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Abstract—Due to their morphology and mechanical design,
bipedal robots have the ability to traverse over a wide range
of terrain including those with discrete footholds like stepping
stones. This paper addresses the challenge of planar dynamic
robotic walking over stochastically generated stepping stones with
significant variations in step length and step height, and where
the robot has knowledge about the location of the next discrete
foothold only one step ahead. Specifically, our approach utilizes
a 2-step periodic gait optimization technique to build a library
of gaits parametrized by their resulting step lengths and step
heights, as well as the initial configuration of the robot. By doing
so, we address the problems involved during step transition when
switching between the different walking gaits. We then use gait
interpolation in real-time to obtain the desired gait. The proposed
method is successfully validated on ATRIAS, an underactuated,
human-scale bipedal robot, to achieve precise footstep placement.
With no change in step height, step lengths are varied in the
range of [23:78] cm. When both step length and step height are
changed, their variation are within [30:65] cm and [-22:22] cm
respectively. The average walking speed of both these experiments
is 0.6 m/s.

I. INTRODUCTION

A primary advantage of legged robotic systems over their
wheeled counterparts is their ability to navigate over rugged
terrain such as over discrete footholds or “stepping stones”.
Unlike prior work that rely on simplistic robot models (such
as pendulum models) and fully-actuated control schemes (e.g.
ZMP) to achieve the desired foot placements, in this work, we
propose a formal framework that achieves planar dynamic un-
deractuated walking over a randomly varying discrete terrain
with significant simultaneous changes in step length and step
height at each step.

Early work on footstep control relied on fully actuated
bipedal robots (Kajita, Kanehiro, Kaneko, Fujiwara, Harada,
Yokoi and Hirukawa, 2003),(Kuffner, Nishiwaki, Kagami, In-
aba and Inoue, 2001),(Chestnutt, Lau, Cheung, Kuffner, Hod-
gins and Kanade, 2005). In the context of footstep planning for
bipedal robot navigation in cluttered environments, impressive
results have been achieved in (Michel, Chestnutt, Kuffner and
Kanade, 2005), (Chestnutt, Kuffner, Nishiwaki and Kagami,
2003), and (Nishiwaki, Chestnutt and Kagami, 2012) using
vision and laser-range sensors. Several new methods for legged
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(a) Stepping stones with step length variation.

(b) Cinder block terrain with step length variation.

(c) Stepping stones with step length and step height variation.

Fig. 1: ATRIAS walking over stepping stones.
Experimental video: https://youtu.be/JKkPWHm6H7k
https://youtu.be/jQeC1OOmOmk. Simulation video:
https://youtu.be/Pxhb4 ojiC8.

https://youtu.be/JKkPWHm6H7k
https://youtu.be/jQeC1OOmOmk
https://youtu.be/Pxhb4_ojiC8


robot control emerged from the DARPA Robotics Challenge
in 2015, some based on mixed-integer quadratic programs
(Deits and Tedrake, 2014). However, as mentioned in (Deits,
2014, Chap. 4), mixed-integer-based footstep planning does
not guarantee dynamic feasibility even on simplified robot
models. These methods are therefore not applicable for dy-
namic walking with faster walking gaits in high degree-of-
freedom underactuated robots. The approach developed in
(Yang, Westervelt, Serrani and Schmiedeler, 2009), on the
other hand, allows for aperiodic gaits by switching between
multiple dynamically-feasible gaits, designed on a complete
dynamical model. Although such a method could potentially
be used for walking with varying step lengths, this method,
however, requires a priori design of controllers that realize
precise transitions between each pair of elements of the gait
library, resulting in exponential (factorial) growth in the num-
ber of pre-designed controllers. In this work, we use tools from
trajectory optimization to build a library of periodic walking
gaits. Specifically, we use the direct collocation method to
compute optimal state-action trajectories. In the context of
hybrid systems and bipedal robots, the direct collocation
methods have been utilized in recent work (Hereid, Cousineau,
Hubicki and Ames, 2016; Gurriet, Finet, Boeris, Hereid, Harib,
Masselin, Grizzle and Ames, 2017). Moreover, optimization-
based techniques have been widely used in bipedal robotic
locomotion literature (Feng, Whitman, Xinjilefu and Atkeson,
2015; Kuindersma, Permenter and Tedrake, 2014; Dai, Valen-
zuela and Tedrake, 2014).

Instead of relying on simplified dynamical models, such as
the linear inverted pendulum with massless legs (Desai and
Geyer, 2012),(Rutschmann, Satzinger, Byl and Byl, 2012),
this method utilizes a novel control strategy based on the full
nonlinear hybrid dynamic model of the underactuated robot
to achieve precise foot placement with single-step changes on
step length and step height. We begin by pre-computing a
library consisting of a small number of periodic gaits that
are parametrized by initial and final values of their step
lengths and step heights and have a periodic gait comprising
of two walking steps (see Fig. 8). These gaits satisfy torque
limits, constraints on ground reaction forces and other physical
constraints. Instead of pre-computing transition controllers
between the different gaits in the library, the gait library is
linearly interpolated based on the desired footstep placement
of the next stepping stone as well as on the robots current
configuration, to compute a desired gait. This work builds off
recent work on periodic walking gait libraries in (Da, Harib,
Hartley, Griffin and Grizzle, 2016; Da, Hartley and Grizzle,
2017). In comparison to prior work, this paper makes the
following additional contributions:

• We present 2-step periodic gait optimization and a gait-
library-interpolation approach for achieving a continuum
of desired step lengths and step heights.

• 2-step periodic gait optimization takes into account not
only the footstep placement of the next step but also
current configuration of the robot, allowing us to handle
the step transition when switching between different
walking gaits.

(a) Changing Step Length

(b) Changing Step Height

(c) Changing both Step Length and Step Height

(d) Planar Version of the W-Prize Terrain

(e) Changing Step Length with Perturbation

(f) Changing both Step Length an Step Height with Perturbation

Fig. 2: The problem of dynamically walking over a ran-
domly generated set of discrete footholds. Simulation video:
https://youtu.be/Pxhb4 ojiC8.

• Numerical validations on different terrains (see Fig. 2).
• Experimental validation on ATRIAS robot (see Fig. 1)

for the problem of:
– changing step length within the range of [23 : 78] cm.
– changing both step length and step height in the

range of [35 : 60] cm and [−22 : 22] cm respectively.
A list of simulation and experiment videos is provided in
Table. I.

With respect to our prior work in (Nguyen, Agrawal, Da,
Martin, Geyer, Grizzle and Sreenath, 2017), this paper presents
experiments on navigating over cinder block terrain with
step length variation; stepping stone terrain with simultaneous
variation in step length and step height; detailed information
on the experimental setup, walking gait optimization and
controller implementation; and preliminary results on using
vision for determining step length.

We believe that this is the first work that successfully ex-
perimentally demonstrates the problem of dynamic walking on

https://youtu.be/Pxhb4_ojiC8


TABLE I: List of simulation and experiment videos in the
paper.

1. Simulation video https://youtu.be/Pxhb4 ojiC8.

2.
Experiment video of
ATRIAS walking on
rubber tiles

https://youtu.be/JKkPWHm6H7k

3.

Experiment of ATRIAS
walking on cinder blocks
with (a) variation of step
length; (b) simultaneous
variation of step length
and step height; and (c)
preliminary experiment of
ATRIAS walking on step-
ping stones with an on-
board camera.

https://youtu.be/jQeC1OOmOmk

stepping stones with simultaneous variation in step length and
step height for a bipedal or humanoid robot. Our experiment
handles simultaneous changes in step length and step height
at an average walking speed of 0.6 m/s.

The remainder of the paper is organized as follows. Section
II presents the hybrid dynamical model of 2D ATRIAS,
an underactuated planar bipedal robot. Section III presents
background on periodic gait optimization using Hybrid Zero
Dynamics and input-ouput linearizing controller. Section IV
presents our proposed approach on 2-step periodic gait op-
timization and a gait library interpolation strategy. Sec-
tion V presents numerical validation of the controller on
ATRIAS model. Section VI presents experimental validation
of ATRIAS robot walking on stepping stones. Section VII
introduces preliminary results towards future work on dynamic
walking over stepping stones with an on-board camera. Finally,
Section VIII provides concluding remarks.

II. DYNAMICAL MODEL FOR WALKING

Fig. 3 illustrates the 2D representation of ATRIAS. Its total
mass is 63 kg, with approximately 50% of the mass in the hips
and 40% in the torso, and with light legs formed by a four-bar
linkage. The robot is approximately left-right symmetric.

Ignoring the compliance in the system, the configuration
variables for the system can be defined as q := (qT , q1R, q2R,
q1L, q2L) ∈ R5. The variable qT corresponds to the world
frame pitch angle, while the variables (q1R, q2R, q1L, q2L)
refer to the body coordinates for linkages. The subscripts L
and R refers to left and right legs. Fig. 3 illustrates q1, q2
angles for one of the legs. Each of the four linkages are
actuated by a DC motor behind a 50:1 gear ratio harmonic
drive, with the robot having one degree of underactuation. The
four-bar linkage mechanism comprising of the leg coordinates
(q1, q2) map to the leg angle and knee angle (qLA, qKA),
as qLA := 1

2 (q1 + q2) and qKA := q2 − q1. A simple
transformation then relates the leg coordinates to the leg and
knee angles,

Fig. 3: Biped coordinates and outputs. The world frame pitch
angle is denoted by qT , while (q1, q2) are body coordinates.
The outputs to be controlled are denoted by qLA and qKA.
The model is assumed left-right symmetric.
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where the indices st and sw are used to denote stance or swing
legs respectively.

The state x denotes the generalized positions and velocities
of the robot and u denotes the joint torques. A hybrid model
of walking can be expressed as{

ẋ = f(x) + g(x)u x /∈ S
x+ = ∆(x−) x ∈ S, (2)

where S is the impact surface and ∆ is the reset or impact map.
A more complete description of the robot and a derivation of
its model are given in (Ramezani, Hurst, Akbari Hamed and
Grizzle, 2014).

III. PERIODIC WALKING WITH HYBRID ZERO DYNAMICS

Having described the dynamical model of ATRIAS, we
now preset a brief overview of the Hybrid Zero Dynamics
framework to design periodic gaits and feedback controllers
to achieve stable, dynamic walking on ATRIAS. We begin
by describing the periodic gait generation process, which
can be posed as a nonlinear optimization program. We then
present the input-output linearizing controller, that stabilizes
the periodic walking gaits.

A. Periodic Gait Design Using Virtual Constraints

The nominal feedback controller is based on the Hybrid
Zero Dynamics framework and virtual constraints presented
in (Westervelt, Grizzle, Chevallereau, Choi and Morris, 2007).

https://youtu.be/Pxhb4_ojiC8
https://youtu.be/JKkPWHm6H7k
https://youtu.be/jQeC1OOmOmk


Fig. 4: Periodic walking gait has the resulting step length (l1)
similar to the initial step length (l0), or in other words l1 = l0.

Virtual constraints are kinematic relations that synchronize
the evolution of the robot’s coordinates via continuous-time
feedback control. One virtual constraint in the form of a
parametrized spline can be imposed for each (independent)
actuator. Parameter optimization is used to find the spline
coefficients so as to create a periodic orbit satisfying a desired
step length, while respecting physical constraints on torque,
motor velocity, and friction cone. Since the gait is periodic,
the initial step length and the resulting step length must be the
same (see Fig. 4). The optimizer used here is based on the di-
rect collocation framework from (Jones, 2014), although other
optimization methods, such as (Hereid, Hubicki, Cousineau,
Hurst and Ames, 2015) or fmincon can be used as well.

The virtual constraints are expressed as an output vector

y = h0(q)− hd(s(q), α), (3)

to be asymptotically zeroed by a feedback controller. Here,
h0(q) specifies the quantities to be controlled and hd(s, α) is a
4-vector of Beziér polynomials in the parameters α specifying
the desired evolution of the h0(q), where s is a gait phasing
variable defined as

s :=
θ − θinit

θfinal − θinit
, (4)

with θ = qT + qstLA being the absolute stance leg angle. θinit
and θfinal are the initial and final values of the absolute leg
angle at the start and end of a walking step and are obtained
through the optimization problem described in this section.

The cost function and constraints for the optimization are
formulated as in (Westervelt, Grizzle, Chevallereau, Choi and
Morris, 2007) [Chap. 6.6.2], with the constraints given in
Table II and the cost taken as the integral of squared torques
over step length:

J =

∫ T

0

||u(t)||22 dt. (5)

In addition to the above constraints, we also need to
guarantee the periodicity of the gait through the periodicty
constraints:
• The initial state at start of the first step is given by x = x+0

with corresponding (initial) step length of l0.
• The state at end of the first step (before impact) is given

by x = x−1 with corresponding (resulting) step length of
l1.

TABLE II: Optimization constraints

Motor Torque |u| ≤ 7 Nm

Impact Impulse Fe ≤ 15 Ns

Friction Cone
∣∣∣∣Fh

st
Fv
st

∣∣∣∣ ≤ 0.6

Vertical Ground Reaction Force F v
st ≥ 200 N

Mid-step Swing Foot Clearance hf |s=0.5 ≥ 0.1 m

• Impact constraints at the end of the step are enforced as
x+1 = ∆(x−1 ).

• Periodic constraints are then enforced as x+1 = x+0 ,
resulting in l1 = l0.

Here, the superscript ‘−’ and ‘+’ represent the state right
before and right after the impact, and ∆ is the reset or impact
map from (2).

To generate the 2-step-periodic walking gaits using direct
collocation with the specifications mentioned above, we begin
by discretizing each walking phase in time by a specified
number of nodes N ,

0 = t0 < t1 < t2 < · · · < tN = T, (6)

where T represents the time to impact. In particular, we
use N = 20. Direct collocation then converts the original
trajectory optimization problem,

J = min
u(t)

∫ T

0

||u(t)||22 dt (7)

st. x(t) =

∫ t

0

f(x(t)) + g(x(t))u(t)dt

0 ≥ c(x(t), u(t)), 0 ≤ t ≤ T,

into that of a nonlinear program. Here, c(x(t), u(t)) represent
the physical constraints described in Table II as well as
periodicity constraints. This is achieved by approximating
the state and control input trajectories by polynomial splines.
In particular, we use the Hermite-Simpson algorithm, which
approximates the integral expressions in (7) by piecewise
quadratic functions, leading to the following nonlinear pro-
gram,

J = min
ui

N−1∑
i=1

∆ti
6

(
‖ui−1‖2 + 4‖ui‖2 + ‖ui+1‖2

)
(8)

s.t. c(xi, ui) ≤ 0, 0 ≤ i ≤ N,

xi+1 − xi−1 −
∆ti
6

(ẋi−1 + 4ẋi + ẋi+1) = 0,

xi −
1

2
(xi+1 + xi−1)− ∆ti

8
(ẋi−1 − ẋi+1) = 0,

where for all i ∈ {1, 3, · · · , N − 1}, ∆ti = ti+1 − ti−1 is the
time interval, xi and ui are the state and input respectively
at node i, ẋi is the derivative of the state at node i satisfying
the dynamics given by ẋi = f(xi) + g(xi)ui. The optimal
state and input trajectories are then obtained by cubic and
quadratic polynomial spline interpolation respectively. The



desired output parameters α, θinit and θfinal can be extracted
from the optimal state trajectories through a simple Bézier
curve fit. The nonlinear program in (8) can be solved using
numerical NLP solvers such as fmincon or IPOPT. We refer
the reader to (Hereid, Cousineau, Hubicki and Ames, 2016)
for more details on the specifics of the trajectory optimization
scheme.

B. Input-output linearization
The optimization results in a desired walking gait encoded

through hd(s(q), α) in (3). The goal for our controller, there-
fore, is to drive y(q) → 0. In our method, we use an input-
output linearizing controller, a nonlinear feedback controller to
enforce exponential stability of the system (Ames, Galloway,
Sreenath and Grizzle, 2014). If y(q) has vector relative degree
2, then the second derivative takes the form

ÿ = L2
fy(q, q̇) + LgLfy(q, q̇) u. (9)

We can then apply the following pre-control law

u(q, q̇) = u∗(q, q̇) + (LgLfy(q, q̇))−1 µ, (10)

where

u∗(q, q̇) := −(LgLfy(q, q̇))−1L2
fy(q, q̇), (11)

and µ is a stabilizing control to be chosen. Defining transverse
variables η = [y, ẏ]T , and using the IO linearization controller
above with the pre-control law (10), we have,

ÿ = µ. (12)

The exponential convergence of the control output y then can
be easily derived using PD controller:

µ = −Kpy −Kdẏ. (13)

In the following section, we introduce our proposed ap-
proach using 2-step periodic gait optimization to handle
stochastically-varying discrete terrain resulting in consecutive
changes in step length and step height at each walking step.

IV. 2-STEP PERIODIC GAIT DESIGN

The 2-step periodic gait approach comprises of a library
of periodic gaits, where each gait consists of two walking
steps that are potentially different in terms of step length or
step height. Thus, one can choose a gait by not only taking
into account the desired footstep location of the next step but
also the current configuration of the robot. This approach of
using a 2-step periodic gait has been primarily been inspired
by the issues arising from step transitions when walking over
varying stepping stones (Nguyen, Da, Grizzle and Sreenath,
2016) and when switching between walking gaits. The method
combines virtual constraints, parameter optimization, and an
interpolation strategy for creating a continuum of gaits from
a finite library of gaits. The notion of a 2-step periodic gait
means that the robot states are designed to converge back to
the initial condition after 2 walking steps.

We will first start off with the problem of changing step
length only or walking on flat ground with varied step length.
We will then look at the problem of changing step height only
and finally we will look at simultaneous changes in step length
and step height.

Fig. 5: 2-Step periodic walking with changing step lengths
only. The walking gait is 2-step periodic therefore the step
length of the second step and that of the initial condition are
the same (l2 = l0).

1) Changing Only Step Lengths: In the nominal problem
of periodic optimization presented in Section III-A, we need
to optimize for only one walking step with the constraint
on the resulting step length (l1) to be equal to the initial
step length (l0) (see Fig. 4). For this problem, we use the
same optimization framework discussed in III-A, but we
will optimize for 2 walking steps while following additional
constraints that allows us to have different step lengths for
each of the steps in the 2-step periodic gait (see Fig. 5):
• The initial state at start of the first step is given by x =
x+0 with corresponding (initial) step length l0.

• The state at the end of the first step (before impact) is
x = x−1 with (resulting) step length l1.

• Impact constraints at the end of the first step are enforced
as x+1 = ∆(x−1 ).

• The initial state at start of the second step is given by
x = x+1 with corresponding (initial) step length of l1.

• The state at the end of the second step (before impact)
is x = x−2 with (resulting) step length of l2.

• Impact constraints at the end of the second step are
enforced as x+2 = ∆(x−2 ).

• Periodic constraints are then enforced as x+2 = x+0 ,
resulting in l2 = l0.

The optimization problem is then used to generate a gait
library with different values of l0 and l1. In this work, we
optimize four different gaits corresponding to:

(l0, l1) = (0.3, 0.3) m
(l0, l1) = (0.3, 0.7) m
(l0, l1) = (0.7, 0.3) m
(l0, l1) = (0.7, 0.7) m.

(14)

This is similar to precomputing four gait primitives corre-
sponding to walking with small steps ((l0, l1) = (0.3, 0.3) m),
switching from a small step to a large step ((l0, l1) =
(0.3, 0.7) m), switching from a large step to a small step
((l1, l0) = (0.7, 0.3) m) and walking with large steps (l0, l1) =
(0.7, 0.7) m. Having a gait library with different gaits rep-
resenting a few general motion primitives, we then do gait
interpolation to get the desired walking gait with an arbitrary
set of (ld0 , l

d
1).

Let α(ld0 , l
d
1) be the Beziér coefficients (defined in (3))

of the desired walking gait that has the initial step length



Fig. 6: Gait interpolation for the problem of changing step
length only.

I-O 
Controller
(Sec. III)

Gait Library
(Sec. IV)

𝑙0 𝑙1

𝛼 𝑢

𝑞, ሶ𝑞

(𝑙0, 𝑙1)

2D ATRIAS

Fig. 7: Diagram of the controller structure for the problem
of changing step length only, integrating the gait library and
I-O linearization controller. Solid lines represent signals in
continuous time; dashed lines represent signals in discrete
time.

ld0 and the resulting step length ld1 . If ld0 ∈ [0.3 : 0.7] m
and ld1 ∈ [0.3 : 0.7] m, we will compute α(ld0 , l

d
1) using

bilinear interpolation of the coefficients from the four nominal
gait parameters precomputed using optimization. Therefore the
new interpolated gait can be derived in real-time (within 1 ms
in our experiment) right after the impact of each walking
step. A detailed explanation for bilinear interpolation can be
found in (Press, Teukolsky, Vetterling and Flannery, 1996),
and summarized in Fig. 6. In this work, we use the MATLAB
function interp2 to implement the algorithm.

The gait library and bilinear interpolation are used to update
the gait parameters α, θinit and θfinal at the beginning of
every walking step based on the desired footstep placement
of the next step (l1) and the step-length corresponding to
the current configuration of the robot (l0). They are then
incorporated by the input-output linearizing controller 10 to
control the robot to follow the updated walking gait. The
closed-loop control diagram is shown in Fig. 7.

Remark 1: In our method, the desired trajectory hd(s, α) in
(3) represents a periodic gait of the robot and is a function of
the gait phase variable s and the gait parameters described by
the Bezier coefficient matrix α. For each gait, the gait phase
variable is as defined in (4) and goes from 0 (at the beginning
of the gait) to 1 (at the end of the gait). The Bezier polynomial
with coefficients specified by α and evaluated at each point
in the gait, s ∈ [0, 1], provides the desired evolution of the
actuated degrees-of-freedom. Thus, the interpolation between
two gaits can be done by interpolating the two corresponding
matrices of their gait parameters.

Fig. 8: 2-Step periodic walking with changing step heights
only. The walking gait is 2-step periodic therefore the step
height of the second step and that of the initial condition
are the same (h2 = h0). Note that step heights h0, h1 can
be positive (stepping up) or negative (stepping down). In this
figure, we illustrate the case of both h0 and h1 being positive
for convenience.

Remark 2: If l0 or l1 do not lie in the step length range
of the designed gaits, then we can also use extrapolation to
compute the gait parameters for the desired gait.

Remark 3: The proposed method has a resemblance to
Model Predictive Control (MPC). While we use a 2-step
periodic gait, we switch the gait at the end of each step,
i.e., half-way into the 2-step periodic gait. For instance, with
current step length being l0, and subsequent step lengths being
l1, l2, we use a gait with (l0, l1) and switch at the end of
the first step to a gait (l1, l2) so that there is an overlap of
one step between the gaits. The proposed method appears
to easily address gait transitions that typically cause large
violations in unilateral force constraints, friction constraints,
and torque constraints. This is in contrast to the high rate
of failure observed during gait transitions when using 1-step
periodic gaits, see (Nguyen, Da, Grizzle and Sreenath, 2016,
Table 2). While our method outperforms the 1-step gait library
in (Nguyen, Da, Grizzle and Sreenath, 2016), it must be noted
that we do not establish any formal guarantees for successful
gait transitions.

Remark 4: Our prior work in (Nguyen, Da, Grizzle and
Sreenath, 2016) used control barrier functions to handle gait
transitions. In particular, as seen in (Nguyen, Da, Grizzle
and Sreenath, 2016, Table 2), the addition of control barrier
functions to a 1-step periodic gait library based method dra-
matically improves the success rate of walking over stochastic
terrain. While this appears to work well, the feasibility of the
quadratic program that enforces the control barrier constraint
is not guaranteed. In this present work, as we will see, we
achieve better results using the 2-step periodic gait library
without using control barrier functions. We can easily add
control barrier functions on top of the current method to
further enforce and formally guarantee these safety-critical
constraints. Since the underlying method achieves the foot
placement without requiring the barriers, the barriers will
remain inactive most of the time, leading to better feasibility
of the quadratic program.

2) Changing Only Step Heights: For the problem of chang-
ing step heights only, the framework presented for changing



Fig. 9: 2-Step periodic walking with changing step lengths and
step heights. The walking gait is 2-step periodic therefore the
step length and step height of the second step and that of the
initial condition are the same (l2 = l0, h2 = h0). Note that
step heights h0, h1 can be positive (stepping up) or negative
(stepping down). In this figure, we illustrate the case of both
h0 and h1 being positive for convenience.

step length on flat ground in Section IV-1 can be applied
where (h0, h1) plays the role of (l0, l1) (see Fig. 8). For
this problem, we assume that stair tread length (horizontal
distance from the edge of the stair to the stair riser) is constant.
This translates to requiring the step length of our gait being
constant. Subsequently, we generate four two-step periodic
gaits with different step heights as done for the varying step
length case in (14) and Fig. 6. Note that for optimizing gaits
with step height variation, we will need to adjust the constraint
on swing foot clearance stated in Table. (II), to avoid foot
scuffing to the corners of the stair terrain (see Fig. 8).

3) Changing Both Step Lengths and Step Heights: We now
can combine the methods presented in Section IV-1 and IV-2
to handle the problem of walking on stepping stones with
varied step length and step height for every walking step (see
Fig. 9). Since the gait parameters now depend on 4 variables
l0, h0, l1, h1, the gait interpolation needs to be extended for 4
variables and the number of gaits increases to 24 = 16 gaits.

Remark 5: Note that each of the nominal periodic walking
gaits presented in Section III is locally exponentially stable
(Westervelt, Grizzle, Chevallereau, Choi and Morris, 2007).
The stability condition for switching policies between different
locally exponentially stable periodic gaits can be found in
(Motahar, Veer and Poulakakis, 2016), wherein it is assumed
that one periodic gait switches into the domain of attraction
of a subsequent periodic gait. With the 2-step periodic gaits,
we can guarantee that when we switch to the next gait, the
initial state of the robot is close to the periodic orbit of the
next gait.

V. NUMERICAL VALIDATION

Having presented our approach of using a 2-step periodic
gait library, we now demonstrate the effectiveness of the
proposed method by conducting numerical simulations on the
model of ATRIAS.

Using our method, we can control our robot to traverse over
different type of terrains:

• Changing step length only within the range of [20:90] cm
with the precision of only 2 cm (see Fig. 2a)

• Changing step height only within the range of [-30:30]
cm where the step length is constant at 50 cm (see Fig.
2b)

• Changing step length and step height at the same time
where the range of step length and step height are [30:80]
cm and [-30:30] cm respectively (see Fig. 2c)

• Planar version of the W-Prize terrain (W-Prize, 2009) (see
Fig. 2c)

• Changing step length with perturbation (see Fig. 2e),
where the perturbation is generated by applying horizon-
tal external force of ±300 N on the robot torso with the
duration of 0.2s in the middle of some steps.

• Changing step length and step height with perturbation
(see Fig. 2f), with similar type of perturbation mentioned
above but the magnitude of the external force is now
200 N.

In all simulations, we check constraints on footstep place-
ment, friction constraints and input saturation stated in Table
II. Note that friction constraints are checked for both impulse
at impact and contact force during the continuous phase. Fig.
11 shows the satisfactions of those constraints in one example
of ATRIAS walking on randomly generated discrete footholds
shown in Fig. 2c, where step length and step height are varied
in the range of [30:80] cm and [-30:30] cm respectively. In
this simulation the absolute error between the desired step
length and the real step length has the minimum of 0 m, the
maximum of 0.0453 m and the mean of 0.0113 m.

With the problem of changing step length only, we also
compare the performance of (a) our prior work on Control
Barrier Functions and gait library presented in (Nguyen, Da,
Grizzle and Sreenath, 2016) and (b) our proposed method of
the 2-step periodic gait library. Both controllers are run on
the same terrain illustrated in Fig. 2a. From Fig. 12, we can
clearly see that our proposed method of 2-step periodic gait
library (thick red line) has vertical ground reaction force (F v

st)
with smaller peak amplitudes, coefficient k = |Fh

st/F
v
st| that

remains further inside the friction cone, and control inputs
with smaller norm. Note that although these two controllers
are applied on the same terrain, the walking step times are
different because the gait libraries and the low-level controllers
are different.

In Fig. 10, we demonstrate the robot walking over multiple
terrains including:

(1) Worst case of walking up and down with large step
length,

(2) Worst case of walking up and down with small step
length,

(3) 20 steps walking over randomly generated terrain with
stone size of 25 cm,

(4) 20 steps walking over randomly generated terrain with
stone size of 5 cm.

Note that we use the same controller with the same gait library
for all these different terrains, thereby establishing that our
single controller can handle different types of variation in the
terrain, including step length, step height, as well as stone size.



(1) (2) (3) (4)
Fig. 10: ATRIAS walking on different terrains. (1) worst case of walking up and down with large step length. (2) worst case of
walking up and down with small step length. (3) 20 walking steps over randomly generated terrain with stone size of 25 cm.
(4) 20 walking steps over randomly generated terrain with stone size of 5 cm. Simulation video: https://youtu.be/Pxhb4 ojiC8.

In particular, with Terrain 4, the random terrain with stone
size of 5 cm, we show the accuracy of the precise footstep
placements. With Terrain 3, the random terrain with stone
size of 25 cm, we show that the robot has a good swing foot
clearance to avoid the corners of the larger stepping stones.

Here, we also sucessfully applied our proposed control
method for the planar version of the W-Prize terrain listed
in (W-Prize, 2009), which is made from placing cinder blocks
with distances varied in [35 : 98] cm. There are also stepping-
up and stepping-down stones at the start and the end of
the terrain (see Fig. 2d). Note that, in the simulation, all
the physical constraints are checked except the constraint of
avoiding the cinder blocks from tipping over. This additional
challenge of the blocks tipping over is not addressed in this
paper but it is an interesting problem to consider in future
work.

In order to validate the robustness of the method, we
generate perturbations in simulation by applying an external
horizontal force, of magnitude ±300 N and duration 0.2
s, to the robot’s torso during walking over stepping stones
(see Fig. 2e, 2f). From the simulations, we observe that our
proposed method is robust to these perturbations. We believe
the robustness arises since our method is based on virtual
constraints and HZD, wherein feedback control is used to
track desired trajectories that are functions of the gait phase
variable instead of time (see Section III-A). The perturbation
causes the rate of change of the gait phase variable to either
increase or slow down, which causes a corresponding change
in the desired trajectories. Thus, the final footstep location,
which occurs when the swing foot has impact with the ground
and the resulting gait phase variable reaches the final value
(s = 1), is the same as the nominal one except for minor
differences due to tracking errors. It must be noted that large
perturbation forces in the backward direction could cause the
phase variable to decrease and the robot to fall backwards,
while large perturbation forces in the forward direction could
result in violation of ground contact constraints.

VI. EXPERIMENTAL VALIDATION

Having validated the controller in simulation, we now show
the implementation of the proposed method on the robot
hardware. We begin with a brief description of the robot
hardware, followed by some implementation details. We then
present the results for the following experiments:

• Changing step length within the range of [23 : 78] cm.
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Fig. 11: Simulation of ATRIAS walking on randomly gener-
ated stepping stones with step length and step height changing
in the range of [30:80] cm and [-30:30] cm respectively. The
terrain is illustrated in Fig. 2c. The following constraints are
enforced: (a) Ground reaction force: F v

st ≥ 150 N; (b) Friction
cone: |Fh

st/F
v
st| ≤ 0.6; and (c) Control motor inputs saturated

at 7 Nm (|u| ≤ 7). Note that there is a 50:1 gear ratio from
the motors to the links.

https://youtu.be/Pxhb4_ojiC8
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Fig. 12: We compare the “CBF + Gait Library” controller
(dashed blue line) from (Nguyen, Da, Grizzle and Sreenath,
2016) with the proposed “2-Step Periodic Gait Library” con-
troller (thick red line). As is seen, the proposed controller
has better ground reaction force with smaller peak amplitudes,
lower friction requirements, as well as smaller control inputs.
The comparison is made by simulating both controllers for the
same terrain illustrated in Fig. 2a.

• Changing both step length and step height in the range
of [35 : 60] cm and [−22 : 22] cm respectively.

Remark 6: To build the required terrain in experiments, we
stack a number of cinder blocks to change the terrain height. In
doing so, an additional complexity arises in that these cinder
blocks can topple over.

A. Hardware Description

ATRIAS is a 3D capable bipedal robot, equipped with three
actuators on each leg – two motors (“leg motors”) controlling
the motion in the sagittal plane (q1 and q2 in Fig. 3) and
one motor (“hip motor”) controlling the lateral angle in the
frontal plane (see Fig. 3). Therefore, to restrict the motion in
the saggital plane, ATRIAS is attached to a boom (see Fig.
1b). The two leg motors in the saggital plane, connected to

TABLE III: Various measured quantities. The index i ∈
{st, sw} represents stance/swing leg respectively.

Measured Quantity Symbol Sensor
Joint angles on motor
side (i.e. at the output
of the gears)

qi1, qi2 32-bit absolute optical encoders

Joint angles on leg
side (i.e. at the output
of the leaf-springs)

q̄i1, q̄i2 32-bit absolute optical encoders

Lateral joint angles
(hip abduction) qi3 13-bit absolute magnetic encoder

Torso Pitch qT IMU
Robot Yaw qrobot

yaw IMU

the front and rear thigh links through a 50:1 harmonic drive
transmission and fiberglass plate springs, can be controlled
to cause an effective change in leg length and/or leg angle.
Further, in addition to the encoders mounted on the motor,
ATRIAS is equipped with high-resolution (32-bit) absolute
encoders for measuring joint angles and spring deflections.
Position and orientation in the world frame are estimated
using a high-precision inertial measurement unit (IMU). Table
III lists the various quantities measured. Additionally, we
define the body coordinates as qb := [qst1 , q

st
2 , q

sw
1 , qsw2 ]

T and
q̄b := [q̄st1 , q̄

st
2 , q̄

sw
1 , q̄sw2 ]

T corresponding to joint angles on
the motor side and leg side respectively. See (Hubicki, Grimes,
Jones, Renjewski, Spröwitz, Abate and Hurst, 2016) for further
details on the ATRIAS bipedal robot platform.

B. HZD Implementation

The Hybrid Zero Dynamics framework is an elegant and
powerful means to design gaits and develop model-based
feedback controllers for underactuated dynamic bipedal loco-
motion. However, implementing the controller developed in
Section III-B involves overcoming certain challenges.

In this section, we discuss some of the implementation
details of the HZD controller on the ATRIAS robot. In
particular, the 2D robot model is only used to generate a library
of 2-step-periodic gaits (Section III). The outputs are then
regulated using a PD controller. Fig. 13 shows an overview
of the implemented controller on ATRIAS.

a) Phase Variable Computation: The phase variable s
is computed using the joint angles measured at the output of
the springs (i.e. on the leg side as opposed to the joint angles
measured on the motor side). This is, in fact, the true phase
variable with respect to the robot’s base frame attached to the
stance foot. Secondly, using joint measurements from the leg
side leads to a “less noisy” phase variable. This is due to the
fact that, during swing phase, the stance foot is assumed to be
pinned to the ground (Westervelt, Grizzle, Chevallereau, Choi
and Morris, 2007), i.e. stance foot is attached to the ground
through an ideal revolute joint. This causes the motor side to
oscillate (due to the compliant elements) with respect to the leg
side and the robot’s stance foot. Thus, using the joint angles
from the motor side to compute the phase variable causes it
to be oscillatory, which leads to oscillations in the desired
outputs. This could in turn de-stabilize the system. To remove
further noise from the signal, the computed phase variable is
passed through a low-pass filter.
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Fig. 13: Control Diagram of the implemented controller in experiment. Dashed lines denote discrete-time signals sampled at
the beginning of every walking step. Continuous lines denote signals sampled at 1 kHz. The shaded blue block illustrates the
computation of the desired step length and step height. In particular, we compute the desired step length and height based on
the next step location obtained from the terrain profile and the current stance foot position, obtained from the robot yaw and
forward kinematics (15). This entire block can essentially be replaced by a visual sensor.

b) Joint Velocity Computation: Joint velocities are ob-
tained by first computing the finite difference of the motor
encoder readings and then passed through a low-pass filter to
remove high-frequency noise.

c) Dead Reckoning using IMU: The position of the robot
in the world frame is estimated from a high-precision IMU
mounted on the robot’s torso. This information is then utilized
to correct the relative distance between the robot’s current
stance foot and the next stepping stone (which is the desired
step length input to the controller). In particular, we obtain an
estimate of the robot’s yaw with respect to an inertial frame.
The robot’s yaw, multiplied by the boom length, gives us an
estimate of the robot’s position,

pstancefoot = qrobotyaw × lboom + dhip→stancefoot, (15)

where qrobotyaw is the yaw angle of the robot measured from
the IMU signal, lboom = 2 m is the boom length and
dhip→stancefoot is the distance from the hip to stance foot
is computed based on the joint encoders. Note that we do not
make use of any external sensors (such as a boom encoder or
optical motion capture). The location of the stepping stones
are precomputed and stored before the start of the experiment.
However, only the distance between the current stepping stone
and the next is provided to the controller one-step in advance.
This distance is found based on where the robot is in the world
(computed through IMU dead-reckoning) and corrected based
on where the stance foot is on the current stone (computed
through joint encoders).

d) Impact Detection: ATRIAS is not equipped with any
force sensors or contact switches at the foot. To detect swing
foot impacts on the ground, we use the leg axial force
estimated by the spring compression (obtained by computing
the difference in the encoder readings from the motor and leg

sides). In particular, an impact is detected if the axial force
as well as the phase variable s defined in (4) cross certain
thresholds. Specifically, the we use a threshold value of 300
N for the axial force and 0.6 for the phase variable (see Fig.
14).

1 2 3 4 5
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200

400

600

800

Left Leg Axial Force (N)
Impacts

Fig. 14: Axial Forces on the Left Leg for six walking steps.
Shaded red regions denote the periods when the phase variable
is greater than the threshold value of 0.6. Dotted red line
denotes the threshold value of the axial force at 300 N. An
impact is detected when both, the axial force as well as the
phase variable, cross their respective thresholds.

e) Control of Hip Motors: For simplicity, the desired
lateral angles are kept constant, and enforced through a high
gain position-derivative controller,

µhip
PD = −Khip

p (q3 − q3,d)−Khip
d (q̇3 − q̇3,d) , (16)

where Khip
p , Khip

d > 0.
f) Walking Speed Regulation: We regulate the torso angle

to maintain a desired average walking velocity – leaning the



torso forward at the start of the swing phase causes the robot
to accelerate and leaning the torso backwards causes it to
decelerate. Torso angle regulation is achieved by changing the
desired leg angles hd(s, α) in (3) appropriately. In particular,
at the start of swing phase, a desired torso offset is computed
as,

qoffset
T = −KT

p (v − vd), (17)

where v is the average forward velocity of the robot (estimated
from the IMU) at the start of the swing phase, vd is the desired
average walking speed and KT

p > 0. In our experiment,
vd = 0.5 m/s and KT

p = 0.1 rad.s/m. These values are
tuned during the experiment of nominal periodic walking
on flat ground and then used for other experiments. The
offset computed above is bounded to prevent excessive torso
oscillations.

The outputs y are then redefined as,

y = h0(q)− hd(s, α)− qoffset
T


1
1
0
0

 . (18)

g) Control of Leg Motors: A PD controller is utilized
to regulate the outputs in (18). While the phase variable is
computed using the joint angles on the leg side, the outputs
y are computed using the joint angles on the motor side. The
leg-motor torques are then computed using this output,

µy
PD = −Kpy −Kdẏ (19)

This is done so that the leg motors do not work against the
springs. The output PD controller in (19) is then mapped to
the leg-joint torques using the transformation,

µq
PD = h−10 (µy

PD) , (20)

where h0 is defined in (1).

C. Stepping Stone Experiment with Changing Step Length

In this Section, we will present experimental results on
ATRIAS walking over stepping stones (see Fig.1). The circle
is covered by 24 stepping stones with the following distances
or desired step lengths of the robot:

Ld = [56, 31, 64, 78, 33, 75, 30, 40, 72, 67, 35, 23,

33, 52, 76, 50, 42, 78, 37, 31, 51, 76, 74, 69] cm. (21)

The above step lengths were obtained randomly using the
rand function in MATLAB. The controller is allowed knowl-
edge of this information only for one step ahead.

Fig. 15 shows the experiment data including step length (the
horizontal distance between swing and stance foot), the step
length error (the error between the stance foot position and
the center of the stone), the average speed of walking for each
step and the joint torques of the right and left leg respectively.
The step length errors have a mean of absolute of 3 cm and
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Fig. 15: Results from experiment of ATRIAS walking over
stepping stones with changing step length (Fig. 1a). We present
here the step length, step length error, average step speed, and
joint torques. A video of the experiment can be found here:
https://youtu.be/JKkPWHm6H7k.

https://youtu.be/JKkPWHm6H7k


absolute max of 7.8 cm and thus are always within the stone
size of [−10 : 10] cm. The experiment was conducted with
input saturation of 5 Nm on the motor torques. This experiment
thus validated the effectiveness of our proposed method for the
problem of dynamic walking on stepping stones with a wide
range of step length (within [23:78] cm) and at an average
walking speed of 0.6 m/s over 24 steps taken by ATRIAS.

To better illustrate the problem, we also have the robot
walking on cinder blocks (see Fig. 1b), where the height of
the platform is 12 cm. Note that for this experiment, since
the cinder blocks are not attached to the ground, we need to
guarantee very accurate footstep placement and good friction
constraint to ensure that the cinder blocks do not topple.

D. Stepping Stone Experiment with Changing Step Length and
Step Height

For this experiment, the terrain was generated by placing
12 stepping stones (see Fig. 16) with different distances and
heights. The following distances between these stones specify
the desired step lengths:

Ld = [40, 35, 40, 60, 35, 60, 45, 35, 60, 35, 40, 50] cm. (22)

The heights of these stones from the ground are:

[12, 16, 38, 16, 32, 22, 12, 22, 32, 22, 16, 0] cm, (23)

that specifies the following step height changes between con-
secutive stepping stones:

Hd = [12, 4, 22,−22, 16,−10,−10, 10,−10,−6,−4,−12] cm.
(24)

Similar to the previous problem of changing step length, we
also report here in Fig. 17 the experiment data including step
length (the horizontal distance between swing and stance foot),
the step length error (the error between the stance foot position
and the center of the stone), the average speed of walking
for each step and the joint torques of the right and left leg
respectively. The step length errors are just within [−5 : 5] cm,
therefore always staying inside stepping stones with the size of
[−10 : 10] cm. For this experiment, the change in step height
is between −22 cm and +22 cm and the maximum height of
the terrain to the ground is up to 38 cm. The average walking
speed of the experiment is 0.6 m/s.

For the problem of changing both step length and step
height in simulation, the initial and resulting step height in
the gait library are selected from {−20, 20} cm to represent
stepping down and up, resulting in 16 (= 22 × 22) gaits for
the gait library. Though this seems to work well in simulation,
the knee angle of the stance leg tends to be large in all
steps, leading to bad impacts that result in poor tracking in
the subsequent step. In order to overcome this disadvantage,
for the experiment, the zero step height is added to the set
resulting in {−20, 0, 20} cm. This updated step height set
represents a step down, flat ground, and step up respectively.
Therefore, we need 36 (= 22×32) gaits in the gait library for
the experiment of stepping stones with variation on both step
length and height.
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Fig. 17: Results from experiment of ATRIAS walking over
stepping stones with simultaneous changes in step length and
step height (Fig. 1c). We present here the step length, step
length error, average step speed, and joint torques. Experi-
mental video: https://youtu.be/jQeC1OOmOmk.

https://youtu.be/jQeC1OOmOmk


(a) (b) a panorama of the terrain

Fig. 16: (a) ATRIAS stepping stone experiment with changing step length and step height. (b) Panorama of the terrain. Also
shown are the step lengths between consecutive stones and the heights to the ground of each stone in the illustrated terrain. A
video of the experiment can be found here: https://youtu.be/jQeC1OOmOmk

Note that cinder blocks used to create the terrain in Fig.
16 are not affixed to each other. Therefore, the accuracy
of the footstep placement and good friction constraints are
very critical to avoid both sliding and toppling issues in this
experiment.

In the experiment shown in Fig.16, we tried to place the
stepping stones so that we can test as much as possible
different type of changes in the terrain. In addition to that, we
also demonstrated our method on randomly generated terrains
(see Fig. 18). For each test, the terrain is created by randomly
placing 5 stepping stones, which corresponds to 6 walking
steps with variation in both step length and step height. While
the desired step lengths are randomly selected in increments of
1 cm, the stone heights are randomly selected from a limited
discrete set due to the limitation of stone types used in the
experiment. Furthermore, for the random height selection, we
enforce the constraint that the starting and ending steps are
at zero height so as to start and end the experiment on the
ground level. The proposed method was successful on all eight
random terrains that were attempted. Six of these are shown
in the video and in Fig. 18.

Remark 7: In order to highlight the efficacy of the proposed
method, we will discuss the footstep location range where the
method was observed to work in simulations and in experi-
ments. For the problem of changing step length only, with a
gait library that is constructed for step lengths in the range
[30:70] cm, the simulation works for step lengths in the range
[20:90] cm – requiring both interpolation and extrapolation
of the gait library. In experiment, due to model mismatch as
well as the complexity of the real hardware, the step length
range that the method can achieve is reduced to [23:78] cm.
Similarly, for the problem of changing both step length and
step height, while in simulation the robot can overcome the
terrain with the step length and step height changing in the
range of [30:80] cm and [-30:30] cm respectively, those ranges

(a) (b)

(c) (d)

(e) (f)

Fig. 18: ATRIAS walking over different realizations of the
stochastic terrain with simultaneous random variation in step
length and step height.

https://youtu.be/jQeC1OOmOmk


Fig. 19: On-board camera attachment on the ATRIAS robot.

(a) (b)

Fig. 20: Comparison of (a) real camera view and (b) camera
scene after filtering.

are reduced to [35:60] cm and [-22:22] cm respectively in
experiment. Note that, in order to construct the terrain for the
experiment, we stack multiple cinder blocks together to change
the terrain height (see Fig. 16), which can slide and topple
over. This terrain setup requires the method to not only achieve
an accurate footstep placement but also a conservative friction
constraint. As a consequence, it further limits the performance
of the method in experiments.

VII. FUTURE WORK

Having presented experiments validating the effectiveness
of our proposed methodology, we now briefly discuss a few
future research thrusts.

(a) (b) (c)

Fig. 21: Preliminary experiment on stepping stones using on-
board camera. These are the snapshots of three consecutive
walking steps.

We firstly present our preliminary experiment result toward
future work on vision-based walking on stepping stones. Cur-
rently, in the experiments presented in the previous sections,
we predefined the stone locations by measuring them at the
start of the experiment and presenting this information to the
controller one step ahead. For every walking step, the next
stone location was then inputted to the controller right after
an impact. As part of future work, we plan to use an on-board
camera to determine the stone location rather than measuring
them. It will help to show more clearly that our controller
requires only one step ahead preview and can adapt to the
change of stone location in real-time. This is also a step toward
bringing the robot outdoor in the future.

For this work, we attempted to conduct some preliminary
experiments using an on-board camera. Fig. 19 shows the
camera attachment on the robot. The comparison of real
camera view and camera scene after filtering is shown in
Fig. 20. We successfully demonstrated a short experiment
with three walking steps. Fig. 21 illustrates three snapshots
of this experiment, where the desired step length is accurately
determined using an on-board stereo camera. Due to delay in
camera processing, there are still lots of cases when the camera
processing give a wrong estimation of the distance between
the camera to the stepping stones. A better synchronization
solution between the robot and the camera could potentially
compensate for the delay. Further results with a systematic de-
velopment of the stereo algorithm will be tested and presented
as part of future work. In an attempt to bring better perception
for walking robots, we presented related result on synthetic
vision for deep visual perception for dynamic walking on
stepping stones in (Siravuru, Wang, Nguyen and Sreenath,
2017).

Additional future directions are also possible. We can for-
mally analyze the stability for aperiodic walking obtained by
switching among the gait library. We can study the conditions
under which constraints that are satisfied by two individual
gaits are still satisfied for the gait obtained through interpola-
tion of the individual gaits. We can also extend the method to
3D walking, where the dimension of the problem will increase
due to the requirement of changing step width as well.

VIII. CONCLUSION

We have presented a novel approach based on 2-step peri-
odic gait optimization that allows us to handle a wide range
of step lengths and heights with precise footstep placement.
Since our walking gait optimization takes into account not
only the upcoming terrain but also the current configuration
of the robot, the method can effectively address the transition
when the controller switches between different gaits. The gait
library is pre-computed with a small number of gaits (4 gaits
for the problem of changing step length or step height only
and 16 gaits for the problem of changing both), then gait
interpolation is implemented in real-time to adapt with random
changes in the terrain as well as the initial condition of the
robot. We successfully validated the proposed approach on
ATRIAS, an underactuated bipedal robot, under different types
of terrain, including changing step length in the range of



[23:78] cm; or changing both step length and step height in the
range of [35:60] cm and [-22:22] cm respectively. For these
experiments, we achieved dynamic walking with the average
speed of 0.6 m/s.
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