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Abstract— This paper presents a safety-critical locomotion
control framework for quadrupedal robots. Our goal is to
enable quadrupedal robots to safely navigate in cluttered
environments. To tackle this, we introduce exponential Discrete
Control Barrier Functions (exponential DCBFs) with duality-
based obstacle avoidance constraints into a Nonlinear Model
Predictive Control (NMPC) with Whole-Body Control (WBC)
framework for quadrupedal locomotion control. This enables
us to use polytopes to describe the shapes of the robot
and obstacles for collision avoidance while doing locomotion
control of quadrupedal robots. Compared to most prior work,
especially using CBFs, that utilize spherical and conservative
approximation for obstacle avoidance, this work demonstrates a
quadrupedal robot autonomously and safely navigating through
very tight spaces in the real world. (Our open-source code
is available at https://github.com/HybridRobotics/
quadruped_nmpc_dcbf_duality, and the video is available
at https://youtu.be/p1gSQjwXm1Q.)

I. INTRODUCTION

Legged robots have high maneuverability compared to
wheeled robots, allowing them to traverse rough terrains
and challenging environments and realize dynamic motions.
However, their highly nonlinear dynamics and hybrid modes
make control of legged robots a challenging task. Ensuring
safe navigation through an obstacle-filled environment fur-
ther exacerbates this problem [1]. Some prior work on legged
locomotion achieves obstacle avoidance by decoupling the
motion planning and the locomotion tasks, like in [2], [3],
[4], where the motion planning problem is first solved for
the legged robot’s shape, and a control loop is used to
track the planned path. Since the planning is performed
without the robot’s dynamics, the trajectory is not necessarily
dynamically feasible, which can violate safety constraints.
Other works on obstacle avoidance for legged robots com-
bine the planning and control tasks using optimizations such
as model predictive control (MPC) [5]. However, most of
these works enforce safety online by over-approximating
the shape of the robots and obstacles, which results in
conservative movements and can lead to deadlock [6]. To
tackle this problem, this paper develops a nonlinear model
predictive control (NMPC) formulation with discrete-time
control barrier functions (DCBF) constraints for robot lo-
comotion. Unlike most of the prior work using CBFs [7],
[5], the safety constraints are enforced by considering the
polytopic shapes of the robot and its surrounding obstacles,
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Real experiment

Visualization

Fig. 1. A quadrupedal robot whose width is 0.32 m autonomously and
safely navigates through a tight space that is only 0.5-meter-wide using the
proposed NMPC with exponential DCBF Duality framework in experiments.

allowing for tight obstacle avoidance motions in cluttered
environments, as depicted in Fig. 1. We validate our safety-
critical locomotion algorithm with our proposed autonomy
stack to achieve navigation tasks through tight spaces.

A. Related Work

Previous work tackling the navigation problem using
legged robots can be broadly classified into three cate-
gories: (i) considering obstacles only in the motion planning
layer without the robot’s dynamics, (ii) including collision
avoidance in optimal control but without considering the
robot’s finer shape, and (iii) safety-critical control for tight
maneuvers.

1) Collision-free Motion Planning: Motion planning for
legged robots has been an attractive topic and usually in-
volves planning in the configuration space [4], [2]. There are
some approaches considering avoiding obstacles in confined
spaces, as demonstrated in [8], [9]. Whole-body motion
planning for the quadrupedal robot with signed distance
field (SDF) [10] and elevation map are demonstrated in [2]
using a hierarchical motion planning framework. However,
most motion planning work for legged robots [11], [12],
[2] only considers planning in configuration space without
the dynamics of the legged robot, which results in slow
and statically stable gaits. Additionally, the entire framework
could fail due to collisions since the control layer doesn’t
consider the safety criteria reported in [2]. This motivates us
to consider system dynamics while avoiding obstacles.

2) Obstacle Avoidance in Trajectory Generation & Con-
trol: Obstacle avoidance with respect to system dynamics
could be considered in both trajectory generation and con-
trol problems. Some existing work considers the trajectory
generation problem within an MPC formulation [13], [14],
where positivity of the SDF is regarded as an optimization
constraint to ensure the robot’s safety. Other approaches
usually consider obstacle avoidance constraints as enforcing
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distance functions to be positive in trajectory generation
problems. To make the distance functions differentiable, the
robot and the obstacles are usually considered circular or
spherical controlled regions for 2D or 3D navigation. The
optimization with distance function constraints is validated
by experiments [13], [15], [16] on legged robots for trajec-
tory generation. This approach has been extended by using
discrete-time control barrier functions [17] in quadruped
stepping on discrete terrains [5] and humanoid navigation
simulations [6], [18], [19]. However, the main disadvantage
of all the existing work above is that they over-approximate
either the robot or the obstacles as circular or spherical
objects in the trajectory generation or control problems.
Although such a method could be efficient and sufficient
for simple environments, it could be overly conservative and
result in a deadlock maneuver in narrow spaces. Additionally,
although the SDF method tries not to over-approximate the
robot by considering it as a combination of spherical objects,
obstacles are still over-approximated by hyper-spheres. This
motivates us to develop autonomy algorithms to enable tight
maneuvers for legged robot systems with less conservative
safety criteria than the existing work.

3) Safety-Critical Tight Maneuvers: To achieve non-
conservative obstacle avoidance, polytopic obstacle avoid-
ance is usually required, i.e., the robot and obstacles are
considered as polytopes or combinations of them [20]. The
main challenge of polytopic avoidance is that the distance
function between polytopes is non-smooth. Mixed-integer
programming [21] could solve the problem but is only ap-
plicable for simple linear systems. Dual analysis [20] can re-
formulate the non-smooth polytopic constraints into smooth
ones in the trajectory optimization problem for quadrupedal
robots with its full-order dynamics offline [22] or simplified
dynamics online [23]. This dual analysis has also recently
been synthesized by discrete-time control barrier functions
(DCBFs) [24], [25] to achieve real-time trajectory generation
and control [26]. As we will see here, we apply the dual
optimization with a DCBF [26] to achieve safety-critical
locomotion with less conservative maneuvers.

B. Contributions

In this paper, we propose a robot autonomy stack that en-
ables safety-critical locomotion in tight spaces with duality-
based optimization. The primary contribution of this paper is
the first introduction of duality-based Control Barrier Func-
tions (CBFs) to legged locomotion control to ensure safety,
e.g., obstacle avoidance, in the real world. The duality-
based obstacle avoidance constraints allow us to describe
the robot and its surrounding obstacles by polytopes. An
ablation study shows that it provides a finer approximation
of their shapes than the commonly-used spheres allowing
the robot to traverse much tighter spaces with faster speed.
Combining with CBFs and model predictive control for the
quadrupedal robot, we are able to realize non-conservative
obstacle avoidance with smoother trajectory online. Further,
we develop an end-to-end navigation framework that com-
bines robot perception feedback and the proposed safety-

critical locomotion controller. The proposed framework is
deployed on a quadrupedal robot in the real world and en-
ables the robot to autonomously and safely navigate through
various narrow spaces in simulation and experiments.

II. BACKGROUND

Before diving into the details of the proposed safety-
critical locomotion framework, we first make a brief intro-
duction of the background knowledge that is essential for the
development of the following sections.

A. Discrete-time Control Barrier Functions
Consider a discrete-time dynamical system with states

xk ∈ X ⊂ Rn and inputs uk ∈ U as

xk+1 = fdk (xk,uk), (1)

where U is the admissible input set, which is compact. In
this paper, we consider a safe set of states C, defined as
the superlevel set of a continuously differentiable function
h : X ⊂ Rn → R by

C = {x ∈ Rn : h(x) ≥ 0}. (2)

Throughout this paper, we refer to C as the safe set. For
robotics applications, the function h can be the minimum
distance function between the robot and the obstacle. To
guarantee safety, e.g., obstacle avoidance, we want to make
C an invariant set, i.e., if the initial state lies in C, then the
entire evolution of the state trajectory should also lie in C.

The function h becomes a discrete-time control barrier
function if it satisfies the following relation ∀xk ∈ X ,

h(xk+1) ≥ γ(xk)h(xk), 0 ≤ γ(xk) ≤ 1, (3)

where xk+1 = fdk (xk,uk) for some uk ∈ U , and γ(xk) is
the state-dependent decay rate [25]. The DCBF constraint (3)
enforces h to decrease at most exponentially with the decay
rate γ(xk).

Given a choice of γ(xk), we denote the set of feasible
controls K(xk) as

K(xk) := {u ∈ U : h(fdk (xk,uk)) ≥ γ(xk)h(xk)}. (4)

Then if x0 ∈ C and uk ∈ K(xk) 6= ∅, ∀k ∈ Z+, then
xk ∈ C for ∀k ∈ Z+, i.e., the resulting trajectory, is safe [7].

B. Minimum Distance between Polytopes
1) Polytope representation: We can describe the shape

of the dynamic robot and the i-th static obstacle as convex
polytopes in a l-dimensional space, which are defined using
inequality constraints, respectively, as

R(xk) := {y ∈ Rl : AR(xk)y ≤ bR(xk)},
Oi := {y ∈ Rl : AO

i
y ≤ bOi},

(5a)

(5b)

where R and Oi represent the robot and the i-th obstacle
respectively, AR(xk) ∈ RsR×l,bR(xk) ∈ RsR define the
robot, and AO

i
∈ RsOi×l and bOi

∈ RsOi define the i-th
obstacle. The symbols sR and sOi represent the number of
facets of the polytopic sets for the robot and i-th obstacle,
respectively. Note that the pose of the robot polytope R
depends on the system state.
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Fig. 2. Overview of the proposed framework for safety-critical locomotion control of quadrupedal robots. The black blocks are related to planning and
control, while the blue blocks are for state estimation and vision feedback. The robot uses two onboard depth cameras to perceive the world and leverages
an additional tracking camera to localize itself. The sensed pointcloud is filtered and registered into a 3D occupancy grid (using Octomap [27]) and clustered
into polytopes. After being given a goal location, the global planner finds the desired path without considering the robot’s shape from the robot’s current
position. The NMPC uses clustered polytopes for obstacle avoidance employing the exponential DCBF duality controller and tracking the desired global
path while avoiding obstacles nearby. A higher-frequency WBC then computes the robot’s motor torques based on the optimized results of the NMPC.
Moreover, a state estimator using a Kalman Filter provides the currently estimated robot states to the NMPC and WBC.

2) Primal Problem: The square of the minimum distance
betweenR(xk) and Oi, denoted by di(xk), can be computed
using a QP as follows:

di(xk) = min
yRk ,y

Oi
k

∥∥∥yRk − yOi

k

∥∥∥2 ,
s.t. AR(xk)yRk ≤ bR(xk), AO

i
yOi

k ≤ bOi .

(6a)

(6b)

We directly want to use this as the DCBF function, i.e.,
hi(xk) = di(xk), and enforce hi(xk) ≥ 0. However, the
above optimization problem can only be solved numerically
and not analytically. This results in the difficulty of adding
the minimum distance function in a DCBF constraint to other
optimization problems because it is implicitly defined by (6)
and non-differentiable.

Moreover, the primal problem is a minimization problem
and is not suitable for working with the DCBF constraint (3)
[26]. Instead, we convert the minimization problem (6) into
a maximization problem using the principle of duality.

3) Duality problem: The dual problem of (6) is given by

di(xk) = max
λRk ,λ

Oi
k

−(λRk )TbR(xk)− (λOi

k )TbOi

s.t. AT
R(xk)λRk +AT

O
i
λOi

k = 0,∥∥∥AT
O

i
λOi

k

∥∥∥
2
≤ 1, λRk ≥ 0, λOi

k ≥ 0,

(7a)

(7b)

(7c)

where λRk and λOi

k are the dual variables corresponding to
the primal problem.

Since (7) is a SOCP that is slower to compute, we use
another dual formulation [26] for the distance computation,
which results in a QP, and is given by

di(xk) = max
λRk ,λ

Oi
k

−1

4
(λOi

k )TAO
i
AT
O

i
λOi

k

− (λRk )TbR(xk)− (λOi

k )TbOi

s.t. AT
R(xk)λRk +AT

O
i
λOi

k = 0,

λRk ≥ 0,λOi

k ≥ 0.

(8a)

(8b)

(8c)

The QP (8) results in the same optimal value di(xk) as (7),
but the optimal solution of (8), λRk and λOi

k , is a scaled
value of that of (7).

C. Exponential DCBF Duality Constraints

To reduce the complexity of the DCBF constraints when
used in MPC, we make use of exponential DCBF constraints,
where instead of enforcing (3) we enforce the following
constraint,

hi(xk) ≥ (Πk
n=0γn)hi(x0), (9)

where k represents the time index in the MPC and x0 is the
current state. Note that (9) is obtained by rolling out time in
the DCBF constraint (3). It can be shown that the exponential
DCBF constraint (9) is equivalent to the following set of
exponential DCBF duality constraints [26],

−(λRk )TbR(xk)− (λOi

k )TbOi
≥ (

k∏
n=0

γn)di(0)

AT
R(xk)λRk +AT

O
i
λOi

k = 0,∥∥∥AT
O

i
λOi

k

∥∥∥
2
≤ 1,

λRk ≥ 0,λOi

k ≥ 0,

(10a)

(10b)

(10c)

(10d)

where di(0) = di(x0) is the square of the minimum distance
between the robot and the i-th obstacle at the current state
x0, calculated using the distance QP (8). As we will see,
the above exponential DCBF duality constraints (10) will
be incorporated into an NMPC to guarantee safety for the
locomotion control of quadrupedal robots.

III. OVERVIEW OF PROPOSED FRAMEWORK

Having developed the math background, we next present
an overview of our entire framework as illustrated in Fig. 2.

The robot is equipped with depth cameras and a tracking
camera. The environment is perceived via the depth camera
by a pointcloud, and the tracking camera estimates the
odometry of the robot through Visual-Inertial Odometry.
With estimated robot location, the pointcloud is filtered
and registered in a 3D occupancy grid by Octomap [27]
at 10Hz. To describe the shape of obstacles nearby, the
entire registered pointcloud is clustered into multiple small
polytopes according to Euclidean distance and the quickhull
algthom [28]. To be more computationally efficient, we only
consider clustering the voxels near the robot, i.e., in a local
map, and such a polytope clustering runs at 3 Hz. The



clustered 3D polytopes are projected to the ground to find
the 2D convex polytope representation of the obstacles. The
Octomap also generates a projection to the ground to obtain
a 2D occupancy grid map for global planning.

The global planner generates a path at a low frequency
using Dijkstra’s algorithm without considering the robot’s
shape. The path of waypoints for the robot is first generated,
and the yaw angles are set to be corresponding to forward
orientations along the path. The path is converted to a
trajectory according to a preset velocity and nominal joint
angle and then tracked by the following NMPC controller
with an exponential DCBF with duality to consider avoidance
of the bounding polytopes of obstacles while controlling the
robot’s locomotion.

The NMPC controller uses a centroidal dynamics model
of the quadrupedal robot [29] with the system states as the
robot’s base pose, base momentum, and joint positions, and
the system inputs as the ground contact forces and joint
velocities. To avoid collisions with local obstacles, we add
the exponential DCBF duality constraints (10) for polytope
obstacle avoidance. To ensure the robot’s movement, the
NMPC evaluates optimized system states and inputs, com-
bined with other constraints, such as friction cone constraints.
A Whole-body Controller (WBC) [30] follows the MPC to
compute the robot’s optimal generalized acceleration, contact
forces (ground reaction forces), and joint torques according
to the optimized states and inputs from the NMPC. The
torque computed by WBC is set as a feed-forward term and
is sent to the robot’s motor controller. Combined with joint-
level PD commands, this could reduce the shock during foot
contact and improve tracking performance.

Running in the same loop with WBC, a Kalman Filter
estimates the robot’s base position and velocity from the
onboard measurements of base orientation, base acceleration,
and feet positions obtained by measured joint positions and
the robot’s forward kinematics.

IV. NMPC DCBF DUAL FORMULATION

In this section, we briefly describe the formulation of
NMPC with the exponential DCBF with duality for obstacle
avoidance and then present some implementation details.

A. NMPC for Quadrupedal Locomotion

Consider a Nonlinear Model Predictive Control formula-
tion with horizon N as

min
{xk,uk}

N−1∑
k=0

lk(xk,uk),

s.t. x0 = x(0),

xk+1 = fdk (xk,uk), k = 0, ..., N − 1,

gk(xk,uk) = 0, k = 0, ..., N,

hk(xk,uk) ≥ 0 k = 0, ..., N,

(11a)

(11b)

(11c)
(11d)
(11e)

where xk is the state and uk is the input at time k, x(0) is
the current state, lk is a time-varying stage cost. We want to
find the control input that minimizes the total cost subject
to the initial state x(0), system dynamics fdk (xk,uk), and

the general equality gk(xk,uk) and inequality hk(xk,uk)
constraints.

1) System Dynamics: We use a previous NMPC formula-
tion using centroidal dynamics of a quadruped described in
[31], where the system states x ∈ R24 and inputs u ∈ R24

are defined as

x = [hT
com,q

T
b ,q

T
j ]T , u = [fTc ,v

T
j ]T (12)

where q = [qT
b ,q

T
j ]T is the generalized coordinate, and the

ZYX-Euler angle parameterization is assumed to represent
the robot’s torso’s orientation. hcom = [pT

com, l
T
com]T ∈ R6

is the collection of the normalized centroidal momentum,
fc ∈ R12 consists of contact forces at four contact points,
i.e., four ground reaction force of foot. qj and vj are the
joint positions and velocities. The continuous-time system
flow map is given by

d
dt


pcom

lcom
qb

qj

 =


1
m

4∑
i=1

fci + g

1
m

4∑
i=1

rcom,ci × fci

A−1b (hcom −Mjvj)
vj

 (13)

where m is the robot total mass, rcom,ci is the position
of the i-th foot w.r.t to the center of mass, while A(q) =
[Ab(q) Aj(q)] ∈ R6×18 is the centroidal momentum matrix
which maps generalized velocities to centroidal momentum.
Readers can refer to [29] for more details. The dynamics
(13) can be discretized and expressed in the discrete-time
form (11c).

2) Cost: The cost (11a) is a quadratic tracking cost to
follow a given full system state trajectory, including base
pose (and/or its twist), normalized momentum, and nominal
joint positions.

3) Constraints: The gait (periodic contact sequence) is
predefined, so we can formulate the constraints to ensure
that stance legs remain on the same footholds and the swing
legs follow predefined curves for the feet’ heights with zero
contact force. A friction cone constraint of each stance leg
is also added to avoid slipping. For more details about
constraints, please see [31].

B. Exponential DCBF Duality Constraint

The NMPC shown in Sec. IV-A has not considered obsta-
cle avoidance. To achieve safety-critical locomotion control
with obstacle avoidance, we add exponential DCBF duality
constraint (10) to the NMPC (11) by including (10a), (10c),
(10d) as inequality constraints hk(xk,uk), and (10b) as
equality constraints gk(xk,uk).

1) Signed Distance: In order to let the solver know how
"intrusive" the robot is with the obstacles, we use signed
distance duality formulation [20] by replacing the inequality
norm constraint (10c) with an equality constraint∥∥∥AT

O
i
λOi

k

∥∥∥
2

= 1. (14)

Although the convex constraint (10c) is then turned into a
non-convex equality constraint, (14) is an equality constraint



and can be handled through a projection method, and the
solving time can be unaffected. The advantage of using such
a signed distance formulation is that, even if it collides
with the obstacle in the real world, e.g., due to external
perturbations, the robot will move away from the obstacle.

2) Margin: The CBFs (10a) are modified with two con-
stant small margins α, β ≥ 0 as

− (λRk )TbR(xk)− (λOi

k )TbOi
≥ (

k∏
n=0

γn)d̃i(x0) + α,

where α is the minimum distance margin between the
polytopes of the robot and obstacles. d̃i(x0) is given by

d̃i(x0) = max{di(x0)− β, 0}, (16)

where β is a margin to prevent the robot from adopting a
conservative strategy, e.g., taking a large detour or stopping
in front of the obstacle at the earlier stage of the NMPC.

C. Optimization Setup

We add the dual variables λRk and λOi

k into the system
inputs of the optimal control problem (11). To solve this,
a multiple shooting method is leveraged to transcribe the
optimal control problem to a nonlinear program (NLP)
problem, and the NLP is solved using Sequential Quadratic
Programming (SQP) where the QP subproblem is solved
using HPIPM [32]. For more details regarding the solving
process and algorithm, we refer the reader to [26]. The
numerical optimization is formulated in OCS2 [33]. In the
scenario where four obstacles (each with 15 vertices) are
presented, the optimization can be solved in around 25 ms.

At each NMPC iteration, the initial guess of dual variables
over the MPC horizon λ̃Rk,MPC and λ̃Oi

k,MPC is provided. We
first solve the QP formulated in (8) using initial state of the
NMPC x0 and set the initial guess based on its solution as:

λ̃Rk,MPC =
λR
∗

k,QP

2di(x0)
, λ̃Oi

k,MPC =
λ
O∗i
k,QP

2di(x0)
. (17)

These initial guess remains constant over the MPC horizon.
We empirically found that using such an initial guess, the
computing time can be significantly improved.

D. Whole-Body Control (WBC)

After solving the above-mentioned NMPC with exponen-
tial DCBF duality, we can obtain the optimized position
and/or velocity profiles of the base, joints, and contact force
from the optimizer. These are then utilized in a hierarchical
optimization whole body controller [30], which computes the
torque for each joint according to the optimized result from
the NMPC in a prioritized way. The decision variable of
WBC is: xwbc = [q̈T , fTci , τ

T ]T , where q̈ is the generalized
acceleration, and τ is the torque of all actuated joints.

With multiple tasks (equality and inequality constraints)
defined, the WBC solves the QP problem in the null space
of the higher priority tasks’ linear constraints and tries to
minimize the slack variables of the inequality constraints.

(a) (b) (c) (d)

Fig. 3. Snapshots for four different constraint formulations in simulation:
(a) Euclidean Distance Constraint, (b) Euclidean Distance Exponential
DCBF, (c) Duality Constraint, (d) Exponential DCBF Duality (ours). Lighter
snapshots are earlier in time. Overall, the robot paths (green) using CBFs
(b)(d) are smoother than the ones without CBF in (a)(c). By considering
the obstacle’s shape by duality formulation in (c)(d), the robot is able to
avoid the obstacle less conservatively compared to the ones using Euclidean
distance constraints in (a)(b).

This approach can consider the full nonlinear rigid body
dynamics and ensure strict task priority [30].

We implement the WBC using the Pinocchio rigid body
library [34] and qpOASES QP solver [35]. We also run state
estimation in this same control loop.

V. RESULTS

After introducing the entire formulation for the proposed
safety-critical locomotion controller for quadrupeds, we now
move on to deploy the framework on a quadrupedal robot A1,
which has 12 actuators and is 0.3 m wide and 0.6 m long. We
validate our proposed algorithms in both simulation and ex-
periments, and the results are recorded in the accompanying
video. In the simulation, we first demonstrate the concept of
NMPC with exponential DCBF duality constraints by avoid-
ing a single obstacle using four different controllers. In order
to highlight the advantages of the polytopic approximation,
we further benchmark the proposed controller with a baseline
in environments with random obstacles.

A. Single Obstacle Simulation

We evaluate the proposed method in simulation using the
robot dynamics in Gazebo. To better demonstrate the effect
of the duality and exponential DCBF constraints, we test
four controllers in simulation as shown in Fig. 3. The robot
is commanded to a goal while avoiding a square obstacle in
the middle between the starting and ending points. There are
four controllers which use different formulations for obstacle
avoidance: 1) Euclidean Distance Constraint (Fig. 3a) where
the robot and obstacle are approximated by circles, and
then their separations (l2 distances) are constrained to be
positive over the entire MPC horizon. 2) Euclidean Distance
Exponential DCBF (Fig. 3b) where the l2 distances between
robot and obstacles are used as the function h in exponential
DCBF defined in (9). 3) Duality Constraint (Fig. 3c) where
the robot and obstacles are bounded by polytopes which
are constrained to be separated by duality-based optimiza-
tion [20] without CBF, and 4) the proposed exponential
DCBF Duality (Fig. 3d) where both polytopes and CBFs
are used to avoid collisions.

By comparing Fig. 3(a, b), which uses Euclidean distance
that can only use circular shape approximation, and Fig. 3(c,
d), which uses duality-based constraint that supports finer
shape approximation by polytopes, we find that the robot has
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Get stuck!

(c) (d)

Get stuck!

Fig. 4. Benchmark with collision avoidance methods in narrow spaces.
The proposed method uses exponential DCBF Duality that uses CBF on the
polytopes avoidance while the baseline uses Euclidean Distance Exponential
DCBF where the robot and obstacles are approximated by spheres. In
cluttered environments, the robot can get stuck more often and adopt a very
slow speed because of the over-approximation using spheres. For example,
in (a)(c), the robot gets into a deadlock in narrow spaces. On the contrary,
(b)(d) using the proposed method, the robot can freely travel through the
same place at high speed because the duality-based CBF allows us to have
a finer description of the shapes of the robot and obstacles.

less detour in Fig. 3(c, d) than in Fig. 3(a, b). Such a property
allows the robot to maneuver in a tighter space. Furthermore,
by introducing the exponential DCBF, the robot is able to
react to the obstacles earlier, such as Fig. 3b compared to
Fig. 3a, and Fig. 3d compared to Fig. 3c. Therefore, the robot
shows a smoother trajectory in Fig. 3(b,d) and can avoid the
obstacle without having to make a sudden change in heading
when the robot is close to the obstacle in Fig. 3(a,c).

B. Advantages of Travelling in Narrow Spaces

In order to showcase the advantages of the polytopic
approximation over commonly-used spherical approximation
for obstacle avoidance, we compared the proposed navigation
framework with the one using Euclidean Distance Exponen-
tial DCBF formulation (Fig. 3b) to navigate narrow spaces.
The test is deployed in two maps as shown in Fig. 4. In the
first map, the robot can easily get stuck in the narrow space
(Fig. 4a) because the over-inflation using spheres makes the
free space untraversable. In contrast, the proposed method
using exponential DCBF Duality can freely travel through
the same place because it can consider finer shapes of the
robot and environment by polytopes, as illustrated in Fig. 4b.
To quantitatively evaluate these two methods, we perform
48 trials with random different robot’s initial poses, and
target poses on this map, and the average traveling time,
number of successful trial completion without collision, and
failure rate using these two methods are recorded in Table I.
Results show that the method using polytopic approximation
can reach the goal much faster than the spherical baseline
(8.4 sec versus 13.5 sec) while having less chance to collide
or get stuck in the environment (20.8% versus 50%). Such
advantages are further highlighted in the second map, a more
challenging scenario with a long narrow corridor as shown
in Fig. 4c,d. The navigation autonomy using the spherical

TABLE I
THE BENCHMARK OF THE PERFORMANCE USING DIFFERENT METHODS

TO TRAVEL THE MAPS SHOWN IN FIG. 4.

Method Time (s) Completion Fail Rate (%)
Map 1, 48 random initial and target poses

Duality (Ours) 8.4 38 20.8%
Euclidean Distance 13.5 24 50.0%

Map 2, 16 random initial and target poses
Duality (Ours) 9.1 15 8.3%

Euclidean Distance N/A 0 100.0%

1 2 3 4 5 6

0

10

20

30

40

50

Number of obstacles

C
om

pu
ta

tio
n

tim
e

[m
s]

Exponential-DCBF Duality
Duality

Fig. 5. Computation time of NMPC with the different number of obstacles
using the exponential DCBF duality (proposed) and the one without CBF
(Duality) for obstacle avoidance. The test is deployed on the robot’s onboard
computer with a regular CPU. The number of vertices of each obstacle is
15. Using CBFs results in negligible additional computing time of 1.55 ms
on average, but it brings clear advantages by allowing the robot to have a
smoother trajectory shown in Fig. 3.

approximation failed in all 16 trials because the robot gets
stuck to entering the corridor, while the proposed method can
freely travel through such a tight space and only results in an
8.3% failure rate. Some of the failures using the proposed
method are due to an infeasible global path that does not
consider the robot’s configuration.

Such a quantitative benchmark highlights the advantages
of the proposed method, which results in a safe and fast
trajectory for the robot to travel in a tighter space that can be
untraversable by commonly-used spherical approximation.

Remark 1: We must note that one can potentially use an
ellipsoid [36] for approximating the shapes of the robot and
obstacles instead of multiple spheres. However, using single
ellipsoids will result in conservative approximations in one
of the minor or major axis directions. Super-ellipses [37]
can also be used for tighter approximations, however, these
use fractional powers of distances and could lead to non-
smooth changes in the control input and are also sensitive to
numerical tolerances.

C. Computing Speed

Having seen the advantages of CBFs (Sec. V-A) and
duality-based formulation (Sec. V-B), we now investigate the
cost of using CBFs: the computing speed. Compared to one
simple state constraint, the duality-based CBFs formulated
in (10) introduce additional constraints, which may slow
down the solving time critical for online deployment. We
measured the computation time of solving NMPC using the
proposed method (exponential DCBF Duality) with Duality
constraint (no CBF) on the robot onboard computer with
Intel Core i7-1165G7 CPU. In Fig. 5, we record the solving
time with different numbers of obstacles, each having 15
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Fig. 6. Visualization of the planning data for a quadruped using the
proposed framework, where data is taken from an experiment in the real
world. The user-commanded 2D goal is drawn as a blue arrow; the path
found by the global planner is shown as a chain of axes; the green curve
represents the robot torso’s history path; polytopes of the robot and obstacles
are marked as the red bounding boxes.

vertices. According to Fig. 5, the NMPC computation time
increases with the number of obstacles and with the use of
CBFs. However, the usage of exponential DCBF in (10) only
requires an average of 1.55 ms more solving time than the
one without CBF, which is negligible. This study rules out
the concern of the potential drawback of CBFs.

Summary of the Ablation Study: After the above-
mentioned ablation study, we can summarize three points re-
garding our obstacle avoidance formulation: (i) CBFs makes
the robot trajectory much smoother (Fig. 3), (ii) the polytopic
approximation by duality-based optimization enables the
robot to travel through a tighter space with a faster speed
(Fig. 3, Fig. 4), and (iii) using CBFs results in an insignificant
increase in computing time (Fig. 5) which enables online
deployments on robots. These lead to an exponential DCBF
Duality formulation which is the proposed method.

D. Experimental Setup

We now deploy the entire pipeline shown in Fig. 2 on the
hardware of A1. The hardware and simulation interface, state
estimation, and WBC are open-sourced. The parameters used
in the framework shown in Fig. 2 are explained as follows.
The resolution of Octomap is 0.025 m, and it generates a
projected occupancy grid map with the same resolution.
The global planner re-plans with the linear tolerance of
0.1 m. The timespan for NMPC in Sec. IV-D is set to
T = 1.0 s is used with a nominal time adaptive discretization
of δt ≈ 0.015 s. We use a trotting gait with a 0.5 s gait
cycle. The polytopic obstacles used for exponential DCBF
duality constraints are chosen as the closest four obstacles to
the robot (within a 1 m box), and the maximum number of
vertices of each polytope is set to 15. The robot is represented
by a rectangle with the 0.32 m width and 0.6 m length.
Margins are set to α = 0.03 m, β = 0.06 m and decay rate
γ(x) = 0.98 is used in the exponential DCBF constraints.
The robot’s desired linear velocity is set to 0.5 m/s.

E. Navigation through Narrow Environments

We carried out four experiments in the real world as
presented in Fig. 7 and consist of navigating in 1) Straight
corridor with two obstacles, a 0.5 m minimum clearance,
and 2.5 m-long path, 2) L-shape corridor with three ob-
stacles, a 0.6 m minimum clearance, and a path length of
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Fig. 7. Planning data visualization from experiments in four scenarios.
For each scenario, snapshots of the robot’s motion in time are shown.
The obstacles are represented by polytopes (a red bounding box) after
clustering the pointcloud, and a rectangle bounds the robot. Using the
proposed method, the robot can safely and swiftly travel through all of
these narrow spaces.

about 2.5 m. 3) V-shape corridor with four obstacles and
a path length about 2.0 m, and 4) Random obstacles with
four different obstacles and a path length about 5.5 m.

During experiments, the robot was commanded to go
through these narrow corridors respectively and return back;
we also commanded the robot randomly in the Random
corridor. The experiments are recorded in the accompanying
video, and the visualization sequences of environments and
states generated by mentioned experiment data are shown in
Fig. 7, and the visual representations are detailed in Fig. 6.

As demonstrated in Fig.7, in the straight corridor trial,
the robot can slow down and turn its heading 90 degrees
to fit itself into the corridor. After the robot enters the
corridor, it speeds up to the desired speed while avoiding
collision with the walls on both sides. In the L-shape and
V-shape corridors, the robot decelerates at the corners to
turn its body slowly without colliding with the cluttered
obstacles nearby. In the random obstacles trial, the robot
showcases the capacity to smoothly navigate in the free space
formulated by the random obstacles, even fitting into the gap
between adjacent obstacles. Throughout these experiments,
the minimum distance between the robot and obstacles is
typically reached when the robot is turning or trying to
squeeze between two obstacles. However, the robot never
collides with the obstacle throughout all experiment trials.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a Nonlinear MPC framework
based on exponential DCBF duality for safety-critical loco-
motion control on quadrupedal robots. The proposed frame-
work enabled the quadrupedal robot to safely and smoothly
walk in narrow spaces by considering the shapes of the robot
and the obstacles as polytopes. By extensive ablation study,
we showed that the introduction of polytopic approximation



allows the robot to travel through tighter spaces, and the CBF
results in a smoother robot trajectory with an insignificant
increase in computing time. This highlights the advantages of
the proposed method for navigation and autonomy of legged
robots. We validated our approach on a quadrupedal robot
hardware, A1, in various obstacle-laden environments, and
the robot shows the ability to maneuver swiftly through these
cluttered environments. However, we have only considered
the navigation problem in 2D space. Future work could
include implementing 3D obstacle avoidance with polytopes
in a tighter space. Moreover, to robustify the proposed
method, control errors can be considered like [38], and the
DCBF Duality constraints can also be added in WBC.
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