
Reinforcement Learning for Versatile,
Dynamic, and Robust Bipedal
Locomotion Control

xxx
XX(X):1–43
©The Author(s) 2023
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Zhongyu Li1, Xue Bin Peng2, Pieter Abbeel3, Sergey Levine3, Glen Berseth4,5, Koushil
Sreenath1

Abstract
This paper presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion
controllers for bipedal robots. Going beyond focusing on a single locomotion skill, we develop a general control solution
that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and
standing. Our RL-based controller incorporates a novel dual-history architecture, utilizing both a long-term and short-
term input/output (I/O) history of the robot. This control architecture, when trained through the proposed end-to-end
RL approach, consistently outperforms other methods across a diverse range of skills in both simulation and the real
world. The study also delves into the adaptivity and robustness introduced by the proposed RL system in developing
locomotion controllers. We demonstrate that the proposed architecture can adapt to both time-invariant dynamics
shifts and time-variant changes, such as contact events, by effectively using the robot’s I/O history. Additionally, we
identify task randomization as another key source of robustness, fostering better task generalization and compliance
to disturbances. The resulting control policies can be successfully deployed on Cassie, a torque-controlled human-
sized bipedal robot. This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
We demonstrate a diverse range of locomotion skills, including: robust standing, versatile walking, fast running with a
demonstration of a 400-meter dash, and a diverse set of jumping skills, such as standing long jumps and high jumps.

1 Introduction

Human environments are diverse and predominantly tailored
for bipedal locomotion, and therefore the overarching goal
in the bipedal robot community has been to develop robots
capable of reliably operating within these environments. This
paper aims to address one of the bottlenecks in achieving this
objective: developing a solution for the control of diverse,
agile, and robust legged locomotion skills, such as walking,
running, and jumping for high-dimensional human-sized
bipedal robots.

Although research on bipedal robot locomotion has been
ongoing for decades (e.g., Raibert et al. (1984)), developing
a general framework capable of achieving robust control
for diverse locomotion skills remains an open problem. The
challenges arise from the complexity of the underactuated
dynamics of bipedal robots and the distinct contact plan
associated with each locomotion skill. First, given the
floating base and resulting underactuated dynamics, bipedal
robots rely on contacts with the environment in order to
move. The consistent (and hard-to-model) contacts lead to
discontinuities in the trajectories, requiring contact mode
planning and stabilization during mode transitions. However,
due to the high dimensionality and nonlinearity of bipedal
robots, leveraging its full-order dynamics model for motion
planning and control is computationally expensive and
intractable for online applications. Second, the diverse nature
of bipedal locomotion skills, whether periodic or aperiodic,
presents significant challenges to the development of a
simple and general framework. For instance, running, unlike
walking, introduces more complexity due to a repeated flight

phase where the robot is underactuated. For periodic skills
such as walking or running, we can achieve orbital stability
(Westervelt et al. 2003), by allowing for small corrections
over multiple gait cycles. However, aperiodic motions, such
as jumping, lack this inherent stability, which again poses
additional challenges due to the requirement of finite-time
stability (Goswami and Vadakkepat 2009), which is further
compounded by a large impact force upon landing.

In this work, we address the aforementioned challenges by
leveraging reinforcement learning (RL) to create controllers
for robots that feature high-dimensional, nonlinear dynamics
in the real world. These controllers can leverage the robot’s
proprioceptive information to adapt to the robot’s uncertain
dynamics, which may be potentially time-varying due to
wear and tear. These controllers are able to generalize to
new environments and settings, exhibiting robust behaviors
to unexpected scenarios by utilizing the agility of bipedal

1 Department of Mechanical Engineering, University of California
Berkeley, USA.
2 School of Computing Science, Simon Fraser University, Canada.
3 Department of Electrical Engineering and Computer Sciences,
University of California Berkeley, USA.
4 Department of Computer Science and Operations Research,
Université de Montréal, Canada.
5 Mila – Quebec AI Institute, Canada.

Corresponding author:
Zhongyu Li, University of California Berkeley, Etcheverry Hall, 2521
Hearst Ave, Berkeley, CA 94709, USA.
Email: zhongyu li@berkeley.edu

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

mailto:zhongyu_li@berkeley.edu

2 xxx XX(X)

robots. Furthermore, our framework provides a general
recipe for reproducing a variety of bipedal locomotion skills.

1.1 Objective of this Work
The high-dimensionality and nonlinearity of a torque-
controlled human-sized bipedal robot may at first seem
like a daunting obstacle for developing effective controllers.
However, these characteristics can also be advantageous
by enabling complex agile maneuvers through the robot’s
high-dimensional dynamics. Our objective is to develop a
general control framework for such bipedal robots to unlock
their full potential. The goal of this framework is to enable
a range of dynamic bipedal locomotion skills in the real
world with a limited prescription on the resulting maneuvers.
The skills we consider are shown in Fig. 1, which include
robust standing, walking, running, and jumping. These skills
can also be used to perform a diverse repertoire of tasks,
including walking at various velocities and heights, running
at different speeds and directions, and jumping to various
targets, all while maintaining robustness during real-world
deployment. To achieve this, we leverage model-free RL,
which allows the robot to learn through trial-and-error on
the system’s full-order dynamics. In addition to real-world
experiments, we also provide an in-depth analysis of the
benefits of using RL for legged locomotion control and offer
a detailed study into how to effectively structure the learning
process to harness these advantages, such as adaptivity and
robustness.

1.2 Terminology
First, we will establish the terminology we will use to
describe various aspects of legged locomotion in this paper.
The term skill is used to characterize a particular type
of locomotion, which includes behaviors such as walking,
running, and jumping. The robot can then leverage those
skills to perform various tasks, which are defined by a
given goal. For example, these tasks can include following
different target velocities while walking, turning at different
angles while running, or leaping towards different target
locations while jumping. We use the term versatile policy to
describe a control policy that can accomplish various tasks
using one or more locomotion skills.

1.3 Contributions
This work advances the field of legged locomotion control
for bipedal robots, with the following key contributions:

Development of a new framework for general bipedal
locomotion control: We introduce a general RL framework
for bipedal robots that is effective across a wide range of
locomotion skills, spanning periodic skills such as walking
and running, aperiodic skills such as jumping, and stationary
skills such as standing. The resulting controllers can be
directly deployed on a real robot without any additional
tuning or training on the physical system.

Novel design choices for RL-based control policy: We
present a new dual-history architecture for non-recurrent
RL policies, which integrates both the long and short
input/output (I/O) history with explicit length of the
robot, for RL-based control. When combined with the
proposed training strategy that trains the base policy with

the short history jointly with the long history encoder,
this architecture demonstrates state-of-the-art performance
in learning dynamic bipedal locomotion control, offering
consistent benefits across various locomotion skills, which
are validated in both simulation and real world experiments,
as detailed in Sec. 7 and discussed in Sec. 11.1.

Empirically investigating adaptivity in RL controllers:
In the control theory community, there have been notable
efforts in bridging adaptive control and RL, like Annaswamy
(2023). In this work, we conduct a detailed empirical study
to investigate the adaptivity of the control policy developed
through RL. We show that the adaptivity from RL includes
not only time-invariant shifts in the dynamics but also time-
variant changes like contact events. We validated this not
only in simulation, as described in Sec. 8, but also by several
real-world (zero-shot-transferred) experiments such as in-
place walking with minimal drift and targeted jumping using
a bipedal robot as detailed in Sec. 10.

Improving robustness in RL controllers: Our study
introduces a new dimension of robustness in RL-based
control policies. Beyond the commonly-used dynamics
randomization in robotics (Peng et al. 2018), we demonstrate
that task randomization, which trains the policy on a
wide range of tasks, significantly enhances robustness by
enabling task generalization. This approach, distinct from
dynamics randomization, provides the robot with disturbance
compliance, which is demonstrated in both simulation and
real-world experiments in Sec. 9.

Extensive real-world validation and demonstrations
of novel bipedal locomotion capabilities: Our system is
able to reproduce a wide variety of locomotion skills using
Cassie, a human-sized bipedal robot, in the real world as
detailed in Sec. 10. Cassie can track varying commands
with negligible tracking errors and significant robustness to
unexpected disturbances, including walking (Figs. 14, 18a),
running (Figs. 20, 24), and jumping (Figs. 25, 27).
Additionally, we demonstrate novel capabilities for bipedal
robots, such as robust standing recovery using different
skills (Fig. 11), robust walking (Figs. 17, 19) with control
performance being consistent over a long time frame
(Fig. 14), completing a 400-meter dash using a running
controller (Fig. 20), and performing diverse bipedal jumps
(Figs. 25, 26) including standing long and high jumps
(Fig. 25). The experiments are shown in the supplementary
videos provided in Table 1.

This paper builds on our preliminary work presented
at Robotics: Science and System (Li et al. 2023b),
which focused on bipedal jumping. We expanded our
RL framework to encompass a broader range of skills,
proving its applicability to both aperiodic skills like jumping
and periodic skills such as walking and running. The
effectiveness of this framework is consistently demonstrated
across these skills through extensive real-world experiments.
Furthermore, the added ablation study and benchmarks
further explore the design decisions in our framework,
shedding light on the crucial elements that enhance
adaptivity and robustness in RL-based locomotion control.

We hope this work could serve as a milestone towards
creating robust, versatile, and dynamic bipedal locomotion
control in the real world, providing insights and guidance for

Prepared using sagej.cls

Li et al. 3

(a) Walking (Push Recovery) (b) Running (c) Jumping

Figure 1. Cassie, a torque-controlled human-sized bipedal robot, performs various locomotion skills by using controllers developed
through our framework. We present a unified RL framework that is able to train robust and agile controllers for a diverse range of
highly dynamic skills, such as walking (Fig. 1a), running (Fig. 1b), and jumping (Fig. 1c). The control policies developed by the
proposed dual-history policy architecture and training system can adapt to changes in the robot dynamics, thereby enabling the
direct transfer of learned policies to a real robot after training only in simulation without further real-world tuning. More experimental
results can be best seen in the supplementary videos which are summarized in Table 1.

Table 1. A supplementary videos included in this paper.
Vid. Content Link

1 Summary video https://youtu.be/sQEnDbET75g
2 Complete 400m dash https://youtu.be/wzQtRaXjvAk
3 Suppl. walking experiments https://youtu.be/vUewNUtSG3c
4 Suppl. running experiments https://youtu.be/ad3ZrvUzbXM
5 Suppl. jumping experiments https://youtu.be/aAPSZ2QFB-E

future applications of RL for legged locomotion control and
other complex systems.

2 Related Work
Locomotion control for a bipedal robot requires solving a
problem that tightly couples motion planning and control
of the robot’s whole body. Previous efforts can be broadly
categorized into two main approaches: (1) model-based
optimal control (OC), and (2) model-free reinforcement
learning (RL). While this work is based on RL, the following
review gives equal attention to relevant studies from both
model-based OC and model-free RL domains. We hope it
can provide a succinct survey of the recent trends in legged
locomotion control, which could be informative for readers
from both perspectives, with a primary focus on bipedal
robots. In the specific case of Cassie, which serves as the
experimental platform in this work, we provide an overview
of the most related work for its locomotion control in Table 2.

2.1 Model-based Optimal Control for Bipedal
Robots

Locomotion control for bipedal robots can be formulated
as an optimal control (OC) problem (Wensing et al. 2023,
Eq. (1)), with the robot’s dynamics model appearing as a
motion constraint. To manage the computational complexity
of solving constrained optimization problems, this method
often employs a cascaded optimization framework, starting
with generating long horizon reference trajectories to low-
level motion control and immediate reactive control, with
progressively higher control rates and different modeling
choices at each stage.

Choice of Models: The robot’s full-order dynamics
and contact models can be leveraged to optimize for a
bipedal robot’s trajectory and corresponding inputs for a
specific behavior (Hereid et al. 2019; Fevre et al. 2020;

Marcucci et al. 2016). However, given that bipedal robots
typically have high-dimensional nonlinear dynamics, the
use of detailed models is generally limited to offline
optimization. Notably, the Hybrid Zero Dynamics (HZD)
method (Westervelt et al. 2003) uses the bipedal robot’s
full-order model to design attractive periodic gaits offline
with online feedback controllers to enforce the virtual
constraints (Hereid et al. 2018; Reher and Ames 2021; Gong
et al. 2019). For online trajectory optimization, reduced-
order models that simplify robot dynamics are necessary.
Various reduced-order models, such as centroidal dynamics
(Orin et al. 2013), the linear inverted pendulum (LIP) (Kajita
et al. 2001)) and its variants like SLIP (Rummel et al.
2010), ALIP (Gong and Grizzle 2022), H-LIP (Xiong and
Ames 2022), are used for online optimization of reduced-
order dynamics, like the Center of Mass (CoM) and/or
Center of Pressure (CoP) (Vukobratović and Borovac 2004;
Pratt et al. 2012; Fernbach et al. 2020). These models
also enable trajectory tracking control (Kuindersma et al.
2014; Daneshmand et al. 2021; Gong and Grizzle 2022).
Reactive controllers, like whole-body control (WBC, Sentis
and Khatib (2006)), translate these reduced-order states
to joint-level inputs, operating as a fast-solving QP that
considers various constraints without unrolling the full-order
dynamics over a horizon like Moro and Sentis (2019);
Bouyarmane and Kheddar (2011); Wensing and Orin (2016).
However, such a cascaded OC method does not fully utilize
the robot’s potential agility due to the limitations of reduced-
order models and/or the inability of online controllers to
re-plan whole-body maneuvers. Our work overcomes these
limitations by directly learning on the robot’s full-order
dynamics and approximately solving the OC problem by
model-free RL. The resulting controllers are able to leverage
the full agility potential of the underlying system.

Contact Planning: Legged robots require making and
breaking contact with the environment. The resulting
velocity jumps at contact make the robot’s trajectory
non-smooth. This makes it challenging to solve an OC
problem that decides each leg’s contact mode throughout
the movement (Posa et al. 2014). To simplify this, many
studies, including most of the above-mentioned work, pre-
define fixed contact sequences for specific locomotion
skills, such as walking (Caron et al. 2019; Hereid et al.
2019; Xiong and Ames 2022), running (Takenaka et al.

Prepared using sagej.cls

https://youtu.be/sQEnDbET75g
https://youtu.be/wzQtRaXjvAk
https://youtu.be/vUewNUtSG3c
https://youtu.be/ad3ZrvUzbXM
https://youtu.be/aAPSZ2QFB-E

4 xxx XX(X)

Table 2. Comparison of our work with prior studies on implementing real-world locomotion controllers for the bipedal robot Cassie.
Our work provides an introduction to a general control framework to realize diverse periodic and aperiodic bipedal locomotion skills
including robust walking and standing, fast running, and versatile jumping in the real world.

Walking Skill
Previous Literature Implementation Variable Velocity Variable Height Consistency over Time Consistent Perturbation Change of Terrain

Gong et al. (2019) HZD, Model: Full-order Yes No No No No
Li et al. (2020); Yang et al. (2022) HZD, Model: Full-order Yes Yes No No No

Reher and Ames (2021) HZD, Model: Full-order Yes No Not demonstrated Not demonstrated No
Xie et al. (2020) RL, Model-free Yes No Not demonstrated Not demonstrated No

Siekmann et al. (2020) RL, Model-free Forward walking only No Not demonstrated Not demonstrated No
Li et al. (2021) RL, Model-free Yes Yes Not demonstrated Yes (untrained) No

Siekmann et al. (2021a) RL, Model-free Yes No Not demonstrated Not demonstrated Yes (small, trained)
Siekmann et al. (2021b) RL, Model-free Yes No Not demonstrated Not demonstrated Yes (trained)

Dao et al. (2022) RL, Model-free Forward walking only No Not demonstrated Yes (trained) No
Yu et al. (2022) RL, Model-free Sharp turn only No Not demonstrated Not demonstrated No

Gong and Grizzle (2022) OC, Model: ALIP Yes No Not demonstrated Not demonstrated Yes (unmodeled)
Xiong and Ames (2022) OC, Model: H-LIP Yes Yes Not demonstrated Not demonstrated Yes (small, unmodeled)

Agrawal (2022) OC, Model: Centrodial Yes No Not demonstrated Not demonstrated Yes (small, unmodeled)
Ours RL, Model-free Yes Yes Yes Yes (untrained) Yes (small, untrained)

Running Skill
Previous Literature Implementation Controlled Velocity Transition from/to Standing 100m Dash Finish Time 400m Dash Finish Time Uneven Terrain

Siekmann et al. (2021a) RL‡ No Not demonstrated Not demonstrated Not demonstrated Yes (small, trained)
Yang and Posa (2023) OC‡ Yes Not demonstrated Not demonstrated Not demonstrated No
Crowley et al. (2023) RL with noticeable flight phase No Only transit from standing 24.73s Not capable of turning No

Ours RL with noticeable flight phase Yes, w/ sharp turn (untrained) Yes 27.06s 2 min 34 sec Yes (large, trained)
‡ Although being termed as running, the demonstrated flight phase, foot clearance during flight, and speed in the real world are not comparable to the rest of the work listed here.

Jumping Skill
Previous Literature Implementation Targeted Landing Apex Foot Clearance Longest Flight Phase Maximum Leap Distance

(Forward, Backward, Lateral, Turning, Elevation)
Xiong and Ames (2018) Aperiodic Hop by OC‡ No 0.18m 0.42s In-place
Yang and Posa (2021) Aperiodic Hop by OC‡ No 0.15m* 0.33s* In-place

Siekmann et al. (2021a) Periodic Hop by RL‡ No 0.16m* 0.33s* Tracking a forward speed
Yang and Posa (2023) Aperiodic Jump by OC No 0.42m* 0.33s* (0, 0, 0, 0, 0.41m)

Ours Aperiodic Jump by RL Yes 0.47m 0.58s (1.4m, -0.3m, ±0.3m, ±55◦ , 0.44m)
‡ The demonstrated flight phase, apex foot clearance, and the resulting impacts upon landing are not comparable with the rest, so we use “hop” to distinguish from a “jump”.
* Not provided in the paper and the listed value is roughly estimated from the accompanying video.

2009b; Sreenath et al. 2013; Ma et al. 2017), and jumping
(Goswami and Vadakkepat 2009; Chignoli et al. 2021;
Qi et al. 2023). However, pre-defined handcrafted contact
sequences may not be optimal. For instance, different
jumping tasks might require varying contact schedules, like
extended flight times for longer jumps. Consequently, there
are efforts to integrate contact planning with trajectory
optimization by computationally expensive mixed-integer
programming (Deits and Tedrake 2014; Ibanez et al. 2014).
There are also attempts to avoid using explicit discrete
variables, which results in contact-implicit methods, by
enforcing complementarity constraints (Yunt and Glocker
2006; Dai et al. 2014; Posa et al. 2014; Drnach and Zhao
2021) or utilizing a bilevel optimization (Landry et al. 2022;
Zhu et al. 2021; Le Cleac’h et al. 2024). However, given
the high-dimensional nonlinear dynamics of bipedal robots,
contact explicit or implicit planning is still limited to offline
optimization. As we will see, our method enables choosing
contact plans in real-time for deployment in the real world.

Scalability to Different Locomotion Skills: The scalability
of model-based OC across various bipedal locomotion skills
and tasks is a significant challenge, largely due to the task-
specific nature of robot models and control frameworks
Meduri et al. (2023). For example, extending the HZD
approach used for controlling 2D bipedal walking (Sreenath
et al. 2011) to running (Sreenath et al. 2013) or 3D
walking (Da et al. 2016) requires considerable efforts in
finding appropriate periodic gaits and then designing specific
controllers to stabilize them. Furthermore, HZD’s reliance
on the stability of periodic gaits limits its extension to
aperiodic skills like jumping. This limitation is also observed
in LIP-based methods, where separate frameworks and
models are required for walking (Takenaka et al. 2009a)
and running (Takenaka et al. 2009b) while jumping skills
are excluded due to LIP’s assumption of an approximately
constant CoM height as in Boroujeni et al. (2021). Although
in-place jumps have been achieved through other carefully
engineered cascaded OC frameworks over different jumping
phases, such as Xiong and Ames (2018); Kojima et al.

(2019); Qi et al. (2023), for each different jumping task,
these require starting from scratch with offline trajectory
optimization, often overlooking lateral or turning motions.
Furthermore, it is very challenging to develop a single
model-based controller capable of managing diverse targeted
bipedal jumping tasks in the real world. This is because
besides accomplishing a jump, the controller also needs to
quickly adapt to the dynamics of the robot hardware and
produce an accurate translational velocity at the take-off to
land at the targets located at different places, as shown in this
work.* The model-based OC community, as seen in works
like Yang and Posa (2023), is making promising strides
toward developing general tracking controllers that are
invariant to impact. These could potentially handle different
contact sequences like walking, running, and jumping, but
still rely on task-specific optimized trajectories.

2.2 Model-free Reinforcement Learning on
Legged Locomotion Control

Recent developments in deep RL have brought about exciting
progress in creating locomotion controllers for quadrupedal
robots in the real world, such as Margolis et al. (2022); Chen
et al. (2023); Feng et al. (2023); Fu et al. (2023). However,
due to the inherently less stable nature of bipedal robots,
methods successful with quadrupeds might not directly apply
to bipedal systems, as an example seen in Kumar et al.
(2022). Therefore, within the bipedal robotics community,
there are different strategies to employ RL tailored to the
challenges of high dimensional nonlinearity.

Control Policy Structure: In RL-based locomotion con-
trol, the structure of the control policy is largely influenced
by how observations are formulated, particularly through
the use of robot states-only history (with no robot’s input
history) or I/O history (with both the robot’s input and

∗While there are attempts from industry (like Boston Dynamics as patented
in Deits et al. (2022)) using model-based OC that tackled similar problems,
detailed reports are limited. As a research paper, our focus is on published
findings.

Prepared using sagej.cls

Li et al. 5

output). For quadrupedal robots, there is no consensus on
the history length to use: it ranges from a short I/O history
of 1 to 15 timesteps (Hwangbo et al. 2019; Escontrela
et al. 2022; Huang et al. 2023) to longer sequences over
50 timesteps involving states-only history (Lee et al. 2020;
Miki et al. 2022; Shao et al. 2021) or I/O history (Kumar
et al. 2021). The policy (neural network) architecture is
chosen depending on the history length, with MLPs suited
for shorter histories and recurrent units needed for longer
sequences. Real-world deployments on quadrupedal robots
have shown comparable performance across these varying
history lengths. For bipedal robots, a trend toward longer
history lengths is observed, evolving from a single timestep
state feedback with a need of residual action (Xie et al.
2018, 2020; Rodriguez and Behnke 2021; Castillo et al.
2022), to a short I/O history (Li et al. 2021), to a longer
sequence of states-only history (Siekmann et al. 2020) or I/O
history (Kumar et al. 2022; Radosavovic et al. 2024). While
utilizing long history for robotic control as suggested by
Peng et al. (2018) is a common strategy, most prior ablation
studies focus on contrasting long histories with immediate
state or I/O feedback through MLPs, like Peng et al. (2018);
Lee et al. (2020); Kumar et al. (2021); Siekmann et al.
(2020), with less exploration into shorter I/O histories. A
recent study, Singh et al. (2023), reported that, short state
histories yield better learning performance than a longer
history in bipedal humanoid robot control, aligning with
our finding in this work. This raises a question: while long
histories are expected to enhance performance in RL-based
control, how can their benefits be fully utilized? Our study
presents an effective solution: a dual-history approach.

Sim-to-real Transfer: There are some attempts using RL
to directly collect data and train on the robot hardware,
such as Haarnoja et al. (2019); Wu et al. (2023b); Smith
et al. (2023), and there are also alternatives on leveraging a
pre-training stage in simulation and finetuning on hardware
like Peng et al. (2020); Smith et al. (2022); Westenbroek
et al. (2022), most of which are deployed on small-
sized quadrupedal robots. However, for human-sized bipedal
robots, performing hardware rollouts is expensive, making
it more appealing to directly transfer diverse dynamic
bipedal skills from simulation to hardware. Achieving zero-
shot transfer needs extensive dynamics randomization in
simulation as suggested by Peng et al. (2018, 2020). There
are two primary approaches to training policies under
randomized dynamics: (1) end-to-end training with a history
of robot measurements or I/O, which has been applied
to bipedal robots like Siekmann et al. (2020, 2021a);
Li et al. (2021), and (2) policy distillation where, with
separated training stages, an expert policy with access
to privileged environmental information supervises the
training of a student policy with proprioceptive feedback.
This method, initially developed for small servo-controlled
bipedal robots in Yu et al. (2019), has been adapted
to quadrupeds using strategies like Teacher-Student (TS,
Lee et al. (2020)) or RMA (Kumar et al. 2021), and is
prevalent in quadrupedal robot community (e.g., Fu et al.
(2021); Ji et al. (2022); Margolis and Agrawal (2023)).
Though policy distillation offers advantages in quadrupedal
locomotion controls (Kumar et al. 2021), its extension to
torque-controlled bipedal robots benefits from an additional

finetuning stage like Kumar et al. (2022). In this work,
we demonstrate that end-to-end training is a more effective
approach for developing controllers for bipedal robots
encompassing a variety of dynamic locomotion skills.

Scalability to Different Locomotion Skills: Leveraging
RL to learn diverse locomotion skills or tasks with a
single policy poses a challenge that arises from the need
to optimize multiple objectives for different tasks, as noted
in Kalashnikov et al. (2021). Initially, efforts in this field
focused on single skills with fixed tasks, like just walking
forward in Peng et al. (2020); Siekmann et al. (2020);
Kumar et al. (2021). In developing a single-skill policy
capable of multiple tasks, methods that provide varying
commands for tracking different walking velocities without
specifying reference motions have been considered, like
Hwangbo et al. (2019); Fu et al. (2021); Cheng et al.
(2023). While this method is viable for quadruped robots,
it demands extensive reward tuning and may not suit bipedal
robots due to their higher dimensionality. For bipedal robots,
approaches such as providing parameterized reference
motions (Li et al. 2021) or using policy distillation from
task-specific policies (Xie et al. 2020) have been considered.
Some methods also involve commanding periodic contact
sequences, resulting in diverse but periodic bipedal gaits like
Siekmann et al. (2021a). However, the prescriptive contact
sequence restricts the robot’s potential to optimize its contact
strategy for improved stability. Additionally, limitations arise
when such a policy attempts to accomplish specific tasks,
leading to follow-up works that require specialized training
for distinct behaviors. This includes requiring hand-tuned
strategies for transitioning between fast straight running and
standing (Crowley et al. 2023), load carrying (Dao et al.
2022), or sharp turns during walking (Yu et al. 2022). There
are other attempts that sought to create a single policy
that can perform diverse skills, regardless of periodicity,
for bipedal humanoids using adversarial motion priors as
developed in Peng et al. (2021) in simulation. While this has
seen success in transfer to real quadrupeds like Escontrela
et al. (2022); Wu et al. (2023a); Li et al. (2023a), it is still
an open question if more dynamic bipedal skills can be
transferred to the real world due to larger sim-to-real gaps.
In light of these challenges, our work strikes a balance in
versatility for bipedal robots. We focus on developing skill-
specific control policies that can perform a diverse set of
tasks while maintaining a general framework suitable for
developing different skills.

3 Overview
In this section, we provide an overview of the entire paper
and proposed RL system for general bipedal locomotion
control, as illustrated in Fig. 2. We first provide an
introduction of the importance of utilizing the robot’s I/O
history in the locomotion control in Sec. 4. In this section,
we showcase that the robot’s long I/O history can enable
system identification and state estimations during real-time
control, from both control and RL perspectives. This results
in the design of the backbone of this work: a new control
architecture that utilizes a dual-history of both the bipedal
robot’s long-term and short-term I/O history, which is
presented in Sec. 5. Specifically, such a control architecture

Prepared using sagej.cls

6 xxx XX(X)

Figure 2. Overview of this paper. First, Sec. 4 introduces the
formulation of the locomotion control problem and the
importance of utilizing the robot’s I/O history. The details of our
dual-history-based control architecture for various bipedal
locomotion skills are presented in Sec. 5, followed by the
training scheme discussed in Sec. 6. Then, detailed studies are
conducted to validate the advantages of the proposed policy
structure in Sec. 7, sources of adaptivity in Sec. 8, and we
investigate the sources of the robust behaviors observed in the
proposed RL-based controller in Sec. 9. Extensive experiments
using the proposed RL-based locomotion controllers to enable
Cassie to perform robust standing, walking, running, and
jumping skills are presented in Sec. 10. Insights and
discussions for readers interested in applying RL to train
bipedal robots are provided in Sec. 11.

does not only utilize the long history but also exploits
explicit short history of the robot. The proposed dual-history
structure enables effective use of robot’s history, as the long
history brings adaptivity (validated in Sec. 8) and the short
history complements the use of long history by enabling
better real-time control (substantiated in Sec. 7). This control
policy, which is represented by a deep neural network, is
optimized by model-free RL in Sec. 6. Since this paper
aims to develop a controller that is capable of accomplishing
diverse tasks using highly dynamic locomotion skills, the
training in Sec. 6 is characterized by multi-stage training
in simulation. This training strategy provides a structured
curriculum, starting with a single-task training where the
robot focuses on a fixed task, followed by task randomization
that diversifies the tasks the robot is trained on, and
concluded by dynamics randomization which alters the
dynamics parameters of the robot. Such a training strategy
is able to provide a versatile control policy that can
perform a large variety of tasks and zero-shot transferred
to the robot hardware. Furthermore, task randomization
can also enhance the robustness of the resulting policy
through the generalization among different learned tasks. We
show that such robustness results in compliant behaviors to
disturbance, which is “orthogonal” to the one brought by
dynamics randomization. This is validated in Sec. 9.

By using this framework, we obtain skill-specific versatile
policies for walking, running, and jumping for a bipedal
robot, Cassie. We evaluate the effectiveness of these control
policies extensively in the real world in Sec. 10. As we will
see, by the adaptivity of the proposed control architecture,

the resulting policies can accomplish various tasks with
minimal degradation from simulation to the real world and
maintain consistency over a long timespan (more than one
year). Because of the robustness brought by the proposed
training strategy, especially the task randomization, the
resulting policies showcase complicated recovery maneuvers
when facing unexpected disturbances in the real-time and
real world. We further summarize the insights and lessons
learned during the development of this work in a discussion
in Sec. 11, followed by a conclusion and future work in
Sec. 12.

4 Background
In this section, we introduce Cassie, our main experimental
platform, along with its dynamics model. We then frame
the bipedal locomotion control problem as a Partially
Observable Markov Decision Process (POMDP), laying
the groundwork for training policies with RL. We also
emphasize the importance of incorporating the robot’s input
and output (I/O) history in feedback control from both
model-based control and model-free RL perspectives.

4.1 Cassie Robot Model
4.1.1 Floating-base Coordinates: As illustrated in Fig. 3,
Cassie is a human-sized bipedal robot, standing at a height of
1.1 m and weighing 31 kg. On both the Left and Right (L/R)
legs are 7 joints, consisting of the abduction q1, rotation
q2, thigh q3, knee q4, shin q5, tarsus q6, and toe pitch q7.
This results in a total of 14 joints (qj ∈ R14). Among those,
q
L/R
1,2,3,4,7 are actuated by motors (which is denoted as qm ∈
R10), while the shin and tarsus joints (qL/R5,6) are passive and
connected by leaf springs, as annotated in Fig. 3. Cassie has
a floating base qb with 6 Degree-of-Freedoms (DoFs) which
are translational positions qx,y,z and rotational positions
qϕ,θ,ψ. The generalized coordinates of the full system q can
be represented as q = [qb,qj] ∈ R20.

The observable states: Since the robot is a second-
order mechanical system, we can denote the robot’s states
as its generalized coordinates q and their time derivatives
q̇. However, there is only a part of states we can reliably
measure or estimate using the robot’s onboard sensors.
We denote observable states as o ∈ R26 and it contains
motors positions and their velocities (qm, q̇m), which can be
respectively measured and estimated by the joint encoders.
The base orientation qϕ,θ,ψ can be measured by an IMU, and
base linear velocity q̇x,y,z can be estimated by an EKF as
used in (Xie et al. 2020).

4.1.2 Full-order Dynamics Model: Cassie has a floating-
base, a total of n = 20 DoFs, and na = 10 actuated joints,
Its dynamics equation can be obtained by the Euler-Lagrange
method:

M(q)q̈+C(q, q̇)q̇+G(q) = Bτ + κsp(q, q̇) + ζext,
(1)

where M ∈ Rn×n, C ∈ Rn×n, and G ∈ Rn denote the
generalized mass matrix, centrifugal and Coriolis matrix,
and generalized gravity, respectively. The right-hand side of
(1) contains the system inputs which includes generalized
control input (motor torques) τ ∈ Rna (distributed by

Prepared using sagej.cls

Li et al. 7

B ∈ Rn×na), state-dependent spring torques κsp(q, q̇), and
generalized external force ζext. The ζext groups all the
external forces applied from the environment, including
foot contact wrenches denoted as JTc Fc and any joint-
level friction or perturbation wrenches added to the robot.
Specifically, for the contact wrenches, Jc(q) ∈ Rnc×n is the
contact Jacobian and the dimension of contact wrenches (nc)
will vary when the robot has a different number of support
legs with the ground (ranging from no stance leg to two
stance legs).

4.1.3 System Identification and Adaptive Control: For
locomotion control of bipedal robots like Cassie, we can
borrow ideas from system identification and adaptive control,
which can adapt to changes in the dynamics of the robot. One
approach is to leverage a sequence of the past system’s input
and output (I/O history) to identify the system parameters
and change the control law over time, see (Landau et al.
2011, Ch. 9). For example, given the dynamical system
(bipedal robot) governed by (1), by utilizing a sequence of
robot’s input (τ) and robot’s output (o), with an assumption
that the system states (q and their time derivatives) can be
approximated by a sequence of o as derived in Lim et al.
(2023), the modeling parameters in M, C, G, κ and external
forces ζext can be identified and therefore the control strategy
in (1) can be adjusted accordingly. There are two main design
choices in adaptive control: indirect and direct methods. In
the indirect approach, system parameters are first explicitly
estimated (see Ljung (1998)) and the control law is indirectly
adjusted based on the identified parameters. In contrast,
the direct approach alters the control law directly based on
the system’s I/O history. While both methods have their
advantages and disadvantages as discussed in Annaswamy
(2023), the indirect approach may struggle with unknown
system parameters or the ones that are challenging to
identify. Therefore, in this paper, we choose to develop a
control policy through model-free RL by learning from the
bipedal robot’s I/O history to directly adapt to changes in
the robot’s full-order model (1). Our method is designed to
align with the direct adaptive control category in contrast
to the strategies like Teacher-Student (Lee et al. 2020) or
RMA (Kumar et al. 2021) that need to estimate pre-selected
system parameters, which can be viewed as indirect methods.

4.2 RL Preliminaries
4.2.1 Legged Locomotion Control as a POMDP: The
locomotion control on bipedal robots can be formulated as
a Partially Observable Markov Decision Process (POMDP).
At each timestep t, the environment is at state st, the
agent (i.e., the robot) makes an observation ot from the
environment, takes an action at and interacts with the
environment, the environment transits to a new state st+1,
and the agent receives a reward rt. Such a process will
repeat until the end of the episode of length T . In a
POMDP, the robot only has access to partial information
of the environment, e.g., the bipedal robot can only access
the observable states o instead of the full environment
states, which include the full coordinates q and their time
derivatives as explained in Sec. 4.1.1. In a POMDP, the
observation ot is obtained by the observation function
O(ot|st,at−1) conditioned on both the current environment

state and action the agent has taken. The RL objective is
to maximize the expected return, E[

∑T
t=0 γ

trt], by finding
an optimal policy π∗ that selects an action at at each
time step. The expected return is the sum of discounted
rewards collected by the agent throughout an episode, with
γ representing a discount factor.

4.2.2 Solving POMDP with I/O History: Solving a
POMDP can be formulated as finding the optimal policy
π∗ that maps the process history to the optimal action. The
process history at timestep t contains the entire history of
the agent’s observations and actions, i.e., {< ot,at−1 >,<
ot−1,at−2 >, . . . , < o1,a0 >} (Spaan 2012). In the control
context, it is the robot’s I/O history. One method is to
update the belief state from the process history with Bayesian
filters at each timestep, and then transform the POMDP
into a belief state MDP. Alternatives can be to formulate a
Finite State Controller (FSC) that contains the memory of
agent’s past observations and actions through internal states
to constitute and optimize a policy graph (Spaan 2012, Ch.
4). While the full history is needed to find an optimal policy,
it is computationally intractable. Instead, a finite memory
can be kept in the FSC and the POMDP can be solved
approximately (see Meuleau et al. (1999)). In all of these
methods, the robot’s process history (i.e., I/O history) is
utilized for solving a POMDP. Therefore, we choose to train
a policy that has a finite memory (with a fixed length h) of
robot’s I/O pair, i.e., π(at|ot:t−h,at−1:t−h−1). Furthermore,
in this work, to enable the robot to accomplish a variety of
goals, we parameterize tasks using commands c, and the
policy π(at|ot:t−h,at−1:t−h−1, ct) is now conditioned on
both the robot’s I/O history and the given command ct.

4.2.3 Task Parameterization: Different locomotion tasks
are parameterized by a command and this parameterization
may vary for different locomotion skills. For the walking
skill, the command cwalk ∈ R4 is defined as [q̇dx,y, q

d
z,ψ],

which specifies the desired walking velocity in sagittal q̇dx
and lateral q̇dy directions, desired walking height qdz , and
desired turning yaw angle qdψ , respectively. For the running
skill, the command is represented by crun = [q̇dx,y, q

d
ψ] ∈

R3. For jumping, the command cjump ∈ R4 is defined as
[qdx,y,ψ, e

d
z], which specifies the target planar position qdx,y ,

turned angle qdψ , and change of elevation edz in the vertical
jump direction after the robot lands.

5 Bipedal Locomotion Controller with I/O
History

In this section, we describe the proposed general control
framework for bipedal robots, leveraging the robot’s dual
I/O history as a fundamental element to enable transfer
to environments with uncertain dynamics. This control
architecture is the backbone of the RL system developed in
this work, which will show advantages in terms of control
performance in both the simulation and the real world.

Control Framework: Our locomotion control policy πθ is
represented by a deep neural network with parameters θ.
The same policy architecture will be used for a variety of
different locomotion skills, and as such, it is crafted to rely on
minimal skill-specific design choices. As shown in Fig. 3, the

Prepared using sagej.cls

8 xxx XX(X)

Figure 3. The proposed RL-based controller architecture that
leverages a dual-history of input (a) and output (o) (I/O) from
the robot. The control policy πθ, operating at 33 Hz, processes
a 2-second long I/O history. This data is initially encoded via a
1D CNN along its time axis before being merged with a base
MLP. In addition, a short history spanning 4 timesteps is directly
input into the base MLP, combined with skill-specific reference
motion qrt and variable commands ct that parameterize the
tasks. The policy outputs desired motor positions qdm as the
robot’s actions, which are then smoothed using a low-pass filter
(LPF). These filtered outputs are employed by joint-level PD
controllers operating at 2 kHz to specify motor torques τ . This
architecture is general for various locomotion skills like
standing, walking, running, and jumping. This figure also
annotates the generalized coordinates for Cassie, which include
actuated joints (qL/R1,2,3,4,7, marked as red) and passive joints

(qL/R5,6 , marked as blue).

policy outputs the desired robot motor positions qdm ∈ R10

for the robot, which is the agent’s action at. The action
is first smoothed by a Low Pass Filter (LPF) (Peng et al.
2020), details of which are discussed in Appendix .1. The
filtered actions are then used by joint-level PD controllers
to calculate the motor torques τ that will be applied to the
robot’s actuated joints. The policy is queried at a rate of 33
Hz, whereas the PD controllers operate at a higher frequency
of 2 kHz.

The policy’s input at each timestep t consists of four
components: given command ct, reference motion qrt , the
robot’s short I/O history < ot:t−4,at−1:t−4 >, and the
robot’s long I/O history < ot:t−65,at−1:t−66 >. The time-
varying command ct, as defined in Sec. 4.2.3 represents the
task the robot is to accomplish using the desired locomotion
skill. The locomotion skill is specified by a preview of a
skill-specific reference motion qrt at the current timestep
t for the robot. It includes the incoming desired motor
positions for the robot qrt = [qdm(t+ 1),qdm(t+ 4),qdm(t+
7)] which is sampled at timesteps that are 1, 4, and 7 ahead.
The preview of the reference motion conveys the upcoming
desired trajectory to the robot, aiding it in avoiding being
shortsighted. If the desired base height is not included in
command ct, such as for running and jumping, the current
base height from the reference motion qrz(t) is then also
included in the qrt .

The use of Robot’s I/O History: In addition to the
observations described above, the observations also include
a history of the robot’s inputs and outputs (I/O) to the control
policy. As depicted in Fig. 3, the inputs are represented by
the desired motor positions (the robot’s actions a), while
the outputs are represented by the observable states of the
robot, denoted as o and described in Sec. 4.1.1. This history
is processed through two streams, which we refer to as
a dual-history approach. The first stream offers a brief,

four-timestep history of the robot’s I/O, which is directly
provided as input into the base network. This short history,
lasting approximately 0.1 seconds, provides the robot with
recent feedback for real-time control. In addition to the
short history, a longer I/O history, spanning two seconds,
is also provided as input to the policy. This long history
comprises of 66 pairs of robot I/O data (< ot−k,at−k−1 >,
k ∈ [0, 65] ∩ Z). This long I/O history contributes more to
the identification of the system’s dynamics, encompassing
elements like the LPF, PD controllers, the robot itself
governed by (1), and its state estimator. Such a structure
allows the controller to effectively leverage information from
both short-term and long-term I/O history. It is important to
leverage both of these information. The long-term history is
useful for system identification and inferring state estimates,
especially for ballistic movements involved during the flight
phase. The short-term history is also important from two
perspectives: it can provide explicit feedback of recent
measurements on the robot, which is critical for real-time
control, and it can help the robot to determine the weight of
the past information which sometimes may not be important.
As we will show in Sec. 7, this dual-history structure
leads to significant performance improvements for bipedal
locomotion control.

Details of Policy Representation: As depicted in Fig. 3,
the policy architecture πθ consists of two main components:
a base network, modeled by a multilayer perceptron
(MLP), and a long-term history encoder modeled by a 1D
convolutional neural network (CNN), which computes an
embedding of the long history that is provided as input to
the base network. The base MLP has two hidden layers
with 512 tanh units each. The 1D CNN encoder consists of
two hidden layers. Their configurations, defined as [kernel
size, filter size, stride size], are [6, 32, 3] and [4, 16, 2]
with relu activation and no padding, respectively. The 66-
timestep long I/O history is encoded via this CNN encoder
through temporal convoluations along the time axis, and
then compressed into a latent representation before being
provided as input to the base MLP. The output layer of
the base MLP consists of tanh units that specify the mean
of the Gaussian distribution of the normalized action (w.r.t.
the motor range). The standard deviation of the action
distribution is specified by a fixed value 0.1I .

General Policy Structure for Different Skills: The control
policy structure introduced in Fig. 3 is a general design and
can be widely applied to a large variety of locomotion skills,
such as standing, walking, running, and jumping. To train
policies for different locomotion skills, a user needs only to
simply provide different reference motions and commands
to the policy, while the underlying architecture of the policy
remains unchanged. Throughout this paper, the same control
policy architecture will be used for all experiments.

6 Multi-Stage Training for Versatile
Locomotion Controllers

Following the construction of the bipedal locomotion
controller, our next step in this section involves developing
a general framework for training the control policy through
reinforcement learning. Much like the control structure,

Prepared using sagej.cls

Li et al. 9

Figure 4. The multi-stage training framework to obtain a
versatile control policy that can be zero-shot transferred to the
real world. It starts with single-task training stage, where the
robot is encouraged to mimic a single reference motion with a
fixed goal. This is followed by task randomization stage, which
expands the range of tasks the robot learns and fosters task
generalization resulting in a versatile policy. Once the robot is
adept at various locomotion tasks and their transitions,
extensive dynamics randomization is incorporated to enhance
policy robustness for sim-to-real transfer. This framework is
suitable for diverse bipedal locomotion skills, including walking,
running, and jumping, and for learning from different sources of
skill-specific reference motions such as trajectory optimization,
human mocap, and animation.

this training framework extends beyond a single, specific
locomotion skill and is general to various skills. Such a
framework is designed to train the robot in simulation and
to transfer to the robot hardware without further fine-tuning.

6.1 Overview

It is challenging to train a robot to accomplish diverse
tasks through a single control policy via RL. This challenge
is further compounded when dealing with highly dynamic
locomotion maneuvers where the robot has limited support,
such as varying running speeds or jumping to different
locations. In such scenarios, the robot often struggles to learn
effectively and may adopt overly conservative strategies,
such as merely standing, to circumvent the challenges.
Therefore, we develop a multi-stage training strategy that
incorporates a structured curriculum to facilitate the training
of versatile locomotion control policies. This strategy can
be summarized into three stages as shown in Fig. 4:
(1) single-task training, (2) task randomization, and (3)
dynamics randomization. In the first stage, we concentrate on
training the robot to acquire a locomotion skill from scratch,
employing a fixed command. The primary aim is to equip
the robot with the ability to master the skill itself, such as
just walking forward, running forward, or jumping in place,
while avoiding undesired maneuvering strategies. In the
second stage, we introduce diverse commands to encourage
the robot to perform a large variety of tasks using the skill
it has acquired to develop a versatile policy. Following the
robot’s proficiency in a simple simulation environment, the
third stage implements extensive randomization of dynamics
parameters in the simulation. This process is designed to

robustify the policy to ensure a successful zero-shot transfer
from simulation to robot hardware.

The design of POMDP, including aspects like reward and
episode design, may indeed differ across different stages to
serve specific objectives. However, the overall multi-stage
training scheme remains a general approach to developing
different locomotion skills, and as we will see, this method
requires only the change of skill-specific reference motion
and hyperparameters for learning different skills.

Combining a Standing Skill: Learning a standing skill for
the bipedal robot is useful for deployment in the real world,
where the robot may need to come to a stop after walking,
running, or jumping. In the context of the aperiodic jumping
skill, the robot learns to maintain a stance pose during the
post-landing phase alongside the jumping skill. However,
this standing skill is not introduced for periodic skills like
walking and running. To address this gap, in Stage 2, we
introduce an additional sub-stage to enable the robot to learn
the transition to standing (and back) once it has acquired
a versatile policy, with details introduced in Appendix .2.
While previous approaches have explored using separate
policies for such a transition, as demonstrated in Crowley
et al. (2023), our work showcases the advantages of having
a single policy for transitioning between standing and other
locomotion skills. This approach can not only realize a rapid
transition but also enable the robot to generalize the learned
locomotion skill to significantly improve robustness during
standing.

6.2 Reference Motion
For each locomotion skill, we provide one or a set of
reference motions, which provide examples of the type of
locomotion maneuvers that the robot is to perform. As
shown in Fig. 4, our framework can accommodate diverse
sources of reference motion, including reference motions
from trajectory optimization, motion capture, and keyframe
animations.

Trajectory Optimization: For the walking skill, we
leverage the trajectory optimization method to generate a
library of reference motions that depict diverse periodic
walking gaits based on the robot’s full-order dynamics.
The resulting gait library is parameterized by the walking
commands [q̇dx, q̇

d
y , q

d
z] ranging from [−1.0,−0.3, 0.65] to

[1.0, 0.3, 1.0], and consists of 1331 different reference
motions. One reference motion is represented by a set of
Bézier trajectories of each actuated motor with a fixed
timespan of the walking period (0.8 seconds). A more
detailed description of the process for generating the gait
library is provided in (Li et al. 2020, Sec. III-B) and (Hereid
et al. 2019). Note that we do not consider turning yaw
command qdψ when building the reference gait library.

Motion Capture: The reference motion for the running
skill is derived from motion capture data collected from a
human actor (SFU 2018). We retargeted the original human
motion to the Cassie’s morphology using inverse kinematics.
This process involves matching the motion of key points,
such as the pelvis and toes, between the human and the
robot. More details on the retargeting process is available
in (Li et al. 2020, Sec. II-B). Note that we only have one
single reference motion for periodic running, with an average

Prepared using sagej.cls

10 xxx XX(X)

Table 3. The components r and their respective weights w in the reward function used for training the bipedal robot across various
skills and training stages. A nominal weight vector is provided for different components, with adjustments necessary based on the
skill and stage of training, primarily influenced by task diversity (training for single goal versus diverse goals) and the existence of a
flight phase. The reward tuning process is relatively streamlined, as only 24 out of 72 reward terms vary across the three different
bipedal locomotion skills over multi-stage training. Blank cells indicates no change on the corresponding nominal value.

Reward Component r
Weight w

Nominal Value Walking Skill Running Skill Jumping Skill
Stage 1 Stage 2, 3 Stage 1 Stage 2, 3 Stage 1 Stage 2, 3

Motion Tracking
Motion position: r(qm,qrm(t)) 15 -7.5
Pelvis height: r(qz, qrz(t) + δz) 5 -2
Foot height: r(ez, erz(t) + δz) 10 -7 -7

Task Completion
Pelvis position: r(qx,y, qdx,y) 7.5 -1.5 -1.5 +5.5 +7.5
Pelvis velocity: r(q̇x,y, q̇dx,y) 15 -15 -2.5

Pelvis orientation: r(cos(qϕ,θ,ψ, [0, 0, qdψ]), 1) 10 -2.5 +2.5 -5 +2.5
Pelvis angular rate: r(q̇ϕ,θ,ψ, [0, 0, q̇dψ]) 3 +4.5 +7

Smoothing
Foot Impact: r(Fz, 0) 10 -7 -5

Torque: r(τ , 0) 3
Motor velocity: r(q̇m, 0) 0 +3
Joint acceleration: r(q̈, 0) 3 -3

Change of action: r(at, at+1) 3 +2 +2 -3 +7

speed of 3 m/s and foot clearance of around 0.1 m during
flight, without lateral or turning movements. We also retarget
one single human motion of the transition from running
to standing to serve as the reference motion for Cassie to
transition between the two behaviors.

Animation: We provide the reference motion for the
jumping skill using the animation technique. The robot
jumping motion is directly hand-crafted in a 3D animation
creation suite. Similar to running, we only provide a single
jumping-in-place animation for reference motion, with an
apex foot height of 0.5 m, a jumping timespan TJ =
1.66 seconds, and ending with a stance pose. For readers
interested in creating animation for bipedal robots, please
refer to Li et al. (2020).

Please note that we do not perform trajectory optimization
to translate the kinematically feasible reference motion from
motion capture or animation to be dynamically feasible for
the robot.

6.3 Reward
We now formulate the reward function rt that the agent
receives at each timestep t in order to encourage the robot to
perform the desired locomotion skills while completing the
desired tasks. In this work, the reward rt the agent receives
is the weighted summation of several reward components
r, i.e., rt = (w/||w||1)T r with the component vector r and
weight vector w listed in Table 3. Each element in r shares
the same format as:

r(u,v) = exp(−α||u− v||2). (2)

By maximizing (2), the robot is incentivized to minimize the
distance between two vectors, u and v. In (2), a different
scaling factor α > 0 is introduced in each term to normalize
units, resulting in an output range of (0, 1].

6.3.1 Reward Components: The reward rt comprises
three key terms: (1) motion tracking, (2) task completion,
and (3) smoothing. Each of these terms consists of
several individual reward components, each serving specific
objectives, as detailed in Table 3.

Motion tracking: The motion tracking term is crafted
to incentivize the agent to follow the provided reference
motion for a specific skill. This objective is achieved through
several components, including the motor position reward
r(qm,qrm(t)), the global pelvis height r(qz, qrz(t) + δz), and
the global foot height r(ez, er(t) + δz) at each time step.
The addition of δz in the reference vertical displacement
takes into account variations in terrain height, such as when
the robot encounters changing terrain while running (δz :=
the time-varying terrain height) or when it jumps to different
elevations (δz := the time-invariant target elevated height).
There is some privileged environment information used
in the reward, such as the robot’s global height qz , foot
height ez , or terrain height δz . These terms provide the
robot with better knowledge of the environment and current
states during training, but are excluded from the actor’s
observation. We will frequently see such an exploitation of
privileged information in the reward.

Task completion: We incorporate a task completion term
into the reward to ensure that the robot accomplishes
the assigned tasks using the acquired locomotion skill.
Within this term, we motivate the robot to align its
movement with the desired velocity and turning rate by
including r(q̇x,y, q̇

d
x,y) and r(q̇ϕ,θ,ψ, [0, 0, q̇

d
ψ]), respectively.

Additionally, we introduce global pose tracking components
r(qx,y, q

d
x,y) and r(cos(qϕ,θ,ψ − [0, 0, qdψ]), 1) in the reward.

Note that for the orientation tracking term, we opt to
match 1 with the cos of the orientation error within the
range of [−π, π] to prevent singularities when the robot
undergoes a transition between −π and π. Furthermore,
as this work does not consider changes in robot roll and
pitch (qϕ,θ), we set qdϕ,θ and its rate of change q̇dϕ,θ to zero,
contributing to the stabilization of the robot’s pelvis. For
periodic walking and running skills, the desired velocities
q̇dx,y,ψ are initially provided, and the position terms qx,y,ψ
are calculated by integrating the corresponding commands
over time. Conversely, for aperiodic jumping skills, the
desired (time-invariant) landing targets qx,y,ψ are specified
first, and average velocity terms are introduced to shape the
sparse position reward as q̇dx,y,ψ = qdx,y,ψ/TJ where TJ is the
jumping timespan.

Prepared using sagej.cls

Li et al. 11

Smoothing: Finally, we also add a smoothing term to
discourage the robot from learning jerky behaviors. We
incentivize the robot to reduce impact forces through
r(Fz, 0), reduce energy consumption via r(τ , 0), produce
smooth motions by minimizing motor velocities r(q̇m, 0),
damp out joint acceleration r(q̈, 0), and regulate changes in
the actions r(at,at+1).

6.3.2 Reward Weights: By employing different choices
of weights w, we can emphasize certain reward terms as
more critical for the robot’s performance while diminishing
the significance of others, thereby influencing the robot’s
acquired maneuvers. In this work, despite covering different
dynamic locomotion skills and including several training
stages for each skill, we demonstrate that the reward
components and their associated weight values align with a
unified choice (i.e., the nominal value in Table 3) applicable
to different skills and stages. This homogenization can be
achieved with some adjustments in accordance with general
principles governing the tuning of specific weight, as detailed
in Table 3 and introduced below.

Weights across different stages: In Stage 1, which
involves the initial training of a specific locomotion skill
from scratch, our emphasis is placed on training the robot to
master the desired skill. As a result, the weight of the motion
tracking term takes precedence in the reward, encouraging
the robot to closely mimic the reference motion. As the
robot becomes proficient in the desired skill, upon entering
Stage 2, where the commands are randomized, we can
adjust the weight of the task completion term to outweigh
other terms. This adjustment serves to motivate the robot
to accomplish different tasks, especially the ones beyond
the reference motion, such as executing turning motions
in addition to walking, various running and turning speeds
that extend beyond the single running reference motion,
and various landing targets beyond the single jumping-in-
place animation. To prevent the robot from adopting overly
conservative behavior, especially during initial training, the
weight of the smoothing term remains relatively low. As
the robot solidifies its locomotion skill, this term can be
gradually increased to refine the robot’s movements. But this
term is always the least across multiple stages.

Weights across different skills: As detailed in Table 3,
the variations in the weights among different locomotion
skills are generally not substantial, with the primary
distinctions arising from the presence of the flight phase in
the skill. Notably, in skills such as running and jumping,
where a significant flight phase is involved, the motion
tracking term for foot height r(ez, e

r
z(t) + δz) carries a

larger weight compared to the walking skill. Furthermore,
to encourage the robot to tackle the challenges caused
by the flight phase while deviating from the reference
motion to explore diverse tasks, we assign higher weights
to the task completion term. The smoothing term largely
remains consistent across skills, with some adjustments
like the change of action term r(at,at+1) to strengthen
the smoothing of aggressive movements for running and
jumping.

6.4 Episode Design

6.4.1 Unified Approach: Across all of the diverse loco-
motion skills and training stages developed in this study,
the episode design is consistent and unified. The episode
duration is set to 2500 timesteps, corresponding to a total
timespan of 76 seconds. In Stage 2, where variable tasks are
introduced, we randomize the command after random time
intervals, ranging from 1 second to 15 seconds. The specific
ranges for uniformly randomized commands for each task
are detailed in Table 6 in Appendix .3. Note that we employ
a long horizon in an episode to enable the robot to explore
more scenarios of transitions among different tasks.

One exception is made for the episode length in the first
stage of aperiodic tasks like jumping. For such cases, the
episode length is adjusted to cover a complete trajectory
(e.g., 1.66 seconds for jumping motion), with a significant
extension to enable the robot to learn to maintain the last
standing pose after landing. In this work, the Stage 1 training
of jumping employs 750 timesteps (22 seconds).

6.4.2 Early Termination Conditions: When training
dynamic locomotion skills on bipedal robots, relying solely
on reward design could be insufficient. The robot might still
exhibit undesirable behavior despite achieving suboptimal
return, such as maintaining a stance pose without engaging
in locomotion because the robot can easily attain part
of the reward in this way. To address this, in addition
to the standard termination conditions, such as the robot
falling over (qz < 0.55m) or the tarsus joints q

L/R
6 hitting

the ground, we incorporate two additional termination
conditions among all skills and stages, as elaborated below.

Foot height tracking tolerance: The episode will
terminate early if the deviation between the robot’s foot
height and its reference motion exceeds a threshold Ee, i.e., if
|ez − erz(t)− δz| > Ee. This condition is empirically found
to be particularly effective in promoting the development
of locomotion skills involving flight phases, like running
and jumping. Without this condition for motion tracking,
especially during the initial stages of training, the robot
tends to remain mostly on the ground. For skills lacking
a flight phase, such as walking, this condition can still be
incorporated, although it may not be necessary.

Task completion tolerance: We underscore the impor-
tance of task completion to the robot by introducing a con-
dition based on the robot’s deviation from the commanded
base position and orientation, |qx,y,ψ − qdx,y,ψ| > Et, with
Et being the acceptable tracking error threshold. For walking
and running, we consistently check this condition to encour-
age the robot to diminish accumulated tracking errors. In the
case of jumping, this condition is evaluated after the robot’s
landing, stimulating the robot to jump to the specified target.

Tolerance across different stages: The error thresholds
Ee and Et may require adjustments as the training
progresses, depending on the robot’s proficiency in the
desired locomotion skill. For instance, the foot height
tracking error threshold Ee may start with a tight constraint
in the initial stage (Stage 1) and progressively relax in
subsequent stages. Ideally, this condition can be completely
removed in the end. This strategy provides the robot more
flexibility in exploring diverse maneuvers in the later stages,
surpassing the capabilities of the provided reference motion.
In contrast, the tracking error threshold Et can be gradually

Prepared using sagej.cls

12 xxx XX(X)

Table 4. The range of dynamics randomization. Introducing
simulated external perturbations to the robot’s base or
incorporating variable terrain is optional but only recommended
after the robot has learned to handle general dynamics
randomization. However, for highly dynamic skills like aperiodic
jumping, external perturbations may not enhance robustness
and could stop the robot from learning meaningful maneuvers.

Parameters Range
Dynamics Randomization (General)

Ground Friction Coefficient [0.3, 3.0]
Joint Damping Ratio [0.3, 4.0] Nms/rad

Spring Stiffness [0.8, 1.2] × default
Link Mass [0.5, 1.5] × default
Link Inertia [0.7, 1.3] × default

Pelvis (Root) CoM Position [-0.1, 0.1] m in qx,y,z
Other Link CoM Position [-0.05, 0.05] m + default

Motor PD Gains [0.7, 1.3] × default
Motor Position Noise Mean [-0.002, 0.002] rad
Motor Velocity Noise Mean [-0.01, 0.01] rad/s

Gyro Rotation Noise [-0.002, 0.002] rad
Linear Velocity Estimation Error [-0.04, 0.04] m/s

Communication Delay [0, 0.025] s
External Perturbation (Optional)

Force & Torque [-20, 20] N & [-5, 5] Nm
Elapsed Time Interval (Walking) [0.1, 3.0] s
Elapsed Time Interval (Running) [0.1, 1.0] s

Randomized Terrain (Optional)
Terrain Type Waved, Slopes, Stairs, Steps

reduced during training as the robot becomes more skilled
in locomotion and can place a stronger emphasis on task
completion. Despite the diversity of skills, we observe a
consistent trend in such tolerance adjustments across the
multiple training stages.

6.5 Dynamics Randomization
As illustrated in Fig. 4, in training Stage 3, we
introduce randomized dynamics parameters in the simulation
environment to train a policy that can stay robust and
generalize the acquired locomotion skills to deal with the
uncertainty in both dynamics modeling and measurements.
The objective of this training is to enable successful
transfer from simulation to real-world scenarios where
the dynamics parameters are uncertain. At each episode,
dynamics parameters, as detailed in Table 4, are sampled
from their respective uniform distributions.

Specifically, to address modeling uncertainty, we intro-
duce extensive randomization of modeling parameters,
including ground friction coefficient, robot joint damping
ratio, and mass, inertia, and Center-of-Mass (CoM) position
of each link. In the case of Cassie, which features passive
joints connected by leaf springs, the introduction of ±20%
randomized stiffness for the leaf springs has been important
for successful sim-to-real transfer, particularly for skills like
running and jumping that involve substantial compression
of the springs. We also incorporate randomization into the
PD gains of the joint-level PD controllers, adding a range
of ±30% deviation from their default values. This ran-
domization is applied independently to each joint-level PD
controller. This stimulates the diversity in motor responses
that can mimic the effects of uncertain motor dynamics
seen in real-world scenarios, including motor aging and
degradation, which is found effective in facilitating the sim-
to-real transfer.

To tackle measurement uncertainty, we add a simulated
noise to the observable states ot. The noise is modeled as a

normal distribution with the mean uniformly sampled from
the range specified in Table 4. Please note that, given the
reliable sensors like joint encoders and IMU on Cassie’s
hardware, the range of measurement noise we applied is
small. However, for robots equipped with lower-quality
sensors, a wider simulated noise range may be necessary.
Additionally, we simulate a communication delay, caused
by a zero-order hold, between the policy and the robot’s
real-time computer, which influences the timing of sending
actions and receiving observations. For highly dynamic
motions, such as jumping and running, the delay plays a
significant role in the sim-to-real gap, and the ability to tackle
delays during real-time control is critical for stability.

The randomization strategy mentioned above is applied
consistently across various locomotion skills. Additionally,
we have also investigated the use of other sources
of randomization during training. They are randomized
perturbation and randomized terrains as detailed below.

Use of Randomized Perturbation: In our study, we
explored the use of randomized external perturbation
wrenches applied to the robot’s pelvis, hypothesizing
that it could create more diverse training scenarios and
enhance robustness by deviating the robot from its nominal
trajectories. This perturbation (typically being impulse),
incorporating forces and torques applied for random
durations as specified in Table 4, can be simulated during
training. However, we find that while this approach can
increase the robustness of policies in real-world applications,
it introduces complex hyperparameters that are challenging
to choose and complicates the training process. For walking,
frequent perturbations led to an overemphasis on perturbed
scenarios, impairing the robot’s performance in normal
walking gaits. In running, longer perturbations hindered
the robot’s ability to learn effective gaits. As a result,
we employed different elapsed time intervals for walking
and running, as detailed in Table 4. Moreover, in the
case of jumping skills or transitions from locomotion to
standing, these perturbations proved even more problematic,
preventing the robot from acquiring meaningful jumping
or standing abilities. Therefore, we chose to exclude
external perturbation from the training for both jumping and
transition-to-standing skills.

Use of Randomized Terrain: If the control policy aims
to enable the robot to traverse uneven terrain, it is
essential to simulate terrain changes during training. We
developed an algorithm to randomize various types of
terrains using parameterized height maps including wave
terrain (characterized by sine functions), sloped terrain,
monotonic stairs, and random steps, as listed in Table 4. It’s
important to note that our control policy doesn’t incorporate
vision, so the robot has to adapt to terrain changes based on
its I/O history, making it a more challenging problem. Terrain
randomization is recommended only after the robot has
proficiently trained in other dynamics randomization to avoid
excessive learning complexity. In this study, we introduced
terrain randomization for running skills for example.

6.6 Training Details
We develop the simulation of Cassie within the afore-
mentioned environments using MuJoCo based on (Todorov

Prepared using sagej.cls

Li et al. 13

et al. 2012; DRL 2023). The training of all control policies
is carried out using Proximal Policy Optimization (PPO)
developed by (Schulman et al. 2017) in simulation. The
control policy (actor) is as described in Sec. 5, with a value
function represented by a 2-layered MLP that has access to
ground truth observations. Given the varying complexities of
different training stages and skills, the number of training
iterations differs across stages and skills. The numbers of
iterations and other hyperparameters are provided in Table 7
and Table 8, respectively, in Appendix .4.

Up to this point, design details of the proposed RL
framework for learning versatile, robust, and dynamic
bipedal locomotion skills have been introduced. We will next
proceed to validate several key design components.

7 Advantages of Policy Architecture
In this section, we first evaluate the advantages of
the proposed bipedal locomotion control framework in
Sec. 5 through an extensive ablation study of its
design choices. This evaluation unfolds from two key
perspectives: (1) the learning performance in challenging
simulation environments with extensively randomized
dynamic parameters, and (2) the control performance during
the sim-to-real transfer on a real robot, without any tuning.
The simulation offers a controlled setting to test the capacity
of the control architectures in learning control strategies
for large changes in the system dynamics, while real-world
experiments allow us to evaluate the control efficacy on
the fixed but uncertain dynamics of the robot’s hardware.
As we will demonstrate, our proposed dual-history control
architecture and training system result exhibits the best
learning performance and sim-to-real transfer.

7.1 Baselines
We compare the proposed controller structure and other
baselines listed below and illustrated in Fig. 5. Those choices
of baselines include ablations on several design choices
proposed in this work: (1) choices of action space, (2) history
of the robot’s I/O or state feedback only, (3) history length
(long or short history), (4) dual-history or long history only,
(5) end-to-end training or policy distillation. The models
used in the experiment include:

• Ours (Fig. 5a): as detailed in Fig. 3, our architecture leverages
both short-term and long-term I/O history, with the long-term
history encoded by a CNN, while the short-term history is
directly fed into the base MLP. The CNN and MLP are trained
jointly and the policy outputs specify the desired motor positions.

• Residual (Fig. 5b): this architecture aligns with our proposed
one, but it produces an output that represents a residual term
that is then added to the reference motor position at the current
timestep, i.e., qdm = at + qrm(t). Such an approach is employed
in prior works like Lee et al. (2020); Xie et al. (2020); Siekmann
et al. (2020). It is worth noting that the robot “knows” the current
reference motor position to add by taking the reference motion as
input.

• State Feedback Only (Fig. 5c): this variant retains the same
model structure and action space as ours. However, it differs in
its observation by relying solely on the historical states (robot’s
output history), omitting the robot’s input history. Such a choice,
without the use of short history, is more commonly seen in

Figure 5. Illustration of our proposed and various baselines for
RL-based control policy architectures for bipedal robot
locomotion. Fig. 5a, Ours integrates both short and long-term
I/O histories, with the base MLP and long history encoder jointly
trained to specify motor positions. Fig. 5b, the Residual
approach aligns with our architecture but adds a residual term
to the reference motor position. Fig. 5c, the State Feedback
Only baseline uses our model structure but relies solely on
robot’s states history, excluding input history. Fig. 5d, the Long
History Only approach depends on long I/O history without
using short I/O history, while the Short History Only approach
(Fig. 5e) focuses only on short-term I/O history, excluding the
CNN encoder. The RMA/Teacher-Student method utilizes a
two-phase policy distillation, with an expert (teacher) policy
(Fig. 5f) guiding the training of an RMA (student) policy (Fig.
5g), which can be improved by A-RMA (Fig. 5h) which
introduces an additional phase where the base MLP is
finetuned while keeping the long I/O history encoder’s
parameters fixed. Notably, all expert, RMA, and A-RMA policies
in this study incorporate short I/O histories into the base MLP,
which is a new modification in this work to enable equitable
comparison with ours. All of these architectures have the
command and reference motion as input to the base MLP, as
detailed in Fig. 3 and omitted for brevity.

previous work, such as Lee et al. (2020); Siekmann et al. (2020,
2021a); Crowley et al. (2023).

• Long History Only (Fig. 5d): this policy architecture relies
only on a long-term I/O history encoded by the CNN. This
configuration serves as a baseline in Kumar et al. (2021). As
suggested by Peng et al. (2018), the base MLP has direct access to
the robot’s immediate (last-timestep) state feedback. For brevity,
in this work, Long History Only refers to the method that provides
the lastest observation (state feedback) along with the long
history encoder, which can be modeled using different neural
network architectures.

• Short History Only (Fig. 5e): this policy relies solely on short-
term I/O history, excluding the long-term I/O history CNN
encoder. This is used for bipedal locomotion control in Li
et al. (2021) and is more commonly seen in quadruped control
like Huang et al. (2023); Escontrela et al. (2022); Feng et al.
(2023).

• RMA/Teacher-Student: this architecture utilizes the policy
distillation method that involves two training phases. First, an
expert (teacher) policy (Fig. 5f) is trained by RL that has access
to privileged environment information (listed in Table 4). The
privileged information is encoded into an 8D extrinsics vector
by an MLP encoder. This expert (or teacher) policy can only
be used in simulation. Second, the expert policy is employed to
supervise the training of an RMA (student) policy (Fig. 5g). The
RMA policy copies the base MLP from the expert policy and
only learns to leverage the long I/O history encoder to estimate
the teacher’s extrinsic vector. Such a policy distillation method is
used in Lee et al. (2020); Kumar et al. (2021) and widely adopted
in quadrupedal locomotion control.

Prepared using sagej.cls

14 xxx XX(X)

Figure 6. The learning performance using different policy structure designs illustrated in Fig. 5. It is assessed during Stage 3
training, which incorporates both task and dynamics randomization. These curves represent the average normalized episodic
return across 3 distinct policy trainings from different random seeds, with shaded regions indicating the range between minimum
and maximum returns. Note that there is no perturbation training for the jumping policy as it prevents the robot from learning the
dynamic jumping skill. Our proposed method consistently outperformed other baselines across different skills. Notably, our policy’s
performance is comparable to that of the expert policy, which has access to privileged information but is not deployable in the real
world. In contrast, the residual method shows the worst return. Using only a long history does not offer a clear benefit compared to
a policy relying solely on a short history. In fact, the short history only policy even outperforms the long history only approach.
Additionally, even with a dual-history approach like ours, omitting the robot’s input history (only using state feedback) results in no
improvement over short I/O history only. The student or RMA methods exhibit significant regression loss in bipedal locomotion
control; particularly in dynamic skills like running, RMA fails to learn. This suggests the necessity of the A-RMA stage for further
training, though it requires considerably more training samples and yields slightly lower returns compared to our method.

• A-RMA (Fig. 5h): after the RMA training, an additional training
phase is introduced. In this phase, the long I/O history encoder’s
parameters remain fixed, while the base MLP is updated again
through RL, as introduced by Kumar et al. (2022). Notably,
during the implementation, all expert, RMA, and A-RMA policies
incorporate short I/O histories to the base MLP in this study,
which is a new modification in this work to enable an equitable
comparison with ours.

For each locomotion skill studied in this work (walking,
running, and jumping), using our proposed method and
baseline methods, we obtained 3 policies trained by
the identical multi-stage training framework introduced
in Sec. 6. These policies were obtained from the same
choice of hyperparameters, but from different random seeds.
This was done for each of these policy architectures. In
other words, 3× 3× 8 = 72 different control policies are
obtained, representing 3 locomotion skills, 3 random seeds,
8 policy architectures, and evaluated below.

7.2 Learning Performance
We begin our evaluation by benchmarking our method
against various baselines in simulation by examining their
respective learning curves. Our focus lies on the training
performance during Stage 3, as shown in Fig. 6, the most
challenging stage that involves both randomized tasks and
dynamics parameters. This particular emphasis on Stage 3
also stems from its critical role in sim-to-real transfer, a
pivotal concern within the scope of controlling real bipedal
robots in our study.

7.2.1 Benchmark Analysis: As depicted in Fig. 6, the
learning performance remains uniform across various
locomotion skills, as outlined and analyzed below.

Choices of Action: We observe that when the policy pro-
duces a residual term (purple curves) instead of directly spec-
ifying the desired motor position, the learning performance

consistently deteriorates across various locomotion skills.
Although the added reference motion to the action might
accelerate the learning of the desired skill initially, this added
reference motion could also introduce additional movements
to the robot. Consequently, the policy expends more effort
correcting the added movements rather than effectively con-
trolling the robot, which becomes more problematic when
the robot explores maneuvers beyond the reference motion.
Hence, we recommend readers reconsider the use of residual
learning in the context of locomotion control, regardless of
whether the added action is optimized for dynamic feasibility
(as in walking) or limited to kinematic feasibility (as in
running or jumping).

We also consider another action space option: joint-
level torque. RL has been used to learn torque control for
quadrupedal and bipedal robots as demonstrated in Chen
et al. (2023) and Kim et al. (2023) respectively. However,
torque control’s high update frequency requirements, such
as 250 Hz in Kim et al. (2023), restrict its ability to utilize
extensive robot I/O history. Prior methods using torque
control have thus been limited to a single timestep of
robot feedback. Later, we will demonstrate that a longer
I/O history, like 2 seconds, could improve the adaptivity
of RL-based controllers, but recording and learning with
such a long history is computationally expensive for high-
frequency torque controllers, as the action (robot’s input)
history needs to update at the same frequency as the
controller. Therefore, our benchmark focuses on policies that
can operate effectively at lower frequencies.

Choices of Observation: A comparison between our
proposed method (red curves), which considers the robot’s
I/O history, and a baseline that relies solely on the robot’s
output history (pink curves) reveals an important finding:
omitting the robot’s input (action) history leads to a
decline in learning performance, even with an identical
policy architecture and training approach. In other words,

Prepared using sagej.cls

Li et al. 15

Figure 7. Snapshots from experiments of the bipedal robot Cassie controlled by different policies trained by different methods
illustrated in Fig. 5. The test is to control the robot to walk in place, i.e., (q̇dx, q̇

d
y , q

d
ψ) = 0. Each snapshot compiles three frames

taken at the same 1st, 4th, 7th second after initialization. Our method exhibits minor drift (the robot does not leave its initial place as
demonstrated in the figure), outperforming other approaches, which all result in notable sagittal and/or lateral drifts (marked by the
white arrows). Furthermore, the residual policy failed to control the robot to maintain a stable gait. This benchmark underscores the
advantages of our proposed architecture in adapting to the real robot’s dynamics for better tracking performance after zero-shot
transfer. These results are consistent over different policies trained from different random seeds, which are reported in Fig. 8.

(a) The bar chart of tracking performance (zero-speed) using the same
policies tested in the simulation.

(b) The bar chart of tracking performance (zero-speed) using the
obtained walking policies tested on the robot hardware.

Figure 8. The bar chart of the tracking performance using different policies obtained by different methods (Fig. 5) in the in-place
walking experiments in the simulation (Fig. 8a) and the real world (Fig. 8b). The speed tracking error (Mean Absolute Error, MAE, of
||q̇x,y||2) and orientation tracking error (MAE of qϕ,θ,ψ) using the policies trained from different random seeds but same method are
recorded. They are shown in green and blue bars, respectively. The bar height is the average tracking error over three random
seeds and the error bar represents the standard deviation among these three tests. We exclude the residual approach as it can not
maintain a stable gait. Training from different random seeds, while all methods perform similarly well in the simulation, when
transferring the same policies to the hardware, our method consistently demonstrates the minimal speed tracking error and
orientation tracking error over other methods. This underscores the capacity of the proposed method in terms of adapting to the
robot dynamics in the real world.

providing only the history of the robot’s state feedback in
the observation is insufficient. This comparison illustrates
the critical role of utilizing both the robot’s input and
output history in developing a control policy through model-
free RL. This combined I/O history is crucial for the
control policy to perform system identification and state
estimation to infer the robot’s system parameters and states,
which enhances its adaptivity to uncertain dynamics and
external perturbations. This importance becomes particularly
pronounced in our work, where we tackle the control of a
highly nonlinear high-dimensional system (bipedal robot)
using limited and noisy, delayed measurements (partial
observability).

Long History versus Short History: When leveraging
long I/O history alone (blue curves), the learning perfor-
mance fails to surpass that of the policy utilizing only short
I/O history (orange curves) or others. However, when we
provide the base MLP with direct access to the short I/O
history while having a long history encoder, as proposed
in our approach, the resulting learning performance exhibits
significant improvement. This enhancement is rooted in the
real-time control context, where the short history becomes
crucial for information about the robot’s very recent I/O
trajectory. While the long history does contain this short-term
information, it can become obscured after passing through
an encoder. Hence, providing the policy with direct access

to explicit short history within the base MLP complements
the utilization of long history. Further discussion is presented
in Sec. 11.1. Additionally, in Appendix .5, we delve into
the effects of varying history lengths for temporal encoding.
We found that increasing the history length can enhance
training performance, but improvements tend to plateau with
longer histories and may even hinder training by introducing
redundant information for locomotion control. The 2-second
history tends to perform consistently well in all the skills
developed in this work.

Remark 1. In Appendix .6, we explore the effects of training
performance using different temporal encoders such as
TCN (Lee et al. 2020) and LSTM (Siekmann et al. 2020).
We found that a dual-history approach consistently enhances
learning performance for non-recurrent policies like TCN
that encode an explicit history length. However, for recurrent
policies like LSTM, the dual-history approach does not
significantly aid learning. Additionally, recurrent policies
tend to converge to more suboptimal policies than non-
recurrent ones and are sensitive to hyperparameter tuning
across different MDPs (locomotion skills).

It’s important to clarify that our aim is not to dispute the
use of a specific temporal encoding structure or the use of
a long history. Instead, our emphasis lies in underlining the
importance of incorporating short history when working with

Prepared using sagej.cls

16 xxx XX(X)

long history data, which can be encoded by many choices of
structures.

Comparison with Policy Distillation Methods: A compar-
ison between our method that jointly trained the long history
encoder with the base MLP (red curves) and policy distilla-
tion methods that separate the training of the base MLP and
history encoder (green curves) highlights the significance of
using a right training strategy. We observed that the RMA
(student) policy exhibits significant degradation compared
to the expert policy, primarily due to the unavoidable error
when utilizing the robot’s long history to estimate pre-
selected environment parameters (encoded to the extrinsics
vector). This decline in RMA’s performance becomes partic-
ularly prominent when dealing with challenging locomotion
skills, such as running, where it fails to learn. A-RMA,
which continues fine-tuning the base MLP with the frozen
estimation encoder, can enhance RMA performance but it
still falls slightly short when compared to our proposed
method, despite having significantly more training samples.
In the case of running, where the encoder struggles to
estimate environment parameters, A-RMA essentially repro-
duces the result of the short history-only policy (the orange
one), avoiding the use of long history. It’s worth noting
that although there are other potential ways to enhance
RMA learning like Fu et al. (2023), our proposed method
consistently demonstrates performance similar to the expert
policy which is the theoretical upper bound for the student
policy. Importantly, our approach is deployable in the real
world, whereas the expert policy is not.

7.3 Case Study: In-place Walking
Experiments

We proceed to conduct a case study on the policies
trained using various methods, as depicted in Fig. 5, in the
real world. We choose to assess the walking policies for
controlling Cassie to sustain an in-place walking gait in the
real world without any tuning or global position feedback.
This relatively straightforward scenario can provide valuable
insights into the adaptivity of the trained policies. If the
policy is unable to adapt to the dynamics of the real robot,
it may result in obvious drift, even if it effectively maintains
the robot’s walking gait.

As shown in Fig. 7, the results highlight a significant
contrast. Our proposed method demonstrates notably lower
tracking errors and successfully maintains the robot’s in-
place walking, with minimal drift observed in both sagittal
and lateral directions. Conversely, policies utilizing long
history only, short history only, and dual-history with
only state feedback, when trained under the same number
of samples, result in substantial drift to the robot’s left.
Furthermore, RMA demonstrates the most obvious sagittal
shift and it walks forward using a fast speed even with a zero
velocity command. While A-RMA reduces this sagittal drift,
it still experiences considerable lateral movement. Moreover,
the residual policy fails to maintain a stable gait on the
real robot. The corresponding video is recorded in Vid. 3 in
Table 1.

Since we obtained three distinct policies trained from
different random seeds, we test each of these policies for
the same in-place walking in both the simulation using the

robot nominal model and the real world, and compare the
statistical results in Fig. 8. The robot’s speed (||q̇x,y||2) and
base orientation (qϕ,θ,ψ) tracking errors (Mean Absolute
Error, MAE) over a 10-second test are evaluated. Note
that, besides the turning yaw (qψ) that is included in the
command, we also evaluate the robot’s tracking error for
the pelvis (base) roll qϕ and pitch qθ angles. This is
done to see which control policy can better stabilize the
robot to a small base roll and pitch movement as they are
supposed to be zeros. As recorded in Fig. 8a, all policies
trained by different methods exhibit similar good tracking
performance in terms of slow speed (except RMA) and
floating-base orientation when commanded to walk in place
in simulation. However, upon transferring to real hardware
(Fig.8b), other methods exhibit significant speed drift and
floating base rotational tracking errors. For example, the
long history only policy shows the worst performance in
stabilizing the robot’s pelvis with a large floating base
orientation, yet it has minimal base oscillation in simulation.
A-RMA, while best at maintaining the robot’s position in
simulation, causes significant drift to the robot’s left on
real hardware. In contrast, our method achieves better sim-
to-real transfer performance with minimal degradation and
consistently results in better control performance in terms
of command tracking and stabilizing the floating base. This
underscores the advantages of our approach in adapting to
the dynamics of the robot hardware.

Consequently, we can conclude that the proposed method
excels in bridging the sim-to-real gap, demonstrating better
performance in effectively controlling the robot in the real-
world environment.

7.4 Summary of Results
For achieving dynamic bipedal locomotion skills through
RL, the results in this section indicate the following design
choices for the control policy structure:
(1) Have the policy to directly specify motor-level commands
rather than using a residual term;
(2) Utilize a history of both the robot’s input and output,
rather than relying solely on the robot’s state feedback;
(3) When using the robot’s I/O history, favor the inclusion of
long-term history, but complement it with short-term history
in the base policy for enhanced performance, which leads to
a dual-history approach; and
(4) Train the base policy and the history encoder in an end-to-
end manner, as it yields better performance, reducing training
complexity and samples compared to policy distillation
methods.

These design choices lead to our proposed policy struc-
tures, showcasing consistently best learning performance in
simulation across various dynamic locomotion skills and
delivering improved control results in the real world.

8 Source of Adaptivity
To understand why the proposed method shows advantages
in achieving better learning performance in the challenging
scenario of performing dynamic locomotion skills with vary-
ing environment parameters, we delve into an examination
of the latent representation provided by the encoder for long
I/O history, as shown in Fig. 9 and Appnedix .7. These results

Prepared using sagej.cls

Li et al. 17

are obtained in simulation. As we will see, the encoder that
utilizes long I/O history can capture both time-varying events
and time-invariant changes in dynamics parameters in all the
locomotion skills we developed.

8.1 Time Varying Embedding:
In this subsection, we observe that the latent embedding from
the long I/O history encoder can effectively adapt to time-
varying external disturbances or locomotion tasks, implicitly
estimating contact events and/or external forces across all
three distinct locomotion skills.

Periodic Running: Using the running policy obtained by
the proposed method, we recorded the latent embedding over
a 15-second duration, initiating from a standing position and
progressing to follow the constant running speed command
of 3 m/s. A persistent backward perturbation force of 40 N
was applied to the robot base from 8 to 11 seconds. The
evolution of latent values over time is depicted in Fig. 9a.

Given that running is a periodic skill, the latent embedding
also exhibits a periodic pattern once the gait has stabilized,
as seen in Fig. 9a after 2 seconds. Additionally, the presence
of the perturbation introduces variations in the latent
embedding (within the green dashed lines), showcasing the
capability to capture time-varying disturbances.

Additionally, we found two intriguing latent dimensions
highlighted by the red line and plots in Fig. 9a. These two
latent signals exhibit a strong correlation with the impact
force on the robot’s left and right foot. Specifically, the
values of these two latent dimensions vary in a tendency
consistent with the ground truth impact force recorded in
simulation, reaching zero when the corresponding force is
zero (the respective foot is in a swing phase). This result
highlights a crucial and demanding capability for controlling
legged robots: contact estimation, as the trajectory breaks
upon contact.

The advantage of implicit contact estimation becomes
more evident with changes in these two latent dimensions in
the presence of external perturbation (shown within the green
dashed lines in Fig. 9a). Despite the unchanged magnitude
of the ground impact force, these two latent values shift
to a lower envelope during the perturbation, followed by
a recovery to the previous envelope after the perturbation
is taken out. While an exact explanation for this change
remains elusive as it is learned purely through data, it may
be attributed to the notion that both external perturbation and
ground reaction force can be treated as a generalized external
force ζext applied to the robot, as implied by the robot’s
full-order dynamics (1). The robot may have unconsciously
learned to embed such external forces all together into
these signals and leverage them in control, without explicit
human engineering, through the provided long I/O history. A
similar capacity for such a long history encoder for periodic
walking skill is also observed, and we analyze it briefly in
Appendix .7.

Aperiodic Jumping: Despite the periodic running and
walking skills, we also discovered a similar capacity of the
I/O history encoder to capture time-varying information in
aperiodic skills like jumping. As depicted in Fig. 9c, Cassie
was commanded to execute different jumping tasks every
3 seconds, starting from an in-place jump to a 1.4-meter

forward jump, followed by a 0.5-meter sideways jump and
a jump and turn of −60◦ before standing.

The recorded time-evolving latent representation reveals
a distinct contrast between jumping phases (that have more
varying and non-zero signals) and standing phases (with
less varying signals). Furthermore, for different jumping
tasks, the latent values during the jumping phases differ, as
illustrated in Fig. 9c.

Moreover, we discovered two latent dimensions that
strongly correlate with contact events during jumping, as
indicated by the red lines and plotted in Fig. 9c. In contrast
to a common human expectation for a single binary variable
of contact during jumping (either in contact or not), the
robot learned to utilize two distinct signals: take-off event
and landing event, estimated by Latent Value 1 and 2,
respectively, as depicted in Fig. 9c. For example, the Latent
Value 1 begins to increase and drops to zero just before
the total contact force reaches zero (indicating the robot is
starting to take off), while Latent Value 2 only becomes
active at the moment the robot lands. Furthermore, during
the forward jump the robot executes a small hop after it
lands, Latent Value 2 exhibits an additional spike during
that additional hop. Such separated signals for take-off and
landing could provide more informative cues for controlling
a bipedal jumping skill, given the difference in control
complexity during the flight and landing phases.

8.2 Adaptive Embedding for Changes in
Dynamics

We now assess how the latent embedding changes with
(time-invariant) variations in the robot dynamics model,
specifically, alterations in the M, C, G, κ, and Jacobians
in (1), or with corrupted measurements (including noise
and delays). Using the aforementioned running policy, we
focus on a segment of the periodic pattern illustrated in
Fig. 9a, highlighted by the red block. The zoomed-in
pattern, observed when controlling the robot with the default
dynamics model, is visualized in Fig. 9b.

We conduct an ablation study using the same running
policy in the same task (tracking a 3 m/s command) with
changes in the dynamics parameters. In particular, we adjust
one specific modeling parameter one at time, such as the
link CoM position (increased by 8 cm for all links), link
mass (30% greater for all links), joint damping ratio (8 times
the default value), and PD gains used on each motor (40%
higher than the default value), and lower ground friction
(static friction ratio set to 0.5 for slippery ground). As
shown in Fig. 9b, each change of these dynamics parameters
results in a significant shift in the resulting latent embedding
compared to the pattern obtained with the default model.
However, evaluating control performance metrics, such as
task completion (tracking error Et between the robot’s
actual speed and desired speed) and motion tracking (motion
deviation Em from the robot’s actual motor position and
reference motion), reveals minimal change.

A similiar ablation study is undertaken in jumping and
walking skills, recorded in Fig. 9d and Appendix .7,
respectively. Specifically, within the in-place jumping task
utilizing the obtained jumping policy, we modify the same
dynamics parameters as in running, resulting in varying

Prepared using sagej.cls

18 xxx XX(X)

(a) (Top) Recorded latent representation after long-term I/O history encoder during running.
(Bottom) Comparison of two selected dimensions (marked as red lines in the top plot) with
recorded impact forces on each of the robot’s feet.

(b) The blue plot shows the robot’s latent
representation with default dynamics parameters
during running. The red plots indicate changes
in the same region under different dynamics.

(c) (Top) Recorded latent representation after long-term I/O history encoder during jumping.
(Bottom) Comparison of two selected dimensions (marked as red lines in the top plot) with
recorded total impact forces on both of the robot’s two feet.

(d) The blue plot shows the robot’s latent
representation with default dynamics parameters
during jumping. The red plots indicate changes
in the same region under different dynamics.

Figure 9. Adaptivity test in simulation (MuJoCo). We evaluate the latent representation profiles from the output of the long-term I/O
history encoder during bipedal running (Fig. 9a) and jumping (Fig. 9c) where lighter color represents a larger relative value. After
the initialization of the history encoder (first 2 seconds), variations in the latent embedding are noticeable for different activities like
running versus jumping or standing, for specific jumping targets, and for the existence of external perturbations. Two latent values
(indicated by red horizontal lines in the top plots) are plotted in the bottom plots to show thta the latent space also captures the
changes in the impact forces. To conduct an ablation study on time-invariant dynamics parameters, we examine the same regions
inside red boxes (titled zoomed region) in Fig. 9a, 9c and show these regions in Fig. 9b, 9d when the robot is performing
constant-speed running and in-place jumping respectively. The Latent using Default Dynamics shows these regions when then
robot’s nominal model is simulated without any changes to the dynamics or introducing noise or delays. The Latent Change from
Default shows the delta change in the same regions when we adjust the CoM position of each link (marked as CoM Pos), link mass
(Link Mass), PD gains used on each motor (PD Gain), ground friction (Friction), joint damping ratio (Damping), communication
delay (Delay), and noise levels (Noisy) one at the time. In these plots, a larger change is represented by a darker color. This shows
that the latent embedding can reflect different changes in dynamics, while effectively filtering out noise which causes little changes.
Despite significant environment changes, control performance metrics like task completion error (Et) and motion tracking error
(Em) show minor degradation, showcasing adaptivity to dynamic changes using the proposed controller. We further visualize the
corresponding saliency map in Appendix. .8.

patterns of the latent embedding for different dynamics
models. Despite these alterations, the control performance
metrics, such as task completion Et (the error in the landing
position compared to the desired one) and motion tracking
error Em, also show minimal changes.

When assessing the influence of corrupted measurements
on the latent embedding, the latency in control and
observation (0.025 s) induced noticeable changes in running
and walking, as showcased in Fig. 9b and Fig. 32b.
Surprisingly, the introduction of significantly larger noise (2
times larger than the upper bound used during training as
listed in Table 4) does not exert a considerable effect on
the resulting latent embedding for all running, jumping, and
walking skills. This result underscores the efficacy of the
long history encoder in effectively filtering out the added

zero-mean noise, which may be also brought by the CNN
structure.

8.3 Summary of Results

This ablation study highlights the adaptivity of the proposed
controller. Empowered by the history encoder’s ability
to capture meaningful information from the I/O history,
this controller can adapt to time-varying events such as
external perturbations or contacts, time-invariant changes in
dynamics parameters, and filter out measurement noise, and
therefore, effectively execute the control task with minimal
performance degradation. This capability explains why the
proposed structure excels in the challenging training setting
with a large range of randomization of dynamics parameters.
Notably, in order to fully harness such advantages brought

Prepared using sagej.cls

Li et al. 19

by the robot’s long I/O history, a proper structure (dual-
history approach) and training strategy (end-to-end training)
are necessary, as discussed in Sec. 7.

9 Advantages of Versatile Policies and
Source of Robustness

We now validate another key finding in this study,
which is the source of robustness when using RL
to obtain a locomotion controller, in both simulation
and the real world. Our findings indicate that, in the
context of bipedal locomotion control, a single versatile
policy capable of executing various tasks can significantly
improve the robustness compared to policies specialized in
individual tasks. This is realized by task randomization and
generalization.

9.1 Baselines
We conduct a benchmark among the proposed versatile
policies and task-specific baselines across all four distinct
locomotion skills, including standing, walking, running, and
jumping. For each of these four skills, we develop three
policies, and they are:

• Single Task: The policy that is only trained with a single
fixed task and dynamics randomization (excluding simulated
perturbations). For walking, the task is to walk forward at 0.6
m/s; for running, the task is running at 3 m/s; for jumping, the
task is to jump in place; and for standing, the task is to stand still.

• Single-Task w/ Perturbation: The policy that is trained with
the same fixed task, same dynamics randomization as the
Single-Task policy, but is also trained with additional simulated
perturbations.

• Versatile (Ours): The policy that is trained to handle the
complete spectrum of commands (tasks) detailed in Table 6, with
the dynamics randomization but without any perturbations. For
the walking and running versatile policies, they also learned the
transition between locomotion and standing.

All of them used the proposed policy structure as shown
in Fig. 3 and have trained with the same range of dynamics
randomization introduced in Sec. 6.5 until convergence. For
the policies trained with simulated perturbations, the range
of perturbation is also the same as specified in Table. 4.

The above-mentioned policies are examples trained with
three different methods: (1) dynamics randomization (single-
task policies trained without simulated perturbations), (2)
perturbation training (single-task policies trained with per-
turbations during dynamics randomization), and (3) task ran-
domization (versatile policies). Usually, perturbation train-
ing is considered as an additional dynamics randomization.

9.2 Source of Robustness
We first start our validation in a simulation, which provides
a controlled and safe environment to assess the robustness
of the control policies. In this validation, we are going to
show that the robustness of a versatile locomotion policy
comes from two key factors: (1) the generalization of trained
randomized dynamics parameters introduced by dynamics
randomization, and (2) the generalization of various trained
locomotion tasks, thereby endowing the robot with notable
compliance, brought by task randomization.

For each locomotion control policy we’ve developed
(including walking, running, and jumping), we test them
under two distinct forms of uncertainties: (1) applying a
consistent force on the robot’s pelvis, and (2) introducing
a significant deviation in the CoM position for all links of
the robot, as depicted in Fig. 10. It’s important to note that
these uncertainties exceed the bound used during training,
as outlined in Table 4. For example, unlike the impulse
perturbation used during training, here we apply a consistent
perturbation, and the CoM position offset is greater than what
was covered in the training scenarios. The results of these
out-of-distribution tests are illustrated in Fig. 10.

Consider the example of a walking task: when a robot
is commanded to walk forward and faces a consistent
lateral pulling force of 22 N, a single-task policy tailored
for forward walking fails due to the lateral perturbation
pushing the robot beyond its training distribution, as seen in
Fig. 10a(i). However, if the robot is trained with perturbation
using a single-task policy, it can progress forward with minor
lateral deviation under such force, shown in Fig. 10a(ii).
In contrast, using a versatile policy that is not trained with
perturbations but trained with various walking tasks, the
robot still stabilizes and performs the forward walking task,
albeit differently. This is evident from Fig. 10a(iii), where the
robot significantly deviates to the right, using learned side
walking skill to compensate for the external force, resulting
in a compliant gait.

Similar results are observed with a CoM position offset of
−8 cm in all links. Without training for perturbations or other
tasks, the robot, even with randomized CoM training, cannot
handle this deviation, as shown in Fig. 10b(i). When trained
with perturbation, since the robot has learned to stabilize
under a backward force, it uses such a learned control
strategy to counter the backward CoM position offset and
keep walking forward with a reduced speed, as depicted in
Fig.10b(ii). Yet, using a versatile policy without perturbation
training, the robot instead leverages backward walking gaits
to offset the rearward CoM shift, as seen in Fig. 10b(iii).

Please note that we are not trying to argue that
perturbation training is inferior to task randomization.
For example, in the walking task, robots trained with
a single task and perturbations showed more favor
ability to complete the assigned task (less tracking
error shown in Fig. 10a(ii), 10b(ii)), compared to those
controlled by versatile policies (Fig. 10a(iii),10b(iii)).
Therefore, incorporating external perturbations during
dynamics randomization is still recommended following task
randomization. However, the enhancement in robustness
from simulated dynamics is not as significant as that from
task randomization, especially in more dynamic tasks like
running and jumping.

As depicted in Fig. 10c(i)(ii), under a constant forward
perturbation of 30 N while running, policies trained only
with single task fail to maintain stable gaits, regardless of
extensive dynamics randomization and additional perturba-
tion training. In contrast, robots using the versatile policy that
has trained for faster running can adapt to such perturbations,
as demonstrated in Fig. 10c(iii). Similar results are observed
in scenarios involving a +8 cm CoM position offset during
running (Fig.10d), and in lateral perturbation (by using a
lateral jump) and forward CoM position offset (by using a

Prepared using sagej.cls

20 xxx XX(X)

(a) Walking with Consistent Unknown Lateral Perturbation Force (b) Walking with Errors in Center of Mass Positions of All Links

(c) Running with Consistent Unknown Lateral Perturbation Force

(d) Running with Errors in Center of Mass Positions of All Links

(e) Jumping with Consistent Unknown Lateral Perturbation Force (f) Jumping with Errors in Center of Mass Positions of All Links

Figure 10. Robustness test in simulation (MuJoCo). We conduct an ablation study to evaluate the relationship between the
robustness and task randomization using the baselines developed in Sec. 9.1. The green bounding box indicates the scenario
where the policy successfully controlled the robot without falling over. The robot is subjected to consistent perturbation forces (with
its direction marked by a red arrow) or CoM position offsets of all links (with the robot’s entire CoM conceptually drawn as a red
point) while performing fixed locomotion tasks like walking at 0.6 m/s, running at 3 m/s, or jumping in place. Policies focused on a
single task, even with extensive dynamics randomization, failed in these out-of-distribution scenarios. With additional perturbation
training, the robot can maintain stability during walking, as seen in Fig. 10aii and Fig. 10bii. However, such policies are less effective
for more dynamic skills like running or jumping, as illustrated in Fig. 10cii and Fig. 10fii. In contrast, a versatile policy, trained across
a variety of tasks, exhibits better robustness even without specific perturbation training. The robot changes its gait under external
perturbations or CoM shifts, as demonstrated by using lateral (Fig. 10aiii) and backward walking gaits (Fig. 10biii), highlighting the
compliance of versatile controllers. This compliance is also observed during running and jumping (Fig. 10ciii and Fig. 10fiii), which
is the key to success in these challenging robustness tests.

(a) Standing skill only (b) With perturbation (c) Trained with both walking skill and standing skill (trained without perturbation)

Figure 11. Robustness test for bipedal standing skill in the real world. If the robot is trained exclusively with the standing skill,
regardless of whether it underwent extensive dynamics randomization with (Fig. 11b) or without simulated perturbation (Fig. 11a),
the robot tends to fall when pushed beyond its support region. In contrast, the robot using our versatile policy, trained in both
walking and standing skills as shown in Fig. 11c, demonstrates better robustness. Despite not being trained with perturbation
during standing, the robot can spontaneously break contact when pushed forward and employ its generalized walking skills to
regain its standing pose. The video of such a comparison is recorded in Vid. 3 in Table 1.

forward jump) cases in jumping (Fig. 10e, 10f). Note that
all of these versatile policies are not trained with simulated
perturbations.

These studies highlight the two distinct sources of
robustness of RL policies: (1) Training with specific
simulated dynamics, including external perturbations, allows
functioning within an expanded scenario range but limits the
robot to the trained task; (2) Training with a diverse task
set enables the robot to generalize learned tasks for greater

robustness and compliance, even without extensive dynamics
randomization.

9.3 Case Study: Robust Standing
Experiments

We conduct a case study in the real world to gain insights
into the underlying source of robustness in control policies
developed through RL. This case study centers on evaluating
the performance of the standing skill.

Prepared using sagej.cls

Li et al. 21

(a) A complex recovery maneuver using various walking skills (walking sideway, backwards, and changing heights) after being
perturbed during standing

(b) Robust standing maneuver aided by running skills (c) Robust standing maneuver aided by jumping skills

Figure 12. Robust bipedal standing skill realized by versatile policies in the real world. The robot, while standing, can intelligently
break contact and engage learned locomotion skills as needed. For instance, as shown in Fig. 12a, when perturbed, the robot
deviates from its standing command and autonomously employs a sequence of contacts and varying walking skills over a long
horizon to return to a standing position. This robustness, a result of task randomization, enhances real-world deployment
capabilities. For example, in transitions to standing, like in Fig. 12b, the robot uses side-stepping skills acquired during running to
aid recovery from stepping on a track guard. Similarly, with the versatile jumping skill in Fig. 12c, the robot breaks contact after
landing from an unstable state, adjusting its pose in the air for better landing, all without relying on any human-defined contact
sequences.

Figure 13. An illustration of the concept of training distributions
using different methods to enhance robustness. During
deployment, as conceptually illustrated by the red curve, we
want the robot controlled by its RL-based policy to operate
inside the training distribution of the robot’s trajectories. When
the training is focused on a single task, the training distribution
is confined to nominal trajectories specific to that task, drawn as
the yellow region. Incorporating extensive dynamics
randomization, including simulated perturbations or varying
terrains, can expand this distribution. However, this expansion is
still centered around the fixed task. Task randomization
significantly broadens the training distribution (to the orange
region) by enabling the robot to learn and generalize various
control strategies across different tasks (marked as different
faded yellow regions). It is important to note that task
randomization can be combined with dynamics randomization,
further widening the training distribution and enhancing the
policy’s robustness.

In this scenario, as shown in Fig. 11, we introduce an
external forward perturbation to the robot’s pelvis while it
maintains a standing pose. When policies are exclusively
trained for the standing skill, regardless of whether they
were trained with external perturbations, the robot keeps
losing its balance if it is forced to lean beyond its support
region, as recorded in Figs. 11a, 11b. Conversely, when we
employ the versatile walking policy, which is also trained
with the standing skill, and subject the robot to a similar
forward perturbation while it is standing, as demonstrated

in Fig. 11c, the robot initially leans forward. However,
should the robot start leaning outside its support region, it
demonstrates intelligent recovery maneuvers. It transits to
a walking gait by breaking contact, executes several steps,
including forward and backward walking, and then smoothly
reverts to a standing pose again. Remarkably, this transition
occurs without any human-provided commands, as the only
reference motion provided is a standing motion. Also, we do
not simulate external perturbation during the training of the
standing skill using this walking policy.

The presence of a robust standing skill is highly
advantageous in real-world deployments. For example, when
the robot is laterally perturbed while standing, as shown
in Fig. 12a, it utilizes its varied walking skills to recover
and return to a stand. This complex sequence, transitioning
through various walking maneuvers to lower its center of
mass and then resuming a standing pose, highlights the
policy’s capability for long-horizon recovery maneuvers.
Notably, this sophisticated recovery was not specifically
trained but is a natural outcome of the versatile policy.
This benefit extends to other skills as well. When using
the versatile running policy, as seen in Fig. 12b, the robot
halts from running and steps on the track guard, as recorded
in Fig. 12b. Without loss of balance, the robot promptly
disengages from the guard and uses its acquired side-
stepping skills when learning the running skill, and maintains
a stable stance pose afterward. Similarly, with the versatile
jumping policy (Fig. 12c), after an unstable landing from
a complex multi-axis jump, the robot executes a corrective
hop, which is learned from diverse jumping tasks, to better
correct itself in the air and to have a more stable landing
configuration. These results can be better seen in the videos
listed in Table 1.

Prepared using sagej.cls

22 xxx XX(X)

(a) Experiments on variable command tracking conducted on August 9, 2022. The tracking errors (Mean Absolute Error, MAE) in the (sagittal
velocity q̇dx, lateral velocity q̇dy , walking height qdz) are (0.10 m/s, 0.10 m/s, 0.06 m), respectively.

(b) Experiments on variable command tracking conducted on June 30, 2023, 325 days after the one conducted Fig. 14a using the same controller
without any tuning. The tracking errors (MAE) in the (q̇dx, q̇

d
y , q

d
z) directions are (0.10 m/s, 0.08 m/s, 0.06 m), repsectively

(c) Experiments on variable command tracking conducted on December 14, 2023, 492 days after the one conducted in Fig. 14a using the same
controller without any tuning. The tracking errors (MAE) in the (q̇dx, q̇

d
y , q

d
z) directions are (0.11 m/s, 0.09 m/s, 0.05 m), respectively

Figure 14. Fig. 14a records a snapshot of the robot reliably tracking varying commands using the obtained versatile walking
controller in the real world. The desired command and actual estimated values are recorded onboard during the experiments and
drawn in the lower part. The dashed blue lines match the corresponding interval of frames in the real world. The robot can track
different desired commands including changing sagittal velocity q̇dx, lateral velocity q̇dy , and walking height qdz , with a considerable
accuracy that has a tracking error over a long test. Similar variable command tracking experiments are conducted after a long
timespan, such as the one conducted after 325 days in Fig. 14c and the one after 492 days in Fig. 14b. Although the robot
hardware has been changing due to wear and tear after such a long time, the same RL-based controller can still effectively control
the robot to track variable commands with similar tracking errors, without any tuning in the real world.

9.4 Understand Robustness from Training
Distributions

The above-mentioned findings can be conceptually illus-
trated in Fig. 13, similar to the notion of an invariant set
in control theory. To effectively control the robot, an RL
policy needs to address a range of disturbances encoun-
tered during deployment. A model-free RL policy can be
particularly effective when the robot’s trajectory lies within
its training distribution, as the policy has been specifically
trained and optimized for such scenarios. Single-task policies
have a limited training distribution, focused only on that task,
and training with random dynamics w/wo perturbations can
extend this distribution, as shown in Fig. 13. However, as
evidenced in Fig. 10, dynamics randomization only modestly
expands this distribution, primarily enhancing robustness
within the single-task scheme. In contrast, task random-
ization broadens the training distribution significantly. By
enabling the robot to handle diverse tasks, this approach

can effectively expand the range of the trained robot’s I/O
trajectory. When faced with disturbances during deployment,
the robot can still remain within this enhanced training
distribution, as illustrated in Fig. 13. When combined with
dynamics randomization after the task randomization, as
proposed in our work in Fig. 4, the training distribution
can further expand substantially and therefore enhance the
robustness of the RL policy.

Remark 2. The range of dynamics randomization can not
be arbitrarily large as it will introduce significant challenges
during training (the robot may fail to learn meaningful
skills). The dynamics randomization range used in this work
(Table. 4) is challenging enough for Cassie to learn, which
can be evident by the low converged training return in Fig. 6.
Further adding dynamics randomization has limitations as
suggested in Xie et al. (2021). Therefore, task randomization
can be viewed as an “orthogonal” way to improve the
robustness rather than further pushing the range of the
dynamics randomization.

Prepared using sagej.cls

Li et al. 23

9.5 Summary of Results
In conclusion, compared to policies focused solely on spe-
cific tasks, versatile policies exhibit significant improve-
ments in robustness, which is validated in both simulation
and the real world. This enhanced robustness stems from
their ability to generalize learned tasks and to find better
maneuvers to tackle unforeseen situations without being
limited to adhering to given commands, ultimately leading
to better stability. In RL-based locomotion control, one key
source of robustness is the capacity to perform versatile
tasks. Hence, task randomization, which diversifies the tasks
during training, is recommended for future development on
legged locomotion control.

10 Dynamic Bipedal Locomotion in the
Real World

We now extensively evaluate the obtained versatile policies
for walking, running, and jumping in the real world. All
of these policies are able to effectively control the robot in
the real world without further tuning after being trained in
simulation. Moreover, the main objective of the experiments
is to evaluate two fundamental aspects of the proposed
method: (1) the obtained policies’ adaptivitiy to the actual
robot dynamics in the real world by effectively controlling
the real robot to achieve the assigned tasks, as in simulation;
and (2) the policies’ robustness in addressing different
uncertainties in the real world by leveraging various learned
and tasks.

10.1 Walking Experiments
We now examine the versatile walking policy on Cassie. The
following experiments are conducted by a single controller.
As we will see, the obtained walking policy shows consistent
control performance on the robot hardware over a long
timespan with notable robustness and compliance.

10.1.1 Tracking Performance: The policy demonstrates
the capacity to reliably track varying, fast-changing
commands, with consistent control performance over a long
period that is more than a year. Such a result showcases the
adaptivity of the proposed policy that adapts to the dynamics
of the real robot, as discussed below.

Variable Commands: As recorded in Fig. 14a, the
walking policy demonstrates efficient control over the robot’s
following of diverse commands, including variations in
sagittal and lateral velocities (q̇x,y) and walking height
(qz). Throughout the test, the tracking errors, evaluated by
Mean Absolute Error (MAE), remain reasonably low. The
MAE in the (q̇x, q̇y, qz) are (0.10 m/s, 0.10 m/s, 0.06 m)
respectively. Additionally, as indicated in Fig. 15, the policy
exhibits reliable control, enabling the robot to accurately
track varying turning commands, either clockwise or anti-
clockwise.

Consistency over a Long Timespan: The robot hard-
ware, especially for bipedal robots, keeps changing due to
wear and tear over time. For instance, joint friction might
vary due to the impacts during operation, and these changes
can accumulate due to the bipedal robot’s large number of
DoFs and over extended periods. Consequently, controllers

dependent on the control gains tuned on hardware, like
most model-based controllers, often require manual updates
to deal with these hardware changes. In contrast, our pro-
posed RL-based walking policy can adapt to changing robot
dynamics and control the robot without the need for tuning
on the hardware. This adaptivity is evident as the policy con-
sistently performs well over extended periods, maintaining
its ability to track variable commands even after 325 and 492
days, as showcased in Fig. 14c and Fig. 14b, respectively.
Compared with the test conducted earlier (Fig. 14a), the
changes of the tracking errors (MAE) in (q̇x, q̇y, qz) during
these two tests are (+0 m/s, −0.02 m/s, +0 m) and (+0.01
m/s, −0.01 m/s, −0.01 m), respectively, over a relatively
long testing timespan (over 2 minutes) with different com-
binations of commands. Despite significant accumulated
changes in the robot’s dynamics over this period, the same
controller from Fig. 14a continues to effectively manage
varying walking tasks with only minimal tracking error
degradation.

Fast Walking: In addition to previously demonstrated
moderate walking speeds, the policy exhibits the ability to
control the robot to perform fast walking maneuvers, both
forwards and backwards, as shown in Fig. 16. The robot
can transition from a standstill to rapidly achieve a forward
walking speed with an average velocity of 1.14 m/s to track
the command of 1.4 m/s, quickly returning to a standing
position as commanded, as shown in Fig. 16a with data
recorded in Fig. 16c. Notably, during the transition from a
stance pose with zero speed, the robot can quickly swing
its legs forward with a considerable amount of acceleration
while maintaining gait stability to follow the step-input
command. Similar capacity is observed in the context of fast
backward walking (Fig. 16b), where the robot seamlessly
shifts from a standing pose to perform a backward walking
gait with an average velocity of −0.5 m/s, achieving the
specified −1 m/s walking task before promptly returning to
a standing position upon command.

10.1.2 Robust Walking Maneuvers: We further test the
robustness of the walking policy, and the proposed policy
shows notable robustness in addressing various changes in
the environment, as showcased below.

Uneven Terrains (Untrained): Although the walking
policy has not been specifically trained for traversing uneven
terrain in simulation, it displays considerable robustness to
varying elevation changes during deployment. As depicted
in Fig. 17, the robot can effectively walk backward on
small stairs or declined slopes. It’s noteworthy that the robot
lacks any terrain elevation sensors. Such ability stems from
the policy’s robustness to the change of contact timing or
wrench while walking on varying elevations, facilitated by
not requiring explicit estimation or control of the contact in
the controller.

Robustness to Random Perturbations: In this test, we
evaluate the robustness of the proposed versatile walking
policy under two types of external perturbations: (1) impulse
perturbation whose elapsed time is less than 1 second; (2)
persistent perturbation that lasts more than 3 seconds (longer
than the length of controller’s I/O history).

For the impulse perturbation case, we introduced external
perturbations over a short timespan from various directions

Prepared using sagej.cls

24 xxx XX(X)

Figure 15. A snapshot from the real world demonstrating the robot reliably tracking various turning yaw commands qdψ using the
same controller used in Fig. 14. Both the desired and actual turning angles are recorded in the lower part, with dashed lines
matching the corresponding frames in the real world. The robot can execute full turns in both counterclockwise and clockwise
directions.

(a) Fast Forward Walking (b) Fast Backward Walking (c) Corresponding Recorded Data

Figure 16. Snapshots of the robot transiting from standing to fast forward walking (Fig. 16a) or backward walking (Fig. 16b) and
back to standing, using the same walking policy. Earlier frames appear more faded. The robot’s commanded and actual sagittal
velocities are recorded in Fig. 16c. This demonstrates the robot’s capability to quickly switch from a stationary stance to dynamic
fast walking and smoothly transition back to standing with a single command, even during dynamic maneuvers like fast walking.

(a) Walking Backwards on Stairs (b) Walking Backwards on Slope

Figure 17. Snapshots of the robot Cassie performing a robustness test by walking backwards over small varied terrains such as
stairs (Fig. 17a) or slope (Fig 17b). Snapshots are aligned with time stamps. Although the policy wasn’t specifically trained for
terrain deviations, it successfully maintains stable walking gaits and robustness in the face of ground elevation changes in
real-world scenarios as recorded in these set of snapshots.

to the robot while walking. As an example recorded in
Fig. 18a, a substantial lateral perturbation force is applied to
the robot while walking in place, causing a significant lateral
velocity peak of 0.5 m/s. Despite this force, the robot swiftly
recovers from the lateral deviation. As recorded in Fig. 18a,
the robot adeptly moves in the opposite lateral direction,
effectively compensating for the perturbation and restoring
its stable in-place walking gait.

During the test for persistent perturbation, a human exerts
a persistent force on the robot base and drags the robot in
random directions while the robot is commanded to walk
in place. Examples can be seen in Fig. 19a, a persistent
lateral dragging force is applied to Cassie’s base while the

robot is walking at normal height. In another test where the
robot is walking at a lower height as shown in Fig. 19b, the
robot’s base is subject to a persistent force with its direction
changing randomly in the sagittal direction. During these
tests, without losing balance, the robot shows compliance
to these external forces by following the directions of these
forces, despite being commanded to walk in place. These
compliance experiments demonstrate the advantages of the
proposed RL-based policy in controlling the bipedal robot
for potential applications like safe human-robot interaction.

More scenarios, including more impulse perturbations
and persisting random perturbations, are recorded in the
accompanying Vid. 3 in Table 1. In all conducted tests, the

Prepared using sagej.cls

Li et al. 25

(a) Recovery maneuvers using the proposed RL-based controller from lateral perturbation
(b) A model-based controller that failed to
recover the robot from lateral perturbation

Figure 18. Robustness test of the robot walking against unknown perturbations. Using the proposed RL-based versatile policy, as
seen in Fig.18a, the robot, despite being pushed laterally and accelerated to −0.5 m/s, still maintains a stable walking gait and
compensates such a lateral impulse by walking in the opposite direction. The corresponding lateral velocity q̇y is recorded in the
lower part of the figure. Additionally, the planar position (qy, qx) is estimated, with points appearing in progressively darker colors as
they are recorded later in time. In contrast, using a model-based controller provided by Cassie’s manufacturer (Fig. 18b), the robot
crashes after a similar lateral push.

(a) Staying compliant to a persistent lateral force at a normal walking height

(b) Staying compliant to a persistent and random sagittal force at a low walking height

Figure 19. Snapshots of the compliance test using the proposed versitale walking policy in the real world. The red arrows illustrate
the direction of the applied force. In Fig. 19a where the robot is walking at a normal height, a human applies a persistent (longer
than 3 seconds) lateral force on Cassie’s base and drags the robot to its right. In Fig. 19b where the robot is at a low walking height,
a human exerts a persistent but random force on the robot’s base and drags the robot back and forth in the sagittal direction. In
these tests, the robot demonstrates compliance by walking along the persistent external force direction without losing balance,
although being commanded to walk in place. After the force is removed, the robot returns to the commanded task.

robot demonstrates its robustness, being consistent with the
results observed in the simulation validation in Sec. 9. The
underlying reason behind this lies in the robot’s extensive
learning of various tasks such as lateral, forward, backward
walking, turning, and more. This task randomization enables
the robot to generalize the knowledge gained while learning
from various tasks to recover from deviations occurring in
the current commanded task.

Comparison with a Model-based Controller: We under-
line the advantages of the proposed walking policy by com-
paring it with a model-based walking controller, specifically,
a model-based controller utilized by the company that man-
ufactured Cassie. As shown in Fig. 18b, when the robot is
controlled by this model-based controller and subjected to
lateral perturbation, this controller fails to maintain control,
resulting in a crash. This is because that the model used in the
controller does not consider the external perturbation (which
is also hard to estimate), and the model-based controller
can not deal with such a large modeling error. The model-
based controller also fails to stabilize the robot during a

persistent perturbation test. These experiments are recorded
in Vid. 3 in Table 1. A systematic perturbation test for legged
robots was carried out in a very recent work by van Marum
et al. (2024) and it would be interesting to incorporate such
tests more widely. However, this is beyond the scope of this
paper. Furthermore, as shown in the video, the model-based
controller causes obvious lateral drifts on the robot (before
the human operator perturbed it) when it is commanded to
track a zero speed without manual gain tuning, while the
proposed RL policy shows better tracking performance (that
keeps the robot walking in-place) without training using
real-world data. However, the model-based controller results
in less and favorable stomping force than the RL policy.
We hope these experiments could help the readers better
understand the pros and cons of model-based optimal control
and model-free RL methods for bipedal locomotion control.

10.1.3 Summary of Results: In summary, the versatile
walking policy derived from the proposed method is able
to effectively control the bipedal robot Cassie to perform
diverse tasks in the real world and be consistent over a

Prepared using sagej.cls

26 xxx XX(X)

(a) Snapshot of 400-meter dash. The number matches the snapshot of the robot and the corresponding position on the running track.

(b) Recorded data during the 400-meter dash. The robot’s sagittal velocity q̇x, lateral velocity q̇y and turning yaw angle qψ are shown.

Figure 20. Utilizing a versatile running policy we developed, Cassie successfully completed a 400-meter dash in the bipedal robot
regime with a time of 2 minutes and 34 seconds. The dash is completed in the Edwards Stadium at UC Berkeley. This is made
possible using a single running policy that enabled the robot to transition from a standing pose to fast running gaits of 2.15 m/s at
average and 3.54 m/s at peak. The robot also maintains that speed with an average lateral speed of 0.05 m/s (with zero lateral
speed command) throughout the dash. Additionally, the robot is able to accurately follow varying turning commands with an
average tracking error (MAE) of 5.95 degrees. This precise turning command tracking was crucial for the successful completion of
the 400-meter dash, as it required the robot to reliably turn while running. During running, we consistently observed noticeable flight
phases as examples seen in Fig. 20a. The robot is also able to transit back to standing after it finished the dash, as recorded in the
sagittal velocity log (Fig. 20b) and Vid. 2 in Table 1.

long time of usage (more than a year). The results show
that the robot can track different walking velocities, varying
walking heights, turn in different directions, and perform fast
walking and transition to and from standing. The policy also
exhibits substantial robustness in the face of challenges such
as changes in terrain elevation and external perturbations
(including impulse and random but persistent forces).

10.2 Running Experiments
We now evaluate the versatile running policies developed
using the proposed methods in the real world. Three specific
running policies were obtained: (1) a general policy trained
on flat ground; (2) a 100-meter-dash finetuned policy, trained
after the convergence of the general policy with a focus on
completing a 100-meter dash. This policy incorporated an
additional termination condition to end the episode earlier
if the robot could not complete the 100-meter dash within
25 seconds; (3) an uneven-terrain policy, developed after
the convergence of the general policy, integrated with extra
terrain randomization as listed in Table 4. All the policies
have been trained with a variety of running and turning
speeds as listed in Table 6 and transition to and from a
standing skill. As we will see, using the obtained bipedal

running policies, we achieved 400-meter dash within 2 min
34 s, 100-meter dash within 27.06 s, running inclines up to
10◦, and more.

10.2.1 Running a 400-meter Dash: We first evaluate the
general running policy to complete a 400-meter dash on a
standard outdoor running track, as demonstrated in Fig. 20.
Throughout this test, the robot was commanded to run at
a consistent 3.5 m/s while responding to varying turning
commands, given by a human operator to navigate the
track. As shown in Fig. 20a and the accompanying Vid. 2
in Table 1, the policy is able to smoothly transition from
a standing position to a running gait (Fig. 20a 1). The
robot managed to accelerate to an average estimated running
speed of 2.15 m/s†, reaching a peak estimated speed of
3.54 m/s, as recorded in Fig. 20b. The policy successfully
maintained the desired speed consistently throughout the

†We note that there is a nontrivial state estimation error on the sagittal
velocity when the robot is running at a high speed. The average speed of
finishing 400 meter in 154 seconds is 2.6 m/s while the estimated average
speed is 2.15 m/s. Such an error is more obvious in the 100-meter dash
discussed later. Therefore, we emphasize the logs are estimated values and
not true values. We further elaborate this in Appendix .9.

Prepared using sagej.cls

Li et al. 27

(a) Tracking variable sagittal velocity during
running

(b) Tracking variable lateral velocity during
running

(c) Sharp turn during running. This scenario (tracking
nonsmooth turning angle) is not specifically trained.

Figure 21. Real-world experiments on tracking variable commands while running using the same control policy that completed the
400m-dash in Fig. 20. Using the versatile policy, the robot is able to track varying sagittal velocity q̇x (Fig. 21a) and lateral velocity
q̇y (Fig. 21b). Furthermore, the robot is able to perform a sharp turn while running, as demonstrated in Fig. 21c. The robot can turn
to 90 degrees within 2 seconds, using 5 steps, as recorded in the logs and corresponding snapshots in Fig. 21c. Notably, the robot
is not specifically trained for this sharp-turn scenario during training. These experiments are also recorded in Vid. 4 in Table 1.

(a) Snapshot of the robot performing transition from standing to running in 100-meter dash, with timestamps indicating the corresponding frames

(b) Snapshot of the robot running during 100-meter dash, with timestamps indicating the corresponding frames

(c) Recorded sagittal velocity q̇x in the 100-meter dash

Figure 22. Using the finetuned running policy, Cassie finishes the 100-meter dash with a fast running gait. Fig. 22a shows that the
robot is able to transit from stationary stance to a rapid running gait, accelerating from 0 m/s to 3 m/s within 2 seconds with
aggressive maneuvers. During the cruise phase shown in Fig. 22b, the robot maintains a fast yet stable running gait. The
corresponding commanded and estimated sagittal velocity q̇x is recorded in Fig. 22c. The robot finished this dash within 28
seconds, with an average speed of 3.57 m/s.

entire 400-meter run while accurately adhering to the varying
turning commands. The average tracking error (MAE) in
the turning angle qψ observed in Fig. 20b is 5.95 degrees.
Throughout the 400m-dash, substantial flight phases were
evident, as shown in Fig. 20a 2 - 4 , despite the variable
running speeds and turning angles. This consistent flight
phase distinguishes our running gaits from a fast walking
gait and presents significantly more challenges in control.
However, the controller managed to sustain such a dynamic
running gait stably over a significant duration (154 seconds).

Furthermore, during the 400-meter dash, although some
lateral drift was detected, as shown in Fig. 20b, the
robot can keep an average lateral velocity of 0.05 m/s.
While the average lateral speed is relatively negligible,
the robot did exhibit moments of having higher lateral
speeds, exceeding 1 m/s at times, possibly due to irregular
contact in the real-world environment. However, the policy’s
training in lateral running skills allowed the robot to correct
these deviations, demonstrating the policy’s robustness in

Prepared using sagej.cls

28 xxx XX(X)

Table 5. Record of the completion time of 100-meter dash in
three trials in the real world.

Trial Completion Time (s)
1 27.06
2 27.99
3 28.28

maintaining stability even in the face of such unexpected
lateral movements.

Cassie, controlled by the proposed running policy,
successfully finished the 400-meter dash in 2 minutes and 34
seconds, and was able to transit to a standing pose afterward,
as recorded in the video. This is a novel capacity of running
a full 400-meter lap by a human-sized bipedal robot.

10.2.2 Tracking Varying Commands while Running:
Using the same versatile policy, the robot is also able to
reliably track varying commands, such as sagittal velocity
q̇x shown in Fig. 21a and lateral velocity q̇y recorded in
Fig. 21b, while running fast. The corresponding experiments
are recorded in Vid. 4 in Table 1. Note that only one
dimension of the command is changing during each of
the tests conducted in Figs. 20b (turning yaw qψ), 21a
(sagittal velocity), 21b (lateral velocity). By comparing with
the recorded logs among these tests, we observed that
the command changing in one dimension will not affect
the control performance on tracking a constant in other
dimensions. This indicates that the dimensions on q̇x, q̇y , and
qψ are decoupled, which is intriguing as this is realized in
fast running control of a highly-nonlinear bipedal robot in
the real world.

We further conduct a sharp turning test where the robot is
given a step change of the yaw command, from 0 directly to
90 degrees, as recorded in Fig. 21c. The robot can respond
to such a step command and finish a 90-degree sharp turn
within 5 steps in 2 seconds, using a natural running gait
shown in Fig. 21c. Remarkably, the robot is not specifically
trained for this sharp-turn scenario, as only smooth turning
yaw angle command whose changing rate is bounded to
30 deg/s is given during training, as listed in Table 6. The
versatile policy can generalize the learned various turning
tasks and direct transfer to accomplish such a sharp-turn
test. This further highlights the advantage of obtaining a
versatile policy as previous work like Yu et al. (2022)
requires training a separated policy to perform similar sharp-
turn while walking.

10.2.3 Running a 100-meter Dash: We now assess
the running policy fine-tuned for the 100-meter dash,
documented in Fig. 22. We conducted the test 3 times, results
of which are detailed in Table 5 and available in Vid. 1
and Vid. 4 in Table 1. With the deployment of the proposed
running policy, the robot accomplished the 100-meter dash
with around 28 seconds, achieving a fastest run time of
27.06 seconds. As depicted in Fig. 22a, the robot quickly
transitioned from a stationary standing pose to a fast running
gait within 1.8 seconds, using the transition maneuvers we
commonly observed in human running athletes. During the
cruising phase (Fig. 22b), the robot maintained a rapid
running gait and reached a peak estimated speed of 4.2

m/s, showing notable flight phases, as the data recorded in
Fig. 22c.

10.2.4 Running on Uneven Terrains (Trained): We
proceed to examine the running policy fine-tuned for uneven
terrains. As observed in Fig. 23a, the robot controlled by
the proposed running policy managed to effectively traverse
terrains with different slopes, all without the need for explicit
terrain height estimation or external sensors. The terrain
tests encompassed challenging variations, beginning with a
7◦ inclined slope in the sagittal plane, followed by a 3◦

slope in the lateral plane, a steeper 10◦ inclined slope in
the sagittal plane, and concluding with a flat ground. Despite
these difficult terrains, the robot maintained a stable running
gait, as indicated by the converged limit cycles of the robot’s
thigh and knee joints (qL/R3,4) showcased in Fig. 23b across
these varied elevations. The robot’s ability to change its
gait to adapt to different terrains is derived from its usage
of the robot’s input/output history, implicitly encapsulating
information about contact events and positioning. Notably,
even while traversing these challenging terrains, the robot
retained its flight phase, as showcased in Fig. 23a, signifying
its ability to maintain a running gait, avoiding a degradation
to walking gaits that offer more support but reduced speed.
This is the first implementation of running (with flight
phases) over large uneven terrains by a human-sized bipedal
robot.

10.2.5 Robust Running Maneuvers: During the real-
world deployment, the robustness of the developed running
policies in handling various perturbation scenarios was
observed. For example, in Fig. 24a, the robot is controlled by
its 100-meter-dash fine-tuned policy when an abrupt impulse
perturbation force, produced by the safety cord, causes the
robot to suddenly drop speed and lean to the left and twist.
Despite this unforeseen event, the robot, trained on simulated
perturbations and diverse running tasks including turning,
is able to maintain stability and quickly recover back to a
stable running gait. A similar test is also conducted using
the general running policy while a lateral perturbation is
applied to the robot, as recorded in Fig. 24b. Without losing
balance, the robot exerts a lateral running gait to compensate
such a lateral perturbation. These experiments are recorded
in Vid. 4 in Table 1. These scenarios underline the robustness
of the versatile running policies obtained by the proposed
task randomization, especially beneficial when addressing
unexpected disturbances while the robot is running at high
speeds in real-world scenarios.

10.2.6 Summary of Results: In summary, the running
policies derived from the proposed method exhibit effective
control over the bipedal robot Cassie in real-world scenarios.
They showcase the capacity to manage various running and
turning velocities, adapt to changes in terrain based solely
on proprioceptive feedback, and seamlessly transition from
and to a standing pose. Because of these running policies,
Cassie achieves a notable peak speed of 4.2 m/s in the
100-meter dash which was completed within 27.06 seconds,
accomplishes a 400-meter dash in 2 minutes 34 seconds, and
traverses over uneven terrains, while showing robustness to
unexpected distributions.

Prepared using sagej.cls

Li et al. 29

(a) Snapshot of the robot running on varying terrains (b) Recorded phase plots of thigh and knee joints

Figure 23. The robot runs over various terrains without any prior knowledge of the terrain specifics or elevation estimates. Fig. 23a
records the robot running on different types of terrains with different slopes, starting from 7◦ incline in the sagittal direction, followed
by a 3◦ slope laterally, then a 10◦ sagittal incline, and finally transitioning to flat ground. The left-most column of the figure
showcases these different terrain types. Despite the varying terrain, the robot consistently adapts and maintains a stable running
gait with noticeable flight phases, as shown in the right columns of the figure. Fig. 23b records the corresponding phase plots of the
robot thigh and knee joints (qL/R3,4 versus q̇

L/R
3,4 , which play dominant roles in locomotion control), showing converged limit cycles.

(a) The robot covers from a backward perturbation during running

(b) The robot recovers from a lateral perturbation during running

Figure 24. Snapshot that captures the moment when the robot, while running a 100-meter dash with a fast speed, is unexpectedly
perturbed, demonstrating the robustness of the versatile running policy we developed. The frames are aligned with the
corresponding timestamps. The robot experiences a sudden decrease in speed and begins to lean laterally along with a significant
drift in its base yaw angle, due to being pulled backward by the safety cord. Despite these deviations from its nominal running
trajectory, the robustness of the policy, which is enhanced by training with extensive dynamics randomization and versatile tasks
(including slower-speed running with lateral and turning commands), enables the robot to maintain stability and correct itself back.

10.3 Jumping Experiments

We now evaluate the proposed versatile jumping policies.
We obtained two policies: (1) the flat-ground policy that
specializes in jumping to different locations and executing
turns on level ground (edz = 0); and (2) discrete-terrain
policy that focuses on leaping to various elevated platforms
without executing turns (qdψ = 0). The rationale behind
having these two separate policies stems from the challenges
posed by the dynamic jumping skill. In our empirical
findings, we found it is difficult to train a robot to
perform both jumping onto elevated platforms while turning

simultaneously. As we will see, the proposed jumping
policies achieve a large variety of different bipedal jumps
including a 1.4-meter long jump and jumping onto a 0.44-
meter elevated platform.

10.3.1 Jump and Turn: We first assess the performance
of the flat-ground policy, as documented in Fig. 25a. Using
this single jumping policy, the robot executes various given
target jumps, such as jumping in place while turning 60◦

(Fig. 25ai), jumping backward to land 0.3-meter behind
(Fig. 25aii), and jumping to a target placed 1 meter ahead
(Fig. 25aiii), by just changing the command to the policy.

Prepared using sagej.cls

30 xxx XX(X)

(a) Different jumps using the flat-ground policy (b) Different jumps using the discrete-terrain policy

Figure 25. Snapshots of the bipedal robot Cassie performing various aggressive jumping maneuvers using two single versatile
policies. Each frame is aligned with the corresponding timestamp, and paper tags in the figures represent the desired landing
target. In Fig. 25a, using the flat-ground policy, (i) the robot is able to perform in-place jump while turning, (ii) backward jump, and
(iii) forward jump, and land accurately on the target (paper tag). During the 1-meter ahead jump, the robot interestingly performs an
extra forward hop after its initial landing, reaching the target on this second attempt. This additional maneuver was not observed
during simulations that utilized the robot’s nominal model. In Fig. 25b, using the discrete-terrain policy, (iii) the robot is also able to
perform 1-meter forward jump. Moreover, (ii) the robot can perform a large standing long jump that lands accurately at 1.4-meter
ahead, and (i) jump to a high platform that is elevated 0.44-meter above and 0.88-meter ahead.

(a) (qdx, q
d
y , q

d
ϕ) = (0m, -0.3m, 0◦) (b) (qdx, q

d
y , q

d
ϕ) = (0.3m, 0.3m, 0◦)

(c) (qdx, q
d
y , q

d
ϕ) = (0.5m, 0.2m, -45◦)

(d) (qdx, q
d
z) = (0m, 0m) (e) (qdx, q

d
z) = (0.88m, 0.17m)

(f) (qdx, q
d
z) = (0.88m, 0.32m) (g) (qdx, q

d
z) = (0.64m, 0.32m)

Figure 26. Snapshots of more diverse bipedal jumps using the proposed versatile jumping policies. The paper tag on the ground
indicates the landing target. Using the same flat-ground policy used in Fig. 25a, the robot is also able to perform a lateral jump
(0.3m to its right in Fig. 26a), diagonal jump (0.3m ahead and 0.3m to its left in Fig. 26b), and a complex jumping maneuver that
blends forward (0.5m), lateral (0.2m) and turning (−45◦) at the same time (Fig. 26c). Using the same discrete-terrain policy used in
Fig. 25b, the robot can also jump in place (Fig. 26d), jump to targets that are placed (Fig. 26e) 0.88-meter ahead and 0.17-meter
above, (Fig. 26f) 0.88-meter ahead and 0.32-meter above, and (Fig. 26g) 0.64-meter ahead and 0.32-meter above, respectively.

The robot is able to accomplish the task by landing precisely
on the target which is marked as a paper tag on the ground.

Upon closer observation, the robot can adjust its take-off
pose in order to follow different commands. For instance,

Prepared using sagej.cls

Li et al. 31

it leans backward when required to land on the rear target,
and leans forward when executing a forward jump. The
robot is also capable of executing a more diverse set of
jumps that combine movements along different axes. For
instance, Fig. 26c records a representatitve jump where the
robot performs a multi-axes jump where it’s required to jump
forward, laterally, and make a turn at the same time. We
report more diverse types of jumps (12 different jumps in
total) in Appendix .10 and Vid. 5 in Table 1, and all of these
jumps are realized by this single flat-ground jumping policy.

10.3.2 Jump to Elevated Platforms: We then evaluate
the discrete-terrain policy to control the robot’s jumping
ability over various distances and elevations. As showcased
in Fig. 25b, the robot exhibits the capability to jump
precisely to targets placed at different positions, like 1 meter
ahead (Fig. 25biii) or 1.4 meters ahead (Fig. 25bii), and at
varying elevations, including 0.44 meters elevated (Fig. 25bi,
considering the robot height is only 1.1 meter). Using the
single discrete-terrain policy, the robot is able to adjust
its take-off maneuvers for different jumping targets and
efficiently manages its angular momentum after the large
impact upon landing to maintain stability. In addition to
standing long jumps (1.4 meters forward) and standing high
jumps (0.44 meters elevated), we conducted a range of varied
jumping tasks within this range, including jumping in place
(with foot clearance around 0.4 meters at its apex height)
and jumping over different sagittal distances onto various
elevated platforms. These tasks were all conducted using
the same policy, as shown in Fig. 26. Notably, the standing
long jump over 1.4 meters and standing high jump to a 0.44-
meter elevated platform (while using the same controller) are
the novel locomotion capacities in the human-sized bipedal
robot regime.

10.3.3 Robust Jumping Maneuvers: We illustrate the
robustness of the jumping policy obtained from the proposed
method with an example shown in Fig. 27. Employing the
flat-ground policy, we commanded the robot to perform
an in-place jump. At the apex of the jump, we applied a
backward impulse perturbation, as depicted in Fig. 27a. This
significant perturbation caused the robot to deviate from its
nominal in-place jumping trajectory (as seen in Fig. 27b),
resulting in a significant change in its pose upon landing.
Consequently, the robot landed with a backward lean and
its toes pitched up trying to stabilize the robot. This pose
presented a significant challenge, given that the robot became
underactuated and was nearly losing balance. However, since
the jumping policy has been trained to execute backward
jumps, as previously showcased in Fig. 25aii, the robot
rapidly adjusted its intended landing trajectory and executed
a backward hop. By this adjustment, the robot is able to
better correct its pose in the air to achieve a more favorable
configuration upon its next landing.

Note that the jumping policies were never trained
explicitly to handle perturbations. Therefore, this experiment
highlights the advantage of a versatile jumping policy. The
robot demonstrates the ability to generalize its learned
diverse tasks to devise a better maneuver and contact plan
rather than strictly adhering to the given task during real-
world deployment. This serves as a detailed report of
successful recovery from a perturbation while a bipedal

robot is executing a jump in the real world, illustrating the
importance of the task randomization.

Remark 3. Using versatile policies for walking, running,
and jumping, the robot exhibits the capability to develop
its own contact strategy online, deviating from the contact
plans (implicitly) provided by reference motions. This ability
enhances stability and robustness. For instance, in jumping
experiments, the robot often breaks contact after landing
and executes small hops to achieve a better landing
configuration, as seen in Fig. 27. This capacity is also evident
in other skills, such as standing (Fig. 11c), walking (with
significant double-support phases contrary to the single-
support in reference motions, as in Fig. 17b), and running
(where the robot does not strictly follow the contact sequence
of the periodic running reference motion, as seen in Fig. 22).
This emergent capability aligns with what contact-implicit
optimization, like in Posa et al. (2014); Drnach and Zhao
(2021); Landry et al. (2022), aims to achieve. While these
piror methods have only achieved such optimization offline
for bipedal robots, our work realizes this online on a real
bipedal robot.

Remark 4. We note that during the jumping experiments,
the robot occasionally oscillates while standing after a large
jump. This is due to the challenges of learning a single RL
policy to learn both dynamic aperiodic jumping skill and
stationary standing skill. The features learned during a jump
may favor high-acceleration motion and cannot easily alter
the policy’s behavior for perfectly stationary standing. This
also provides an insight into the challenges of obtaining a
single unified policy to learn all different locomotion skills
(to combine dynamic and stationary skills). But we want to
note that, the jumping policy is still able to damp out such an
oscillation during standing, though with a longer noticeable
time, as demonstrated in the supplementary video (Vid. 5).

10.3.4 Summary of Results We demonstrated 19 distinct
bipedal jumps in the real world, encompassing a range
of landing locations, turns, and elevations. These jumps
were conducted using just two versatile policies: the flat-
ground policy and the discrete-terrain policy. Through these
extensive real-world experiments, we illustrated two key
aspects of the proposed method, using the jumping skill
as an exemplary case. First, we showcase the adaptivity of
the proposed policy. The robot exhibits the capability to
land precisely on a designated target after a flight phase,
all without requiring global position feedback. To achieve
this, the robot must generate a precise amount of momentum
at take-off. By accomplishing these diverse jumping tasks,
the RL-based control policy showcases its adaptivity to
the robot’s hardware dynamics, mainly by leveraging the
long-term I/O history, to control the robot and achieve
accurate take-off translational velocities to land at the target.
Second, we highlight the robustness of the policy. Despite
being trained without perturbation, the robot demonstrates
an ability to respond to unexpected perturbations during
jumping by employing learned tasks for agile recovery.

Prepared using sagej.cls

32 xxx XX(X)

(a) (qdx, q
d
y , q

d
ψ) = (0m, 0m, 0◦), with perturbation force applied during flight. (b) (qdx, q

d
y , q

d
ψ) = (0m, 0m, 0◦)

Figure 27. Snapshots of the robustness test during jumping using the versatile flat-ground policy. In Fig. 27a, an unexpected
backward perturbation is applied while at its apex height during an in-place jump. This contrasts with Fig. 27b, where the robot
performs the same task without perturbation, serving as a baseline. Despite leaning backward upon landing due to the
perturbation, the robot spontaneously executes a backward hop, a maneuver it learned during other tasks like backward jumping,
and succeeds to maintain balance after landing. Such a robustness is achieved through task randomization alone, as the jumping
policy was not trained with simulated perturbation.

11 How to Train Your Bipedal Robot: A
Discussion

After detailing our methodology, analysis, and experiments
on robust, dynamic, and versatile control policies for a
spectrum of bipedal locomotion skills via RL, we now
turn to a discussion of the key lessons learned throughout
this development. Our objective is to provide valuable and
generally applicable insights that could steer future research
in the use of RL for locomotion control in complex dynamic
systems, particularly in bipedal and humanoid robots.

The following section is structured as follows: (1) We first
discuss the importance of utilizing the robot’s I/O history,
and how to effectively use it (by using a dual-history policy
to learn direct adaptive control) in Sec. 11.1. (2) In Sec. 11.2,
we show that while properly using robot’s I/O history
empowers the controller with adaptivity, the robustness of
the controller can be improved by task randomization. (3) In
Sec. 11.3, we provide several “bonuses” that RL can bring
forth, such as motion inference and optimization, as well as
contact planning. We wrap up this discussion with a small
debate on general versus task-specific control policies.

11.1 How to Use the Robot’s History?

Robot’s Long I/O History is Important: In existing RL-
based locomotion control literature, there is no convergence
on how to use the robot’s history: short or long, history of
only state feedback or of state and action pair. Our research
demonstrates the clear benefits of providing a long history
of both robot’s inputs and outputs, especially in the case
of high-dimensional highly nonlinear systems like bipedal
robots. This approach is grounded in the robot’s full-order
dynamics (1), suggesting that a sequence of I/O history can
be more informative in identifying the dynamic system to
control. This assertion is supported by our ablation study
(Fig. 6), where policies incorporating a longer I/O history
outperformed those with shorter history or states-only long
history in handling randomized dynamics parameters in
realizing different locomotion skills. Additionally, analyzing
the latent embedding from the long I/O history encoder
(Fig. 9) revealed that it could implicitly capture information
such as contact events, external forces, and changes in system
dynamics parameters, and more. This finding is intriguing,
as it shows that optimization by model-free RL, with a
proper utilization of robot’s I/O, can learn to extract vital
information for dynamic control.

Short History Complements Long History: While a
long I/O history can improve control performance, its
effectiveness is limited without proper formulation. Our
ablation study (Fig. 6) shows that using only a long I/O
history does not outperform policies with a short history,
aligned with the report from Singh et al. (2023). We discover
that to fully exploit the benefits of long history, it’s effective
to provide a short I/O history directly to the base MLP,
bypassing the long history encoder, termed as dual history
approach. This modification markedly improves learning
performance across various locomotion skills (Fig. 6) and
outperforms other approaches in real-world experiments
(Fig. 7). While long history has been introduced in RL-based
locomotion control in prior work, the complementary use
of short history is a novel approach. Many previous efforts
lack this addition to the base policy, potentially overlooking
a critical element that is the recent I/O history for controlling
complex robots in real time. When only using long I/O
history, recent events may become obfuscated in the latent
embedding after the long-history encoding, and this can
be addressed by incorporating an explicit short I/O history
alongside the long-history encoder. This explicit recent I/O
feedback can also help with the non-Markovian property
when we opt to use a long robot I/O history. Furthermore,
while the long history is better for system identification
and state estimation, the short-term features are better for
denoising the high-frequency estimates from the long-history
encoder. Although this approach might not be essential for
simpler systems like stationary robotic arms (Peng et al.
2018) or quadrupedal robots (Lee et al. 2020) as observed
in prior studies, for more complex dynamic systems like
the bipedal robots in our work, the benefits of this dual
history approach are clearly pronounced. Additionally, while
the dual-history approach could boost the learning using
non-recurrent policy that is trained to leverage the history
sequence with an explicit length, we found it is hard to
aid the training of recurrent policy in terms of the bipedal
locomotion control. Details are presented in Appendix .6.

Are We Learning A Robust or Adaptive Controller?
Adaptivity in RL is not a new concept, and there are
notable efforts from the control theory community to bridge
adaptive control with RL, like Annaswamy (2023). On the
other hand, many studies on RL-based locomotion control
have demonstrated robustness in real-world applications,
attributed by some to the robustness of the policy trained
with dynamics randomization and by others to the adaptivity
in RL. Many in this community are curious about which

Prepared using sagej.cls

Li et al. 33

attribute actually plays a critical role. This curiosity
motivated us to conduct an extensive empirical study in this
work to investigate both the adaptivity and robustness of the
RL policy. We show that in the RL-based controller, these
two aspects can originate from different sources: adaptivity
can arise from the proper use of the robot’s I/O history,
while robustness can be introduced by task randomization.
Dynamics randomization occupies a middle ground: in order
to be robust to different dynamics, the policy can be trained
with randomized dynamics to learn to effectively utilize the
history (if provided) in adapting to the dynamics shifts.

What Do We Want to Learn, Direct or Indirect Adaptive
Control? Recognizing the value of properly employing long
I/O history, we provide a discussion about an alternative
method: using the history to estimate selected environmental
parameters for control. This approach, known as the
Teacher-Student (TS) training strategy (Lee et al. 2020) or
RMA (Kumar et al. 2021), can be seen as an RL-version
of indirect adaptive control. However, for real-time dynamic
locomotion control, our findings suggest that a direct
adaptive control method, which integrates long I/O history
directly into the controller without explicitly estimating
model parameters, yields better performance, supported by
the results in Sec. 7. The underlying reason behind this
becomes clearer when considering the capabilities of the
history encoder (Fig. 9) obtained by our proposed method.
It not only adapts to time-invariant modeling parameters
but also captures crucial information deemed important by
the robot, like time-variant contact events. This contrasts
with TS or RMA methods, which are limited to estimating
modeling parameters and might encounter estimation errors
or failures in challenging tasks like bipedal running (Fig. 6).
Compared to TS and RMA which separate training for the
base control policy and history encoder, end-to-end training
without expert supervision gives the robot more freedom to
explore and exploit useful information.

11.2 Versatility Improves Robustness
Besides the adaptivity brought by the proper use of the
robot’s long I/O history, another key benefit of using
RL for locomotion control is robustness. When policies
are trained with dynamics randomization, they can stay
robust to environmental changes, like during the sim-to-real
transfer. However, our research reveals that the robustness
of RL policies extends beyond this, with task randomization
emerging as another key strategy.

Our ablation study (Fig. 10) supports this. While
dynamics randomization expands the range of trajectories
a robot is trained on within a specific task, it doesn’t
dramatically alter the training distribution. For instance,
extensive randomization in a standing policy doesn’t equip
the robot with new locomotion skills like walking or jumping
for recovery (Figs. 11, 12). Task randomization, however,
imparts robustness differently. By training across diverse
tasks, such as varying walking speeds or jumping targets,
the robot learns to generalize and exploit these learned
tasks, aiding recovery even without specific dynamics
randomization, as demonstrated in Fig. 10. Interestingly, the
robot’s response to disturbances differs based on the source
of robustness. With extensive dynamics randomization, it

tends to adhere to the commanded task, whereas using a
versatile policy trained with task randomization, it shows
more compliance to external disturbances, deviating from its
given command.

Although some previous RL-based locomotion research
unintentionally achieved versatile policies and attributed
their success of robustness primarily to dynamics random-
ization, our study distinguishes the sources of robustness.
We recommend additional task randomization in future RL
applications for robust locomotion control.

11.3 Exploring What RL Can Enable for
Legged Locomotion

In this subsection, we aim to offer broader insights into the
potential (and limitations) of RL for controlling complex
dynamic systems.

Trajectory Optimization and Motion Inference: By
using RL for controlling high-dimensional bipedal robots,
reference motions are often used to achieve natural gaits,
as demonstrated in our work. While there are prior attempts
using trajectory optimization based on robot dynamics model
to obtain a reference motion, like Bogdanovic et al. (2022)
and the walking policy in this work, we also show that such
a “pre-optimization” could be unnecessary for RL-based
control. For example, our work with bipedal running and
jumping, using only kinematically feasible retargeted human
motion and animation, shows that robots can learn to stay
close to reference motions and maintain dynamic stability
through trial and error, as long as the action space is not
corrupted by the added reference motion (as the residual
approach in Fig. 6). This indicates the ability of RL to
jointly learn trajectory optimization and real-time control.
Furthermore, our work demonstrates that RL also enables
robots to infer motions beyond the provided references. For
example, the robot can learn to vary running or jumping
maneuvers from single reference motions, achieved by task
randomization and goal-conditioned policy. However, using
a single reference motion has its limits. For instance, if
we only provide a reference forward jumping motion, it
becomes challenging for the robot to learn a backward jump
based solely on task completion reward. Therefore, selecting
an effective single reference motion may require it to be
relatively unbiased, such as the jumping-in-place motion
used in this work.

Motion (and Contact) Planning: In our real-world
experiments (Sec. 10), we observed numerous instances
where the robot demonstrated the ability to perform a
sequence of varied motions with varying contact sequences
for recovery. For example, when perturbed from a standing
position, the robot exerted a variety of different walking
gaits in order to return to a stand, all without requiring
an online motion or contact sequence scheduler (Fig. 12a).
This reflects a longer-horizon motion planning capability,
distinct from its real-time locomotion control occurring at
33 Hz. This is further supported by jumping experiments
like Figs. 26c, 27a. These observations indicate that RL
policies can autonomously develop contact sequences for
different tasks during deployment when provided with the
unvaried reference motion. This capability also suggests that
specifying a contact sequence to the policy can be less

Prepared using sagej.cls

34 xxx XX(X)

advantageous, as the (legged) robot will have less freedom to
explore more optimal contact patterns for enhanced stability
and robustness. In short, the advantage of utilizing RL for
legged locomotion control where contact is crucial is in the
ability to control without explicitly considering contact.

The Possibility of Learning a Unified Control Policy:
Given that all the policies developed in this work use
the same control architecture and training procedure, it is
possible to obtain an unified policy for different skills. This
possibility is further supported given that in all dynamic
walking, running, and jumping policies, we have combined
them with a distinguished skill: the stationary standing.
For example, the policy that realized the transition among
running and standing skills shows the potential to learn
different skills (such as slower speed walking) within
this spectrum. Adding the standing skill with the other
is realized by using a carefully designed MDP and an
additional substage for the new skill training as introduced in
Appendix .2. However, if using this relatively simple method,
it is challenging to keep adding different new skills as the
robot may suffer from the catastrophic forgetting problem.

Using an adversarial motion prior (AMP) as in Peng et al.
(2021) could potentially help to obtain a unified control
policy for diverse locomotion skills without specifically
tuning motion tracking rewards. However, applying AMP
to aggressive real-world bipedal locomotion remains a
challenge. GAN-styled methods are prone to mode-collapse,
and can struggle to imitate aggressive motions that occur
over brief periods. The actor policy can “cheat” the
discriminator by mimicking a parts of a jump, without
performing the motion in its entirety. This is further
compounded by the large sim-to-real gap for bipedal robots.

Another potential way to develop such a unified policy can
be done by continual RL to keep learning new skills like
Liu et al. (2023) or imitation learning from offline datasets
collected by skill-specific policies like Huang et al. (2024).
However, increasing the robustness and overcoming the sim-
to-real gap using these methods for bipedal robots is still an
open question. A practical way could be learning to transition
among different pre-trained skill-specific policies, such as
Lee et al. (2018). In either way, this proposed method for
skill-specific policies in this work serves as a solid starting
point.

Generalization versus Precision: In our research, we
have showcased many examples of RL’s generalization
capabilities in dynamic locomotion control, spanning various
tasks and dynamics parameters. While control precision has
not been a primary focus, it becomes evident in skills like
bipedal jumping. In these tasks, the robot successfully jumps
to specified targets (Sec. 10.3), requiring precise translational
velocity at take-off for accurate landing. However, attaining
perfect precise control using one policy that handles a wide
variety of tasks and dynamics variations remains an open
question. For example, it is challenging to track a specific
sagittal velocity with minor errors in fast-running tasks in
the real world (Fig. 22c). Yet, the benefits of a generalized
locomotion control policy, like foundation models, lie in
providing a solid starting point for further fine-tuning on
specific downstream tasks, like precision control. On the flip
side, a controller optimized for precision might be restricted

to the finetuned task. We present these trade-offs for readers
to consider, highlighting the balance between generalization
and precision in RL-based dynamic locomotion control.

12 Conclusion and Future Work
In conclusion, this work presents a comprehensive study
on using deep reinforcement learning to develop versatile,
robust, and dynamic locomotion controllers for bipedal
robots. This work introduces a dual-history approach
that integrates the robot’s input/output (I/O) history into
RL-based controllers and highlights its significance. We
demonstrate the adaptivity and robustness of the proposed
RL-based controller, particularly underscoring how a well-
designed long I/O history encoder can adapt to both time-
invariant dynamics changes and time-variant events such as
varying contacts. Additionally, task randomization, which
encourages the robot to explore a broader range of scenarios
by accomplishing different tasks, significantly enhances
robustness, complementing the robustness achieved through
traditional dynamics randomization. The proposed method
is validated thoroughly on the bipedal robot Cassie,
successfully realizing versatile and robust walking, running,
and jumping skills in the real world. These experiments
include several state-of-the-art results, including walking
control with consistent performance over a long timespan
(459 days), versatile running capabilities demonstrated in a
400-meter dash and across challenging terrains, and a large
repertoire of jumping tasks including the furthest 1.4-meter
forward jump and 0.44-meter high jump.

In the future, we hope this method can be extended to
humanoid robots that can also leverage upper-body motions
for agility and stability. Additionally, integrating depth vision
directly into the locomotion controller can be realized in
a straightforward way where an additional depth encoder
can work alongside the robot’s I/O history encoder in our
proposed control architecture. We encourage the readers
to also try this setup for visual control on their bipedal
robots. With the advancements made in this work, we think
a large portion of practical problems in realizing effective
locomotion control for human-sized bipedal robots can be
addressed. For the bipedal robotics community, an exciting
direction would be the combination of bipedal locomotion
and bimanual manipulation to tackle long-horizon loco-
manipulation tasks, opening new possibilities in the field.

Acknowledgments
The authors thank Xuxin Cheng for the help in the initial
development of this work. The authors thank Daniel Wong
for the design of running shoes for Cassie. The authors
would also like to thank Bike Zhang, Jiaming Chen, Lizhi
Yang, Xiaoyu Huang, Yiming Ni, Yufeng Chi, Akshay
Thirugnanam, Yuanzhuo Li, Dr. Jun Zeng, and Dr. Ayush
Agrawal for their help with the experiments.

Declaration of conflicting interests
The author(s) declared no potential conflict of interest with
respect to the research, authorship, and/or publication of this
article.

Prepared using sagej.cls

Li et al. 35

Funding
The author(s) disclosed receipt of the following financial
support for the research, authorship, and/or publication of
this article: This work was in part supported by NSF Grant
CMMI-1944722, The AI Institute, and Canadian Institute for
Advanced Research (CIFAR).

References

Agrawal A (2022) Model-Based Design for Legged Robots:
Predictive Control and Reinforcement Learning. PhD Thesis,
UC Berkeley.

Annaswamy AM (2023) Adaptive control and intersections with
reinforcement learning. Annual Review of Control, Robotics,
and Autonomous Systems 6: 65–93.

Bogdanovic M, Khadiv M and Righetti L (2022) Model-
free reinforcement learning for robust locomotion using
demonstrations from trajectory optimization. Frontiers in
Robotics and AI 9: 854212.

Boroujeni MG, Daneshman E, Righetti L and Khadiv M (2021) A
unified framework for walking and running of bipedal robots.
In: 2021 20th International Conference on Advanced Robotics
(ICAR). IEEE, pp. 396–403.

Bouyarmane K and Kheddar A (2011) Using a multi-objective
controller to synthesize simulated humanoid robot motion
with changing contact configurations. In: 2011 IEEE/RSJ
international conference on intelligent robots and systems.
IEEE, pp. 4414–4419.

Caron S, Kheddar A and Tempier O (2019) Stair climbing
stabilization of the hrp-4 humanoid robot using whole-body
admittance control. In: 2019 International conference on
robotics and automation (ICRA). IEEE, pp. 277–283.

Castillo GA, Weng B, Zhang W and Hereid A (2022)
Reinforcement learning-based cascade motion policy design
for robust 3d bipedal locomotion. IEEE Access 10: 20135–
20148.

Chen S, Zhang B, Mueller MW, Rai A and Sreenath K (2023)
Learning torque control for quadrupedal locomotion. In:
2023 IEEE-RAS 22nd International Conference on Humanoid
Robots (Humanoids). pp. 1–8.

Cheng X, Kumar A and Pathak D (2023) Legs as manipulator:
Pushing quadrupedal agility beyond locomotion. In: 2023
IEEE International Conference on Robotics and Automation
(ICRA). pp. 5106–5112.

Chignoli M, Kim D, Stanger-Jones E and Kim S (2021) The mit
humanoid robot: Design, motion planning, and control for
acrobatic behaviors. In: 2020 IEEE-RAS 20th International
Conference on Humanoid Robots (Humanoids). IEEE, pp. 1–
8.

Crowley D, Dao J, Duan H, Green K, Hurst J and Fern A
(2023) Optimizing bipedal locomotion for the 100m dash with
comparison to human running. In: 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp.
12205–12211.

Da X, Harib O, Hartley R, Griffin B and Grizzle JW (2016) From
2d design of underactuated bipedal gaits to 3d implementation:
Walking with speed tracking. IEEE Access 4: 3469–3478.

Dai H, Valenzuela A and Tedrake R (2014) Whole-body motion
planning with centroidal dynamics and full kinematics. In:
2014 IEEE-RAS International Conference on Humanoid

Robots. IEEE, pp. 295–302.
Daneshmand E, Khadiv M, Grimminger F and Righetti L (2021)

Variable horizon mpc with swing foot dynamics for bipedal
walking control. IEEE Robotics and Automation Letters 6(2):
2349–2356.

Dao J, Green K, Duan H, Fern A and Hurst J (2022) Sim-to-real
learning for bipedal locomotion under unsensed dynamic loads.
In: 2022 International Conference on Robotics and Automation
(ICRA). IEEE, pp. 10449–10455.

Deits R, Kuindersma S, Kelly MP, Koolen T, Abe Y and Stephens
B (2022) Robot movement and online trajectory optimization.
US Patent App. 17/358,628.

Deits R and Tedrake R (2014) Footstep planning on uneven terrain
with mixed-integer convex optimization. In: 2014 IEEE-RAS
international conference on humanoid robots. IEEE, pp. 279–
286.

DRL (2023) cassie-mujoco-sim. URL https://github.com/

osudrl/cassie-mujoco-sim.
Drnach L and Zhao Y (2021) Robust trajectory optimization

over uncertain terrain with stochastic complementarity. IEEE
Robotics and Automation Letters 6(2): 1168–1175.

Escontrela A, Peng XB, Yu W, Zhang T, Iscen A, Goldberg K
and Abbeel P (2022) Adversarial motion priors make good
substitutes for complex reward functions. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, pp. 25–32.

Feng G, Zhang H, Li Z, Peng XB, Basireddy B, Yue L, Song Z,
Yang L, Liu Y, Sreenath K et al. (2023) Genloco: Generalized
locomotion controllers for quadrupedal robots. In: Conference
on Robot Learning. PMLR, pp. 1893–1903.

Fernbach P, Tonneau S, Stasse O, Carpentier J and Taı̈x M (2020) C-
croc: Continuous and convex resolution of centroidal dynamic
trajectories for legged robots in multicontact scenarios. IEEE
Transactions on Robotics 36(3): 676–691.

Fevre M, Wensing PM and Schmiedeler JP (2020) Rapid bipedal
gait optimization in casadi. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 3672–3678.

Fu Z, Cheng X and Pathak D (2023) Deep whole-body control:
learning a unified policy for manipulation and locomotion. In:
Conference on Robot Learning. PMLR, pp. 138–149.

Fu Z, Kumar A, Malik J and Pathak D (2021) Minimizing energy
consumption leads to the emergence of gaits in legged robots.
In: 5th Annual Conference on Robot Learning.

Gong Y and Grizzle JW (2022) Zero dynamics, pendulum
models, and angular momentum in feedback control of bipedal
locomotion. Journal of Dynamic Systems, Measurement, and
Control 144(12): 121006.

Gong Y, Hartley R, Da X, Hereid A, Harib O, Huang JK and Grizzle
J (2019) Feedback control of a cassie bipedal robot: Walking,
standing, and riding a segway. In: 2019 American Control
Conference (ACC). IEEE, pp. 4559–4566.

Goswami D and Vadakkepat P (2009) Planar bipedal jumping gaits
with stable landing. IEEE Transactions on Robotics 25(5):
1030–1046.

Haarnoja T, Ha S, Zhou A, Tan J, Tucker G and Levine S (2019)
Learning to walk via deep reinforcement learning. Robotics:
Science and Systems (RSS) .

Hereid A, Harib O, Hartley R, Gong Y and Grizzle JW (2019)
Rapid trajectory optimization using c-frost with illustration on

Prepared using sagej.cls

https://github.com/osudrl/cassie-mujoco-sim
https://github.com/osudrl/cassie-mujoco-sim

36 xxx XX(X)

a cassie-series dynamic walking biped. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). pp. 4722–4729.

Hereid A, Hubicki CM, Cousineau EA and Ames AD (2018)
Dynamic humanoid locomotion: A scalable formulation for
hzd gait optimization. IEEE Transactions on Robotics 34(2):
370–387.

Huang X, Chi Y, Wang R, Li Z, Peng XB, Shao S, Nikolic B and
Sreenath K (2024) Diffuseloco: Real-time legged locomotion
control with diffusion from offline datasets. arXiv preprint
arXiv:2404.19264 .

Huang X, Li Z, Xiang Y, Ni Y, Chi Y, Li Y, Yang L, Peng XB
and Sreenath K (2023) Creating a dynamic quadrupedal robotic
goalkeeper with reinforcement learning. In: 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). pp. 2715–2722.

Hwangbo J, Lee J, Dosovitskiy A, Bellicoso D, Tsounis V, Koltun V
and Hutter M (2019) Learning agile and dynamic motor skills
for legged robots. Science Robotics 4(26): eaau5872.

Ibanez A, Bidaud P and Padois V (2014) Emergence of humanoid
walking behaviors from mixed-integer model predictive
control. In: 2014 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, pp. 4014–4021.

Ji G, Mun J, Kim H and Hwangbo J (2022) Concurrent training of
a control policy and a state estimator for dynamic and robust
legged locomotion. IEEE Robotics and Automation Letters
7(2): 4630–4637.

Kajita S, Kanehiro F, Kaneko K, Yokoi K and Hirukawa H (2001)
The 3d linear inverted pendulum mode: A simple modeling
for a biped walking pattern generation. In: Proceedings 2001
IEEE/RSJ International Conference on Intelligent Robots and
Systems. Expanding the Societal Role of Robotics in the the
Next Millennium (Cat. No. 01CH37180), volume 1. IEEE, pp.
239–246.

Kalashnikov D, Varley J, Chebotar Y, Swanson B, Jonschkowski R,
Finn C, Levine S and Hausman K (2021) Mt-opt: Continuous
multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212 .

Kim D, Berseth G, Schwartz M and Park J (2023) Torque-
based deep reinforcement learning for task-and-robot agnostic
learning on bipedal robots using sim-to-real transfer. IEEE
Robotics and Automation Letters .

Kojima K, Kojio Y, Ishikawa T, Sugai F, Kakiuchi Y, Okada K
and Inaba M (2019) A robot design method for weight saving
aimed at dynamic motions: Design of humanoid jaxon3-p
and realization of jump motions. In: 2019 IEEE-RAS 19th
International Conference on Humanoid Robots (Humanoids).
IEEE, pp. 586–593.

Kuindersma S, Permenter F and Tedrake R (2014) An efficiently
solvable quadratic program for stabilizing dynamic locomo-
tion. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, pp. 2589–2594.

Kumar A, Fu Z, Pathak D and Malik J (2021) Rma: Rapid motor
adaptation for legged robots. Robotics: Science and Systems .

Kumar A, Li Z, Zeng J, Pathak D, Sreenath K and Malik J (2022)
Adapting rapid motor adaptation for bipedal robots. In: 2022
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp. 1161–1168.

Landau ID, Lozano R, M’Saad M and Karimi A (2011) Adaptive
control: algorithms, analysis and applications. Springer

Science & Business Media.
Landry B, Lorenzetti J, Manchester Z and Pavone M (2022) Bilevel

optimization for planning through contact: A semidirect
method. In: Robotics Research: The 19th International
Symposium ISRR. pp. 789–804.

Le Cleac’h S, Howell TA, Yang S, Lee CY, Zhang J, Bishop A,
Schwager M and Manchester Z (2024) Fast contact-implicit
model predictive control. IEEE Transactions on Robotics .

Lee J, Hwangbo J, Wellhausen L, Koltun V and Hutter M (2020)
Learning quadrupedal locomotion over challenging terrain.
Science robotics 5(47): eabc5986.

Lee Y, Sun SH, Somasundaram S, Hu ES and Lim JJ (2018)
Composing complex skills by learning transition policies. In:
International Conference on Learning Representations.

Li Y, Li J, Fu W and Wu Y (2023a) Learning agile bipedal motions
on a quadrupedal robot. arXiv preprint arXiv:2311.05818 .

Li Z, Cheng X, Peng XB, Abbeel P, Levine S, Berseth G
and Sreenath K (2021) Reinforcement learning for robust
parameterized locomotion control of bipedal robots. In: 2021
IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 2811–2817.

Li Z, Cummings C and Sreenath K (2020) Animated cassie:
A dynamic relatable robotic character. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). pp. 3739–3746.

Li Z, Peng XB, Abbeel P, Levine S, Berseth G and Sreenath K
(2023b) Robust and versatile bipedal jumping control through
reinforcement learning. Robotics: Science and Systems XIX,
Daegu, Republic of Korea .

Lim D, Kim MJ, Cha J, Kim D and Park J (2023) Proprioceptive
external torque learning for floating base robot and its
applications to humanoid locomotion. In: 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).

Liu S, Xu M, Huang P, Zhang X, Liu Y, Oguchi K and Zhao
D (2023) Continual vision-based reinforcement learning with
group symmetries. In: Conference on Robot Learning. PMLR,
pp. 222–240.

Ljung L (1998) System identification. In: Signal analysis and
prediction. Springer, pp. 163–173.

Ma WL, Kolathaya S, Ambrose ER, Hubicki CM and Ames AD
(2017) Bipedal robotic running with durus-2d: Bridging the
gap between theory and experiment. In: Proceedings of the
20th international conference on hybrid systems: computation
and control. pp. 265–274.

Marcucci T, Gabiccini M and Artoni A (2016) A two-
stage trajectory optimization strategy for articulated bodies
with unscheduled contact sequences. IEEE Robotics and
Automation Letters 2(1): 104–111.

Margolis G, Yang G, Paigwar K, Chen T and Agrawal P (2022)
Rapid locomotion via reinforcement learning. In: Robotics:
Science and Systems.

Margolis GB and Agrawal P (2023) Walk these ways: Tuning robot
control for generalization with multiplicity of behavior. In:
Conference on Robot Learning. PMLR, pp. 22–31.

Meduri A, Shah P, Viereck J, Khadiv M, Havoutis I and
Righetti L (2023) Biconmp: A nonlinear model predictive
control framework for whole body motion planning. IEEE
Transactions on Robotics 39(2): 905–922.

Prepared using sagej.cls

Li et al. 37

Meuleau N, Peshkin L, Kim KE and Kaelbling LP (1999) Learning
finite-state controllers for partially observable environments.
In: Proceedings of the Fifteenth conference on Uncertainty in
artificial intelligence. pp. 427–436.

Miki T, Lee J, Hwangbo J, Wellhausen L, Koltun V and Hutter M
(2022) Learning robust perceptive locomotion for quadrupedal
robots in the wild. Science Robotics 7(62): eabk2822.

Moro FL and Sentis L (2019) Whole-body control of humanoid
robots. Humanoid Robotics: A reference, Springer, Dordrecht .

Orin DE, Goswami A and Lee SH (2013) Centroidal dynamics of a
humanoid robot. Autonomous robots 35: 161–176.

Peng XB, Andrychowicz M, Zaremba W and Abbeel P
(2018) Sim-to-real transfer of robotic control with dynamics
randomization. In: 2018 IEEE international conference on
robotics and automation (ICRA). pp. 3803–3810.

Peng XB, Coumans E, Zhang T, Lee TW, Tan J and Levine S (2020)
Learning agile robotic locomotion skills by imitating animals.
Robotics: Science and Systems (RSS) .

Peng XB, Ma Z, Abbeel P, Levine S and Kanazawa A (2021) Amp:
Adversarial motion priors for stylized physics-based character
control. ACM Transactions on Graphics (ToG) 40(4): 1–20.

Posa M, Cantu C and Tedrake R (2014) A direct method for
trajectory optimization of rigid bodies through contact. The
International Journal of Robotics Research 33(1): 69–81.

Pratt J, Koolen T, De Boer T, Rebula J, Cotton S, Carff J, Johnson M
and Neuhaus P (2012) Capturability-based analysis and control
of legged locomotion, part 2: Application to m2v2, a lower-
body humanoid. The international journal of robotics research
31(10): 1117–1133.

Qi H, Chen X, Yu Z, Huang G, Liu Y, Meng L and Huang Q (2023)
Vertical jump of a humanoid robot with cop-guided angular
momentum control and impact absorption. IEEE Transactions
on Robotics .

Radosavovic I, Xiao T, Zhang B, Darrell T, Malik J and Sreenath K
(2024) Real-world humanoid locomotion with reinforcement
learning. Science Robotics 9(89): eadi9579.

Raibert MH, Chepponis MA and Brown HB (1984) Experiments in
balance with a 3d one-legged hopping machine. International
Journal of Robotics Research 3(2): 75 – 92.

Reher J and Ames AD (2021) Control lyapunov functions for
compliant hybrid zero dynamic walking. arXiv preprint
arXiv:2107.04241 .

Rodriguez D and Behnke S (2021) Deepwalk: Omnidirectional
bipedal gait by deep reinforcement learning. In: 2021 IEEE
international conference on robotics and automation (ICRA).
pp. 3033–3039.

Rummel J, Blum Y, Maus HM, Rode C and Seyfarth A (2010)
Stable and robust walking with compliant legs. In: 2010 IEEE
International Conference on Robotics and Automation. IEEE,
pp. 5250–5255.

Schulman J, Wolski F, Dhariwal P, Radford A and Klimov O
(2017) Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347 .

Sentis L and Khatib O (2006) A whole-body control framework
for humanoids operating in human environments. In:
Proceedings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006. IEEE, pp. 2641–2648.

SFU (2018) Sfu motion capture database. https://mocap.cs.
sfu.ca/.

Shao Y, Jin Y, Liu X, He W, Wang H and Yang W (2021) Learning
free gait transition for quadruped robots via phase-guided
controller. IEEE Robotics and Automation Letters 7(2): 1230–
1237.

Siekmann J, Godse Y, Fern A and Hurst J (2021a) Sim-to-real
learning of all common bipedal gaits via periodic reward
composition. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 7309–7315.

Siekmann J, Green K, Warila J, Fern A and Hurst J (2021b) Blind
bipedal stair traversal via sim-to-real reinforcement learning.
Robotics: Science and Systems .

Siekmann J, Valluri S, Dao J, Bermillo L, Duan H, Fern A and
Hurst J (2020) Learning memory-based control for human-
scale bipedal locomotion. In: Robotics science and systems.

Singh RP, Xie Z, Gergondet P and Kanehiro F (2023) Learning
bipedal walking for humanoids with current feedback. IEEE
Access .

Smith L, Kew JC, Peng XB, Ha S, Tan J and Levine S (2022)
Legged robots that keep on learning: Fine-tuning locomotion
policies in the real world. In: 2022 International Conference
on Robotics and Automation (ICRA). IEEE, pp. 1593–1599.

Smith L, Kostrikov I and Levine S (2023) Demonstrating a walk
in the park: Learning to walk in 20 minutes with model-free
reinforcement learning. Robotics: Science and Systems (RSS)
Demo 2(3): 4.

Spaan MT (2012) Partially observable markov decision processes.
In: Reinforcement learning: State-of-the-art. Springer, pp.
387–414.

Sreenath K, Park HW, Poulakakis I and Grizzle JW (2011) A
compliant hybrid zero dynamics controller for stable, efficient
and fast bipedal walking on mabel. The International Journal
of Robotics Research 30(9): 1170–1193.

Sreenath K, Park HW, Poulakakis I and Grizzle JW (2013)
Embedding active force control within the compliant hybrid
zero dynamics to achieve stable, fast running on mabel. The
International Journal of Robotics Research 32(3): 324–345.

Takenaka T, Matsumoto T and Yoshiike T (2009a) Real time motion
generation and control for biped robot-1 st report: Walking
gait pattern generation. In: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, pp. 1084–
1091.

Takenaka T, Matsumoto T, Yoshiike T and Shirokura S (2009b)
Real time motion generation and control for biped robot-2 nd
report: Running gait pattern generation. In: 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems.
IEEE, pp. 1092–1099.

Todorov E, Erez T and Tassa Y (2012) Mujoco: A physics engine
for model-based control. In: 2012 IEEE/RSJ international
conference on intelligent robots and systems. pp. 5026–5033.

van Marum B, Shrestha A, Duan H, Dugar P, Dao J and
Fern A (2024) Revisiting reward design and evaluation for
robust humanoid standing and walking. arXiv preprint
arXiv:2404.19173 .

Vukobratović M and Borovac B (2004) Zero-moment point—thirty
five years of its life. International journal of humanoid robotics
1(01): 157–173.

Wensing PM and Orin DE (2016) Improved computation of the
humanoid centroidal dynamics and application for whole-body
control. International Journal of Humanoid Robotics 13(01):
1550039.

Prepared using sagej.cls

https://mocap.cs.sfu.ca/
https://mocap.cs.sfu.ca/

38 xxx XX(X)

Wensing PM, Posa M, Hu Y, Escande A, Mansard N and Del Prete
A (2023) Optimization-based control for dynamic legged
robots. IEEE Transactions on Robotics .

Westenbroek T, Castaneda F, Agrawal A, Sastry S and Sreenath
K (2022) Lyapunov design for robust and efficient robotic
reinforcement learning. In: 6th Annual Conference on Robot
Learning.

Westervelt ER, Grizzle JW and Koditschek DE (2003) Hybrid
zero dynamics of planar biped walkers. IEEE transactions on
automatic control 48(1): 42–56.

Wu J, Xue Y and Qi C (2023a) Learning multiple gaits within latent
space for quadruped robots. arXiv preprint arXiv:2308.03014 .

Wu P, Escontrela A, Hafner D, Abbeel P and Goldberg K (2023b)
Daydreamer: World models for physical robot learning. In:
Conference on Robot Learning. PMLR, pp. 2226–2240.

Xie Z, Berseth G, Clary P, Hurst J and van de Panne M (2018)
Feedback control for cassie with deep reinforcement learning.
In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, pp. 1241–1246.

Xie Z, Clary P, Dao J, Morais P, Hurst J and Panne M (2020)
Learning locomotion skills for cassie: Iterative design and sim-
to-real. In: Conference on Robot Learning. PMLR, pp. 317–
329.

Xie Z, Da X, Van de Panne M, Babich B and Garg A
(2021) Dynamics randomization revisited: A case study
for quadrupedal locomotion. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp.
4955–4961.

Xiong X and Ames A (2022) 3-d underactuated bipedal walking
via h-lip based gait synthesis and stepping stabilization. IEEE
Transactions on Robotics 38(4): 2405–2425.

Xiong X and Ames AD (2018) Bipedal hopping: Reduced-order
model embedding via optimization-based control. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 3821–3828.

Yang L, Li Z, Zeng J and Sreenath K (2022) Bayesian optimization
meets hybrid zero dynamics: Safe parameter learning for
bipedal locomotion control. In: 2022 International Conference
on Robotics and Automation (ICRA). IEEE, pp. 10456–10462.

Yang W and Posa M (2021) Impact invariant control with
applications to bipedal locomotion. In: 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, pp. 5151–5158.

Yang W and Posa M (2023) Impact-invariant control: Maxi-
mizing control authority during impacts. arXiv preprint
arXiv:2303.00817 .

Yu F, Batke R, Dao J, Hurst J, Green K and Fern A (2022) Dynamic
bipedal turning through sim-to-real reinforcement learning. In:
2022 IEEE-RAS 21st International Conference on Humanoid
Robots (Humanoids). IEEE, pp. 903–910.

Yu W, Kumar VC, Turk G and Liu CK (2019) Sim-to-real
transfer for biped locomotion. In: 2019 ieee/rsj international
conference on intelligent robots and systems (iros). pp. 3503–
3510.

Yunt K and Glocker C (2006) Trajectory optimization of
mechanical hybrid systems using sumt. In: 9th IEEE
International Workshop on Advanced Motion Control, 2006.
IEEE, pp. 665–671.

Zhu Y, Pan Z and Hauser K (2021) Contact-implicit trajectory
optimization with learned deformable contacts using bilevel
optimization. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). pp. 9921–9927.

Prepared using sagej.cls

Li et al. 39

Figure 28. Ablation study on the use of Low Pass Filter (LPF)
as an action filter for the training of the in-place jumping skill
from scratch. Without using the LPF, the training return (blue
curve) is much lower than the one using LPF (ours, red curve).
These two policies are obtained by using the exact
hyperparameters and training settings. The underlying reason is
that it is harder for the RL-based policy to damp out
high-frequency jittering motion without the use of LPF.

.1 Advantages of Using an Action Filter
We used a Low Pass Filter (LPF) after the policy output,
acting as an action filter. The LPF used in this work is a
Butterworth low pass filter with a cut-off frequency of 4
Hz. LPF has been widely applied in control engineering
including model-based optimal control methods (Gong and
Grizzle 2022) and model-free RL methods (Peng et al. 2020;
Li et al. 2021; Smith et al. 2022; Escontrela et al. 2022)
for legged locomotion. LPF can further smooth out the
action from the RL-based policy, which further complements
the smoothing rewards listed in Table 3. We conducted an
ablation study by training a jumping-in-place policy (single-
task training) without LPF, which still results in jumping but
with worse learning performance (converged return) due to
the resulting jittering motion, as shown in Fig. 28. If we
take out the LPF, we will need to increasing the weight
on the smoothing term to highlight the importance of the
smoothness of the entire motion. However, if the smoothing
term takes too much weight in the entire reward composition,
the robot may easily learn a suboptimal behavior by being
stationary without exploring dynamic skills such as jumping.
Therefore, LPF can help with reducing such reward tuning
burden. Furthermore, since LPF only helps to damp out the
high-frequency changes from the action (policy’s output), the
entire system may still have oscillation (e.g., due to a large
joint velocity), having the smoothing reward is still necessary
to smooth the entire closed-loop system. These two parts
complement each other.

.2 Learning to Combine a Standing Skill
Enabling the robot to learn standing along with other
locomotion skills is useful for real-world applications, as it
is essential to retrieve the physical robot hardware (while the
robot is not moving).

For the walking skill, after the robot has mastered the
diverse walking tasks after the task randomization stage, we
added a sub-stage. In the episode of this sub-stage of training,
a standing skill is commanded after a random timespan of
walking, and will last until the end of episode. The robot
is informed to perform standing by two changes: (1) the
reference motion input to the control policy is changed to a

nominal standing motion (the preview of reference motion is
now a stack of three same standing motor positions), and (2)
the reward is formulated to encourage performing stationary
standing skill. The reward for standing has the same
formulation used for training dynamic locomotion skills
listed in Table 3, and the weights of smoothing terms, such
as motor velocity and change of action, are increased with
other terms remaining unchanged. The increased smoothing
weight is to encourage the robot to maintain a stationary
standing pose. After the robot has acquired the skills of
walking, standing, and the transition from an arbitrary state
from walking to standing, we can move on to dynamics
randomization. Starting from this stage, the standing skill
will be only introduced in the middle of the training of
walking and last for a random finite timespan. In this way,
the robot can also learn the transition back from standing to
walking.

For the running skill, the POMDP design for this sub-
stage is similar to the one for walking. However, since
transiting from fast running to standing is more challenging,
we provide an additional reference motion of transition from
running to standing, retargeted from human mocap. This
could facilitate the training during the transition phase. For
the jumping skill, since it is an aperiodic skill and the robot
is required to maintain a standing pose after landing, we do
not need such an additional sub-stage of training.

This method may also be useful to combine different
locomotion skills (like combining all walking, running, and
jumping) using one single policy. This could potentially
solve the problem of developing multi-skill policy for highly-
dynamic legged locomotion control. We note this as a
possible extension of this work.

.3 Command Range for Different Skills

Table 6. Command range for different skills.
Task Parameters Range

Walking
Sagittal Velocity q̇dx [-1.5, 1.5] m/s
Lateral Velocity q̇dy [-0.6, 0.6] m/s
Turning Velocity q̇dψ [-45, 45] deg/s
Walking Height qdz [0.65, 1.0] m

Running
Sagittal Velocity q̇dx [2.0, 5.0] m/s
Lateral Velocity q̇dy [-0.75, 0.75] m/s
Turning Velocity q̇dψ [-30, 30] deg/s

Jumping
Sagittal Landing Location qdx [-0.5, 1.5] m
Lateral Landing Location qdy [-1.0 1.0] m

Turning Direction at Landing qdψ [-100, 100] deg
Change of Elevation edz [-0.5, 0.5] m

The training ranges for the command of three locomotion
skills (walking, running, and jumping) developed in this
work are detailed in Table 6. During a training episode, the
given command is drawn uniformly from the listed range.

.4 Hyperparameters Used in Training
The number of training (PPO) iterations used to develop dif-
ferent locomotion skills is detailed in Table 7. Furthermore,
the hyperparameters of PPO are reported in Table 8, and they
are consistent over different locomotion skills.

Prepared using sagej.cls

40 xxx XX(X)

Table 7. Number of Training Iterations used for Different Locomotion Skills. Each iteration collects a batch of 65536 samples.
Walking

Single-Task Task Randomization Combining Standing Dynamics Randomization Added Perturbation Training
6000 8000 2000 8000 5000

Running
Single-Task Task Randomization Combining Standing Dynamics Randomization Added Perturbation Training

6000 18000 5000 15000 5000
Jumping

Single-Task Task Randomization Dynamics Randomization
6000 12000 20000

(a) TCN with dual history
approach (Dual Hist.) and the
TCN only (Long Hist. Only).

(b) LSTM with dual history
approach (Dual Hist.) and the
LSTM only (Long Hist. Only).

Figure 30. Learning performance using different neural
network architectures to encode the robot’s I/O history when
training a single-task walking policy with dynamics
randomization (walking forward at a fixed speed, after finishing
single-stage training). For both Long Hist. Only methods, we still
provide explicit immediate state feedback alongside the
temporal encoder. As shown in Fig. 30a, using the proposed
dual-history approach by providing an explicit short I/O history
alongside the TCN encoder, the learning performance is much
better than the TCN only. The TCN encodes 2-second robot I/O
history and has 3 layers with filter sizes of [34,34,34], a kernel
size of 5, a dilation base of 2, and a stride size of 2, with ReLU
activation, as suggested in Lee et al. (2020). Fig. 30b shows
that the dual-history approach will not help with the
LSTM-based policy. The LSTM encoder has 1 layer of 128
units. However, both TCN with dual-history approach and Long
Hist. Only perform better than the LSTM-based policy while
using the hyperparameters tuned for LSTM. It suggests that
LSTM may only learn to leverage a recent short history and
converge to a more suboptimal policy.

Figure 31. Learning performance for training walking (red
curve) and jumping (blue curve) skills from scratch using the
same neural network including the LSTM architecture with the
same hyperparamters used in Siekmann et al. (2020). It shows
that while the LSTM can learn the walking skill, it may struggle
to learn highly dynamic locomotion skills like jumping (shown as
a flat curve). This is not to suggest that LSTM cannot learn
aperiodic jumping skills, but rather to highlight its sensitivity to
hyperparameter tuning across different MDPs (different
locomotion skills). This contrasts with the non-recurrent-based
policy like the 1D CNN used in this work, which employs a
unified set of hyperparameters for all different skills due to the
ease of training.

Table 8. Hyperparameters used in PPO Training. These are
consistent among different locomotion skills.

Hyperparameter Value
PPO iteration batch size 65536
PPO clip rate 0.2
Optimization step size (both actor and critic) 1e−4

Optimization batch size 8192
Optimization epochs 2
Discount factor (γ) 0.98
GAE smoothing factor (λ) 0.95

.5 Comparison of Use of Different History
Lengths

Figure 29. Learning performance using different lengths of the
robot’s I/O history when training a single-task running policy
with dynamics randomization. All of these policies used the
proposed dual-history-based policy. When increasing the
explicit length of robot history from 1 second (pink curve), 2
seconds (red curve, as used in this work), and 3 seconds (blue
curve), we observe an increase in learning performance.
However, if we keep increasing the history length, such as to 4
seconds (dark blue curve), the improvement of the learning
performance may get saturated.

We conducted an ablation study to investigate the effects
of varying history lengths on a non-recurrent policy that
explicitly requires a specified history length. Using bipedal
running training as an example, Fig. 29 illustrates the
learning performance of training a single-task running policy
(which has completed the first-stage training) with extensive
dynamics parameters and varying lengths of robot I/O
history.

As suggested by Fig. 29, increasing the history length,
such as from 1 second to 2 seconds, or from 2 seconds to
3 seconds, consistently enhances learning performance. This
improvement occurs because a longer I/O history provides
more information on the robot’s dynamics parameters, aiding
in better state estimation. However, continually extending
the history length may not always be beneficial, as it can
introduce redundant information that the robot must filter

Prepared using sagej.cls

Li et al. 41

(a) Recorded latent representation after long-term I/O history encoder during walking. The figure
below compares two selected dimensions (marked as red lines) with recorded impact forces on
each of the robot’s feet.

(b) The blue plot shows the robot’s latent
representation with default dynamics parameters
during walking. The red plots indicate changes
in the same region under different dynamics.

Figure 32. Adaptivity test on the obtained walking policy in simulation (MuJoCo). The robot is commanded to walk forward at 0.6
m/s with no lateral or turning movement at normal height (0.95 m). Fig. 32a records the latent embedding after the policy’s long I/O
history encoder over 15 seconds. An external backward perturbation force of 30 N is applied on the robot base from 8 to 11
seconds. We can observe the changes in the latent embedding with the existence of the perturbations. The image below shows a
strong correlationship between the two selected latent dimensions with the robot’s impact force or contact event. Fig. 32b shows the
change of the latent embedding (the same zoomed region marked as the red bounding box in Fig. 32a) with respect to the change
of different dynamics parameters during the same walking task. These ablation studies are the same as running conducted in
Fig. 9b. The control performance metrics, tracking error Et and motion tracking error Em, show small changes with a large change
in the dynamics parameters.

out. This is evidenced by a drop in learning performance
when history length increases from 3 seconds to 4 seconds,
as shown in Fig. 29. In bipedal locomotion control, where
remembering events that happened further earlier is less
crucial, a longer history could lead more training samples
for the robot to distill useful information. Therefore, we
recommend using a history length that spans a relatively
short timespan, such as the 2 seconds used in this work,
for more stable training and relatively good performance in
learning bipedal locomotion control. For readers interested
in adopting this method for their robots, finding the optimal
history length could be beneficial for specific tasks, but we
suggest starting with a 2-second history, which has been
tested extensively in this work.

.6 Comparison of Use of Different Temporal
Encoders

To explore the effects of different neural network structures
encoding the robot’s I/O long history, we conducted an
ablation study and benchmarked policies based on TCN and
LSTM. TCN, a non-recurrent structure that encodes tempo-
ral information, is used in Lee et al. (2020), while LSTM, a
recurrent structure, is utilized in other bipedal locomotion
control works like Siekmann et al. (2020). To eliminate
potential confounding factors such as poor implementation,
we adopted the training algorithms (PPO and recurrent PPO)
and training hyperparameters open-sourced from Siekmann
et al. (2020), which underpin many subsequent studies such
as Siekmann et al. (2021b,a); Crowley et al. (2023). The
MDP design (training environment) employed the walking
and jumping scenarios developed in this work.

As shown in Fig. 30a, providing the base policy with
a short 4-timestep I/O history alongside the TCN encoder
significantly improves learning performance compared to
using TCN alone (while still providing the base policy
with immediate last state feedback, which is the form used

in Lee et al. (2020)). This suggests that the dual-history
approach can consistently enhance learning performance
for non-recurrent structures that encode an explicit history
length. Note that in this comparison, we use the same TCN
implementation as detailed in Table S5 in Lee et al. (2020).

Conversely, as depicted in Fig. 30b, the LSTM-based
policy shows no significant improvement whether a short
history is provided or not. Additionally, it tends to converge
to a lower return plateau compared to the TCN-based
policy, even though the TCN used hyperparameters tuned
for LSTM. This might indicate that LSTM encoders may
learn to focus more on recent short history and pay less
attention to older history. Although LSTM hidden states are
only reset at episode ends, they may quickly converge to
a suboptimal policy focusing primarily on recent history,
explaining why providing additional short history does
not enhance performance and why LSTM underperforms
compared to TCN that was explicitly trained to utilize a long
history. This observation aligns with findings reported in Lee
et al. (2020) and Singh et al. (2023).

Moreover, extending the LSTM-based policy to learn
jumping skills resulted in training failure, even using the
same architecture and hyperparameters from Siekmann et al.
(2020) that reproduced the same walking skill developed in
this work, as illustrated in Fig. 31. Please note that we are not
asserting that it is impossible for LSTM to learn aperiodic
skills like jumping, but it is difficult without carefully tuning
hyperparameters during training. In contrast, our method
provides a straightforward and general approach for learning
various skills, using unified hyperparameters across all tasks.
After finalizing the training for walking, we did not adjust
any hyperparameters for jumping or running.

In summary, the dual history approach consistently helps
learning performance for policies recording explicit robot
history (non-recurrent policies like TCN and 1D CNN), but
does not improve recurrent policies like LSTM. Moreover,
recurrent policies are sensitive to hyperparameter tuning

Prepared using sagej.cls

42 xxx XX(X)

(a) Running (b) Walking

(c) Zoomed Region (Encoded Long History) of Running (d) Zoomed Region (Encoded Long History) of Walking

Figure 33. The saliency map of the MLP base with respect to the entire input while the robot is (a) running or (b) walking with the
existence of a perturbation from 8 to 11 seconds in a 15-second test. The zoomed regions of the saliency map w.r.t. latent
embedding from the long history encoder are shown in detail in (c) for running and (d) for walking. These are the same tests
reported in Fig. 9 and Fig. 32. The pixels with a lighter color represent the MLP base focus more on this value (higher saliency).
These maps show that the MLP base, which produces the policy action, focuses more on the short I/O history, especially the latest
observation, highlighting the importance of short I/O history in the input. Moreover, if we take a close look at the encoded long I/O
history (c,d), the robot can also focus on different regions of the latent embedding to deal with the change in environments and
therefore adjust its output. Therefore, it indicates that the inclusion of long I/O history is also beneficial, which also provides insights
on the benchmark conducted in Fig. 6.

across different MDPs (such as locomotion control) and may
more readily converge to suboptimal policies. Therefore,
dual-history-based non-recurrent policy could be more
favorable for bipedal locomotion control cases.

.7 Latent Visualization of Walking Policy
The results of adaptivity test on the obtained walking policy
by the proposed method are presented in Fig. 32. The
adaptivity test is similar to the ones conducted on the running
policy discussed in Sec. 8. It evaluates the change of latent
embedding after the long I/O history encoder when the robot
is commanded to walk at a constant forward speed of 0.6
m/s. The findings are consistent with the ones observed from
the tests on other skills reported in Sec. 8: we show that the
latent embedding is able to capture the time-variant changes
like external perturbation and contact events (Fig. 32a)
and time-invariant dynamics shifts (Fig. 32b). During the
ablation study on the dynamics shifts, the latent embedding
differs when dynamics parameters change, but the resulting

control performance shows little change. This indicates the
adaptivity of the walking policy.

.8 Saliency Map
To further understand how the policy adjusts its action based
on the environment changes, we visualize the saliency map
in Fig. 33 as used in Lee et al. (2020). The saliency map
reflects how important each input dimension is to the neural
network output (i.e., where does the policy focus).

As shown in the saliency map of the MLP base, which
produces the final policy action on the entire input, the robot
focuses more on the short I/O history, particularly the most
recent observation, highlighting the importance of the short
I/O history, during both running (Fig. 33a) and walking
(Fig. 33b).

We can take a close look at the zoomed regions (encoded
long history) of the entire saliency map in the same test
of the running (Fig. 9a) and walking (Fig. 32a). The
saliency maps with respect to the encoded long history have

Prepared using sagej.cls

Li et al. 43

Figure 34. The large estimation error using the robot onboard
velocity estimator (based on EKF) during high-speed running in
simulation. In this figure, the robot is controlled by the proposed
running policy to track variable commands (black dashed line) in
simulation, the estimated sagittal velocity q̇x is recorded as the
red line while the robot’s actual running speed is recorded as
the blue line. The ground-truth speed is obtained from the
simulator. Although showing accurate results under slow speed
(such as 2 m/s), the estimated velocity shows a significant error
in the high-speed region (above 3 m/s) compared to the
ground-truth speed. The robot’s actual speed tends to be the
upper envelope of the estimated speed. In real-world
experiments, we only have access to the state estimator whose
result we can report, such as the running speed tracking results
in Fig. 20b. This comparison shows that the robot’s actual
running speed in the real world is faster than the reported
estimated value and closer to the command.

(a) (qdx, q
d
y , q

d
ϕ) = (0m, 0.3m, 0◦) (b) (qdx, q

d
y , q

d
ϕ) = (0m, 0m, 60◦)

(c) (qdx, q
d
y , q

d
ϕ) = (0.5m, 0m, 0◦)

(d) (qdx, q
d
y , q

d
ϕ) = (0.7m, 0m, -45◦)

Figure 35. More bipedal jumps using the same flat-ground
jumping policy. The paper tag on the ground indicates the
jumping target.

different focuses on different parts of the embeddings from

the long-history encoder with the existence of the external
perturbation during running (Fig. 33c) or walking (Fig. 33d).
This further suggests that the proposed RL policy could
utilize the long history information to adjust the action for
different control scenarios, i.e., the long I/O history is useful.

From the extensive ablation study in Fig. 6, we observed
differences in learning performance and sim-to-real transfer
depending on the use of history. It will result in degradation
by either removing the short I/O history, even keeping the
most recent observation that drew the most attention, which
is Long History Only in Fig. 5d, or removing the long I/O
history (Short History Only, Fig. 5e). These saliency maps on
the entire input space provide insights into the reason behind
this.

.9 Errors of Estimator in High-Speed Running
In this section, we present the estimation errors of the
state estimator (EKF) we used in the high-speed running.
In Fig. 34, we compare the robot ground-truth sagittal
velocity q̇x during running obtained from simulation and the
corresponding estimated velocity from the estimator. During
high-speed running (larger than 3 m/s), we observe a large
estimation error from the estimator to which we only have
access during real-world experiments. This suggests that
the robot’s actual running speed in the real world is faster
than the recorded estimated speed, and may be the upper
envelope of the estimation. This large estimation error is
further supported when comparing the estimated speed and
the robot’s actual average speed (traveled distance/elapsed
time). These suggest a smaller actual tracking error during
high-speed running than the experiment logs suggested. This
also suggests the necessity of including this estimator during
training rollout to let the robot train with the observation data
produced by this inaccurate estimator. But still, the robot
tends to have a noticeable tracking error during running in
the high-speed region due to the sim-to-real gap and robot
hardware limitation. We note that developing a reliable state
estimator for dynamic bipedal locomotion skills using RL
could be an interesting future work.

.10 Diverse Bipedal Jumps
Using the same flat-ground jumping policy that realized

various bipedal jumps demonstrated in Sec. 10.3, we further
evaluate the capacity to jump to other different targets in the
real world, as showcased in Fig. 35.

Prepared using sagej.cls

	1 Introduction
	1.1 Objective of this Work
	1.2 Terminology
	1.3 Contributions

	2 Related Work
	2.1 Model-based Optimal Control for Bipedal Robots
	2.2 Model-free Reinforcement Learning on Legged Locomotion Control

	3 Overview
	4 Background
	4.1 Cassie Robot Model
	4.1.1 Floating-base Coordinates:
	4.1.2 Full-order Dynamics Model:
	4.1.3 System Identification and Adaptive Control:

	4.2 RL Preliminaries
	4.2.1 Legged Locomotion Control as a POMDP:
	4.2.2 Solving POMDP with I/O History:
	4.2.3 Task Parameterization:

	5 Bipedal Locomotion Controller with I/O History
	6 Multi-Stage Training for Versatile Locomotion Controllers
	6.1 Overview
	6.2 Reference Motion
	6.3 Reward
	6.3.1 Reward Components:
	6.3.2 Reward Weights:

	6.4 Episode Design
	6.4.1 Unified Approach:
	6.4.2 Early Termination Conditions:

	6.5 Dynamics Randomization
	6.6 Training Details

	7 Advantages of Policy Architecture
	7.1 Baselines
	7.2 Learning Performance
	7.2.1 Benchmark Analysis:

	7.3 Case Study: In-place Walking Experiments
	7.4 Summary of Results

	8 Source of Adaptivity
	8.1 Time Varying Embedding:
	8.2 Adaptive Embedding for Changes in Dynamics
	8.3 Summary of Results

	9 Advantages of Versatile Policies and Source of Robustness
	9.1 Baselines
	9.2 Source of Robustness
	9.3 Case Study: Robust Standing Experiments
	9.4 Understand Robustness from Training Distributions
	9.5 Summary of Results

	10 Dynamic Bipedal Locomotion in the Real World
	10.1 Walking Experiments
	10.1.1 Tracking Performance:
	10.1.2 Robust Walking Maneuvers:
	10.1.3 Summary of Results:

	10.2 Running Experiments
	10.2.1 Running a 400-meter Dash:
	10.2.2 Tracking Varying Commands while Running:
	10.2.3 Running a 100-meter Dash:
	10.2.4 Running on Uneven Terrains (Trained):
	10.2.5 Robust Running Maneuvers:
	10.2.6 Summary of Results:

	10.3 Jumping Experiments
	10.3.1 Jump and Turn:
	10.3.2 Jump to Elevated Platforms:
	10.3.3 Robust Jumping Maneuvers:
	10.3.4 Summary of Results

	11 How to Train Your Bipedal Robot: A Discussion
	11.1 How to Use the Robot's History?
	11.2 Versatility Improves Robustness
	11.3 Exploring What RL Can Enable for Legged Locomotion

	12 Conclusion and Future Work
	.1 Advantages of Using an Action Filter
	.2 Learning to Combine a Standing Skill
	.3 Command Range for Different Skills
	.4 Hyperparameters Used in Training
	.5 Comparison of Use of Different History Lengths
	.6 Comparison of Use of Different Temporal Encoders
	.7 Latent Visualization of Walking Policy
	.8 Saliency Map
	.9 Errors of Estimator in High-Speed Running
	.10 Diverse Bipedal Jumps

