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Abstract— In this paper, we introduce a novel approach for
designing control laws for fully actuated dynamical systems
evolving on manifolds, which leverages the power of neural
networks to build invariant potential functions. The geometry
and non-linearity inherent in manifold-based dynamical systems
pose challenges for traditional control law design, necessitating
techniques with the interplay of differential geometry and
dynamical systems for ensuring stability. Apart from stability,
performance and optimality are other challenging areas to
address for dynamical systems evolving on manifolds. On top
of these, the concept of invariance helps us improve learning
transferability skills from one scene to another scene. We
propose invariant potential functions on manifolds defined by
neural networks that can be used to generate elastic forces for
asymptotic tracking of trajectories. The weights of the potential
function can be tuned to shape the potential functions according
to the performance requirements through minimizing a loss
function.

I. INTRODUCTION

The design of learning-based control laws for systems
evolving on smooth manifolds remains an interesting prob-
lem in the field of control systems engineering. Such systems
are important in a wide range of applications, like aerial
robots [1], [2], [3], [4], [5], [6], robotic manipulators with
impedance and admittance control systems [7], [8], [9], [10].
These applications demand sophisticated control strategies
that can handle the inherent nonlinearities and complexities
of the systems. In this context, the use of potential functions
whose elastic forces dictate the control laws emerges as a
viable controller synthesis approach [11], [12], offering a
consistent way to guide system behavior towards desired
states or trajectories.

It has been remarked that potential functions designed in
[12], [1] on the Special Orthogonal group (SO(3)) suffer
from vanishing gradients when the error between the desired
and current orientation is π radians. Consequently, due to
the shape of the potential functions, at certain errors, the
forces are small and have sluggish responses even when the
errors are large. Research in [11], [13], [14] utilize a metric
on the Lie algebras of SO(3) and Special Euclidean group
(SE(3)) that is uniformly quadratic but the logarithmic map
is not defined when the desired and current configurations
are π radians apart, since a rotation about any axis by π
radians would produce the same orientation. These potential
functions can incorporate matrix gains for positions and
orientations, which can be used to shape the response of
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the system, but it is not so straightforward to tune these
gains easily based on the required response like in the case
of linear systems. These shortcomings motivate us to use
neural networks, for their representative power, to build
potential functions whose gradients generate a part of the
control law equivalent to the spring term/proportional term.
These neural network potential functions might still have
only almost global properties instead of global properties as
it is not possible to construct a continuous control law that
provides a continuous vector field on a compact manifold
with a globally asymptotic equilibrium point [15]. Since we
cannot overcome this, instead of having potential functions
that have fixed properties, we wish to construct potential
functions whose “problematic” points are made to appear in
the regions on the manifold that we are not interested in.

Another important application of building potential func-
tions using the representative power of neural networks is
in learning potential fields via demonstrations by an expert
in an invariant manner. In our previous work in [8], we
provide a neural network architecture for learning gains as
a function of the state from expert demonstrations using
potential fields. The work in this paper can be used as
a generalized framework for learning these state-dependent
gains through potential functions, which provide a provably
stabilizing control law directly during inference.

One of the challenges in building these potential functions
is that their structure needs to satisfy specific Lyapunov
function properties, such as being zero at the equilibrium
and positive everywhere else (or equivalently being lower
bound and attaining the minimum at its equilibrium). These
properties will be achieved with the use of Input Convex
Neural Networks (ICNNs) [16] and its application to the
construction of Lyapunov functions to learn stable dynamical
systems in [17]. Though these Lyapunov functions were
constructed for Euclidean spaces, we will show in the next
sections how this approach is also beneficial for systems
evolving on smooth manifolds.The main application of the
method will be for the orientation control of a spacecraft on
SO(3) and for the Impedance control of a robotic manipulator
whose end effector pose evolves on SE(3). However, we will
first show the necessary tools first for S2 since its geometry
and properties are easy to visualize.
The main contributions of this paper can be summarized
as: 1. A detailed description of errors and variations on
manifolds is presented. 2. A Neural Network architecture
for building deep invariant geometric potential functions,
which are consistent with the transport maps on smooth
manifolds, whose variations can be defined, is developed.
The potential functions generate stabilizing forces/wrenches



for any random initialization of the network 3. Kinematic
control laws utilizing these potential functions and their
stability are presented 4. An Impedance control law for a
robotic manipulator and Orientation control law for a satellite
using these potential functions are designed and a training
procedure to shape the potential function for improving
convergence is presented.

II. PRELIMINARIES

In this section, we revisit the notion of an error on the
manifold and describe the kinematics of a particle moving
on the manifold, variations of configurations, and errors in
velocities for the unit two sphere S2, the Special Orthogonal
Group (SO(3)) and the Special Euclidean Group (SE(3))
from [12], [18].

A. Two Sphere (S2):

A unit two sphere can be represented as follows
S2 = {r ∈ R3 : ∥r∥2 = 1}, (1)

where r is the coordinate of a point on the sphere with respect
to a spatial frame attached to the origin (center of the sphere).
The kinematics of a point whose configuration evolves on S2

can be written as
ṙ = ω × r = ω̂r, (2)

where ω ∈ R3 is an angular velocity vector and × represent
the cross product. The hat (̂·) and vee (·)∨ maps are defined
as follows for a vector η = [η1 η2 η3]

T ∈ R3.

η̂ =

 0 −η3 η2
η3 0 −η1
−η2 η1 0

 ,

 0 −η3 η2
η3 0 −η1
−η2 η1 0

∨

= η. (3)

The time derivative ṙ is an element on the tangent space
(TrS2) of S2 at r. For a desired configuration rd ∈ S2, the
configuration error re ∈ R can be defined as

re =
∆ rTd r. (4)

Note that, when the configuration r reaches rd, re becomes 1
and not 0. Notice that, re is not an element on the manifold
but a scalar. With the current definition of error, the control
law should be designed to drive the error to 1 instead of 0.
The same argument will be used to define the errors for other
manifolds.

A variation on the sphere can be defined as a configuration
on the sphere obtained by flowing with an angular velocity
η ∈ R3 for a time ϵ ∈ R from the configuration r. Using the
exponential map (see [19]), the variation rϵη can be defined
as follows

rϵη =∆ exp(ϵη̂)r. (5)

The infinitesimal variation δrη ∈ TrS2, can now be defined
as

δrη =∆ d
dϵrϵη

∣∣
ϵ=0

= η̂r = η × r. (6)

The velocity error on S2 can now be defined using a transport
map [12] T : TrdS2 7→ TrS2 as

ev =∆ ṙ − T ṙd, (7)

r
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Fig. 1: (a) Variation of an element on S2 (b) Configurations
and their Tangent spaces

where the transport map T on S2 is given by

T = (rTd r)I3 + ̂(rd × r). (8)
Since the current velocity ṙ and the desired velocity ṙd Lie
on different tangent spaces, i.e., TrS2 and TrdS2 respec-
tively, they cannot be directly compared like in the case of
Euclidean space. Therefore, it is necessary to transport one
vector to the tangent space of the other and compare them.
This comparison can be made with the help of this transport
map [12], and the potential functions must be designed such
that they are compatible with the transport map.

B. Special Orthogonal Group (SO(3)):

The Special Orthogonal group (SO(3)) represents the set of
all possible rotation matrices R without any reflections. The
following is a representation of the group as an embedding
in R3×3

SO(3) = {R ∈ R3×3 : RTR = I3 , det(R) = 1}. (9)
The kinematics of a body that just is restricted to rotate
without any translations can be written as

Ṙ = RΩ̂, (10)
where Ω ∈ R3 is the angular velocity expressed in the body-
fixed frame and Ω̂ ∈ so(3), the Lie Algebra of SO(3) (tangent
space at identity).

A variation on SO(3) consistent with the kinematics in
(10) can be defined as

Rϵη =∆ R exp(ϵη̂). (11)
The infinitesimal variation δRη ∈ TRSO(3) can now be
defined as

δRη =∆ d
dϵRϵη

∣∣
ϵ=0

= Rη̂. (12)

The configuration error between a desired configuration Rd

and the current configuration R can be defined as
Re =

∆ RT
d R. (13)

This error is called the right error according to [12]. Note
that the error Re is also an element of SO(3), and the error
becomes I3 when R = Rd. The body fixed angular velocity
error according to [12] can be defined using the body fixed
angular velocity Ω̂ = RT Ṙ and the desired angular velocity



Ω̂d = RT
d Ṙd via
Ṙe =

d
dt (R

T
d R) = ṘT

d R+RT
d Ṙ

= Ω̂T
d R

T
d R+RT

d RΩ̂ = −Ω̂dRe +ReΩ̂

= Re(Ω̂−RT
e Ω̂dRe) = ReΩ̂e.

(14)

Using (RT
e Ω̂dRe)

∨ = RT
e Ωd, we define the body fixed

angular velocity error as
Ωe =

∆ Ω−RT
e Ωd. (15)

C. Special Euclidean Group (SE(3)):

The Special Euclidean group (SE(3)) describes the pose
of a rigid body in 3D space via a rotation matrix R and a
position p. The following is a representation of the group:
SE(3) = {(R, p) ∈ SO(3)×R3 : RTR = I3 , det(R) = 1}.
The kinematics of a body evolving on SE(3) can be written
as

ġ = gΓ(V b), (16)

where

g =

[
R p
0 1

]
, V b =

[
v
Ω

]
,Γ(V b) =

[
Ω̂ v
0 0

]
. (17)

Here g is called the homogeneous representation of the SE(3)
group and v ∈ R3 is the translational velocity with ṗ = v
represented in the body coordinates.

A variation on SE(3) can be defined using the exponential
map (see [19]) as

gϵη =∆ g exp(ϵΓ(η)) =

[
Rη̂2 Rη1
0 1

]
, (18)

where η = [ηT1 , η
T
2 ]

T for η1, η2 ∈ R3 and note that we regard
η1 as a translational element and η2 as a rotational element
following the convention of [19]. The infinitesimal variation
can now be defined as

δgη =∆ d
dϵgϵη

∣∣
ϵ=0

= gΓ(η). (19)
The configuration error between a desired configuration gd
and the current configuration g can be defined as follows with
Re from (13) and pe = p−pd denoting the translational error

ge =
∆ g−1

d g =

[
Re RT

d pe
0 1

]
, gd =

[
Rd pd
0 1

]
. (20)

Note that the configuration error ge is also an element of
SE(3) and the error becomes I4 when g = gd.

By taking the time derivative of ge and following the same
steps as (14), we can obtain the following

ġe = geΓ(eV ). (21)
where eV is the velocity error defined by the following
utilizing the desired quantities with subscript d

eV =∆
[
v
Ω

]
︸︷︷︸
V b

−
[
RT

e vd+RT
e Ω̂dR

T
d (p−pd)

RT
e Ωd

]
︸ ︷︷ ︸

V ∗
d

=

[
ev
eΩ

]
.

(22)

Left Invariance:

It can be seen from the following equations that by
transforming the current and desired configurations both
from the left arbitrarily by the same translation, we do not

get a change in the error.
(Rlrd)

T (Rlr) = rTd (R
T
l Rl)r = rTd r = re

(RlRd)
T (RlR) = RT

d (R
T
l Rl)R = RT

d R = Re

(glgd)
−1(glg) = g−1

d (g−1
l gl)g = g−1

d g = ge

(23)

This is an essential property as incorporating this property
allows us to transfer trained skills from one scene to another
scene without any new training. We will use these errors to
construct potentials in Sec. IV. Since the potentials depend
solely on the errors, the potential functions are also left
invariant. It is also easy to see that for left error representa-
tions, we have right invariance. [8] presents a more elaborate
explanation of invariance.

Variation of a function:

For any scalar function u : M 7→ R mapping from a
manifold M to the the reals, the derivative Dmu at m ∈ M
can be defined with the help of its infinitesimal variation δu
described as
δu(m) = d

dϵuϵη

∣∣
ϵ=0

= d
dϵu(mϵη)

∣∣
ϵ=0

= Dmu(m) ·η, (24)
with mεη as the variation of m on M obtained by flowing
from m with η for a period of ϵ. Furthermore,

Dmu =∆ ∂
∂η δu (25)

This derivative Dmu will be used to define the control law
in the later sections.

III. STANDARD POTENTIAL FUNCTIONS

In this section, we will present two types of geometric
potential functions that are common in the literature for
SO(3) manifolds. Though their simplicity makes them an
easy choice for use in geometric control laws, a short
discussion about their shortcomings will be presented.

A. Potential Function 1:

First, we will consider the potential function from [12]
utilizing the trace operator tr[·] which was later used in [1],
[2], [3], [4], [20], [5], [21] etc. It was also shown that this
potential function can be expressed using the Frobenius norm
in [9].

Ψ1(Re) = tr[I −Re] = tr[I −RT
d R] (26)

R,Rd, Re = RT
d R ∈ SO(3) and Ψ1 : SO(3) 7→ R+. The

elastic force f1 generated by this potential function can be
obtained from its variation.

δΨ1 η = d
dϵΨ1,ϵη

∣∣
ϵ=0

= d
dϵ tr[I −RT

d Rϵη]
∣∣
ϵ=0

(27)

= −f1 · η = (Re −RT
e )

∨ · η
A detailed derivation of how to obtain the forces will be
presented in the next section.

B. Potential Function 2:

We now consider the potentials (Lie algebra potentials)
from [11], [13], [14] using the logarithmic map from the Lie
group to its Lie algebra (see [19]) as follows

Ψ2(Re) =
1
2∥log(Re)∥2F = 1

2∥log(R
T
d R)∥2F (28)
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Fig. 2: Comparison of Potential Functions (left) and corre-
sponding elastic forces (right).
where ∥A∥F = tr[ATA]1/2 represents the Frobenius norm
of the matrix A. The elastic force f2 generated from this
potential can be obtained from its variation as follows

δΨ2,η = d
dϵΨ2,ϵη

∣∣
ϵ=0

= 1
2

d
dϵ∥log(R

T
d Rϵη)∥2F

∣∣
ϵ=0

(29)

= −f2 · η = −log(Re)
∨ · η

Fig. 2 shows a comparison between the potential function
and their corresponding elastic forces for SO(2) manifold
(planar rotations with α as the angle between desired and
current configurations). Here we can see that for smaller
errors, Ψ1 is slightly better, and for larger errors, Ψ2 out-
performs as f1 tends to become zero even when the error is
π radians. Since the rotations are planar, they can be viewed
as rotations about a fixed axis and there is no ambiguity in
the axis. But when it comes to 3D rotations, a rotation about
any axis by π radians causes the same orientation, which
causes a discontinuity in Ψ2, and therefore, the logarithmic
map is defined only when the argument is not the identity.
We wish to overcome these issues by using more expressive
potential functions that can be built through neural networks.

IV. POTENTIAL FUNCTIONS

In this section, a methodology for designing positive
definite potential functions utilizing Input Convex Neural
Networks (ICNNs) [16] and its use in the construction of
Lyapunov functions in [17] will be presented.

We will take a similar approach to build the potential
functions, but to accommodate matrix inputs, we will modify
the structure for different manifolds, as shown in the upcom-
ing subsections. The aim is to make the potential function
zero when the current configuration and desired configuration
coincide and positive everywhere else. Though convexity is
a restriction, we can relax this by adding another layer of
an invertible residual network [22] layer before ICNN as we
need to have only one point where the elastic force becomes
zero. A caveat here is that though we are using an ICNN to
build the potential functions, the manifold is not convex, and
hence, the potential function and domain pair together are
not convex, but the potential function with a convex domain
remains convex. For the remainder of the section, quantities
defined by W are real matrices, quantities defined by U are
non-negative matrices (non-negative entries), and quantities
defined by b are real bias vectors all of the appropriate
dimensions. The nonlinear activations σi must be convex
like ReLU. A small positive definite term is added at the
end using ϵ > 0 to ensure the positive definiteness of

the potential function. For details about various activation
functions, readers are referred to [17].
A. Potential Functions on S2:

We can define the potential function Ψ : [−1, 1] 7→ R+

such that Ψ(1) = 0 as follows:
z1 = σ0(W0re + b0)

zi+1 = σi(Uizi +Wire + bi), i = 1, . . . , k − 1

Φ(re) ≡ zk

Ψ(re) = σk+1(Φ(re)− Φ(1)) + ϵ ∥1− re∥22

(30)

B. Potential Functions on SE(3)

We can define Ψ : SE(3) 7→ R+ such that Ψ(I3) = 0 as
follows. Here ni represents the size of ith layer.
zl1 = σ0(tr[W

l
0Re] + W̃ l

0R
T
d pe + bl0)

zli+1 = σi(U
l
izi + tr[W l

iRe] + W̃ l
iR

T
d pe + bli),

Φ(Re, R
T
d pe) ≡ zk

Ψ(Re, R
T
d pe) = σk+1(Φ(Re, R

T
d pe)− Φ(I3, 03×1))

+ ϵ ∥I4 − g−1
d g∥2F ,

(31)

where i = 1, · · · , k − 1. Here zli refers to the output of
lth neuron in ith layer. By making pe = 0, the potential
function in (31) reduces to the potential on SO(3). It is worth
noting here that the potential functions defined in (30) and
(31) always produce a stabilizing elastic force irrespective
of the initialization of the weights as long as U matrices
are non-negative. This constraint on U can be enforced by
first initializing them randomly and then using the softplus
activation function to make them all positive.

V. KINEMATIC CONTROL

In this section, a detailed description of how to obtain the
elastic forces from the potential functions will be presented
for S2, SO(3) and SE(3) manifolds. Stability proofs for S2

and SO(3) will be presented as the extension to SE(3) from
SO(3) is straightforward. Although we are more interested in
applications to dynamics on manifolds, we will emphasize
the derivations for kinematic systems as the control laws
straightforwardly extend to dynamical systems by adding a
damping term to the elastic force. The stability proofs will
become clear once we construct Lyapunov candidates using
the designed potential functions.

A. Unit two sphere S2:

The variation of the potential function defined in (30) will
be used to obtain the elastic force as follows

Ψ = Ψ(rTd r) =⇒ Ψϵη = Ψ(rTd e
ϵη̂r)

=⇒ δΨη = d
dϵΨϵη

∣∣
ϵ=0

= Ψ′(rTd r)(r
T
d e

ϵη̂ η̂r) (32)

= Ψ′(rTd r)(r
T
d η̂r)

where Ψ′ ≜ ∂
∂zΨ(z)

∣∣
z=rTd r

. Utilizing the cyclic property of

the box product [a b c] = a · (b × c) = aT b̂c that [a b c] =
[b c a] = [c a b], we can write
δΨ = Ψ′(rTd r)(r̂rd)

T η = Ψ′(rTd r)(r̂rd) · η = DrΨ · η (33)
The corresponding elastic force is now given by

f = −DrΨ = −Ψ′(rTd r)(r̂rd) (34)



Since Ψ is a neural network, its partials or gradients can
be found using automatic differentiation packages like Py-
Torch’s autograd.

Theorem 1. The kinematic tracking control law ω = ωd+f ,
where the elastic force f is given by f = −Ψ′(rTd r)(r̂rd),
almost globally asymptotically tracks rd(t) for the system
(2).

Proof. We will consider the potential function Ψ as the
Lyapunov function candidate as it is positive definite, and the
only point where it is 0 is when re is 1. The time derivative
of the Lyapunov function yields
Ψ̇ = Ψ′(rTd r)(ṙ

T
d r + rTd ṙ) = Ψ′(rTd r)(r

T ω̂drd + rTd ω̂r)

= Ψ′(rTd r)r
T
d (ω̂ − ω̂d)r

= Ψ′(rTd r)r
T
d (ω̂d − ω̂d −Ψ′(rTd r)

̂(r × rd))r

Utilizing the property that a× (b× c) = b(a · c)− c(a · b)
Ψ̇ = −Ψ′(rTd r)

2rTd (rd∥r∥22 − r(rd · r)) (35)

= −Ψ′(rTd r)
2(∥rd∥22∥r∥22 − (rd · r)2) ≤ 0.

B. Special Orthogonal Group SO(3):

A potential on SO(3) can be represented as Ψ(Re) by
letting pe = 0 in (31). The variation of this potential function
defined will be used to obtain the elastic force as follows

Ψ = Ψ(RT
d R) =⇒ Ψϵη = Ψ(RT

d Reϵη̂)

=⇒ δΨη = d
dϵΨϵη

∣∣
ϵ=0

= tr[Ψ′(RT
d R)TRT

d Reϵη̂ η̂]

= tr[Ψ′(RT
d R)TRT

d Rη̂],

(36)

where Ψ′ = ∂
∂MΨ(M)

∣∣
M=Re

. Utilizing the property of trace
that − 1

2 tr[Ab̂] = (AT −A)∨ · b, we can write

δΨη = (RT
e Ψ

′(Re)−Ψ′(Re)
TRe)

∨ · η (37)

=⇒ DRΨ = DReΨ = (RT
e Ψ

′(Re)−Ψ′(Re)
TRe)

∨.

The corresponding elastic force is now given by
f = −DRΨ = −(RT

e Ψ
′(Re)−Ψ′(Re)

TRe)
∨. (38)

Theorem 2. The kinematic tracking control law Ω =
RT

e Ωd+f , where the elastic force f is given by (38), almost
globally asymptotically tracks Rd(t) for the system (10).

Proof. We will consider the potential function Ψ as the
Lyapunov function candidate as it is positive definite and
the only point where it is 0 is when Re is I3. The time
derivative of the Lyapunov function yields

Ψ̇ = tr[Ψ′(Re)
T Ṙe] = tr[Ψ′(Re)

TReΩ̂e]

= [(Ψ′TRe)
T − (Ψ′TRe)]

∨ · Ωe.

Utilizing the angular velocity error from (15), we get

Ψ̇ = −∥(RT
e Ψ

′(Re)−Ψ′(Re)
TRe)

∨∥22 ≤ 0. (39)

C. Special Euclidean Group SE(3):

The variation of the potential function on SE(3) defined
in (31) can be used to obtain the elastic force.

Ψ = Ψ(RT
d R,RT

d pe)

=⇒ Ψϵη = Ψ(RT
d Reϵη2 , RT

d (p+ ϵRη1 − pd))

=⇒ δΨη=
d
dϵΨϵη̂

∣∣
ϵ=0

= tr[∂1Ψ
TRT

d Rη̂2] + ∂2Ψ
TRT

d Rη1,

where ∂1Ψ = ∂
∂MΨ(M, z)

∣∣
M=Re,z=RT

d pe
and ∂2Ψ =

∂
∂zΨ(M, z)

∣∣
M=Re,z=RT

d pe
. This yields the elastic force as

f =

[
−RT

e ∂2Ψ
−(RT

e ∂1Ψ− ∂1Ψ
TRe)

∨

]
. (40)

Theorem 3. The control law given by the following equation
almost globally asymptotically tracks gd(t)[

Ω
v

]
=

[
RT

e Ωd

vd

]
+ f. (41)

Proof. For brevity, we skip the stability proof as the process
is similar to that of SO(3) for rotations with a trivial
extension to translations.

In every case, the time derivative of the Lyapunov function
is zero only at a finite number of points when f = 0, but
negative everywhere else, and therefore, the equilibrium is
almost globally asymptotically stable. The remaining points
are unstable equilibria.

VI. DYNAMIC CONTROL

In this section, we consider two interesting and practical
problems on SO(3) and SE(3) manifolds namely orientation
control of a satellite and Impedance control of a robotic
manipulator respectively. The dynamics of both the systems
and stabilizing control laws using the constructed potential
functions will be presented.

A. Control of a Satellite on SO(3):

A simple model of a rigid body rotating without translating
can be used to describe the orientation control problem of a
satellite. The orientation of the satellite is described through
rotation matrices R ∈ SO(3). The control is achieved
through momentum wheels attached to three perpendicular
axes of the satellite. Again for simplicity, we will ignore the
dynamics of the reaction wheels and assume the availability
of three independent torque components along its three
perpendicular axes. The dynamics can be written as follows
with J as the symmetric positive definite inertia matrix,
Ω ∈ R3 as the angular velocity represented in the body-fixed
frame and τ ∈ R3 as the torque.

Ṙ = RΩ̂

JΩ̇ + Ω̂JΩ = τ
(42)

Theorem 4. The following control almost globally asymp-
totically tracks Rd(t) for a dynamical system described by
(42) with the elastic force f described by (38)
τ = Ω̂JΩ− JΩ̂eR

T
e Ωd + JRT

e Ω̇d + J(f −KDΩe). (43)

Proof. This control law achieves the following error dynam-
ics

Ω̇e +KDΩe +DRΨ(Re) = 0. (44)

We will consider the following positive definite Lyapunov
candidate function

W = Ψ(Re) +
1
2Ω

T
e Ωe

=⇒ Ẇ = Ψ̇(Re) + ΩT
e Ω̇e = ΩT

e (Ω̇e − f)

= −ΩT
e KDΩe ≤ 0.



Using Lasalle’s Invariance principle, we can also conclude
that the equilibrium Re = I3 of the error dynamics in (44) is
almost globally asymptotically stable as the largest invariant
set where Ẇ = 0 is only when Re = I3 (removing the other
unstable equilibria). It may firstly be a bit non-intuitive, but
it should be noted that Ωe can be expressed in terms of
Re and Ṙe which makes the entire error equation a function
of just Re and its time derivatives. The expression is omitted
for the compactness of notation.

B. Control of a Robotic Manipulator on SE(3):

Another important problem where potential functions play
an important role is in the control of robotic manipulators.
We will demonstrate an application to Impedance control of
a robotic manipulator [9]. The manipulator equations in joint
space can be written as follows with q ∈ Rn as the vector
of generalized coordinates of the manipulator.

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τe, (45)
where M(q)∈Rn×n is the symmetric positive definite inertia
matrix, C(q, q̇) ∈ Rn×n is a Coriolis matrix, G(q) ∈ Rn

represents the gravitational terms, τ ∈Rn is the joint torque,
and τe ∈ Rn is an equivalent external joint torque from
contacts, human inputs etc. The Coriolis matrix satisfies the
property that Ṁ−2C is skew-symmetric.

In the field of impedance control combined with opera-
tional space formulation, it is well known from [23] that the
robot dynamics (45) can be rewritten as

M̃(q)V̇ b + C̃(q, q̇)V b + G̃(q) = τ̃ + τ̃e, (46)

where the definitions of M̃(q), C̃(q, q̇), G̃(q), T̃ , and T̃e can
be referred to [9]. We will denote M̃(q) as M̃ , C̃(q, q̇) as C̃
and G̃(q) as G̃. We also note that the manipulator dynamics
of the workspace is based on the following assumptions.
The end-effector lies in a region D ⊂ SE(3) such that Jb
is full-rank, i.e., non-singular and the external torque τe = 0.

Theorem 5. The following control law almost globally
asymptotically tracks gd(t) for a dynamical system described
by (46) with the elastic force f described by (40)

τ̃ = M̃V̇ ∗
d + C̃V ∗

d + G̃+ M̃(KDeV − f). (47)

Proof. This control law achieves the following error dynam-
ics

ėV +KDeV − f(ge) = 0 (48)

We will consider the following positive definite Lyapunov
candidate function

W = Ψ+ 1
2e

T
V eV

=⇒ Ẇ = Ψ̇ + eTV ėV = −eTV KDeV ≤ 0.
(49)

This control law is left invariant and has good learning
transferability properties.

VII. TRAINING THE NEURAL NETWORK

Once the structure of the potential function is finalized
(by fixing the number of layers and their sizes), an objective
according to the needs of the user can be specified which
can be posed as an optimization problem of minimizing a
loss function by gradient descent. We consider an LQR-style
problem where we have a running cost along the trajectory
that needs to be minimized. A sample loss function for an
error trajectory is shown in (50) with a positive weight λ. We
could also add weighting matrices like in the LQR problem.

L =

∫ T

0

(∥I3 −Re(t)∥2F + λ∥Ωe(t)∥22)dt (50)

The procedure to shape the potential function to minimize
this loss is shown in Fig. 3. We first start by forming a set
of initial conditions around which the system is expected
to start. Since any potential with random initialization (of
course with some non-negative weights which can be taken
care of by softplus function in PyTorch) becomes a valid
potential function, we can obtain the corresponding stabiliz-
ing elastic force and integrate the system forward to obtain
the error trajectories for each of the initial conditions for
a user-defined fixed time T without the fear of trajectories
blowing up. Here we have used the error dynamics (44), but
any of the error dynamics can be used here depending on the
system and situation of interest. A mean loss is computed
by taking the average of individual losses corresponding to
the trajectory for each initial condition. Next, standard back-
propagation algorithms with the choice of gradient descent,
such as Stochastic Gradient Descent (SGD), RMSprop, and
ADAM, can be used to update the parameters of the potential
function. The function h(·) is used to represent the choice of
our optimizer. This updated potential function generates the
updated elastic force and the system is integrated forward
for all the initial conditions again. This cycle is repeated
till convergence or any other user-specified termination cri-
terion. Note that since the dynamics evolve on manifolds, a
variational integrator like [24], [25], [26] could be a better
choice to integrate the system forward as they preserve the
geometry of the manifold. The simplest integrator is an Euler
integrator for the velocities and using the velocities with
the exponential map (or other methods consistent with the
kinematics for non-Lie groups) for finding the next point on
the manifold. Euler integration for (44) for a step size ∆t is
as follows

Ωe(t+∆t) = Ωe(t) + (−KDΩe(t) + fθ(Re))∆t

Re(t+∆t) = Re(t)e
Ω̂e(t)∆t.

(51)

In Fig.3, the dynamical equations in the integration block
can be replaced by (48) and updating the damping gain KD,
loss function appropriately to account for SE(3) trajectories.
Though the positive definite damping matrix KD is mostly
shown to be fixed, it can also be treated as a decision variable
in the optimization problem which would ease the restriction
further and provide better performance.
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fθ+ = −DReΨθ+

Fig. 3: Flow chart showing the training process for potential
functions for a satellite orientation control problem.

VIII. SIMULATION RESULTS

A. Implementation on Satellite

We consider the problem of regulating the rotation error
Re to I3 for dynamics (44). A neural network with 3 hidden
layers of 14 neurons each, using Kaiming initialization
within bounds (−

√
3,
√
3), was trained on 50 initial con-

ditions. Initial conditions were set with rotation errors nor-
mally distributed around π radians from the identity matrix
according to (52) and angular velocity errors with zero mean
and unit variance. The training utilized the Adam optimizer
at a learning rate of 0.01 to minimize the loss function in
(50). Results in Fig.4 illustrate the evolution of rotation error
trajectories for neural network, logarithmic, and Frobenius
norm potential functions. Despite being designed for large
initial errors around π radians, performance for more minor
errors is comparable across potential functions, as shown in
Fig.4(c).
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Fig. 4: Comparison of responses with various potential func-
tions (a) Re trajectories for 0.99π radians initial error(b) and
corresponding angular velocities errors. (c) Re trajectories
for 0.1π radians initial error (d) and corresponding angular
velocity errors.
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Fig. 5: Comparison of responses with various potential
functions on SE(3) for error dynamics in (48) (a) ge tra-
jectories for 0.99π radians initial rotation error and pe =
[0.1529,−1.4135, 1.9227] (b) and corresponding angular ve-
locities errors. (c) ge trajectories for 0.1π radians initial
rotation error and pe = [−0.2083, 0.0364, 0.9568] (d) and
corresponding angular velocity errors.

Fig. 6: UR5e robot manipulator implemented in Mujoco
environment.

B. Implementation on Mujoco environment

We have implemented our proposed approach to a UR5e
robotic manipulator in the Mujoco environment (see Fig. 6)
to show its feasibility with the same parameters as that of the
satellite but with a different first layer to account for input
dimensions of SE(3).

To show the advantages of the proposed approach, we will
compare the regulation performance under large initial error
conditions for the proposed approach and the benchmark ap-
proach, the geometric impedance control [9] with Frobenius
norm-based potential function. The goal pose gd = (Rd, pd)
of the end-effector is given as

pd =
[
0.7 0.0 0.4

]T
, Rd =

0 1 0
1 0 0
0 0 −1


The initial condition gi = (Ri, pi) is given as

pi = pd, Ri = Rot(w, θ)Rd, (52)
where w = [−1, 1, 1]T , θ = π − ε with 0 < ε ≪ 1,
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Fig. 7: (a) Potential function Ψ with respect to time, (b) 2-
norm of velocity errors, for the learning-based controller and
the Frobenius-norm-based controllers are presented.

and Rot(w, θ) is an axis-angle representation of the rotation
matrix, e.g., one can use Rodrigues formula to convert it into
the rotation matrix. The results of this large initial rotational
angle scenario are shown in Fig. 7. The proposed approach
showed faster convergence compared to the Frobenius-norm-
based ones but showed more spikes in the norm of velocity
error because of faster convergence.

One caveat for the proposed approach in application
to the robotic manipulator system is that the closed-loop
system may not be exactly feedback linearized to (48) via
control law (47) due to inherent uncertainties. For example,
one of the assumptions from original geometric impedance
control from [9] is that the Jacobian matrix Jb(q) needs to
be non-singular. However, the near singular point can be
encountered as the proposed approach is executed in the
robotic manipulator via a feedback linearization scheme.
This singularity and non-precise feedback linearization is
the main reason for performance differences between single
rigid-body systems, like satellites, and more complex robotic
manipulator systems.

IX. CONCLUSIONS

In this paper, a generic design methodology for designing
trainable potential functions using Input Convex Neural Net-
works (ICNNs) for dynamical systems evolving on manifolds
has been presented. A detailed methodology to obtain the
corresponding elastic forces through variations has been
presented. Extensive analysis of the potential functions and
stability for various manifolds of interest has also been
presented. Finally, the methodology was demonstrated on
two problems - a satellite orientation control and a robotic
manipulator impedance control and the results were pre-
sented along with comparisons with benchmark controllers.
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