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Abstract In this work, we consider the problem of planning safe, feasible trajecto-

ries for a team of quadrotors with slung-loads operating in an obstacle-free, three-

dimensional workspace. We are particularly interested in generating dynamic trajec-

tories – trajectories where robots’ payloads are allowed to swing in accordance with

the system’s natural dynamics — for fast, agile, coordinated payload transportation.

This capability is applicable to tasks such as construction, where a single crane per-

forming sequential tasks could be replaced by multiple quadrotors performing tasks

in parallel for increased efficiency. We model this problem as a labeled multi-robot

planning problem, where robots must navigate payloads from given start positions

to fixed, non-interchangeable goal positions. Our system presents three novel chal-

lenges: (1.) Each vehicle has eight degrees-of-freedom, significantly increasing the

size of the team’s joint state space. (2.) Each vehicle is a nonlinear, 6th-order dynam-

ical system with four degrees of under-actuation. (3.) Each vehicle is a multi-body

system. We present a safe and complete Quadratic Programming solution and vali-

date its practicality with experiments containing up to nine quadrotors.

1 Motivation

In the past decades, many algorithms for solving the labeled multi-robot planning

problem (MPP) have been proposed. In this paradigm, robots begin at fixed start

positions and must safely navigate to assigned goal positions. We assume our system

is centralized and operating in an obstacle-free, three-dimensional workspace.

Many MPP algorithms have focused on first-order robots, as unfortunately, even

the problem of navigating multiple disks is NP-Hard [23]. In particular, the size of
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the system’s joint state space grows exponentially with the number of agents. While

search-based algorithms [10] can find optimal motion plans in the joint state, they

quickly become computationally intractable for even modest-sized teams. Perfor-

mance can be improved with approaches like an Integer Linear Program formula-

tion [30], rule-based [16] methods, or decomposition into sub-problems [26, 11].

These kinematic approaches are often complete and either optimal or near-optimal.

However, they specify robots’ motions in constant-velocity segments (for example,

coordinated movements along edges of a graph-based workspace discretization),

which can contain sharp turns infeasible for dynamic systems.

Continuous techniques that also optimize a velocity profile, such as prioritiza-

tion [2], path-velocity decompositions [19], sampling-based approaches [22] or op-

timization formulations [12] are extendable to high-order systems. However, these

techniques have been less amicable to decoupling and often require joint optimiza-

tion of all robots’ trajectories. As each robot’s individual state space is also larger,

the problem becomes intractable even more quickly.

A hybrid approach can potentially leverage the model simplicity of kinematic

planners and the dynamic feasibility of continuous ones. Our previous work presents

Hold or take Optimal Plan (HOOP), a centralized, two-dimensional trajectory gen-

eration algorithm for higher-order holonomic systems [29]. A discrete planner first

finds a safe, but dynamically infeasible, piecewise linear trajectory for each robot.

These are subsequently used to partition the workspace into safe corridors —

a series of overlapping convex regions. Single-robot trajectory generation meth-

ods [5, 7, 15] can then be leveraged to independently plan dynamically feasible

trajectories for each robot within its respective corridor. The discrete planner and

trajectory generator can be independently modified based on application needs. This

paradigm has been experimentally validated for quadrotor platforms [20, 29].

However, applications like warehouse tasks or construction could require robots

with more degrees of freedom and coupled rigid bodies. We consider the prob-

lem completing a set of slung-load transportation tasks with quadrotor teams. This

problem is representative of several challenges. First, each vehicle contains eight

degrees-of-freedom, exacerbating the exponential growth of the joint configuration

space. Second, each agent is a 6th-order, nonlinear dynamical system (ie. the quadro-

tor’s moment input actuates the payload’s 6th derivative) with four degrees of under-

actuation. Finally, each robot is a multi-body system.

A number of works explore aerial payload manipulation. For example, [1]

and [14] use quadrotor teams to construct building-like structures. However, pay-

loads are rigidly held underneath the vehicle and do not require modeling as a

separate body. A number of approaches have been proposed for single-quadrotor

trajectory generation with slung-loads. Past works have typically focused on elim-

inating load swing during transport [3, 6]. However, this conservative approach

severely compromises vehicles’ agility. More recently, the development of geomet-

ric controllers that can stabilize large payload angles [25] has inspired the design of

planners that leverage the system’s natural payload swings during obstacle avoid-

ance [8, 27]. Controllers for cooperative manipulation, where multiple robots trans-

port a shared payload, have also been explored [24]. To the best of our knowledge,
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this is the first work that plans trajectories for multi-body vehicles with complex

dynamics in a multi-robot setting.

The contributions of this work include the extension of HOOP [29], a two-

dimensional, single-body trajectory generation algorithm, to the quadrotor-with-

payload system and the formulation of the trajectory generation problem as a

Quadratic Program (in contrast with a previous Mixed Integer Quadratic Program

formulation [27]). We provide experimental validation of our algorithm on a nine-

robot team. Noteably, while the algorithm reverts to swing-free trajectories in the

worst case, experimental results show that planned trajectories can be very dynamic.

2 Dynamic Modeling

To begin, we formulate a dynamic model for the quadrotor-with-load system using

variables in Table 1. We model the load as a point-mass and the cable as massless.

Table 1: Variables for the quadrotor-with-payload system.

I , B World, body frame of quad mQ,mL ∈ R Mass of quad, load

J Inertia tensor of quad rQ,rL ∈ R Radius of quad, load

f ∈ R,M ∈ R
3 Thrust, moment input in B to quad xQ,xL ∈ R

3 Position of quad, load, in I

p ∈ S
2 Unit vector from quad to load, in I ω ∈ R

3 Angular velocity of load, in I

R ∈ SO(3) Rotation matrix of quad from B to I Ω ∈ R
3 Angular velocity of quad, in B

ψ ∈ SO(2) Quad yaw angle l ∈ R Length of cable

Let I with axes {ex,ey,ez} be an inertial world frame and B with axes {bx,by,bz}
be a body-fixed frame. The system’s configuration evolves on SE(3)×S

2 with state:

x(t) =
[

x(t)⊤L ẋ(t)⊤L p(t)⊤ ω(t)⊤ R(t) Ω(t)⊤
]⊤

.

The system’s input is a thrust magnitude and moment:

u(t) = [ f (t) M(t)⊤]⊤.

We represent the system in a coordinate-free manner, that is, we do not rely on local

parameterizations of the payload orientation, p, and the quadrotor attitude, R. We

can apply the Lagrange D’Alembert principle to find the system dynamics [25]:

d

dt
xL(t) = ẋL(t)

(mQ +mL)(ẍL(t)+gez) = (p(t) · f (t)R(t)ez−mQl(ṗ(t) · ṗ(t)))p(t)
ṗ(t) = ω(t)×p(t)

mQlω̇(t) =−p(t)× f (t)R(t)ez

Ṙ(t) = R(t)Ω̂(t)

Ω̇(t) = J−1 (M(t)−Ω(t)× JΩ(t)) . (1)
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3 Problem Definition

Consider a team of N quadrotors, each carrying a suspended payload. Let super-

scripts i ∈ IN = {i ∈ N | i ≤ N} denote variables associated with robot i. Robots

must navigate from start positions, s = {s1,s2, ...,sN} ∈ R
3N , to assigned goal posi-

tions, g = {g1,g2, ...,gN} ∈R3N . We use r to represent arbitrary positions in R
3. Let

BL(r),BQ(r) denote a sphere centered at r with radius rL,rQ, respectively. Let p

denote a line segment pi = {r | r = xi
L−piτ,τ ∈ [0, l]}. Each vehicle’s extent is de-

scribed by the non-convex set Q(xi) =BL(x
i
L)∪BQ(x

i
Q)∪ pi. We assume rQ > rL.

Let X=
[

(x1)⊤ (x2)⊤ (x3)⊤ ... (x(N))⊤
]⊤

denote the joint state space. A general

expression of the MPP is:

X⋆(t) = argmin
X(t)

∫ Tf

0
L (t,X(t), Ẋ(t), ...,X(n)(t)) dt (2)

subject to:

1. Dynamic constraints — X(t) is dynamically feasible:

∀i ∈IN ,k ∈IK , where K is a chosen parameter,

∃ui(t) s.t. xi(t),ui(t) satisfy Eq. 1,‖ dk

dtk
xi

L(t)‖2 ≤ δk,max. (3)

We use limits δmax = {δk,max | k ∈IK} to reflect actuator constraints.

2. Task constraints — each payload begins and ends at the designated locations:

∀i ∈IN ,

xi(0) =
[

(si)⊤ 0⊤ −e⊤z 0⊤ I 0⊤
]⊤

, xi(Tf ) =
[

(gi)⊤ 0⊤ −e⊤z 0⊤ I 0⊤
]⊤

. (4)

3. Safety constraints — robots do not collide with each other:

∀t ∈ [0,Tf ], i ∈IN , j ∈IN 6= i, Q(xi(t))∩Q(x j(t)) = /0. (5)

L (t,X(t), Ẋ(t), ...,X(n)(t)) is a to-be-specified cost functional. Payloads do not

need to simultaneously arrive at their goals; payloads that arrive early should re-

main stationary. We assume s,g satisfy the separation constraints:

∀i, j 6= i∈IN , ‖(si−s j) · [1 1 0]‖2 > 2
√

2rQ, ‖(gi−g j) · [1 1 0]‖2 > 2
√

2rQ. (6)

In obstacle-free space, any problem can be transformed into one satisfying Eq. 6 by

expanding the start and goal positions radially outwards in the ex− ey plane from

the workspace center. Robots can sequentially move outwards to these altered start

positions, apply the proposed algorithm to navigate to altered goal positions, then

contract back to their originally designated goal positions.

We can now concisely state the labeled MPP as follows: given s,g satisfying

Eq. 6, find trajectories X(t) that solve Eq. 2.
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4 Technical Approach

In general, Eq. 2 cannot be solved exactly. Eqs. 3 and 5 impose nonlinear, non-

convex constraints. Furthermore, Eq. 5 couples robots’ trajectories, forcing Eq. 2

to be solved as a joint optimization problem in an exponentially growing search

space. To identify a locally optimal solution, we extend the HOOP algorithm [29],

which decomposes the MPP into path planning and trajectory generation steps, to

the current system. We use motion plan, denoted M i(t), to refer to a piecewise-

constant-velocity parameterization along a piecewise linear path and trajectory, de-

noted γ i(t), to refer to a dynamically feasible parameterization along any path. We

will use path to refer to the set of positions traversed by the payload.

4.1 Motion planning for kinematic collision avoidance

We define a motion plan M i(t) as:

M
i(t) =



































xi
d,0 +

t−t i
0

t i
1−t i

0

(xi
d,1−xi

d,0) t i
0 ≤ t ≤ t i

1

xi
d,1 +

t−t i
1

t i
2−t i

1

(xi
d,2−xi

d,1) t i
1 ≤ t ≤ t i

2

...

xi
d,mi−1

+
t−t i

mi−1

t i

mi−t i

mi−1

(xi
d,mi −xi

d,mi−1
) t i

mi−1
≤ t ≤ t i

mi

.

M i(t) can be represented concisely with a set of breaktimes, T i = {t i
0, t

i
1, ..., t

i
mi}

and waypoints, X i = {xi
d,0,x

i
d,1, ...,x

i
d,mi}, where mi represents the number of seg-

ments in M i(t). Let M denote the set of motion plans for the team.

We temporarily model each quadrotor-with-payload as a kinematic cylinder of

height l and radius rQ, centered at xi
L. Assuming Eq. 6, the motion planning problem

reduces to navigating disks in the ex− ey plane. We solve this using the iterative,

geometric motion planning algorithm of HOOP, OMP CHOP [28].

Fig. 1 provides an algorithm overview. Payloads must navigate from circles to

stars of the same color. The algorithm begins by allowing each payload to move

directly to its goal at vmax = δ1,max. The first collision between any subset of loads

is identified and resolved by inserting a Circular Holding Pattern, a roundabout-like

collision-avoidance maneuver (Panel 2). Each load will enter and navigate around

the holding pattern until it exits at a coordinated time and position to safely reach

its goal. The algorithm iteratively adds (Panel 3) and modifies (Panel 4) holding

patterns until a safe set of trajectories is found. Payloads that do not collide with

neighbors (ie. the orange payload) continue to take straight-line paths to their goals.

This algorithm is guaranteed to be safe and complete and has polynomial-time

complexity with respect to the number of robots. Furthermore, it guarantees that

the motion plan will be disjoint, namely: 1. All payloads share a common set of

breaktimes T (with different waypoint sets). 2. The distance between all pairs of

paths at any given interval s ∈ [ts−1, ts] is at least 2rQ. Let m to denote the number of
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1 2 3 4

Fig. 1: Summary of OMP CHOP. 1. Payloads begin by moving to their goals at

vmax. 2. The first collision between the red and blue loads is resolved using a Circu-

lar Holding Pattern. 3. The next collision between the purple, light blue, and yellow

loads is resolved using a separate Circular Holding Pattern. 4. The existing Circular

Holding Pattern is refined to accommodate the teal payload. The algorithm termi-

nates, as a collision-free motion plan is found.

trajectory segments. We note that not all payloads arrive at their goal simultaneously,

and the motion plan guarantees stationary loads will not be subject to any collisions.

OMP CHOP defines the motion plan in the ex−ey plane. Each payload’s motion

plan in ez is a constant-velocity trajectory from si · ez to gi · ez.

4.2 Differential flatness for dynamic feasibility

The motion plan is clearly safe for a kinematic system with a swing-free payload.

From this, we wish to derive a dynamically feasible, safe trajectory for the full dy-

namical system. To this end, we note that the quadrotor-with-load system is differ-

entially flat [18] — there exists flat outputs, x f , such that x,u can be expressed with

x f and its higher derivatives. For the quadrotor-with-load, the flat outputs are [25]:

x f =
[

xL ψ
]⊤

.

As a result, there is a diffeomorphism mapping all sufficiently smooth trajectories

x f (t) to dynamically feasible trajectories x(t). In particular:

xQ = xL− l
ẍL +gez

‖ẍL +gez‖2
= xL− lp, (7)

that is, the orientation of the payload is determined by its acceleration. Furthermore,

the highest flat derivative required to recover x,u is the 6th-derivative, appearing in

the expression for M. Thus, the quadrotor-with-payload is a 6th-order system.

Assume the quadrotor yaw remains constant at 0, and let γ i(t) : [0, t i
f ]→ R

3 be

a payload trajectory in R
3. Differential flatness suggests γ i(t) must be six times

differentiable for dynamic feasibility. This motivates the reformulation:

γ⋆(t) = argmin
γ(t)

N

∑
i

∫ Tf

0

∥

∥

∥

∥

d6γ i(t)

dt6

∥

∥

∥

∥

2

2

dt (8)

subject to:

1. Dynamic constraints — ∀i ∈IN ,k ∈IK , ‖ dk

dtk γ i(t)‖2 ≤ δk,max.
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2. Continuity constraints — γ i(t) is six times differentiable.

3. Waypoint constraints — ∀i ∈IN ,s ∈Im−1, γ i(ts−1) = xi
d,s−1.

4. Task constraints —

∀i ∈IN ,k ∈I5, γ i(0) = si,γ i(Tf ) = gi,
dkγ i

dtk
(0) = 0,

dkγ i

dtk
(Tf ) = 0. (9)

5. Safety constraints —

∀t ∈ [0,Tf ], i ∈IN , j ∈IN 6= i, Q(γ i(t))∩Q(γ j(t)) = /0.

We indirectly minimize input by minimizing the 6th derivative of γ i(t). Applying

the Euler-Lagrange equation to the cost functional yields the condition:

d12γ i(t)

dt12
= 0,

motivating the choice of an 11th-order piecewise-polynomial as robots’ trajectories:

γ i(t) =



















γ i
1(t) = ∑

11
j=0 ci

0, jPj t0 ≤ t ≤ t1

γ i
2(t) = ∑

11
j=0 ci

1, jPj t1 ≤ t ≤ t2

...

γ i
m(t) = ∑

11
j=0 ci

m−1, jPj tm−1 ≤ t ≤ tm.

Consider a decision vector containing all trajectory coefficients:

d =
[

(d1)⊤ (d2)⊤ ... (dN)⊤
]⊤

,

where di contains the coefficients ci
0,0,c

i
0,1, ... of γ i(t). It is well-established that the

cost functional in Eq. 8 is quadratic with respect to d and the continuity, waypoint,

and task constraints are linear. In the absence of safety constraints, we can formulate

the trajectory generation problem as a Quadratic Program (QP) [17].

4.3 Trajectory generation for dynamic collision avoidance

To incorporate dynamic and safety constraints into the QP, we leverage the motion

plan. Consider a time interval [ts−1, ts],s ∈ Im. OMP CHOP guarantees payloads’

paths are separated by at least 2rQ. Let li
s, l

j
s denote the paths of loads i and j, re-

spectively. These line segments are nonempty convex sets in R
3, thus, by the Sep-

arating Hyperplane Theorem [4], there exists a hyperplane separating them. If each

quadrotor-and-payload remained on its respective side of this hyperplane, rQ away

from the boundary, it is guaranteed to be safe. The intersection of hyperplanes sep-

arating li
s from neighbors l

j
s defines a convex region, P i

s = {Ai j
s xL ≤ b

i j
s − rQ | ∀ j ∈

IN 6= i}, within which the system is free to move during [ts−1, ts].
Fig. 2a illustrates the construction of P0 for the blue robot using the motion

plan in Fig. 1. Fig. 2b illustrates Pblue
1 . Note the convex regions overlap, and a
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(a) Pblue
1 . (b) Pblue

2 . (c) Pblue
3 .

Fig. 2: Convex corridor in the first three time intervals for the blue robot.

continuous piecewise-polynomial trajectory can simultaneously be within regions

P i
s and P i

s+1 at breaktime ts. We refer to the series of overlapping convex regions

as a safe corridor. Note that because the motion plan solved a two-dimensional

problem, all convex regions are aligned with ez.

To impose safety constraints, we constrain each robot to remain within its safe

corridor. We can restate the safety constraints as:

∀i ∈IN ,s ∈Im, t ∈ [ts−1, ts], Q(γ i
s(t)) ∈P

i
s. (10)

Note that we no longer require robots to pass exactly through their motion plan

waypoints, allowing trajectories to be significantly shorter than the motion plan

paths. Algorithm 1 presents the full trajectory generation algorithm.

Algorithm 1 γ = MPP Solve(s,g,rL,rQ, l,δmax)

1: M (t) := Find Motion Plan(s,g,rQ, l,δ1,max )

2: (γnom(t),Tnom) := Find Nominal Trajectories(M (t),δmax)

3: γsmooth(t) := Find Initial Smooth Trajectories(M (t),γnom(t),Tnom)

4: α := Bisection Search for Min Safe Time(γsmooth(t),δmax)

5: if α found then

6: γ(t) = γsmooth(t) with T = αTnom

7: else

8: γ(t) = γnom(t)
9: end if

Line 1, detailed in Algorithm 2, identifies a set of nominal trajectories, γnom(t),
that indirectly satisfy these convex region constraints by following the motion plan

paths exactly. This trajectory can be found analytically as:

γ i
s(t) = xi

d,s−1

(

1−β

(

t

ts− ts−1

))

+xi
d,sβ

(

t

ts− ts−1

)

, (11)

where β (τ) : [0,1]→ [0,1] is the 11th-order non-dimensionalized polynomial satis-

fying the boundary conditions:

β (0) = 0, β (1) = 1, ∀k ∈I5,β
(k)(0) = 0,β (k)(1) = 0. (12)
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It is clear from the construction of Eq. 11 that each trajectory segment is a straight-

line path with a non-constant velocity parameterization.

Algorithm 2 (γnom(t),Tnom) = Find Nominal Trajectories(M (t),vmax)

1: β (t) := solution to Eq. 12

2: for s ∈Im do

3: ∆ t := maxk∈IK

(

maxi∈IN
‖xi

d,s−xi
d,s−1‖2

δk,max
β
(k)
max(τ)

)
1
k

4: for i ∈IN do

5: γ i
nom,s(t) := (1−β ( t

∆ t
))xi

d,s−1 +β ( t
∆ t
)xi

d,s

6: tnom,s := tnom,s−1 +∆ t

7: end for

8: end for

9: Tnom := {tnom,0, tnom,1, ..., tnom,m}

The waypoint and breaktime values chosen by the motion plan can result in a

nominal trajectory that violates derivative constraints. To address this, we express

each trajectory segment’s higher derivatives as:

dk

dtk
γ i(t) =

xi
d,s−xi

d,s−1

(ts− ts−1)k
β (k)(τ).

Since β (τ) is known exactly:

dk

dtk
γ i

max(t) =
xi

d,s−xi
d,s−1

(ts− ts−1)k
β
(k)
max(τ).

We can analytically find the minimum time, ts− ts−1, required for all robots to tra-

verse their paths while respecting derivative limitations (Line 3 of Algorithm 2).

Fig. 3: System motion along nominal trajectory segment.

We construct a nominal trajectory for each robot using Eq. 11. Fig. 3 illustrates

the resulting system motion along a single segment. Note that while the payload

travels along a straight-line path, unlike a kinematic approximation, the system still

exhibits dynamic motions. This nominal trajectory is a (sub-optimal) solution to

Eqs. 8 and 10 and can always be found.

However, stopping at each trajectory waypoint is inefficient. Thus, using the new

breaktimes determined by the nominal trajectory, we construct a QP from Eqs. 8

and 10 in terms of the decision vector d. This is shown in Line 3 of Algorithm 1 and

detailed in Algorithm 3.
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Algorithm 3 γsmooth(t) = Find Initial Smooth Trajectories(M ,γnom(t),Tnom)

1: Q := Get Cost Function

2: for i ∈IN do

3: // QP construction.

4: Ai
eq,b

i
eq := Get Equality Constraints

5: Ai
ineq,b

i
ineq := /0

6: for all s ∈Im do

7: for all j ∈IN , i 6= j do

8: Ai
ineq,b

i
ineq← hyperplane constraint, robot i to j, time [ts−1, ts]

9: end for

10: end for

11: // Constraint adjustment for payload safety.

12: punsa f e := Tnom

13: while punsa f e 6= /0 or first iteration do

14: γ i
smooth(t) := Solve QP(Q,Aeq,beq,Aineq,bineq,Tnom)

15: if QP fails then

16: γ i
smooth(t) = γ i

nom(t)
17: end if

18: punsa f e← Find Payload Violations(γ i
smooth,Aineq,bineq)

19: end while

20: end for

Lines 1 and 4 construct the quadratic cost and linear continuity and task con-

straints [21]. Constraining a polynomial to a convex region has been studied exten-

sively in quadrotor planning [5, 9, 15, 20]. We constrain γ i
s(t) by constraining sample

points along the segment. Lines 5–10 construct the convex region constraints, which

are imposed by sample points at punsa f e. Initially, only segment endpoints are con-

strained. The QP is solved and the maxima of each trajectory segment is checked. If

a maxima is in violation of a constraint, the corresponding time is added as a sam-

ple in the next QP formulation (Line 18). This process is repeated until γ i
smooth(t) is

completely within its safe corridor. [5] show that a finite number of sample points

are needed before the γ i
smooth(t) is safe, or the QP fails. In the latter case, the nominal

trajectory is returned.

At Line 3 of Algorithm 1, the quadrotor can still move outside the designated

convex region during highly dynamic maneuvers. Eq. 7 cannot be directly con-

strained in the form A
i j
ineqxi

Q ≤ b
i j
ineq − rQ, as this results in a nonlinear equation

with respect to the decision variables. Furthermore, γsmooth(t) can contain violations

of velocity or higher-derivative constraints.

Note that if γ(t) is the optimal solution to a QP with breaktimes T , the so-

lution to the identical with QP T̄ = αT results in a trajectory with derivatives

γ̄(k)(t) = γ(k)(t)

αk [17]. By scaling with α > 1, we decrease the trajectory’s accelera-

tion, and therefore decrease the relative angle of the quadrotor with respect to the

payload, while preserving the trajectory’s path. As safe corridors are axis-aligned,

safety constraints will be satisfied for the quadrotor as it approaches the vertical con-

figuration. For α < 1, we increase the dynamic motions along the trajectory. Line 4
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of Algorithm 1 finds the minimum α to guarantee quadrotor collision avoidance and

conformation to derivative constraints using a bisection search.

Algorithm 1 is safe and complete. OMP CHOP is a safe and complete algorithm.

Because the motion plan is disjoint, a safe corridor can be constructed for each robot,

and any trajectory in this corridor is safe. By construction, the nominal motion plan

will always be within the safe corridor and can always be found.

An important property of Algorithm 1 is that smooth trajectories can be found

by solving independent QPs for each robot, eliminating the need to solve a joint

optimization problem over all robots’ trajectory coefficients. Within each designated

safe corridor, each QP will find a locally optimal trajectory, which we see performs

well in practice.

5 Experimental Results

We validate our algorithm on an experimental testbed with nine quadrotors, pic-

tured in Fig. 4b. We use the Hummingbird quadrotor from Ascending Technolo-

gies1. Each robot has a diameter of 54 cm and mass of 600 g (with battery), the

payloads each have a mass of 80 g, and the cable connections are 70 cm.

Fig. 5 illustrates our experimental architecture. The proposed MPP algorithm

(“Multi-robot Trajectory Generator”) and the related control modules are imple-

mented in C++/ROS and run on a 2.5 GHz Intel Core i7 Macbook Pro. We use

Gurobi2 to solve the trajectory optimization. As our primary motivation is vali-

dation of dynamic feasibility, we do not perform explicit feedback control on the

payload position. Instead, for each vehicle, we derive the corresponding desired

quadrotor states using Eq. 7 and its derivatives (“Quadrotor Trajectory Tracker”). If

the planned trajectories are subsequently tracked by the payloads, then they reflect

the system’s natural dynamics. We control the quadrotor using a hierarchical geo-

metric controller [13]. An outer loop (“Quadrotor Position Controller”) calculates

(a) Experimental platform. (b) Nine robot team.

Fig. 4: Asctec Hummingbird quadrotors with cable-suspended payloads.

1 http://www.asctec.de/en/
2 www.gurobi.com/
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Fig. 5: Experimental system architecture.

a desired thrust and orientation for each robot, which is then sent via Xbee3 to the

proper vehicle. An onboard attitude controller tracks this desired orientation. We use

a Vicon4 motion capture system to close the control loop at 100 Hz. Video footage

can be found at https://youtu.be/EGgRPYbTRig.

Fig. 6 displays tracking results from a two-robot problem. Fig. 6a displays each

quadrotor and payload’s trajectory, where planned payload trajectories are pictured

in black, actual payload trajectories are pictured in solid, and actual quadrotor tra-

jectories are pictured in dashed lines. We see that the payload is allowed to swing

outwards. Fig. 6b plots the payload angle with respect to the vertical:

φx = tan-1

(

py

−pz

)

φy =− tan-1

(

px

−pz

)

.

While load angles are generally tracked adequately, there is an increase in error as

payloads swing higher. Figs. 6c–6d plot the planar load and quadrotor velocities.

(a) Trajectory in ex− ey plane. (b) Payload angle over time.

(c) Payload velocity over time. (d) Quadrotor velocity over time.

Fig. 6: Trajectory execution data by a two-robot team. Each payload begins at posi-

tions denoted with circles and must navigate to stars of the same color.

3 https://www.digi.com/xbee
4 https://www.vicon.com/

https://youtu.be/EGgRPYbTRig
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Table 2: Performance statistics.

N Straight-line (m) |xQ(t)| (m) |xL(t)| (m) Max. ‖ẋQ‖2 (m/s) Max. ‖ẋL‖2 (m/s) Max. φL (deg)

2 6.00 6.10 6.36 3.24 3.65 21.31

2 4.00 4.82 5.37 2.03 2.54 19.35

6 3.00 5.10 6.09 2.53 2.67 36.86

6 3.00 4.93 5.68 1.83 3.37 37.18

6 3.00 4.96 5.52 2.03 2.53 25.06

9 3.00 5.29 6.00 1.64 2.08 32.07

9 3.00 6.91 7.84 2.30 2.87 39.14

9 3.00 6.89 8.07 2.24 3.12 36.00

Table 2 lists relevant performance statistics. Here, N represents the number of

robots. “Straight-line” refers to the Euclidean distance between the robot’s start and

goal. |xQ(t)| refers to the distance traveled by the quadrotor while |xL(t)| refers to

the distance traveled by the payload. The maximum velocities of the payload and

quadrotor, as well as the maximum payload angle, are also reported.

For the two-robot maneuver, the first robot’s payload, corresponding to the blue

robot in Fig. 6a, is able to safely reach its goal with the payload and the quadrotor

traveling only slightly further than the straight-line distance. Because of the time-

parameterized convex-region constraints, the second robot, corresponding to the red

robot in Fig. 6a, experiences a larger increase in distance traveled from the straight-

line distance. However, in both cases, the dynamic maneuver decreases the distance

traveled by the quadrotor relative to that by the payload. The payload reaches a

maximum velocity of 3.65 m/s and a maximum angle of 21.31 deg from the vertical.

Fig. 7 illustrates solution trajectories for larger teams, displaying trajectories

from three representative robots. Fig. 7a shows a six-robot maneuver where pay-

loads begin in a circle and are tasked to move to antipodal points. All robots enter

a single circular holding pattern. Figs. 7c and 7d plot position and velocity tracking

for the load over time. The quadrotor tracking data is similar. The nine-robot prob-

lem displayed in Fig. 7b illustrates more localized collision-avoidance, where the

solution splits robots into two separate holding patterns. Robots’ payloads are still

able to swing outwards while maintaining safety between robots in different holding

patterns. Figs. 7e and 7f plots the payload tracking data over time. In particular, note

that the yellow and red robots are allowed to reach their goals before the navy robot.

Table 2 reports the statistics for the three representative robots from each prob-

lem. As expected, as the size of the team and holding patterns increase, the identified

safe trajectories become increasingly longer than the straight-line distances. How-

ever, the payload is still able to similarly swing, reaching angles of almost 40 deg.

By decomposing the problem in a motion planning, trajectory generation, and

time refinement steps, we can find solutions to a complex planning problem. We

note that this general paradigm could be useful to other complex mechanical sys-

tems as well, as any method for discrete motion planning or generating single-robot

trajectories through convex regions can be easily incorporated.
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There are a number of algorithm improvements to be explored. The identified

solution is sub-optimal, and in dense scenarios, the smooth QP optimization often

fails, forcing robots to take nominal trajectories along a potentially large holding

pattern. A related issue is the QPs’ numerical stability. The existence of many neigh-

bors increases the number of trajectory segments, and therefore the decision vector

size, and the number of inequality constraints. Furthermore, the higher-order robot

dynamics calls for a higher-order trajectory polynomial, leading to extremely large

values in the cost and equality constraint matrices. To mitigate this, we nondimen-

sionalize the trajectory [17] and find that in practice, minimum-jerk (minimizing the

third derivative in the cost function), 5th-order polynomials are often sufficient for

good performance. We hope to further study these challenges in future work.

(a) Trajectory in ex − ey plane, six

robots.

(b) Trajectory in ex− ey plane, nine robots.

(c) Payload x-position, six robots. (d) Payload x-velocity, six robots.

(e) Payload x-position, nine robots. (f) Payload x-velocity, nine robots.

Fig. 7: Trajectory execution data by three representative robots in larger robot teams.
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6 Conclusions

We present a safe and complete algorithm to solve the labeled MPP for a team

of aerial robots carrying cable-suspended payloads. We synthesize trajectories by

decoupling the motion planning and trajectory generation steps, a general approach

that can also be used for other complex dynamical systems. We demonstrate our

algorithm’s usability with dynamic maneuvers on a nine-robot testbed. In future

work, we hope to improve the algorithm’s computational performance and solution

quality, particularly on dense problem geometries, as well as numerical stability for

scalability to larger teams. We hope that this work will help set the stage for future

research towards dynamic multi-robot teams.
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