design for µ and µ̂1 for the attitude dynamics of true
model, and reference model respectively, such that these
errors, (ẽR, ẽΩ), exponentially reach an arbitrarily small
neighborhood of the origin (0,0).

C. Geometric Attitude Tracking Control for quadrotor with
uncertainty

In this section, we define the control inputs µ and µ̂. Intu-
ition behind the definition of the control inputs is presented
below,
• Reference model:
(i). Control moment (M̂) and the control input (µ̂) for

the reference model is given in (34)
(ii). µ̂ is designed to track the desired trajectory (through

µ̂1), i.e., (R̂, Ω̂)→ (Rd,Ωd), alternately (êR, êΩ)→
(0, 0)

(iii). µ̂ also includes the terms to account for the true
uncertainty and low-pass filtered estimate of the un-
certainty to counter the uncertainty (through µ̂2)

• True model:
(i). Control moment (M) and the control input (µ) for

the true model is given in (35)
(ii). µ is defined such that the true model tracks the

reference model, i.e., (R,Ω) → (R̂, Ω̂), alternately
(ẽR, ẽΩ)→ (0, 0)

(iii). Low-pass filtered uncertainty estimate, −C(s)θ̂, is
included to cancel the uncertainty in the true model.
However, −C(s)θ̂ has to be transported to the µ
space.

(iv). µ is chosen such that the error dynamics for the errors
in (30), (31) are feedback linearized and results in
J ˙̃eΩ = −k̃RẽR − k̃ΩẽΩ + Pθ̃.

Control moment, (M̂), for the reference model

M̂ = µ̂+ (Ω̂× JΩ̂)

− J(Ω̂×R̂TRdΩd − R̂TRdΩ̇d), (34a)
µ̂ = µ̂1 + µ̂2, (34b)

µ̂1 = −k̂RêR − k̃ΩêΩ, (34c)

µ̂2 = JR̂TRJ−1RT R̂θ̂ − C(s)θ̂. (34d)

Control moment, (M), for the true model

M = µ+ (Ω× JΩ)

− J(Ω×RTRdΩd −RTRdΩ̇d), (35a)
µ = µ1 + µ2, (35b)

µ1 = JRT R̂J−1(µ̂1−C(s)θ̂ + k̃ẽR+k̃ΩẽΩ), (35c)

µ2 = JRT R̂ẽ×ΩR̂
TReΩ. (35d)

In (34), (35) k̂R, k̃R and k̃Ω are positive constants. The
resulting attitude error dynamics are presented in Appendix
B.
Remark: 4. The relation between µ and µ̂ can be shown as
follows,

µ = JRT R̂J−1(µ̂+ k̃RẽR + k̃ΩẽΩ)

−RT R̂θ̂ + JRT R̂ẽ×ΩR̂
TReΩ. (36)

This relation is used to calculate ˙̃eΩ in Appendix B. Note that
the presence of k̃Ω in both µ̂1 (34c) and µ1 (35c), ensures
that the relation in (36) is obtained after simplification.

Theorem 1. Consider the control moments M and M̂
defined in (35) and (34) for the true model and the reference
model respectively and

(i) the adaptation law using Γ−Projection as,
˙̂
θ = ProjΓ(θ̂, y), (37)

with the projection operator as defined in Remark 5,
(ii) the definition of y given as,

y = −(PT ẽΩ + cPTJ−T ẽR), (38)
where

P = JR̂TRJ−1RT R̂, (39)
and

(iii) with the initial condition that satisfies,
Ψ̃(R̂(0), R(0)) < 2, (40)

‖ẽΩ(0)‖2 < 2

λmin(J)
k̃R(2− Ψ̃(R̂(0)R(0))), (41)

then the attitude tracking error (ẽR, ẽΩ), defined in (30),
(31), is exponential input-to-state stable (e-ISS) [10] in the
sense of Lyapunov.

Proof. Proof is given in Appendix C.



Fig. 2: L1 Adaptive scheme on the Geometric Attitude
Control. The true model captures the dynamics of the quadro-
tor and represents the physical plant. A 4th order Range-
Kutta method is used to simulate the dynamics of the True
model and Reference models in the Numerical Simulations
and Euler integration is used to simulate the Reference model
in the experiments.

Remark: 5. Definition of the Γ−Projection operation is given
in [12] as,

ProjΓ(θ̂, y) =


Γy − Γ 5f(θ̂)(5f(θ̂))T

(5f(θ̂))T (5f(θ̂))
Γyf(θ̂),

if f(θ̂) > 0 ∧ yTΓ5 f(θ̂) > 0,

Γy, otherwise,
(42)

where, f(θ̂) : R3 → R is any convex function.
Figure 2 presents the control architecture with L1 adap-

tation. Also, note the presence of low-pass filter after the
adaptation law. This is integral to the L1 adaptive controller,
where the high frequency noise is filtered from the system
input [3]. The L1 adaptive controller consists of the reference
model (29), adaptation law (37), and the control law (35).

D. Position Control

Now that we have an attitude controller, we can use the
position controller from [14]. For some smooth position
tracking command xd(t) ∈ R3, we can define the position
and velocity tracking errors as,

ex = x− xd, (43)
ev = v − vd. (44)

The desired thrust vector for the quadrotor is computed as
~F = −kxex − kvev −mge3 +mẍd (45)

The quadrotor thrust magnitude is then given by,
f = −~F ·Re3, (46)

where kx and kv are positive constants and the thrust is in
direction −b3. The desired orientation and angular velocity
are given by,

Rd =
[
b1d b3d × b1d b3d

]
, Ω×d = RTd Ṙd, (47)

where b3d is chosen as,

b3d = − −kxex − kvev −mge3 +mẍd
‖ − kxex − kvev −mge3 +mẍd‖

, (48)

and is selected to be orthogonal to b1d, such that Rd ∈
SO(3) - see [14], [20, chapter 11] for more details.
Remark: 6. A similar L1 approach, used in the attitude
control, can also be used to deal with disturbances and
uncertainties in position control as studied in [24]. Since
position and velocity evolve in the Cartesian space, we use
a traditional (non-geometric) position L1 adaptive control
in the simulations and experiments discussed in the later
sections.

V. NUMERICAL VALIDATION

In this section, we present numerical examples to val-
idate the controller presented in the previous section. We
discuss the performance of geometric L1 control compared
to geometric control without L1 (geometric PD control)
[14]. Two different scenarios are considered to evaluate the
performance of geometric L1 controller. We also compare
geometric L1 control performance to Euler angle L1 control
to present a better insight into the performance of geometric
control.

The following system properties are considered, m =
1.129kg, J = diag([6.968, 6.211, 10.34]) × 10−3kg · m2,
and the following control parameters are used, kx = 4, kv =
3.2, kR = k̃R = 2, kΩ = k̂Ω = k̃Ω = 0.25. A first-order
low-pass filter of form, C(s) = a

s+a , is used with a = 2 and
an adaptation gain of Γ = 106I3×3.

We present simulations for a quadrotor tracking a desired
circular trajectory given below,

x(t) = [ρ cos(ωt), ρ sin(ωt), 0]T , ψ(t) = 0, (49)
where ρ = 1, ω = 2. The two different scenarios considered
are, (i) a constant external disturbance and (ii) a time varying
disturbance. In both scenarios, we consider a mass ma =
0.5kg attached to the quadrotor at r = [0.2, 0.2, 0.2]Tm in
the body frame, this added mass and its location is unknown
to the controller. Presence of this added mass will also result
in a moment about the center-of-mass due to gravity. Thus
the external disturbance due to the mass is given as,

θe = mag(r ×RTe3) (50)
and the inertia is J̄ = J+mar

2 (where, J̄ is the true inertia
used in simulating the dynamics of the true model and J is
the nominal inertia used to calculate the control moment).

A. Geometric L1 control vs Geometric control without L1

1) Case I: Constant External Disturbance θe: External
disturbance of θt = [0.95, 0.25,−0.5]TNm in the body-frame
is considered. θt along with an off-center added mass results
in,

θe = [0.95, 0.25,−0.5]T +mag(r ×RTe3)Nm. (51)
Note that, this value is unknown to the controller. The initial
condition for the controller is almost an inverted case with a
roll of 178◦. Figure 3 shows different errors in the system,
including the errors between the true model and the reference
model in the sub-figures 3a and 3c. Comparison between
the controllers with L1 and without L1 are shown in the
subfigures 3b and 3d. As shown in these figures, only L1

control errors converge to zero.
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(a) Configuration Errors for L1:
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(c) Angular Velocity Errors for
L1: eΩ vs êΩ vs ẽΩ
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(d) Angular Velocity Errors: L1

vs without L1

Fig. 3: Circular Trajectory - Case I: Comparison of errors
between true model and reference model in the presence
of constant external disturbance θt = [.95, .25,−.5]T and
model uncertainty (ma = 0.5kg at r = [0.2, 0.2, 0.2]Tm).
Subfigures 3a & 3c show that Ψ̃ and ‖ẽΩ‖ decrease to
zero even though the true model and reference model are
initialized to different values (see 3a). Subfigures 3b and
3d show that the errors do not converge to zero in case of
geometric control without L1 (i.e, Geometric control without
the L1 adaptation law).
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Fig. 4: Circular Trajectory - Case I: Uncertainty in the
system calculated using (22).

Fig. 5: Circular Trajectory - Case I: Trajectory response for
the two controllers defined earlier. Note that the geometric
control without L1 and with model uncertainty resulted in
an unstable response (shown in red).

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2
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Fig. 6: Circular Trajectory - Case II: Comparison of errors
between true model and reference model in the presence
of time-varying external disturbances and model uncertain-
ties (see (52), (50)). The true model errors and reference
model errors did not converge to zero, however reached a
bounded region about zero in case of geometric control with
L1. Errors in case of geometric control without L1 are not-
bounded as shown in 10b and 6d.
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Fig. 7: Circular Trajectory - Case II: Uncertainty in the
system calculated using (22).

Figure 4 shows the uncertainty θ in the system, along
with the predicted disturbance θ̂ and the filtered disturbance
C(s)θ̂. As shown in the figure, the unfiltered uncertainty
estimate is noisy while the filtered uncertainty estimate
closely follows the actual uncertainty.

The quadrotor position, x, using the two different Con-
trollers L1, without L1 is shown in Figure 5. Note that the
control without L1 fails to track the desired trajectory due
to the large unknown model uncertainty in the system.

2) Case II: Time varying disturbance θe(t): Here, we
consider a time varying disturbance along with model un-
certainty. The following expressions denote the external
disturbance used in this simulation example:

θt =
1

2
(cos(t) + 0.5 cos(3t+ 0.23)

+ 0.5 cos(5t− 0.4) + 0.5 cos(7t+ 2.09), (52)

θe =θt +mag(r ×RTe3). (53)
The uncertainty due to both the time-varying disturbance

and model uncertainty and the corresponding estimation



Fig. 8: Circular Trajectory - Case II: Trajectory response for
the two controllers defined earlier. Note that the geometric
L1 controller is able to track the desired trajectory even in
the presence of time-varying disturbances (shown in blue).

through L1 adaptation is shown in Figure 7. Attitude tracking
errors and resultant trajectory is shown in Figures 6 and
8. From sub-figures 10a and 6c it can be noticed that the
errors between true model and the reference model , Ψ̃
converge to zero very quickly, however the error between the
true model and the desired trajectory Ψ doesn’t completely
converge to zero but reaches a bounded region about zero,
this corresponds to the input-to-state stability discussed in
Appendix C. As seen from Figure 8, L1 control performs
better at tracking the trajectory even in the presence of time-
varying disturbances.

B. Geometric L1 vs Euler L1

In order to establish the need for the geometric L1 control,
in this section we study and compare the initial condition
response of Euler L1 and geometric L1. Similar to geometric
L1, an Euler L1 control consists of a reference model and a
true model , with the control moment computed using Euler
angles and body-rates. The L1 adaptation is implemented by
considering a Lyapunov candidate for the Euler dynamics.
In order to keep the comparison fair and avoid singularities,
both controllers are simulated with the geometric rotational
dynamics in (3)-(4).

We consider initial condition responses for several differ-
ent initial roll angle errors between the reference model and
the desired, φ̂(0) − φd(0), and the true model and the
desired, φ(0) − φd(0), for various added masses ma ∈
{0, 250g, 500g}. We keep all other errors zero and consider
zero desired angles, roll ≡ φd≡0◦, pitch≡0◦, yaw≡0◦.
We ran the simulations varying φ̂(0) − φd(0) and φ(0) −
φd(0) from 0◦ and 179◦ in 5◦ increments. The attitude
configurations Ψ after 3 seconds of simulations is shown
in Figure 9 indicated by the colormap. Each of the plots in
Figure 9 illustrate 37× 37× 3 = 4107 simulations.

We infer the following observations from the Figure,
(i) Euler L1 fails for larger attitude errors (shown in

grey in the Figure), while geometric L1 works for all
considered configuration errors.

(ii) Attitude configuration errors Ψ increases with increas-
ing model uncertainty (i.e., the added mass ma)

(iii) The range of errors for which the Euler L1 control
works decreases with increased added mass ma

(iv) Also, note that in the case of no added mass (ma = 0),
Euler L1 works for all initial angles when reference
model and true model are initialized to the same angle,
i.e., φ(0) = φ̂(0) corresponding to the diagonal line.

C. Step Input Response

In the section, we study the step response for geometric
L1 as well as other controllers. We consider a step input
change in desired angles roll=30◦, pitch=30◦, yaw=30◦,
along with an uncertainty of 0.5kg added mass and a
time-varying disturbance. We compare the performance of
geometric L1, geometric PD without L1, and geometric
PID [7] (without L1). We compare these controllers both
without and with an input saturation of 5 Nm. The PD
gains for all three controllers are chosen the same. The
integral gain for the PID was increased to achieve the best
performance for the case of no input saturation, and for the
case of input saturation, the integral gain was chosen so
that the input is just below the saturation in order to avoid
integral windup. The resulting step responses are shown
in Figure 10. As seen from the Figure, the geometric L1

control outperforms the geometric PD and also has a better
transient performance than the geometric PID, irrespective of
input saturation. Furthermore, the geometric L1 has a better
steady-state performance compared to the geometric PID
(with input saturation) and a similar steady-state performance
compared to the geometric PID (without input saturation). It
is important to note that comparing different controllers is
difficult as it involves tuning several parameters. For instance,
PID control depends on the integral gain, while L1 control
depends on the adaptation gain and the cut-off frequency. In
order to have a fair comparison, we applied the same input
saturation to all controllers and studied their step response
performance.

VI. PRELIMINARY EXPERIMENTAL RESULTS

In this Section, we present the experimental results for the
Geometric L1 Adaptive Control developed in the previous
sections.

A. Setup

The experiments are conducted using the Autel-X star
quadrotor equipped with a Raspberry Pi 3 based Navio-2.
A ROS node on Raspberry Pi 3 runs the on-board attitude
control at rate of 1kHz. Figure 11a illustrates the experi-
mental setup used in this paper. A motion capture system
Optitrack is used to estimate the pose, velocity and yaw
of the quadrotor at 250Hz. The Inertial Measurement Unit
(IMU) on the Navio2 is used to estimate the body-attitude
and body-rates. A Lenovo-Thinkpad with Ubuntu 14.04 and
ROS constitutes the ground control. A ROS node runs the
position control on the ground control and communicates
with the onboard control through WiFi at 125Hz.

To generate disturbances and model uncertainty to the
quadrotor system, a weight of ma = 0.2kg is rigidly
attached to the fuselage of the quadrotor at approximately
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Fig. 9: Comparison between Euler L1 and Geometric L1: Attitude configuration error, Ψ, after 3 sec. of simulation for
different added mass ma, different initial roll angle errors between reference model and the desired, φ̂(0) − φd(0), and
between true model and desired, φ(0)− φd(0). Initial roll angles for true model φ(0) and reference model φ̂(0) are swept
from 0◦ to 179◦ with 5◦ increments, while the desired angles are roll ≡ φd ≡ pitch≡ yaw≡0◦. Note, that geometric L1

works for all considered configuration errors while the Euler L1 failed for larger configuration errors (shown in grey). With
increased added mass, Ψ increases and the range of errors for which the Euler L1 control works decreases.
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Fig. 10: Step response comparison between different controls
(i) Geometric L1, (ii) Geometric PD without L1, (iii)
Geometric PID (without L1). Following desired Euler angles
roll=30◦, pitch=30◦, yaw=30◦ are considered with added
mass ma = 0.5kg and a time-varying disturbance. Note
that PID control improves the steady-state performance when
there is no input saturation, however, L1 control has better
transient performance in both cases.

[0.1, 0.1, 0.1]Tm in the body-frame. This additional mass
is unknown to the controller(s) and constitutes both model
uncertainty, with true inertial being J̄ = J + mar

2 and
disturbance in the system; added mass generates a moment
due to gravity about the quadrotor center-of-mass, given as,

θm = mag(r ×RTe3).

Since, this moment varies with R, especially for a circular
trajectory it would result in a time-varying disturbance.

B. Control Architecture

The control technique used to track the desired trajectory
using L1 Geometric Attitude controller consists of (i) a
position controller, along with a reference model for position
dynamics and (ii) an attitude controller with a reference
attitude dynamics. Figure 11b illustrates the control archi-
tecture used in the experiments. From the desired trajectory,
positions and its higher derivatives are calculated and used
to calculate the desired states and the feed forward inputs
using differential flatness [17]. From the desired position,
velocity and acceleration, the desired thrust vector ~F is
calculated. A reference position dynamics is simulated using
Euler integration and the uncertainty in the position dynamics
is estimated and is compensated in the thrust calculation.
Based on this thrust vector information, the desired attitude
is calculated on-board and is used to compute the desired
moments for the quadrotor M and reference model M̂ . M̂ is
used in the reference attitude dynamics simulation, achieved
through on-board Euler integration. The scalar thrust, f , is
calculated using the thrust vector, ~F , and the attitude R
using (46). The moment, M , along with the thrust, f , is
used to generate the desired angular speed for the motors as
presented in [15].



(a) Setup used to validate the Geometric L1 control consisting of
(i) Motion capture system to track the pose of the quadrotor; (ii)
Ground control with the position control for the quadrotor; and (iii)
Autel quadrotor with on-board Geometric Attitude control with L1

adaptation.

(b) Control architecture used in the experiments showing the ground
and on-board controls.

Fig. 11: Experimental setup and the control architecture to
track the quadrotor trajectory with L1 adaptation to estimate
the uncertainty θ.

C. Results
To validate the developed controller, we show the tracking

performance of the quadrotor (with the weight ma attached)
with geometric L1 adaptive control and geometric PD control
in (11) without L1 adaptation (referred to as without L1).
Remark: 7. Note that the position controller in the ground
control (see Figure 11b) is same for both L1 and without L1

controllers (i.e, we are comparing only the attitude control).
The different experimental system parameters for the

quadrotor are,
m = 1.129kg, ma = 0.2kg, r = [0.1, 0.1, 0.1]Tm

J =


6.968 −0.02909 −0.2456

−0.02909 6.211 0.3871

−0.2456 0.871 10.34

 10
−3
kgm

2
.

We show the performance for Hover and a Circular tra-
jectory tracking in the following subsections. Video show-
casing the experiments can can be found at this link,
https://youtu.be/nBDDxpkz6Pg.

1) Hover: The desired states for the Hover are, xd =
[0,−1, 1]T , vd = [0, 0, 0]T , R = I3×3 and Ωd = [0, 0, 0]T .
Figure 12 presents the tracking performance in terms of (a)
position error, and (b) the attitude configuration error for
Hover. The mean and standard-deviation for these errors are
presented in Table III.
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Fig. 12: Hover: Tracking performance with and without L1

controller on quadrotor with attached weight. (a) shows the
position error, and (b) the attitude error.
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Fig. 13: Circular Trajectory: Tracking performance with and
without L1 controller on quadrotor with attached weight. (a)
shows the position error, (b) the attitude error.

2) Circular Trajectory: We chose the following circular
trajectory in flat-outputs:
x = [x0+ρ cos(ω(t)), y0+ρ sin(ω(t)), z0]T , ψ(t) = 0 (54)

where, ω(t) = 2πa
b+exp−c(t−t0) and [x0, y0, z0] is the center of

the circle and ρ is the radius of the circle. The parameters
used in the experiment are ρ = 1, x0 = y0 = 0, z0 = 1.5
a = 13, b = 1, c = 0.1 and t0 = 80. These values result in
a circular trajectory with increasing speed to a maximum of
2m/s and then decreasing to zero. Tracking performance for
this trajectory is presented in Figure 13 and the mean and
standard-deviation of the errors are presented in Table III.
Remark: 8. As it can be noticed from Figures 12 & 13
and Table III, controllers with and without L1 have similar
performance in case of Hover, while the L1 controller shows
approximately a factor of two better performance in the

https://youtu.be/nBDDxpkz6Pg


Experiment Error
Without L1 With L1

mean [std-dev] mean [std-dev]

Hover
‖x− xd‖2 0.0152 [0.0118] 0.0182 [0.0132]

Ψ 0.0055 [0.0462] 0.0021 [0.0452]

Circular
Trajectory

‖x− xd‖2 0.0250 [0.0220] 0.0126 [0.0120]

Ψ 0.0056 [0.0428] 0.0027 [0.0423]

TABLE III: Mean and standard-deviation for position and
attitude errors for Hover and Circular Trajectory with and
without L1 adaptation.

circular trajectory case. This could be attributed to the fact
that the states and especially the body-angular velocity has
an effect on the uncertainty as can be seen from (21) &
(22). In particular, in case of hover the angular velocity Ω is
close to zero resulting in a small uncertainties θm ≈ 0 while
in case of the circular trajectory, the feed-forward angular
velocity results in significant uncertainty θ.

VII. CONCLUSION

We address the problem of disturbances and model un-
certainties in cases of quadrotor controlled using geometric
control techniques, where coordinate free dynamics are used
to avoid singularities. We develop the error dynamics with
uncertainties in the system and a reference model without any
uncertainty. Attitude tracking errors are defined between the
robot model and the reference model. We develop control for
the robot model and the reference model with L1 adaptation
to estimate the uncertainty in the robot model. Control Lya-
punov candidate is defined to show that the proposed control
strategy results in an exponential stability between the robot
model and reference model, beyond a small bound about
the origin. The bounded region is inversely proportional to
the chosen adaptation gain Γ. Numerical simulations are
presented to validate the control in presence of disturbances
and model uncertainties. Experimental results are presented
to show the performance of the L1 adaptive control.

APPENDIX

Appendix A: Useful Mathematical Background

The Cross-map and Vee-map were defined in Section II.
Following are few properties that are useful in the rest of the
appendix. For any x ∈ R3, A ∈ R3×3 and R ∈ SO(3), we
have,

tr[x×A] = tr[Ax×] (55)

=
1

2
tr[x×(A−AT )] (56)

= −xT (A−AT )∨, (57)

Rx×RT = (Rx)×, (58)

x×A+ATx× = ({tr[A]I −A}x)
×
. (59)

Appendix B: Attitude Error Dynamics

As described in earlier sections, attitude is represented
using a rotation matrix R ∈ SO(3) and body-angular
velocity Ω ∈ TRSO(3). Errors between different attitude
and angular velocities namely, true system, reference system

and desired trajectory are different and defined in (5) & (6),
(27) & (28) and (30) & (31). We compute the derivatives of
the errors between true model and reference model, (ẽR and
ẽΩ) as shown below.

˙̃eR =
1

2

( d
dt

(RT R̂)− d

dt
(R̂TR)

)∨
, (60)

Remark: 9. We have,
d

dt
(RT R̂) = ṘT R̂+RT

˙̂
R

= (RΩ×)T R̂+RT (R̂Ω̂×)

= RT R̂(−R̂TRΩ×RT R̂+ Ω̂×) (61)
Using (58), we get

d

dt
(RT R̂) = RT R̂(Ω̂− R̂TRΩ)

×
= RT R̂ẽ×Ω , (62)

and consequently,
d

dt
(R̂TR) = −ẽ×ΩR̂TR. (63)

Therefore,
˙̃eR =

1

2
(RT R̂ẽ×Ω + ẽ×ΩR̂

TR)∨, (64)

Using the property in (59) we get,
˙̃eR =

1

2
(Tr[R̂TR]I − R̂TR)ẽΩ =: C(RT R̂)ẽΩ, (65)

where it is shown in [14] that the function C(RT R̂) satisfies
the property ‖C(RT R̂)ẽΩ‖2 ≤ 1 for any rotation matrix in
SO(3).

Next, from (31) we have,
ẽΩ = Ω̂− R̂TRΩ (66)

= Ω̂− R̂TRdΩd + R̂TRdΩd − R̂TRΩ

= (Ω̂− R̂TRdΩd)− R̂TR(Ω−RTRdΩd)
=⇒ ẽΩ = êΩ − R̂TReΩ. (67)

The derivative of ẽΩ then is,
˙̃eΩ = ˙̂eΩ −

(
− ẽ×ΩR̂TReΩ + R̂TRėΩ

)
, (68)

=⇒ J ˙̃eΩ = J ˙̂eΩ − J
(
− ẽ×ΩR̂TReΩ + R̂TRėΩ

)
. (69)

From (23b) and (29b), we get
J ˙̃eΩ = µ̂− J

(
−ẽ×ΩR̂TReΩ + R̂TRJ−1

[
µ+ θ

])
. (70)

From the control moments defined in (35) - (36) we have,

J ˙̃eΩ =µ̂− J
(
−ẽ×ΩR̂TReΩ

+ R̂TRJ−1
[
JRT R̂J−1(µ̂+ k̃RẽR + k̃ΩẽΩ)

−RT R̂θ̂ + JRT R̂ẽ×ΩR̂
TReΩ + θ

])
(71)

= −k̃RẽR − k̃ΩẽΩ + JR̂TRJ−1RT R̂(θ̂ − R̂TRθ). (72)
Thus, we finally have,

J ˙̃eΩ = −k̃RẽR − k̃ΩẽΩ + Pθ̃ (73)
where P and θ̃ are defined in (39), (33) respectively.

The time-derivative of the configuration error function Ψ̃
(see (32)) can be computed and simplified using (58) as



follows,
˙̃Ψ = −1

2
Tr[RT R̂(Ω̂× − R̂TRΩ×RT R̂)] (74)

= −1

2
Tr[RT R̂(Ω̂− R̂TRΩ)×] (75)

= −1

2
Tr[RT R̂ẽ×Ω ]. (76)

Then using (57) we get,
˙̃Ψ =

1

2
ẽTΩ(RT R̂− R̂TR)∨ = ẽTΩẽR = ẽΩ · ẽR. (77)

Appendix C: Lyapunov Function Candidate

Proof for Theorem 1: To show the exponential input-
to-state stability of the attitude errors, (ẽR, ẽΩ), we will
consider the following control Lyapunov candidate function,

V =
1

2
ẽΩ ·JẽΩ + k̃RΨ̃(R̂, R) + cẽR · ẽΩ +

1

2
θ̃TΓ−1θ̃, (78)

where the adaptation gain, Γ, is a symmetric, positive-definite
matrix and k̃R is a positive number. Taking the derivative of
V gives,

V̇ =ẽΩ · J ˙̃eΩ + k̃R
˙̃Ψ(R̂, R)

+ c ˙̃eR · ẽΩ + cẽR · ˙̃eΩ + θ̃TΓ−1 ˙̃
θ. (79)

Substituting equations (65), (73), and (77) for ˙̃eR, ˙̃eΩ and
˙̃Ψ respectively, we get,

V̇ =ẽΩ · (−kRẽR − kΩẽΩ + Pθ̃)

+ kRẽΩ · ẽR + cC(RT R̂)ẽΩ · ẽΩ

+ cẽR · J−1(−kRẽR − kΩẽΩ + Pθ̃)

+ θ̃TΓ−1 ˙̃
θ. (80)

The resulting V̇ can be separated into two parts, one with
terms containing θ̃ and the other without θ̃,

V̇ =V̇η̃ + V̇θ̃, (81)

V̇η̃ :=ẽΩ · (−k̃RẽR − k̃ΩẽΩ)

+ k̃RẽΩ · ẽR + cC(RT R̂)ẽΩ · ẽΩ

+ cẽR · J−1(−k̃RẽR − k̃ΩẽΩ), (82)

V̇θ̃ :=ẽΩ · Pθ̃ + cẽR · J−1Pθ̃ + θ̃TΓ−1 ˙̃
θ, (83)

Simplify (82) to get,
V̇η̃ =− kΩ‖ẽΩ‖2 − ckRẽR · J−1ẽR

+ cC(R̂TR)ẽΩ · ẽΩ − ckΩẽR · J−1ẽΩ.
(84)

This has the same form as [14, (58)] and thus we have,
V̇η̃ ≤ −η̃TWη̃, (85)

where

η̃ =
[
‖ẽR‖ ‖ẽΩ‖

]T
(86)

and W is,

W =

 ckR
λM (J) − ckΩ

2λm(J)

− ckΩ

2λm(J) kΩ − c

 , (87)

where λm(A) and λM (A) are the minimum and maximum
eigenvalues of the matrix A, respectively. The constant c is
chosen such that W is positive definite resulting in V̇η̃ ≤ 0.

From (78), let V1 be,

V1 =
1

2
ẽΩ · JẽΩ + k̃RΨ̃(R̂, R) + cẽR · ẽΩ (88)

such that V = V1 + 1
2 θ̃
TΓ−1θ̃. Then, as shown in detail in

[13], we can show V1 satisfies,
η̃TW1η̃ ≤ V1 ≤ η̃TW1η̃, (89)

where,

W1 =
1

2

k̃R −c
−c λm(J)

 , W2 =
1

2

 2k̃R
2−ψ c

c λM (J)

 (90)

with,
Ψ̃(R̂(t), R(t)) ≤ ψ < 2, for any t,

and η̃ defined in (86).
V1, and V̇η̃ are bounded as

λm(W1)‖η̃‖2 ≤ V1 ≤ λM (W2)‖η̃‖2, (91)

V̇η̃ ≤ −λm(W )‖η̃‖2, (92)
we can further show that,

V̇η̃ ≤ −βV1, β =
λm(W )

λM (W2)
. (93)

These results are used later in the proof. Next, from (83),
we have,

V̇θ̃ = θ̃T
(
PT ẽΩ + cPTJ−T ẽR

)
+ θ̃TΓ−1 ˙̃

θ. (94)
Taking derivative of (33) we have,

˙̃
θ =

˙̂
θ + ẽ×Ω(R̂TR)θ − R̂TRθ̇. (95)

Therefore (94) can be updated as,
V̇θ̃ = θ̃T

[
PT ẽΩ + cPTJ−T ẽR

]
+ θ̃TΓ−1

[ ˙̂
θ + ẽ×Ω(R̂TR)θ − R̂TRθ̇

]
. (96)

This is rewritten as,

V̇θ̃ = θ̃T
[
PT ẽΩ + cPTJ−T ẽR + Γ−1 ˙̂

θ
]︸ ︷︷ ︸

,V̇θ̃a

+ θ̃TΓ−1
[
ẽ×Ω(R̂TR)θ − R̂TRθ̇

]︸ ︷︷ ︸
,V̇θ̃b

. (97)

We use a property of the Γ−projection operator as shown
in [12],

θ̃T (Γ−1ProjΓ(θ̂, y)− y) ≤ 0, (98)

with the projection operator defined in (37) and the projection
function y defined in (38), we have,

V̇θ̃a ≤ 0. (99)
We assume that the uncertainty θ and its time derivative

θ̇ are bounded. Furthermore, the projection operator in (37)
will also keep θ̃ bounded (see [4] for a detailed proof about
these properties.) Thus, we consider the following bounds,∥∥∥θ̃∥∥∥ ≤ θ̃b &

∥∥∥θ̇∥∥∥ ≤ θ̇b & ‖θ‖ ≤ θb. (100)

From (97), V̇θ̃b can be bounded as follows,
V̇θ̃b = θ̃TΓ−1

(
ẽ×Ω(R̂TR)θ − R̂TRθ̇

)
≤
∥∥∥θ̃∥∥∥∥∥Γ−1

∥∥( ‖ẽΩ‖
∥∥∥(R̂TR)

∥∥∥ ‖θ‖+
∥∥∥(R̂TR)

∥∥∥∥∥∥θ̇∥∥∥)
≤ θ̃b

∥∥Γ−1
∥∥ ( ‖ẽΩ‖ θb + θ̇b

)
. (101)

From (73), we can show that the ẽΩ is decreasing for a
right choice of k̃R, k̃Ω (since θ̃ is bounded). Also, from (41),
ẽΩ(0) is bounded. Initial value of ẽΩ being bounded and ẽΩ

decreasing, implies ẽΩ is bounded for all time. Therefore, let



‖ẽΩ‖ be bounded by ẽΩb. Then,
V̇θ̃b ≤ θ̃b(ẽΩbθb + θ̇b)

∥∥Γ−1
∥∥ , (102)

Choosing a large adaptation gain, Γ, would result in a very
small Γ−1 and thus the right side can be bounded to a small
neighborhood δ. Then,

V̇θ̃b ≤ δ, (103)
and thus from (99) and (103), we have,

V̇θ̃ ≤ δ. (104)
Substituting (93) and (104) in (81) we get,
V̇ ≤ −βV1 + δ (105)

≤ −β(V1 +
1

2
θ̃TΓ−1θ̃︸ ︷︷ ︸
V

) + β(
1

2
θ̃TΓ−1θ̃) + δ (106)

≤ −βV + β
θ̃2
b

2

∥∥Γ−1
∥∥+ δ (107)

We finally have,
V̇ + βV ≤ βδV (108)

with δV , θ̃2
b

2

∥∥Γ−1
∥∥ + δ

β . In (108), if V ≥ δV it
results in V̇ ≤ 0. As a result, by choosing a sufficiently
large adaptation gain Γ, the Control Lyapunov Candidate
function V, decreases exponentially to result in V ≤ δV ,
an arbitrarily small neighborhood δV . As shown in (108),
V is an exponential Input-to-State Stable Lyapunov function
[10], and thus the attitude errors (ẽR, ẽΩ) are exponential
input-to-state stable.
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