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Abstract— The capabilities of autonomous flight with un-
manned aerial vehicles (UAVs) have significantly increased
in recent times. However, basic problems such as fast and
robust geo-localization in GPS-denied environments still remain
unsolved. Existing research has primarily concentrated on
improving the accuracy of localization at the cost of long
and varying computation time in various situations, which
often necessitates the use of powerful ground station machines.
In order to make image-based geo-localization online and
pragmatic for lightweight embedded systems on UAVs, we
propose a framework that is reliable in changing scenes, flexible
about computing resource allocation and adaptable to common
camera placements. The framework is comprised of two stages:
offline database preparation and online inference. At the first
stage, color images and depth maps are rendered as seen
from potential vehicle poses quantized over the satellite and
topography maps of anticipated flying areas. A database is then
populated with the global and local descriptors of the rendered
images. At the second stage, for each captured real-world query
image, top global matches are retrieved from the database and
the vehicle pose is further refined via local descriptor matching.
We present field experiments of image-based localization on two
different UAV platforms to validate our results.

I. INTRODUCTION

Geo-localization for UAVs operating in GPS-denied en-
vironments has been an active research area due to its
critical need for practical applications. This is because GPS
signal loss is inevitable due to various unpredictable factors
in real-world flight missions. Image-based geo-localization
methods are intuitive and also biologically inspired. For
an agent that is isolated from global localization sources,
visual information is a reliable observation that the agent
can actively collect for localization. As a growing number
of satellite imagery sources are made public, they have
unleashed the potential of image-based methods. Particularly,
the more accessible topographic information of terrains and
buildings offers a unique advantage.

An ideal set of capabilities for an image-based geo-
localizer may contain the following aspects. Firstly, while
multiple sensor inputs can be fused for localization, it should
be able to localize purely with images. This requirement
enhances the safety of the agent in the event of sensor
failures. Next, it is desirable for the geo-localizer to use query
images which are not captured strictly perpendicular or nadir
to the ground, because the camera may not only be utilized
for geo-localization but also have other purposes requiring
capturing a forward view, e.g. obstacle avoidance at low
elevations. This demand necessitates the localization outputs
in more degrees-of-freedom (DOFs) as opposed to solely
latitude and longitude. Furthermore, the geo-localizer should
be ideally capable of being bootstrapped. In situations where
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Fig. 1: The proposed geo-localization pipeline. The steps numbered in
Roman numerals (i-iv) introduce the procedure of the offline database
preparation (Sec. III-A) of the descriptor database and those in Arabic
numerals (1-6) define the onboard inference (Sec. III-B) based localization
strategy. The pose and field of view of the quadrotor along with a captured
query image from one of our experiments are shown.

no initial positions are available for the agent or long periods
of GPS interruption is present, the geo-localizer needs to
determine the position without prior knowledge. Ultimately,
it is important to have the ability to infer location in real-time
on low-power and low-compute UAV platforms.

In order to meet the above requirements and address
existing issues, we propose an image-based geo-localization
pipeline shown in Fig. 1. This pipeline consists of two
phases. During the first offline database preparation phase,
potential vehicle poses are sampled at a nominal flight
attitude within a specified prospective flying area. Next,
color images and depth maps are rendered as seen from
the above sampled vehicle poses. Eventually, a database
containing the global or whole-image descriptors and local
descriptors of the rendered images, along with the depth
maps, is constructed and loaded on the vehicle. The second
phase is to perform online localization onboard the vehicle.
This is achieved as follows. For each incoming query image



TABLE I: A comparison among popular geo-localization methods regarding a variety of attributes. Within each attribute, the methods which are regarded
to produce results that are the most advantageous to aerial applications are highlighted in bold and colored red. The statistics are selected to demonstrate
the nominal performance of each method by excluding the results from extreme cases presented in the corresponding papers.

Attribute Direct alignment Feature matching
NID [1] MI [2] ICLK with depth [3] ICLK with homography [4] Siamese NN [5] SIFT [6] Autoencoder [7] Ours

Stand-alonea No, needs VO No, needs IMUs Yes Yes No, needs VO Yes Yes Yes
Nadir camera Yes Yes No Yes No No Yes No
Min. working height 36-48m 125-175m - 200-220m 100-200m - 40m 18m
Desired path Yes No No No No No Yes No
Initial position Yes Yes Yes Yes No No Yes No
Degrees of freedomb 4 4 6 6 6 6 3 6
onboardc No No No No No No No Yes
Real-timed No No Yes No Yes No Yes Yes
Computing platform - Xeon 2.8GHz GeForce RTX 2080 Ti Core i5 2.9GHz GeForce GTX 1050 - Core i7, Quadro P2000 Jetson AGX Xavier
Inference frequency < 0.2Hz - 4.83Hz 0.12Hz 2.22Hz - 9.09Hz 1.12Hz
Translational error < 3m (3D, RMSE) 12.76m (3D, RMSE) 4.37m (3D, MAE) 10.68m (3D, MAE) 36.0m (3D, RMSE) - 1.81m (2D, RMSE) 2.82m (3D, RMSE)
Image dimensionse 560× 315 650 × 500 752 × 480 200× 200 - - 320× 160 640 × 480
aRequires no additional sensors or estimate sources to assist the localization. bThe number of DOFs of the resulting poses directly from the geo-localizer. eThe dimensions are defined as width × height.
cBoth data collection and pose estimation are finished onboard on the vehicle. dThe frequency of localization should not be too slow compared to the cruising speed and here 1Hz is regarded as the boundary.

collected by the UAV, the image is firstly encoded as a global
descriptor and a set of local descriptors using neural networks
(NNs). The encoded global descriptor is then matched over
the database to find the most similar candidates. After that,
the correspondences between the query and candidate sets
of local descriptors are matched using NNs again. The
absolute global coordinates of the matched correspondences
are retrieved from the rendered depth maps. Ultimately, by
combining the global coordinates and their projections on
the query images, a Perspective-n-Point (PnP) problem is
formulated and solved. We next summarize our contributions
below.

• We present a pragmatic image-based geo-localization
package that executes on embedded systems at a high
frequency.

• Our approach has the ability to adapt to downward-tilted
camera configurations that are not rigorously nadir,
therefore exploiting the existing setups.

• Our approach does not require a desired flight path for
preparing the map database, thus enabling more flexible
maneuvers.

• Our approach does not require prior knowledge of the
initial positions for online localization, making it easier
to choose the take-off location for the UAV.

This paper is structured as follows. It begins with back-
ground knowledge and related work in Sec. II where image-
based geo-localization, feature descriptors and camera pose
estimation are covered respectively. After that, we introduce
our proposed method in Sec. III which is divided into
the database preparation and onboard inference parts. The
experimental setups and results are presented in Sec. IV
along with the detailed procedure and analyses. Finally, we
conclude with future work in Sec. V.

II. BACKGROUND AND RELATED WORK

We present the necessary background knowledge of
image-based localization methods in this section. A brief
survey of popular approaches can be found in TABLE I.

A. Image-based geo-localization

In the early years of research into global localization
of aerial vehicles using satellite maps, approaches largely
concentrated on binarizing the query images and directly
aligning them over a geo-referenced map database [8].
Key assumptions were made in early work to simplify the

problem, such as the low complexity in the scenes and
high elevations at which the experiments were operated.
After the emergence of key point detectors and feature
descriptors which offer more compact representations of the
useful information contained in an image, these were then
employed in the geo-localization field as a new genre, named
the feature matching method, e.g. the robust Scale-Invariant
Feature Transform (SIFT) detector and descriptor [9]. More
detailed and advanced feature matching methods include
matching the query images over an entire target map [6] and
individual mosaics of the map [10] have been developed.

However, the handcrafted descriptors are computationally
expensive and vulnerable to scene changes incurred by
different seasons and lighting conditions. The first genre, the
direct alignment method, again evolved to have the edge over
the feature matching method in accuracy and scene tolerance.
Mutual Information (MI) and optical flow are two typical
modern direct alignment methods. They align two images in
an incremental manner that does not require explicit presence
of specific and similar key points in both images. Relative
shift and rotation between images are parameterized to be
the decision variables and difference metrics such as MI
are minimized. Recent research shows that the method is
capable of achieving superb localization accuracy whilst al-
lowing inevitable discrepancies between query and database
images, although approximate pose guesses are essential to
initializing the optimization [1]–[4].

To eliminate the need for initial guesses, cross-view
image-based hierarchical localization algorithms such as HF-
Net [11], [12], or even those focusing on matching ground
views to aerial imagery [13]–[15], are inspiring for aerial
geo-localization applications. The general philosophy that
these algorithms follow is to invoke the power of NNs
to semantically summarize the query and database images,
either globally or locally, in order to tolerate the large vi-
sual difference caused by cross-view deformation and scene
changes. Then, they formulate the localization problem as
a retrieval task over a database consisting of mosaics of the
collected maps. However, these databases are usually formed
with real-world images which are not always available in
aerial cases.

B. Image and feature descriptors

Feature descriptors play an important role in image re-
trieval problems. From the coverage perspective, descriptors



are mainly categorized into global and local ones. Global de-
scriptors, also known as whole-image descriptors, condense
and encode the entire image to a lower dimensional space
where similarity measures, or distance metrics, between im-
ages are easier to apply. Local descriptors aim at specific key
points on the image and encode the content around the key
points. Handcrafted descriptors, e.g. SIFT and Speeded Up
Robust Features (SURF) [16], etc., have been used as both
whole-image [10] and local descriptors [6] for localization
by adjusting their effective radii.

Because of the limited complexity and handcrafted nature
of these descriptors, they were then replaced by NN-based
methods such as NetVLAD [17] that aggregates local de-
scriptors, which can be SIFT, SURF or even NN-based ones
such as SuperPoint [18], to encode the whole image.

C. Pose estimation

Localizing an agent in three-dimensional (3D) space with
6 DOFs is widely adopted in the simultaneous localization
and mapping (SLAM) community because of the short
relative distance between the agent and environment. Never-
theless, by imposing a flat-ground assumption due to imaging
from higher elevations, most of the aforementioned geo-
localization algorithms can then target more concise outputs
with fewer DOFs by excluding the altitude, pitch and roll of
the vehicle. This flat-ground assumption also validates the
use of 2D satellite maps which are more easily available.
On the other hand, geo-localization algorithms which do not
require a rigorously nadir camera usually output full 6-DOF
poses by decomposing the calculated planar homography to
a set of rotations and translations [4].

With more frequently updated modern 3D map sources
such as Google Earth, it has become possible to reduce the
minimum working height and to compute and output poses
of more DOFs by replacing the flat-ground assumption with
richer depth information, thus allowing the geo-localization
to be formulated as a PnP problem.

III. METHODOLOGY

In this section, we present our methodology that is primar-
ily divided into two parts: (1) the offline database prepa-
ration given a potential flight venue and (2) the onboard
inference pipeline for real-time localization. Fig. 1 gives a
full visual overview of the two parts.

A. Database preparation

The essence of image-based localization is the retrieval of
recorded information at an acceptable speed and accuracy.
Instead of storing the entire satellite map as a whole, cropped
mosaics of the map are generated (see Sec. III-A.1 on
image rendering) and the mosaics are encoded into a lower
dimensional space (see Sec. III-A.2 on image encoding).

1) Image rendering: Google Earth offers high-quality
Earth maps in the sense of high-resolution satellite imagery,
fine-grained 3D models of ground buildings and comprehen-
sive topography information. We begin by retrieving these
three parts from Google Earth via an open-source map

builder [19]. Next, we use Blender to stitch the downloaded
colored meshes into a single piece according to their co-
ordinates and rotate to fit the built-in x-y plane. To achieve
the coordinate switch, we override the latitude-longitude geo-
graphic coordinate system with the relative metric coordinate
system. We call this the Blender coordinate system and define
the origin arbitrarily to the stitched mesh. The geographic
coordinate of the Blender origin is recorded. By assuming
a negligible variation in the earth radius over the target
terrain, the great-circle distance between a selected point and
the Blender origin is regarded as the real-world distance.
Conversely, to convert the distance back to the geographic
coordinate, the Blender origin is used as the reference and
the differences in distance are added or subtracted from it.

Next, we compute potential camera poses in the Blender
coordinates in order to render images from the stitched map
to generate mosaics. The ranges and spacings of the camera
poses in x-direction, y-direction, elevation, heading and pitch
angle are determined empirically in compliance with the
area of the flight venue, the camera setup and the vehicle’s
onboard storage capacity. An effectual way of deciding the
parameters for creating our database is detailed next.

(i) We begin with setting the simulated elevation to the
nominal flight height of the mission. A camera with a
vertical field of view (FOV) of around 68° flying at an
elevation of about 70m can give ±29% tolerance to the
real vehicle height, i.e. with a single layer of potential
camera poses simulated at an elevation of 70m, the real-
world localization can then be achieved between around
50-90m. Additional layers of different elevations can be
added to create hierarchical maps to increase the vertical
working range of the vehicle.

(ii) The spacings of the camera poses in the x- and y-
directions are identical. In practice, this spacing is
determined using the following two steps. Firstly, we
obtain the rectangle projected by the camera when it is
pointed strictly downward to a level ground. Secondly,
a quarter of the shorter side of the rectangle is adopted
as the spacing, e.g. for the aforementioned camera and
nominal elevation, the spacing is 10m.

(iii) A spacing of 30° in the heading is used for a camera
with a horizontal FOV of 84°. It is recommended to
have a resulting overlap of 50% or above of the camera’s
horizontal FOV.

(iv) The simulated pitch angle of the camera is aligned
to the installation angle of the real camera. Images
can be rendered with additional pitch angles for extra
robustness of localization.

Finally, the simulated images and corresponding depth
maps are rendered at the spaced camera poses, as shown
from Steps (i-ii) in Fig. 1. To maximize the amount of useful
information contained in the 3D map, diffuse reflection is
desired because any artificial shadows may cause unwanted
visual discrepancies in the images. Hence, in Blender, the
specular attribute in the material settings is tuned to the
minimum possible value so that bright highlights on glossy



surfaces are suppressed and the resulting reflections are more
viewpoint-independent.

2) Image encoding: Instead of storing the generated mo-
saic images of the map, we store the descriptors of the im-
ages. There are a variety of choices of whole-image descrip-
tors and compressed representation of images. NetVLAD
[17] is employed in this case as the global descriptor because
it is easily accessible in almost all deep learning frameworks.
We use the version modified by [11] to combine the features
extracted by MobileNet [20] with a NetVLAD layer. Their
pre-trained weights are used out-of-the-box to generate the
global descriptors for the rendered images. For a simple rep-
resentation in our implementation, each global descriptor is a
1-by-4096 row vector and all global descriptors are vertically
concatenated to form a N -by-4096 global descriptor array for
N rendered images. This aggregated global descriptor array
is then serialized as a Python pickle binary file that is loaded
onto the UAV.

SuperPoint [18] is applied as the local descriptor choice.
Unlike handcrafted descriptors such as SIFT whose number
of detected key points can vary, NN-based descriptors trigger
a fixed amount of computation from end to end while also
being more robust to scene changes. For each pose, the
calculated local descriptors are serialized as a single file.
The database containing these encoded global and local
descriptors is presented as Steps (iii-iv) in Fig. 1.

Instead of matching descriptors via the brute-force matcher
which iterates over all elements in the two sets without the
awareness of semantic content, SuperGlue [21] (proposed
as a supporting matcher for SuperPoint) is used to find
the correspondences between the local descriptors from two
images. SuperGlue’s pre-trained weights are utilized for
inference due to its good exposure to outdoor street photos
in the training set.

B. Onboard inference

After finishing the offline database preparation step, the
3D map and rendered images are discarded and only the se-
rialized global descriptor array, the local descriptors and the
depth maps are transferred to the aerial vehicle. NetVLAD,
SuperPoint and SuperGlue network weights together with the
calculated global descriptor array are de-serialized into the
memory in advance for fast inference. When a query image
is sent for inference, it is undistorted and down-sampled to
match the dimensions of the prepared images, 640× 480 in
our case. We next detail the steps involved in online geo-
localization.

1) Matching strategy: We begin by calculating a global
descriptor for the query image captured from the UAV
camera. The `2-norm of the differences between the query
image’s global descriptor and every single global descriptor
in the prepared array are computed and sorted in ascending
order. After that, local descriptors are inferred for the query
image and matched with the top n candidates in the sorted
list using SuperGlue. Here, n is determined by the trade-
off between performance and accuracy. Steps (1-4) in Fig. 1
illustrate the procedure of the matching strategy.

GPS receiver

Downward-tilted 
camera

Jetson AGX Xavier 
installed on the back Gimballed camera

Fig. 2: (Left) Front view of our customized quadrotor used at Location 1.
Our camera is mounted and encapsulated by the blue cage. A GPS receiver
is installed on the top to record ground truth trajectories. A Jetson AGX
Xavier is attached to the back of the cage. (Right) The commercial DJI
Mavic Air drone used to collect data at Location 2. The equipped gimballed
camera can change the pitch angle resulting in a diversity of query images.

2) Vehicle pose recovery: Using the matching strategy,
within each pair of query and database global descriptors
out of the n matched pairs, the correspondences of local
key points are found from their individual sets of local
descriptors. In terms of each retrieved set of local descriptors
from the database, the simulated depths of the correlated key
points are obtained from its rendered depth map. Therefore,
both the set of matched 3D coordinates on the map and
their corresponding 2D projections in the query image are
collected. OpenCV’s built-in implementation of the PnP
solver with RANSAC outlier rejection is used to recover
the vehicle pose. Empirically, the re-projection error during
the RANSAC procedure is set to 1.0 pixel and the number
of iterations to 1000. Among the converged trials, the result
from the one with the most inliers is treated as the final
pose. A refinement threshold is set for the distance between
the refined pose and its initially matched quantized position.
If the pose correction from the refinement exceeds the
threshold, i.e. the pose after PnP is too far away from the
initially matched position, the trial is rejected. Eventually,
the pose in the relative metric coordinate is converted to
the geographic coordinate in latitude, longitude and altitude.
Steps (5-6) in Fig. 1 illustrate this pose recovery procedure.

IV. EXPERIMENTAL SETUPS AND RESULTS

Having shown our methodology for the geo-localization
pipeline, we now introduce our experimental setups and
present the field test results.

A. Apparatus

In order to test our pipeline’s adaptability to images
captured from various types of UAVs, we used two UAV
platforms: a custom designed one as well as an inexpensive
consumer UAV. As shown in Fig. 2, our main vehicle was
a customized quadrotor equipped with a passively cooled
NVIDIA Jetson AGX Xavier as the primary computing
resource. The Xavier possesses an 8-core Arch64 central
processing unit (CPU) and a 512-core Volta graphics pro-
cessing unit (GPU) to support the operating system and
neural network inference. All motors and electronics were
powered by a 16.8V lithium polymer battery with a capacity
of 5200mAh. The vision part consists of a global-shutter
camera from IDS Imaging along with a wide-angle lens
from Lensation. The resulting horizontal FOV of this camera



package is 84° after image undistortion. We used an image
aspect ratio of 4:3 resulting in dimensions of 640 × 480
pixels. This camera package was installed at 45° tilted
downward from the horizon level. The camera was then able
to cover the bottom-front view.

Our secondary platform is a commercial Mavic Air
quadrotor from DJI. The Mavic Air’s camera offers a hor-
izontal FOV of around 69° and is electronically gimballed.
We pitched down this gimballed camera to mimic similar
viewing angles and down-sampled its images to the same
dimensions of those from the customized quadrotor.

B. Procedure

Two experiments at two different locations were con-
ducted. We aimed to verify the versatility of the pipeline
by adding this variation in localization scenarios.

At test Location 1, our custom UAV was flown to collect
images. At this location, an area of 400m × 400m was
selected for building the database so that the potential vehicle
poses were confined in this space. An interval of 10m was
used to quantize the camera poses along the latitude and
longitude directions to generate the map mosaics. A fixed
altitude of 70m was used as the nominal flight elevation. The
yaw angles were spaced by 30° within one revolution thus 12
directions in total. The pitch angle was fixed at 45° pointing
to the bottom-front side. For these 19,200 poses, blank areas
without map information may appear in the rendered images
if only the selected area of the map is used. This is because
the tilted viewing angle sees more than the area that the
camera FOV projects perpendicularly on the ground. Thus, in
practice, a larger map of around 1 km×1.2 km was employed
to cover the actual visual range.

Regarding the run-time settings, at Location 1, the top 3
matched candidates were used to enter the second stage for
pose refinement via PnP. The refinement threshold was set to
double the x- or y-direction spacing thus 20m in this case.
All global and local descriptors were stored on the vehicle
in the format of Python pickle. The depth maps were saved
using floating-point OpenEXR format.

At test Location 2, the DJI Mavic Air was flown to collect
images. The parameters for generating the database were
adjusted according to the camera settings of the Mavic Air.
During the flight, we varied the pitch angle from 30° to 60°
instead of keeping it constant as at Location 1 so that the
database images were rendered at pitch angles of 30°, 45°
and 60° respectively. The nominal flight elevation was also
reduced from 70m to 60m. Particularly, the horizontal FOV
was narrowed from 84° to 69°. Query images were captured
at 0.5Hz and of the same dimensions as at Location 1 after
down-sampling. The potential vehicle poses were limited
within an area of 250m× 250m. As this reduction in flying
area releases more spare storage capacity for extra poses,
the yaw angles were spaced by 24° thus 15 directions in
total. An identical 1 km×1.2 km area was used to cover the
visual range. The serialization of descriptors and depth maps
was completed in the same manner as was done in the first
experiment. The same refinement threshold was set. Since
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(a) The top view of the trajectory generated by our geo-localization pipeline
is shown overlaid on a satellite map of Location 1. The red crosses are the
positions of the initial matched candidates at which database images were
generated. The yellow markers stand for the vehicle positions after the PnP
refinement. The orange line segments show the correspondences between the
initial matched positions and those after the refinement. The blue trajectory
represents the ground truth positions from GPS. The length of the flight
path is 360m.
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(b) A comparison between the inferred and ground truth altitudes versus the
distance traveled by the vehicle. Although the vehicle was able to localize
itself from 45m to 73m in elevation, all database images were generated
at a single altitude of 70m.

(c) The top row shows the captured query images from the UAV and the
bottom row presents the corresponding matched database images. In the
two columns in the middle, there are significant discrepancies between the
current query images and the dated satellite maps, e.g. the missing buildings
in the scene.

Fig. 3: Geo-localization results from the test flight at Location 1. Database
was generated using satellite imagery from 2018 while query images were
collected from experiments in 2021.

online inference was not possible on the Mavic Air due to the
proprietary computation system, we ran the inference offline
on a ground station. We still tested with different numbers of
initial candidates that would enter the second stage for pose
refinement via PnP.



C. Results

The visualization of the results from the first experiment
conducted at Location 1 with three initial candidates is
illustrated in Fig. 3. In this experiment, we reserved the top
3 matched global descriptors from the database and let them
enter the pose refinement stage. The inferred and ground
truth trajectories are overlaid on a satellite map and are
demonstrated in Fig. 3a. The orientation of the satellite map
in the background is aligned to the y-axis whose positive
direction is strictly pointed to the North. In Fig. 3b, the
inferred and ground truth altitudes are compared to show the
performance of height estimation which is normally omitted
in geo-localization benchmarks. The onboard localization
pipeline was functioning during both the take-off and landing
phases. The minimum localized altitude was 45m even with
database images that were rendered at a nominal altitude
of 70m. Fig. 3c shows a comparison between the real
query images and database images. The localizer was able
to overcome the significant discrepancies between the real
scenes and outdated satellite maps with missing buildings.

A similar visual presentation of the results from the
second experiment at Location 2 can be found in Fig. 4.
This experiment was under a much more extreme condition,
including variable pitch angles for the camera, image defects
and lower altitudes. As shown in Fig. 4b, the minimum
localized altitude was 18m with database images rendered
at a nominal altitude of 60m. Due to the additional pitch
angles added to the database, shown in Fig. 4c, query
images collected at pitch angles from 30° to 60° were able
to be localized. When the camera was pointed too steep
down, compared with the nominal pitch angles at which
database images were rendered, the visual distortion and
lack of features in the view led to failures in localizing the
vehicle. This happens more frequently when an extremely
low altitude, such as 18m in this case, or a narrow FOV
is present. From Fig. 4d, it is noticed that the query images
suffered from many environmental uncertainties. We encoun-
tered four types of interferences: lens flare, direct sunlight,
high-contrast lighting and motion blur. Despite these visual
interferences, all four of the listed images were localized
successfully.

In terms of the real-time performance, this stand-alone
package was able to infer the pose of the vehicle at 1.121Hz
on the customized quadrotor shown in Fig. 2. Quantitatively,
these inferred poses are compared with the ground truth
positions recorded by a GPS receiver using the root-mean-
square error (RMSE) metric. The 3D and 2D RMSEs are
2.816m and 2.472m respectively along a flight path of
360m in the first experiment. The 3D RMSE includes the
errors in altitude while the 2D RMSE only focuses on planar
error distances. The localization was computed offline in the
second experiment and the 3D and 2D RMSEs are 2.418m
and 2.108m along a flight path of 220m when three initial
candidates were chosen.

A more thorough benchmark of the impact on the RMSEs
from different numbers of initial candidates can be found in
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(a) Top view of inferred and ground truth trajectories overlaid on a map of
Location 2. The visualization format shares the same fashion as in Fig. 3a.
The length of the flight path is 220m.
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(b) A comparison between the inferred and ground truth altitudes versus
the distance traveled by the vehicle. Query images captured from 18m to
70m in elevation were successfully localized despite all database images
being generated at a single altitude of 60m.

(c) Query images captured at pitch angles from 30° to 60°.

(d) Sample query images collected under severe conditions, such as, from
left to right, lens flare, direct sunlight, under/overexposure and motion blur,
that were successfully matched and localized.

Fig. 4: Geo-localization results from the test flight at Location 2. Database
was generated using satellite imagery from 2020 while query images were
collected from experiments in 2021.

TABLE II. In the first experiment at Location 1, a drastic
reduction in the number of candidates from 50 to 1 brings
negligible loss in the errors but around 30% decrease in the
percentage of matched images among total query images, or
alternatively, the recall. At Location 2, this decrease in the
percentage grows further to 45%. Query images with features



TABLE II: A benchmark of the impact on RMSEs and percentage match
from different numbers of initial candidates at the global descriptor matching
stage. We preserve these candidates to enter the local descriptor matching
stage. As the number of candidates decreases, the RMSEs in both 3D and 2D
cases remain approximately unchanged but the percentage of successfully
localized attempts among all query images (recall) declines depending on
scenarios. The choice of the number of candidates is a trade-off between
accuracy and the success rate of localization.

(a) Experimental results at test Location 1.

Metric Number of initial candidates
50 30 20 10 3 1

RMSE (3D) [m] 2.954 3.110 2.938 2.980 2.816 3.010
RMSE (2D) [m] 2.639 2.749 2.598 2.674 2.472 2.760
Recall [%] 64.42 61.13 55.05 50.39 46.90 42.79

(b) Experimental results at test Location 2.

Metric Number of initial candidates
50 30 20 10 3 1

RMSE (3D) [m] 2.253 2.198 2.437 2.274 2.418 2.220
RMSE (2D) [m] 1.944 1.894 2.145 1.982 2.108 1.912
Recall [%] 60.22 56.91 52.49 45.30 38.67 33.15

that are more distinct and unique in the flying area have a
larger chance of convergence during the global descriptor
matching stage. Therefore, just a few top candidates are
sufficiently probable to capture the best match in a feature-
rich area, and in contrast, more candidates are required to
cover the ideal match for less distinguishing images such as
those with plain colors, grass and repetitive patterns.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an image-based real-time geo-
localization pipeline that features a reliable solution to mod-
ern localization needs on UAVs flying in GPS denied envi-
ronments. The stand-alone pipeline executes on an embedded
system at a high frequency and is able to accommodate to
downward-tilted cameras. We show the practicality of our
method by requiring no desired flight paths for preparing
the map database and no prior knowledge of initial positions
for online localization.

Some limitations and extensions of the pipeline are dis-
cussed next. Although the potential areas of search over the
database can be confined according to the current position
of the vehicle, the detection of outliers is still of vital
importance when the very first global position is found. The
current RANSAC approach applied during the PnP phase
indiscriminately tests over the features extracted from the
images. A content-aware inspector layer may be added right
after the global descriptor matching stage to further verify the
validity of the matches because the descriptors can be similar
even between completely different images. Additionally, the
refinement threshold is assigned empirically and it may also
reject correct estimates. Therefore, extensive research is still
necessary to further enhance the robustness by improving the
outlier rejection.
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