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Embedding Active Force Control within the
Compliant Hybrid Zero Dynamics to Achieve

Stable, Fast Running on MABEL
Koushil Sreenath, Hae-Won Park, Ioannis Poulakakis, J. W. Grizzle

Abstract—A mathematical formalism for designing run-
ning gaits in bipedal robots with compliance is introduced
and subsequently validated experimentally on MABEL, a
planar biped that contains springs in its drivetrain. The
methods of virtual constraints and hybrid zero dynamics
are used to design a time-invariant feedback controller
that respects the natural compliance of the open-loop
system. In addition, it also enables active force control
within the compliant hybrid zero dynamics allowing within-
stride adjustments of the effective stance leg stiffness. The
proposed control strategy was implemented on MABEL
and resulted in a kneed-biped running record of3.06 m/s
(10.9 kph or 6.8 mph).

Index Terms—Bipedal robots, Running, Hybrid Systems,
Zero Dynamics, Compliance, Force Control.

I. I NTRODUCTION

High-performance robot running requires the tight
integration of the robot’s mechanical and control sys-
tems. Successful running machines involve compliant
elements—such as springs—which, combined with the
hybrid underactuated nature of their dynamics and the
small time intervals available for control, present a
challenge to state-of-the-art feedback design approaches.
In this article, we provide a method that combines the an-
alytical tractability afforded by the hybrid zero dynamics
framework, with physically intuitive compliance control
to induce reliable, fast running gaits on the bipedal robot
MABEL, obtaining speeds up to3.06 m/s in physical
laboratory experiments; see Figure 1.

Empirical controllers assisted from intuition gained
through the analysis of simplified spring-mass models
have been successful in stabilizing running on legged
machines with particular morphology. Raibert and his
collaborators in the 1980s introduced a set of simple,
intuitive principles to make various one-foot gaits pos-
sible on monopedal, bipedal, and—through the concept
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Fig. 1. A composite illustrating the dynamic and agile runninggait
obtained on MABEL.

of virtual legs—on quadrupedal robots; (Raibert, 1986).
The proposed controllers regulate forward velocity by
suitably positioning the legs during flight, and regulate
hopping height and torso pitch by making use of motor
torques during stance. These controllers have achieved
record speeds up to5.9 m/s on a monopedal hopper
(Koechling, 1989).

The success of Raibert’s control procedures prompted
a series of robots (Sayyad et al., 2007), and mathematical
models (Holmes et al., 2006), to investigate a variety of
design and control aspects of robot running, including
self-stability (Ghigliazza et al., 2003), energy minimiza-
tion (Ahmadi and Buehler, 1997, 2006), active force con-
trol (Koepl et al., 2010), and energy removal strategies
(Andrews et al., 2011). The majority of these systems
are monopedal and feature light, prismatic, springy legs
that are typically connected to the robot’s torso so that
the hip joint coincides with the torso’s center of mass. It
is not clear, however, how control methods developed
in the context of such systems can be transferred to
robots whose morphology departs significantly from
these assumptions. In particular, bipedal robots—such
as MABEL, Figure 1—whose legs comprise revolute
knee joints and have significant weight, and are coupled
nontrivially to the torso dynamics represent a challenge
to control approaches derived on the basis of Raibert-
style hoppers.

Contrary to walking gaits—for which a variety of con-
trollers with analytically tractable properties are avail-
able; see (Spong, 1999; Chevallereau et al., 2003; Ames
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et al., 2006; Gregg and Spong, 2010) for instance—only
few control methods are available for running bipeds.
In many cases, running was implemented on robots that
were not specifically designed for such motions. Exam-
ples include humanoids like Sony’s QRIO (Nagasaka
et al., 2004), Honda’s ASIMO (Hirose and Ogawa,
2007), the HRP family (Kajita et al., 2005, 2007), and
HUBO (Cho et al., 2009). Recently, Toyota’s humanoid
achieved running at speeds up to1.94 m/s (Tajima et al.,
2009). In all these cases, the underlying controllers are
based on the Zero Moment Point (ZMP) criterion for
stability, and the resulting running gaits exhibit short
flight durations and low ground clearance during flight.

A quite different paradigm for control law design has
been employed to induce running on RABBIT, a planar
biped with revolute knees and rigid links, (Morris et al.,
2006). According to this framework, running gaits are
“embedded” in the dynamics of the robot through a
set of holonomic output functions which are driven to
zero by its actuators; see (Westervelt et al., 2007) for a
detailed overview of the method. Although running with
significant flight duration and good ground clearance was
successfully realized, it could not be sustained for more
than six steps. Failure to maintain running in RABBIT
was a consequence of its lack of compliance combined
with the limitations of its actuators.

Elastic energy storage in compliant elements is of
central importance in explaining the mechanics of run-
ning, (Alexander, 1990; McMahon and Cheng, 1990),
and is indispensable for the realization of running in
legged robots (Raibert, 1986; Hurst and Rizzi, 2008). In
particular, springs can store—in the first part of stance,
as the leg contracts—and then release—in the second
part of stance, when the leg extends—part of the energy
needed to redirect the center of mass (COM) of the
robot upwards prior to the flight phase. In the absence
of springs, the actuators would have to perform negative
work on impact and then supply the energy required
for flight. These considerations motivated the design
of MABEL, a planar bipedal robot, which incorporates
compliant elements for both energy efficiency and shock
absorption.

The presence of compliance, however, poses strict
requirements on the control system, which must work
in concert with the springs of the open-loop system to
achieve closed-loop stability. To design feedback control
laws that take advantage of compliant elements, the
notion of compliant hybrid zero dynamicswas intro-
duced in (Poulakakis, 2008). The proposed method orga-
nizes the robot around a lower-dimensional physically-
compliant mechanical system—the Spring Loaded In-
verted Pendulum (SLIP)—which governs the closed-loop
dynamics of the higher-dimensional system (Poulakakis
and Grizzle, 2009b). The method was extended in
(Poulakakis and Grizzle, 2009a) to induce hopping
motions on the monopedal robot Thumper—a single-
legged version of MABEL—and was further refined in
(Sreenath et al., 2011b) to produce dynamically sta-

ble walking motions experimentally on MABEL, where
the designed controller preserved the natural compliant
dynamics in the closed-loop ensuring the compliance
performs the negative work at impact and thereby re-
sulting in energy efficient walking gaits. The nonlinear
compliant hybrid zero dynamics controller implemented
on MABEL was instrumental in obtaining fast walking
at a top sustained speed of1.5 m/s (3.4 mph.)

The notion of compliant hybrid zero dynamics is
central to controlling running on MABEL. However,
contrary to walking motions, running is typically charac-
terized by the presence of flight phases (McMahon et al.,
1987), during which only limited control authority can
be exercised over the system. In fact, MABEL spends
approximately 40% of its running cycle in flight, leaving
about 200 ms per stride for the stance phase, during
which control over the system’s total energy and torso
motion can be exerted. The duration of the stance phase
can be effectively regulated through adjusting the leg
stiffness. For example, reducing the stiffness of the leg
springs can extend the stance phase duration, thereby
offering enhanced control capability in continuous time
through the robot’s actuators. However, as was observed
in (Rummel and Seyfarth, 2008) in running with seg-
mented legs that employ compliant revolute knee joints,
reducing the leg stiffness can cause the robot to collapse
at moderate leg compressions. Particularly in MABEL,
which weighs65 Kg, extending the stance duration by
reducing leg stiffness results in the leg collapsing, raising
the need for effective leg compliance adjustment policies
to achieve reliable highly-dynamic running motions.

Leg stiffness adaptation strategies have been studied
extensively in the context of biomechanics. For instance,
it is known that human runners adjust their leg stiff-
ness to maintain similar peak ground reaction forces
and contact times on ground surfaces with different
properties (Ferris and Farley, 1997; Ferris et al., 1998).
Further, through experiments on running guinea fowl
encountering unexpected terrain drops, (Daley et al.,
2006; Daley and Biewener, 2006) demonstrate that large
perturbations up to40% of their hip height can be
handled by changing leg stiffness. Motivated by these
experiments, an active force control strategy has been
suggested in (Koepl et al., 2010) and an active energy
removal controller has been proposed in (Andrews et al.,
2011) to enhance the robustness of single-leg hoppers to
perturbations in ground height and ground stiffness.

In this article, we combine stiffness adaptation through
active force control with dimensional reduction through
motion control to introduce a family of model-based
feedback controllers that induce reliable fast running
gaits on compliant bipedal robots with revolute knee
joints. The proposed control laws act in both continuous
and discrete time to impose a set of suitably parameter-
ized virtual holonomic constraints that reduce the higher-
dimensional robot dynamics to a lower-dimensional
hybrid dynamical system—the hybrid zero dynamics
(HZD)—which not only respects the open-loop leg com-
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pliance, but also effectively tunes it throughout the gait to
enhance the robustness of the controller to perturbations
in the knee angle at impact. Local stability analysis
via Poincaŕe’s method reveals that the resulting closed-
loop system is exponentially stable. This controller is
implemented on MABEL, both with passive feet (no
ankle actuation) and with point feet, to realize stable
running motions. With the passive feet, running was
realized at an average speed of1.07 m/s, while with
point feet, running was realized at an average speed of
1.95 m/s and a peak speed of3.06 m/s. About40% of
the gait was spent in flight, with estimated peak ground
clearance of7 to 10 cms. Figure 1 illustrates a composite
image of the running gait for MABEL.

The remainder of the paper is organized as follows.
Section II presents a hybrid model for running that
will be used for controller design. Section III gives an
overview of the control design with Section IV provid-
ing implmentation details for achieving exponentially
stable and robust running gaits. Section V describes
the experiments performed to demonstrate the validity
of the designed controller. Finally Section VI provides
concluding remarks.

II. MABEL M ODEL

A. Description of MABEL

MABEL is a planar bipedal robot that is used as
a testbed for experimental validation of walking and
running controller designs. Its comprised of five links
assembled to form a torso and two legs with knees; see
Figure 1. The robot weighs65 kg, has1 m long legs,
and is mounted on a boom of radius2.25 m. The legs
are terminated in point feet. All actuators are located in
the torso, so that the legs are kept as light as possible;
this is to facilitate rapid leg swinging for running. Unlike
most bipedal robots, the actuated degrees of freedom of
each leg do not correspond to the knee and hip angles.
Instead, for each leg, a collection of cable-differentials
is used to connect two motors to the hip and knee joints
in such a way that one motor controls the angle of the
virtual leg (henceforth called the leg angle) consisting
of the line connecting the hip to the toe, and the second
motor is connected in series with a spring in order to
control the length or shape of the virtual leg (henceforth
called the leg shape); see Figure 2. Table III provides
a glossary of symbols used in the paper. More details
on the design of MABEL can be found at (Park et al.,
2011; Grizzle et al., 2009; Hurst, 2008).

Springs in MABEL appearin serieswith an actuator.
They serve to isolate the reflected rotor inertia of the leg-
shape motors from the impact forces at leg touchdown
and to store energy in the compression phase of a
running gait, when the support leg must decelerate the
downward motion of the robot’s center of mass; the
energy stored in the spring can then be used to redirect
the center of mass upwards for the subsequent flight
phase. These properties (shock isolation and energy

storage) enhance the energy efficiency of running and
reduce the overall actuator power requirements. MABEL
has a unilateral spring which compresses but does not
extend beyond its rest length. This ensures that springs
are present when they are useful for shock attenuation
and energy storage, and absent when they would be a
hindrance for lifting the legs from the ground.

The following sections will develop the hybrid model
appropriate for a running gait comprised of continuous
phases representing stance and flight phases of running,
and discrete transitions between the two.

B. MABEL’s Unconstrained Dynamics

The configuration spaceQe of the unconstrained (or
extended) dynamics of MABEL is nine dimensional: five
DOF are associated with the links in the robot’s body,
two DOF are associated with the springs in series with
the two leg-shape motors, and two DOF are associated
with the horizontal and vertical position of the robot
in the sagittal plane. A set of coordinates suitable for
parametrization of the robot’s linkage and transmission
is, qe := ( qLAst

; qmLSst
; qBspst

; qLAsw
; qmLSsw

; qBspsw
;

qTor; phhip; pvhip ). From Table III and the angles il-
lustrated in Figure 2(b),qTor is the torso angle, and
qLAst

, qmLSst
, and qBspst

are the leg angle, leg-shape
motor position andBspring position respectively for
the stance leg. The swing leg variables,qLAsw

, qmLSsw

and qBspsw
are defined similarly. For each leg,qLS is

uniquely determined by a linear combination ofqmLS

and qBsp, reflecting the fact that the cable differentials
place the spring in series with the motor, with the pulleys
introducing a gear ratio. The coordinatesphhip, p

v
hip are

the horizontal and vertical positions of the hip in the
sagittal plane.

The method of Lagrange is employed to obtain the
equations of motion. In computing the Lagrangian, the
total kinetic energy is taken to be the sum of the kinetic
energies of the transmission, the rigid linkage, and the
boom. The potential energy is computed in a similar
manner with the difference being that the transmission
contributes to the potential energy of the system only
through its gravitational potential energy. This distinc-
tion is made since it is more convenient to model the
unilateral spring as an external input to the system. The
resulting model of the robot’s unconstrained dynamics
is determined as

De (qe) q̈e + Ce (qe, q̇e) q̇e +Ge (qe) = Γe, (1)

where,De is the inertia matrix,Ce contains Coriolis
and centrifugal terms,Ge is the gravity vector, andΓe

is the vector of generalized forces acting on the robot,
expressed as,

Γe = Beu+ Eext (qe)Fext+

Bfricτfric (qe, q̇e) +Bspτsp (qe, q̇e) ,
(2)

where the matricesBe, Eext, Bfric, andBsp are derived
from the principle of virtual work and define how the
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Fig. 2. (a) Thevirtual compliant legcreated by the drivetrain through a set of differentials. The coordinate system used for the linkage is
also indicated. Angles are positive in the counter clockwise direction. (b) MABEL’s drivetrain (same for each leg), all housed in the torso. Two
motors and a spring are connected to the traditional hip and knee joints via three differentials. On the robot, the differentials are realized via
cables and pulleys (Hurst, 2008) and not via gears. They are connected such that the actuated variables are leg angle and leg shape, so that
the spring is in series with the leg shape motor. The base of thespring is grounded to the torso and the other end is connectedto theBspring

differential via a cable, which makes the springunilateral. When the spring reaches its rest length, the pulley hits a hardstop, formed by a very
stiff damper. When this happens, the leg shape motor is, for all intents and purposes, rigidly connected to leg shape througha gear ratio.

actuator torquesu, the external forcesFext at the leg,
the joint friction forcesτfric, and the spring torquesτsp
enter the model respectively. The dimension ofu is four,
corresponding to the two brushless DC motors on each
leg for actuating leg shape and leg angle.

C. MABEL’s Constrained Dynamics

The model (1) can be particularized to describe the
stance and flight dynamics by incorporating proper holo-
nomic constraints.

1) Dynamics of Stance:For modeling the stance
phase, the stance toe is assumed to act as a passive
pivot joint (no actuation, no slip, and no rebound.) Thus,
the coordinates of the stance leg and torso define the
Cartesian position of the hip,

(

phhip, p
v
hip

)

. The springs
in the transmission are appropriately chosen so that they
are stiff enough to support the entire weight of the robot.
Consequently, it is assumed that the spring on the swing
leg does not deflect, that is,qBspsw

≡ 0. The stance
configuration space,Qs, is therefore a co-dimension
three submanifold ofQe. With these assumptions, the
generalized configuration variables in stance are taken as
qs :=

(

qLAst
; qmLSst

; qBspst
; qLAsw

; qmLSsw
; qTor

)

. Defin-
ing the state vectorxs := (qs; q̇s) ∈ TQs, whereTQs

is the tangent bundle ofQs, the stance dynamics can be
expressed in standard form as,

ẋs = fs(xs) + gs(xs)u. (3)

2) Dynamics of Flight: In the flight phase, both
feet are off the ground, and the robot follows a
ballistic motion under the influence of gravity.

Thus the flight dynamics can be modeled by the
unconstrained dynamics developed earlier. However
in order to eliminate the stiffness in integrating the
differential equations representing the flight model,
an additional assumption can be made. Since the
springs are stiff enough to support the entire weight
of the robot, during flight when the feet are off the
ground, it can be assumed that the springs are at
their rest position and do not deflect1. Therefore,
qBspst

≡ 0, qBspsw
≡ 0. Thus, the configuration space of

the flight dynamics is a co-dimension two submanifold
of Qe, i.e., Qf :=

{

qe ∈ Qe | qBspst
≡ 0, qBspsw

≡ 0
}

.
It follows that the generalized configuration
variables in the flight phase can be taken as
qf :=

(

qLAst
; qmLSst

; qLAsw
; qmLSsw

; qTor; p
h
hip; p

v
hip

)

.

Defining the state vectorxf := (qf ; q̇f) ∈ TQf , where
TQf is the tangent bundle ofQf , the flight dynamics
can be expressed in standard form as,

ẋf = ff(xf) + gf(xf)u. (4)

D. MABEL’s Transitions

1) Stance to Flight Transition Map:Physically, the
robot takes off when the normal component of the
ground reaction force acting on the stance toe,FN

toest
,

becomes zero. The ground reaction force at the stance
toe can be computed as a function of the acceleration
of the COM and thus depends on the inputsu ∈ U

1The pre-tension in the cables between the spring and the pulley
Bspring (see Figure 2(b)) has been set as close to zero as possible to
ensure the spring is not pre-loaded.
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of the system described by (3). Mathematically, the
transition occurs when the solution of (3) intersects the
co-dimension one switching manifold

Ss→f :=
{

xs ∈ TQs × U | FN
toest

= 0
}

. (5)

On transition from the stance to flight phase, the stance
leg comes off the ground and takeoff occurs. During the
stance phase, the spring on the stance leg is compressed.
When the stance leg comes off the ground, the spring
rapidly decompresses and impacts the hard stop. The
stance to flight transition map,∆s→f : Ss→f → TQf

accounts for this. Further details are omitted for the
sake of brevity and interested readers are referred to
(Sreenath, 2011, Chap. III).

2) Flight to Stance Transition Map:The robot phys-
ically transitions from flight phase to stance phase when
the swing toe contacts the ground surface. The impact is
modeled here as an inelastic contact between two rigid
bodies. It is assumed that there is no rebound or slip at
impact. Mathematically, the transition occurs when the
solution of (4) intersects the co-dimension one switching
manifold

Sf→s :=
{

xf ∈ TQf | p
v
toesw = 0

}

. (6)

In addition to modeling the impact of the leg with the
ground, and the associated discontinuity in the general-
ized velocities of the robot (Ḧurmüzlü and Chang, 1992),
the transition map accounts for the assumption that the
spring on the new swing leg remains at its rest length,
and for the relabeling of the robot’s coordinates so that
only one stance model is necessary. In particular, the
transition map∆f→s : Sf→s → TQs consists of three
subphases executed in the following order: (a) standard
rigid impact model (Ḧurmüzlü and Chang, 1992); (b)
adjustment of spring velocity in the new swing leg; and
(c) coordinate relabeling.

E. Hybrid Control Design Model for Running

The hybrid model of running is based on the dynam-
ics developed in Section II-C and the transition maps
presented in Section II-D, and is given by

Σs :

{

ẋs = fs (xs) + gs (xs)u, (x−

s , u
−) /∈ Ss→f

x+
f = ∆s→f

(

x−

s , u
−
)

, (x−

s , u
−) ∈ Ss→f

(7)

Σf :

{

ẋf = ff (xf) + gf (xf)u, x−

f /∈ Sf→s

x+
s = ∆f→s

(

x−

f

)

, x−

f ∈ Sf→s.

F. Validation Model

The model developed in the previous sections will
be used for control design. However, we note that the
developed model does not capture the following aspects
of the experimental testbed: (a) a compliant ground
and the possibility of slipping; (b) stretchy cables in
the transmission of the robot; and (c) dynamics of
the boom. A more detailed modelwas developed in

(Park et al., 2011) to capture these effects, however
it is not computationally tractable for use in control
design for running. Instead, we will design the controller
based on the model developed here and then use the
detailed model for validation of the controller prior to
experimental deployment.

III. C ONTROL DESIGN FORRUNNING

This section presents a controller for inducing stable
running motions on MABEL. To do this, the controller
creates an actuated compliant hybrid zero dynamics
(HZD) that enables actively adjusting the effective leg
stiffness during the stance phase. Details about the
implementation of this controller are relegated to Section
IV.

A. Overview of the Control Method

The control objective is to design exponentially stable
running periodic gaits that are robust to perturbations,
so as to accommodate inevitable differences between
the model and the robot. To achieve this objective, the
feedback introduces control on four levels; see Figure 3.
On the first level, continuous-time feedback controllers
Γα
p with p ∈ P := {s, f} are employed in the stance

and flight phases to impose suitably parametrized virtual
holonomic constraints that restrict the motion of the
system on lower-dimensional invariant and attractive
surfacesZαp

embedded in the state space. On the
second level, discrete-time feedback controllersΓαc

p are
employed at transitions between the stance and flight
phases to render the surfacesZαp

hybrid invariant (West-
ervelt et al., 2007). The system in closed-loop with the
controllersΓα

p and Γαc
p admits a well defined hybrid

zero dynamics that governs the stability properties of
the higher-dimensional robot plant.

The outer-loop controllerΓβ renders the hybrid zero
dynamics locally exponentially stable by updating cer-
tain parameters from stride to stride. We introduce
an additional outer-loop controllerΓγ to enhance the
robustness of the controller to unexpected uncertainty
in parameters in the robot and the environment; in
particular, perturbations in the knee angle at impact and
imperfections in the ground contact model.

The novelty of the controller lies in that the feedback
not only preserves the natural compliance of the open-
loop system as a dominant characteristic of its closed-
loop behavior, but also introduces active force control
as a means of varying the effective compliance of the
stance leg.

The remaining parts of this section will more fully
describe the key portions of the control law. As noted
previously, certain technical details are saved for Section
IV which can be skipped for the first reading of the
manuscript.
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Fig. 3. Feedback diagram illustrating the running controller structure.
Continuous lines represent signals in continuous time; dashed lines
represent signals in discrete time. The controllersΓα

p andΓαc
p create

a compliant actuated hybrid zero dynamics. The controllerΓβ ensures
that the periodic orbit on the resulting zero dynamics manifold is
locally exponentially stable. The controllerΓγ increases the robustness
to perturbations in the knee angle at impact and to imperfections in
the ground contact model.

B. Continous-time Control

1) Motion Control: The motion controller asymptot-
ically imposes a set of virtual holonomic constraints
through feedback. Its purpose is to synchronize the links
of the robot to achieve common objectives in running,
such as supporting the torso, advancing the swing leg in
relation to the stance leg, and specifying foot clearance.
Virtual constraints can be expressed in the form of
an output, that when zeroed by a feedback controller,
enforces the constraint. For each phasep ∈ P in running,
the virtual constraints can then be expressed in the form

yp = hp (qp, αp) = Hp
0 qp − hp

d (θp, αp) . (8)

HereHp
0 represents a selection matrix, andHp

0 qp repre-
sents the controlled variables, corresponding to a linear
combination of the configuration variables;hp

d is the
desired evolution that is described through Bézier poly-
nomials parametrized by a strictly monotonic function
of the joint configuration variables,θp, whose physical
meaning will be specified in Section IV; andαp are
coefficients of the B́ezier polynomials. In implementing
the controller, one can choose the controlled variables by
selectingHp

0 and their corresponding desired evolution
by selectingαp in (8).

To enforce the constraints, the objective of the ac-
tuators is to zero the output defined by (8). Following
(Isidori, 1995), we differentiate the output twice with
respect to time, obtaining,

d2yp
dt2

= L2
fp
hp (xp, αp) + LgpLfphp (qp, αp)up, (9)

whereLgpLfphp (qp, αp) is the decoupling matrix. Un-
der the conditions of (Westervelt et al., 2007, Lemma
5.1), the decoupling matrix has full rank, and

u∗

p (xp, αp) :=−
(

LgpLfphp (qp, αp)
)−1

L2
fp
hp (xp, αp) ,

(10)

is the unique control input that renders the surface

Zαp
= {xp ∈ TQp | hp (qp, αp) = 0,

Lfphp (xp, αp) = 0
} (11)

invariant under the continuous dynamics forp ∈ P, i.e.,
for every zp ∈ Zαp

, f∗

p (zp) := fp (zp) + gp (zp)u
∗

p ∈
TzpZαp

. Zeroing the outputs effectively reduces the
dimension of the system by restricting its dynamics on
the surfaceZαp

, which is called the zero dynamics
manifold. The dynamics of the system restricted onZαp

,

żp = f∗

p |Zαp
(z) ,

is called the zero dynamics. To achieve attractivity of
Zαp

, the controller (10) is modified as

up =u∗

p (xp, αp)−
(

LgpLfphp (qp, αp)
)−1

(

Kp,P

ǫ2
ypc +

Kp,D

ǫ
ẏpc

)

,
(12)

whereǫ>0 is sufficiently small andKp,P ,Kp,D are such
that λ2 +Kp,Dλ+Kp,P = 0 is Hurwitz.

Remark 1: A modification of this control scheme that
will be useful in accommodating compliance tuning
during stance is to reserve one of the actuators for
active force control within the zero dynamics. In more
detail, during the stance phase, where four actuators are
available, we will engage only three to impose virtual
holonomic constraints and reserve the stance leg shape
motor, umLSst

, as an input available for control within
the zero dynamics. In this case, the continuous stance
dynamics can be rewritten as

ẋs = fs(xs) + g̃s(xs)ũs + gmLSst
(xs) umLSst

,

where ũs are the actuators used to enforce virtual con-
straints. Then, the zero dynamics becomes

żp = f∗

p |Zαp
(z) + gmLSst

|Zαp
(z)umLSst

. (13)

2) Active Force Control:The explicit appearance of
umLSst

input in the zero dynamics (13) allows us to
use feedback to create a virtual compliant element. In
particular, by defining the feedback

umLSst
(xs) = −kvc (qmLSst

− qmLSvc
) , (14)

a virtual compliant element of stiffnesskvc, and rest
position qmLSvc

is implemented using the motor leg
shape actuator. An additional damping element could be
added if desired. The transmission of MABEL places
this virtual compliant element in series with the physical
compliance. Since both these compliances are in series,
this method provides a means of dynamically varying
the effective compliance of the system. For future use,
note that, the existence of the virtual compliant element
introduces a parameter vectorαvc = (kvc, qmLSvc

).
To provide some intuituion, virtual compliance facil-

itates energy injection to enable takeoff and effectively
accounts for the softening of the leg spring as the knee
bends, as observed in (Rummel and Seyfarth, 2008),
thereby preventing the stance knee from excessively
bending. Beyond the control of running, this method of
creating a virtual compliant element was instrumental in
maintaining good ground contact forces for large step-
down walking experiments (see (Park et al., 2011) for
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5 inches step-down, and (Park et al., 2012) for up to
8 inches step-down.) Furthermore, as will be seen in
Section IV-F, virtual compliance can easily account for
cable stretch and for asymmetry of the robot due to the
boom, that are not included in the model for control.

C. Discrete-time Control

1) Hybrid Invariance:The controller (10) renders the
zero dynamics manifold forward invariant and attractive.
However, at discrete transitions, there is no guarantee
that the post-transition state may belong on the zero
dynamics manifold of the subsequent phase. In partic-
ular, x−

s ∈ Zαs
, x−

f ∈ Zαf
does not guarantee that,

x+
f = ∆s→f(x

−

s ) ∈ Zαf
, andx+

s = ∆f→s(x
−

f ) ∈ Zαs
.

To ensure that the zero dynamics is invariant under the
transition mappings, i.e., hybrid invariant, we introduce
correction polynomials as in (Chevallereau et al., 2009).
This is achieved by modifying the virtual constraints at
event transitions as follows,

ypc := hp (qp, αp, α
p
c)

= Hp
0 qp − hp

d (θp, αp)− hp
c

(

θp, α
c
p

)

,
(15)

where, the output consists of the previous output (8),
and an additional correction termhp

c , which correspond
to Bézier polynomials whose coefficients are selected so
that the post transition output and its velocity are zero,
i.e., yp+c = 0, ẏp+c = 0. Under the assumption of hybrid
invariance, the hybrid zero dynamics is well defined
and it governs the existence and stability properties of
periodic orbits that correspond to running motions of the
higher-dimensional robot. The surface (11) will become
Zαs,αs

c
under the modified output (15).

2) Exponential Stability:To ensure that the periodic
running orbit of interest is locally exponentially sta-
ble as a solution of the lower-dimensional hybrid zero
dynamics—hence, locally exponentially stable in the
higher-dimensional robot—we introduce the controller
Γβ acting in discrete time to update certain parameters
β ∈ B, which includes various physically relevant
quantities such as leg touchdown and torso liftoff angles;
for details see Section IV-E. To design the controller, we
employ the method of Poincaré as follows. A periodic
orbit representing a running gait is sampled at a Poincaré
sectionSβ , to define a Poincaré mapPβ : Sβ×B → Sβ ,
which gives rise to a discrete-time nonlinear control
system

x−[k + 1] = Pβ

(

x−[k], β[k]
)

, (16)

where the parametersβ are inputs available for control.
Linearizing (16) about the fixed-point(x−∗, 0) corre-
sponding to the periodic orbit results in

δx−[k + 1] =
∂Pβ

∂x−

∣

∣

∣

∣

(x−∗,0)

δx−[k] +

∂Pβ

∂β

∣

∣

∣

∣

(x−∗,0)

β[k],

(17)

where δx− = x− − x−∗. A discrete Linear Quadratic
Regulator (LQR) is then used to update the parameters
β according to

β[k] = Γβ(δx−[k]) := KLQR δx−[k]. (18)

such that the eigenvalues of the closed-loop system are
within the unit circle.

3) Robustness to Perturbations:The control construc-
tions so far render the desired periodic running gaits
locally exponentially stable. To enhance the robust-
ness of our control design, an additional event-based
controller is introduced to update a set of parameters
γ ∈ G, which includes parameters to modify the virtual
compliance stiffness, and swing height. The nonlinear
controller that is used to modify theγ parameters is
detailed in Section IV-E. We only mention that the
control design is motivated by insight obtained in the
context of controlling simpler hopper models, such as the
SLIP. Special attention is paid to ensure the exponential
stability property is preserved under the action of the
controller by studying the properties of the Poincaré
map, Pγ : Sγ × B × G → Sγ , that includes all four
layers of control.

IV. CONTROLLER IMPLEMENTATION DETAILS

A. Virtual Constraint Design for Stance

During stance, the objective of the controller is three-
fold. First, it ensures that the torso enters the flight
phase with suitable initial conditions so that excessive
torso pitching is avoided. Second, it guarantees sufficient
ground clearance of the swing leg to allow its proper
positioning in anticipation to touchdown. And third, it
creates a virtual compliance element that effectively
“tunes” the physical leg stiffness to offer enhanced
control authority during the stance phase.

The first two objectives of the stance control action
can be achieved by devoting three out of the four avail-
able actuators to impose virtual holonomic constraints
on the torso motion captured by its pitch angleqTor and
on the motion of the swing leg described by the angles
qLAsw

andqmLSsw
. Hence, in defining the output (8) for

stance, we choose the controlled variables as

Hs
0qs =

(

qLAsw
, qmLSsw

, qTor
)′
. (19)

The virtual constraints imposed on the control variables
(19) are parametrized by 5th order B́ezier polynomials
through the monotonically increasing angleθs formed
by the virtual leg connecting the toe with the hip relative
to the ground,

θs (qs) = π − qLAst
− qTor, (20)

see Figure 2(a). The detailed design of the constraints
is documented in (Sreenath, 2011, Sec. 6.3). We only
mention here that substantial torso control can be devel-
oped only during stance, due to the fact that the angular
momentum about the center of mass is conserved in
the flight phase. To avoid excessive pitching motions
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during the ensuing flight phase, the corresponding virtual
holonomic constraint imposed onqTor is designed to
drive the torso so that at the end of the stance phase it
leans forward with a backward angular velocity. This is
important because a forward torso velocity at the begin-
ning of flight would result in an excessive forward pitch
at the end of flight due to the conservation of angular
momentum, requiring correction of a large torso error
during the relatively short—compared to the walking
motions in (Sreenath et al., 2011b)—stance phase. To
realize an actively tuned virtual compliant component as
described in Section III-B2, we make use of the fourth
actuatorumLSst

, which is available for control.
The stance phase zero dynamics—namely the dynam-

ics compatible with the virtual constraints imposed on
the controlled variables (19)—obtains the form (13) as
was described in Remark 1, whereumLSst

is chosen
according to the prescription (14) in Section III-B2,
thereby completing the control design during stance.

B. Virtual Constraint Design for Flight

During flight, the controller serves two purposes. First,
it rapidly lifts the stance leg2 to avoid toe stubbing at
the early stages of its swing phase. Second, it positions
the swing leg, whose touchdown is anticipated, at a
proper absolute angle. To achieve these objectives, all
four actuators will be recruited to enforce suitable virtual
holonomic constraints by zeroing the output functions
(8), in which the controlled variables are chosen as

H f
0qf =

(

qmLSst
, qLAsw

+ qTor, qmLSsw
, qLAst

)′
,

(21)
where (qmLSst

, qLAst
) refer to the coordinates of the

stance leg (the leg that was in stance and switched
to swing for the flight phase.) Similarly to the stance
phase, 5th order B́ezier polynomials are employed to de-
sign the virtual holonomic constraints. The polynomials
are parametrized based on the monotonically increasing
quantityθf , which corresponds to the horizontal position
of the hip,

θf (qf) = phhip. (22)

C. Event Transitions

Transitions between continuous-time phases offer the
possibility of updating certain parameters that are in-
troduced through the virtual constraints—e.g., Bézier
polynomial coefficients—to achieve the control objec-
tives, such as the hybrid invariance condition described
in Section III-C1. Up to this point, we have considered
two transitions, which are imposed by the physics of
the robot running; namely, the stance-to-flight and the
flight-to-stance transitions occurring at the switching
surfacesSs→f ,Sf→s and governed by the transition maps
∆s→f ,∆f→s, respectively; see Section II for definitions.

2During flight both feet are off the ground, however we continue
to use stance leg to mean the leg that was on the ground during the
stance phase and similarly for the swing leg.

In addition to the transitions separating the stance
and flight phases, we will further divide stance into
two subphases: the stance-compression (sc) and the
stance-decompression (sd). The transition from stance-
compression to stance-decompression occurs at the
switching surface

Ssc→sd = {xs ∈ TQs | Hsc→sd (xs) = 0} , (23)

where the threshold function isHsc→sd := θs−θsd, with
θs defined by (20) andθsd a constant. The corresponding
transition map is the identity map, i.e.,∆sc→sd := id,
reflecting the fact that the state does not change as the
robot passes from stance compression to decompression.

In contrast to the state that remains unchanged through
Ssc→sd, certain parameters characterizing the stance
subphases can be updated as the controller switches
from compression to decompression. In particular, the
stiffness and rest position,αvc = (kvc, qmLSvc

), of
the virtual compliant element (14) introduced through
the stance-phase continuous control action of Section
III-B2 can have different values during the two stance
subphases. Hence, in the stance-compression and stance-
decompression phases,αvc will be chosen asαsc

vc and
αsd
vc, respectively, withαsc

vc 6= αsd
vc. The update ensures

that the parameters are only changed at transitions, i.e.,
α̇vc = 0 for the continuous dynamics. Intuitively, this
parameter update facilitates energy injection during the
stance-decompression to enable lift-off.

D. Gait Design Through Optimization

A periodic running gait is designed through an op-
timization procedure that selects the parameters intro-
duced by the virtual constraints and the virtual com-
pliance element to minimize energy consumption per
step, subject to constraints to meet periodicity as well
as workspace and actuator limitations. In more detail,
the cost function employed is

Jnom
(

αs, αf , α
sc
vc, α

sd
vc

)

=
1

phtoesw
(

q−f
)

∫ TI

0

||u(t)||2dt,

(24)
whereTI is the step duration (stance plus flight time) and
phtoesw is the step length. Minimizing this cost function
tends to reduce peak torque demands and minimize the
electrical energy consumed per step. The nonlinear con-
strained optimization routinefmincon of MATLAB’s
Optimization Toolbox is used to perform the numerical
search for desired gaits, optimizing31 different param-
eters; further details can be found in (Sreenath, 2011).

Following this procedure, a nominal periodic running
gait at1.34 m/s is obtained. Figure 4 depicts the virtual
constraints for the stance and flight phases, along with
other configuration variables, during one step of running.
The squares on the plots indicate the transition from
stance to flight phase. The step duration is525 ms with
69% spent in stance and31% in flight. On entry into the
flight phase, the torso is leaning forward (negative torso
angle) and is rotating backward (positive torso velocity).
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Fig. 4. Evolution of the virtual constraints and configuration variables
for a nominal fixed point (periodic running gait) at a speed of1.34
m/s and step length0.7055 m. The squares illustrate the location of
transition between stance to flight phase. The circle on theqBspst

plot
illustrates the location of thesc to sd event transition.

The swing leg angle travels roughly57% of its total
47.5◦ during the stance phase3 and needs to travel the
remaining43% in the flight phase which is of smaller
duration. Thus the velocities of the joints in the flight
are high compared to those of the stance phase.

Figure 4 also illustrates the evolution of the leg shape
and the stanceBspring variables. During the stance-
compression phase the spring compresses, reaches its
peak value of almost36◦ and starts to decompress.
On transition to stance-decompression, the motor injects
energy into the system causing the spring to rapidly
compress to a peak of47◦. At lift-off, when the vertical
component of the ground reaction force goes to zero, the
spring is compressed to approximately25◦. At the early
stages of the ensuing flight phase, the stance leg (the leg
that was in stance and switched to swing) unfolds due
to the large velocity at push-off, as the spring rapidly
decompresses.

Figure 5 illustrates the actuator torques used to realize
the gait, and all motor torques are well within the capac-
ity of the actuators, namely30 Nm. The stance leg shape
torque is relatively large, initially to support the weight
of the robot as the stance knee bends, and subsequently
to inject energy in the stance-decompression phase to
achieve lift-off. Note that the stance motor leg shape
torque is discontinuous at the stance-compression to
stance-decompression transition due to an instantaneous
change in the parametersαvc of the virtual compliance.

3Contrast this to that of humans, where the legs travel rougly90%

of the range of travel during the stance phase.
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Fig. 5. Actuator torques corresponding to the nominal fixed point.
The squares illustrate the location of transition between stance to flight
phase. The circle on theumLSst plot illustrates the location of thesc
to sd event transition. Note that the torques are discontinuousat stance
to flight transitions. Also note the additional discontinuity for umLSst
at thesc to sd event transition due to the instantaneous change in the
offset for the virtual compliance at this transition.

All torques are discontinuous at the stance-to-flight tran-
sition due to the impact of the spring with the hard-stop;
see Figure 2(b).

Figure 6 illustrates the evolution of the swing leg
height and the vertical position of the center of mass
of the robot. The swing foot is over15 cm above
the ground at its peak to offer good ground clearance
for hard impacts. During the stance phase, the COM
undergoes an asymmetric motion with the lowest point
of potential energy being around52% into the stance
phase. During the flight phase, the COM has a ballistic
trajectory. As noted in (McMahon and Cheng, 1990)
and (Holmes et al., 2006), both these aspects of COM
motion are dominant characteristics of running. Finally,
Figure 7 illustrates the vertical component of the ground
reaction force. Immediately upon impact, during the
stance-compression phase, there is a peak in the ground
reaction force due to the spring compressing rapidly
on impact. During most of the stance-compression (sc)
phase, the force is fairly constant. On transition to
stance-decompression (sd) phase, the energy injection
causes the force to rapidly first increase and then go
to zero at which point stance to flight transition occurs.

E. Parameter Update Strategies

1) Exponential Stability:To analyze the stability of
the running gait obtained in Section IV-D in closed loop
with the continuous-time controllers (12), we employ the
method of Poincaré. LetSsc→sd be the Poincaré section.
Then, the stability properties of the periodic running
orbit can be captured by the stability properties of the
corresponding fixed point of the restricted Poincaré map
ρ : Ssc→sd ∩ Zαs,αs

c
→ Ssc→sd ∩ Zαs,αs

c
; see (Morris

and Grizzle, 2005, 2009). Numerical computations of the
eigenvalues of the linearization of the restricted Poincaré
map about the fixed point of interest reveals that the
corresponding running gait is unstable with a dominant
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Fig. 7. Vertical component of the ground reaction force for the
nominal running fixed point. At thesc to sd event transition (indicated
by the circle), the change in the offset for the virtual compliance causes
the spring to compress further which increases the ground reaction
force considerably. Takeoff occurs when the ground reaction force goes
to zero (indicated by the square.)

eigenvalue of magnitude1.19. In fact, all the running
gaits we have been able to compute were unstable.

To locally exponentially stabilize the desired running
gait, we introduce the additional outer-loop discrete-time
controller Γβ . These parameters are a subset of those
introduced through the continuous-time control action—
namely,αs, αf , α

sc
vc, α

sd
vc—and are denoted byβ to em-

phasize the fact that they are updated via the loopΓβ

of Figure 3 to ensure stability. The parametersβ include
the stiffness and rest position of the virtual compliant
element (14), which enables modifying the energy stored
during compression and injected during decompression;
βp
kvc

, βp
qmLSvc

for p ∈ {sc, sd}. In addition, they include
the touchdown angleβTD of the swing leg to regulate
the forward running speed, the torso angle at liftoffβTor

that influences the initial conditions of the ensuing flight
phase, and an offsetβθf that is added toθ−f to change
the position of liftoff. In summary,

β = (βsc
kvc

, βsd
kvc

, βTD, βsc
qmLSvc

, βsd
qmLSvc

, βθf , βTor) ∈ B

includes the parameters that are updated in an event-
based fashion by the componentΓβ of the control law.

For the design and experimental implementation of
Γβ , the full-order Poincaŕe map is considered. The
switching surface in the definition of the Poincaré map
Pβ in Section III-C2 is chosen asSβ = Ssc→sd, resulting
in the discrete-time nonlinear control system (16) withβ
appearing as its input. The controllerΓβ corresponds to

Fig. 8. Stick figure plot of three steps of running. The stanceleg is
illustrated in red, while the swing leg is illustrated in blue. Stick figures
with darker shades are in flight phase, while those with lighter shades
are in stance phase. From the stick figure it can be easily deduced that
the flight phase lasts around30% of the gait.

the discrete LQR (18) designed based on the lineariza-
tion (17) of (16) about the fixed point(x−∗, β∗) as was
discussed in Section III-C2. This controller updatesβ
each time the surfaceSsc→sd is crossed, ensuring that the
eigenvalues of linearization of the closed-loop Poincaré
map are all within the unit circle; for the particular
design implemented here, the dominant eigenvalue has
magnitude0.8383, concluding that the fixed point is
locally exponentially stable.

Figure 8 shows three steps of the running gait under
the controller that includesΓα

p , Γαc
p , andΓβ . The ob-

tained motion can continue indefinitely in simulation.
2) Robustness to Perturbations:The control design

proposed so far combines continuous- and discrete-time
control to exponentially stabilize the system, accom-
modating perturbations in the torso pitch angle up to
6◦ in both the forward and backward directions. While
this performance in stabilizing the torso is adequate for
experimental implementation, the controller in its current
form cannot reject errors in the stance leg shape that
exceed5◦ at impact; see Figure 9(a). This observation
motivates the additional control layerΓγ of Figure 3,
which, as was mentioned in Section III-C3 is added
to improve the robustness of our control design to
perturbations in the knee angle at impact.

To implement this controller, a number of parame-
ters detailed below will be updated byΓγ on entry
to the stance phase; that is, at the switching surface
Sγ = ∆f→s(Sf→s) ⊂ TQs, whereSf→s is the flight-
to-stance switching surface defined by (6) and∆f→s

the corresponding transition map. The motivation for
considering the touchdown event is that it provides an
immediate response to errors arising in the preceding
flight phase, such as landing with an excessively bent
knee, or velocity mismatch caused by imperfections in
the ground contact model.
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Fig. 9. Three step simulation of a5◦ perturbation in the impact value
of the leg shape. (a) Perturbation withoutΓγ outer-loop controller,
(b) Perturbation withΓγ outer-loop controller. The nominal (no
perturbation) plot is shown for comparision. The squares on the plots
indicate locations at which the controller transitions from stance to
flight phase.

We continue our discussion on this additional control
componentΓγ by providing some intuition. First note
that, to produce the same leg force, the compression
required in a segmented revolute-knee leg with joint
compliance is larger than that required in a prismatic
leg. This phenomenon was observed in (Rummel and
Seyfarth, 2008), and, in the context of MABEL, implies
that the stiffness of the virtual compliant element should
be modified—i.e., increased—to prevent the leg from
excessively bending to develop sufficient force for sup-
porting the weight of the robot. Furthermore, the swing
leg may have to contract additionally to ensure sufficient
ground clearance in the presence of shorter stance leg
lengths. To accommodate these requirements, the virtual
compliance stiffness,γsc

kvc
, as well as the knee angle of

the swing legγLSsw
will be updated according to

γsc
kvc

=

{

Kksc
vc
(qs+LSst

− qs+∗

LSst
), qs+LSst

− qs+∗

LSst
> 0

0, otherwise

γLSsw
=

{

KLSsw
(qs+LSst

− qs+∗

LSst
), qs+LSst

− qs+∗

LSst
> 0

0, otherwise
(25)

where qs+LSst
denotes the stance leg shape angle right

after touchdown,qs+∗

LSst
its nominal value. The gains

Kksc
vc
,KLSsw

are tuned through simulations, and their
values are provided in Table I.

An additional corrective action embedded inΓγ re-
gards the regulation of the forward running speed. To
do this, Γγ updates a parameterγTor, which shapes
the virtual holonomic constraint imposed on the torso
motion at the beginning of stance based on the difference
between the current forward speed and its nominal value.
This allows leaning the torso forward to increase speed,
or backward to decrease speed, and is implemented

TABLE I
GAIN PARAMETERS FORΓγ CONTROLLER.

Gain parameter Value
Kksc

vc
0.46

KLSsw
1.5

K+
Tor

0.16
K−

Tor
0.31

Kδsc→sd
−0.37

through the prescription

γTor =

{

K+
Tor(ṗ

h,s+

hip
−ṗ

h,s+∗

hip
), (ṗh,s+

hip
−ṗ

h,s+∗

hip
) > 0

K−

Tor(ṗ
h,s+

hip
−ṗ

h,s+∗

hip
), otherwise,

(26)
whereṗh,s+hip is the horizontal speed of the hip at impact

with the ground,ṗh,s+∗

hip its nominal value, and gains
K+

Tor,K
−

Tor are provided in Table I. As speed increases,
the energy injected during the stance-decompression
phase decreases because the time spent in this phase
decreases with increasing speed. To account for this, the
controller Γγ will update one more parameter, namely
γδsc→sd , that modifies the location of transition from
stance-compression to stance-decompression to increase
or decrease the period over which energy is injected
in the stance-decompression phase. This is achieved
through

γδsc→sd =

{

Kδsc→sd(ṗ
h,s+

hip
−ṗ

h,s+∗

hip
), (ṗh,s+

hip
−ṗ

h,s+∗

hip
) > 0

0, otherwise
(27)

where ṗh,s+hip and ṗh,s+∗

hip have the same meaning as in
(26) andKδsc→sd is provided in Table I. In summary,

γ = (γsc
kvc

, γTor, γLSsw
, γδsc→sd) ∈ G

includes the parameters that are updated in an event-
based fashion by the componentΓγ of the control law.

Under the influence ofΓγ , the robustness to perturba-
tions is increased and, as shown in Figure 9(b), perturba-
tions up to5◦ in the impact leg shape angle (knee being
bent an additional10◦) can be rejected. The stability
of the closed-loop system can be analyzed through the
eigenvalues of the linearization of the Poincaré mapPγ

introduced in Section III-C3; more details can be found
in Appendix B where it is shown that the linearized
Poincaŕe map has a dominant eigenvalue of magnitude
0.6072 indicating that the closed-loop system with the
additional componentΓγ is locally exponentially stable.

Remark 2: Note that the controllersΓα,Γαc ,Γβ have
been designed through rigorous control synthesis ap-
proaches, whereas the design of the outer most control
loop, Γγ , has been based on heuristics. It is noted that
the controllersΓα,Γαc ,Γβ achieve stable running in
simulations on the design model. The controllerΓγ aids
in the experimental validation of running by increasing
the closed-loop system’s robustness to perturbations in
the knee angle at impact and to imperfections in the
ground contact model. Section V-D provides additional
comments in this regard.
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TABLE II
STIFFNESS CONSTANTS FOR VARIOUS SOURCES OF COMPLIANCE.

Source of compliance Stiffness value
kBsp 3.17
kcable 2.46
k∗vc 1.66
kvc 5.08

F. Preparing for Experimental Deployment

One aspect that needs to be incorporated in the control
design prior to experimental deployment on MABEL is
cable stretch. In the leg shape coordinates, cable stretch
reaches a peak value of almost15◦ just prior to lift-off,
which, given that the nominal peak leg shape is around
25◦ (see Figure 4), amounts for over60% of motion
in the knee, thus further amplifying knee bending. To
account for this issue, the nominal controller design
will be modified. In more detail, the compliance due
to cable stretch will be modeled as a spring-damper
system placed in series with the physical spring (Bspring)
and the motor leg shape actuator in the transmission
mechanism. Then, active force control on the stance leg
can be used to modify the virtual compliancekvc so that
the compliance due to the cable stretchkcable together
with kvc has the value of the effective compliancek∗vc
obtained through the optimization procedure detailed in
Section IV-D; i.e.,

1

kcable
+

1

kvc
=

1

k∗vc
. (28)

With this modification, the effective compliance of the
leg is now the same as that without cable stretch, i.e.,
cable stretch has been accounted for by the control
design. Table II provides the values for the various
compliances discussed in this section.

This modified running controller is next validated on
the detailed model as mentioned in Section II-F and is
ready for experimental deployment.

V. RUNNING EXPERIMENTS

This section documents experimental implementations
of the running controller developed in Sections III, IV.
To illustrate the power and limitations of the proposed
method, three experiments are presented. The first ex-
periment details the execution of a transition controller
that transitions from walking to running, the second
experiment details a running experiment, and finally the
third experiment details the transition from running to
walking. Videos of the running experiments are available
on YouTube (Sreenath et al., 2011a,c).

A. Exp. 1: Two-step Transition from Walking to Running

Running on MABEL can be implemented by transi-
tioning from walking. As in (Westervelt et al., 2003), to
transition from walking to running the controller modi-
fies the virtual constraints corresponding to a walking
gait so that, by the end of a walking step, they are

closer to the virtual constraints of the targeted running
gait. Instead of a one-step transition from walking to
running as was done in (Morris et al., 2006), a two-step
transition is implemented to enable a smoother transition
by preventing rapid torso motions on MABEL. This is
especially important for gaits where the final and initial
values of the torso virtual constraint differ significantly
between the walking and running fixed points, respec-
tively. A walking-to-running transition then consists of
the following: (a) A transition from the nominal walking
gait to a transition-walk-step, followed by (b) a transition
from the transition-walk-step to a transition-run-step, and
finally (c) a transition from the transition-run-step to
the nominal running gait. Figure 10(a) illustrates plots
of various variables for the transition from walking to
running. The walking and running sections are clearly
marked along with the two transition steps.

B. Exp. 2: Running with Point Feet

Initial experiments on MABEL failed to achieve
steady-state running due to foot slippage and the con-
troller’s poor performance in regulating forward speed.
This is a consequence of imperfections in the ground
contact model used in the controller design. To address
these issues, the point feet were replaced with passive
feet with shoes to provide a larger surface area for trac-
tion, thereby preventing slipping. With this configuration,
successful running was achieved—see Appendix A for
more details on these experiments—suggesting certain
modifications to the running controller of Sections III,
IV in order to achieve running on point feet.

In more detail, to regulate the forward speed, theγ-
parameter corresponding to the virtual compliance is
modified as in (31) and saturation in theβ-parameter
corresponding to the touchdown angle is introduced
as in (32); see Appendix A. Finally, theγ-parameter
that modifies the location of the stance-compression to
stance-decompression phase will also be saturated as a
function of the speed as,

γsat
δsc→sd

=











0.2, 0 ≤ ṗh,avghip < 2

0.25, 2 ≤ ṗh,avghip < 2.5

0.35, 2.5 ≤ ṗh,avghip

. (29)

At high speeds, the time spent in the stance-
decompression phase decreases, which results in less
energy being injected and smaller push-offs. With the
above modification, a well defined flight phase is main-
tained even at fast running motions.

Next, to prevent the stance-decompression phase from
causing a lift-off with a high velocity, the stance-
decompression to flight phase switching surface is mod-
ified as follows

Sexp
sd→f := Ssd→f ∩ {xs ∈ TQs | ṗvhip > ṗv,s−∗

hip }. (30)

In addition, during the stance-decompression phase, the
torso is pushed back in a similar manner as in the running
with feet experiment. Finally, during the flight phase, the
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Fig. 10. Experimental plots of the internal phase variable, joint angles, and motor torques for (a) transition from walking to running (Exp. 1)
and (b) transition from running to walking (Exp. 3). The internal phase variable of the controller indicates the walkingand running parts of
the gait, with the thicker plots indicating the transition steps. Note that, for transition to running there are two transition steps - one during
walking and the other during running, while for transition to walking there is one transition step during walking. Also note that the peak spring
compression for running is around2.5 times that for walking.

adaptive correction polynomials, as used for the running
with feet experiment, are deployed. Both these changes
counteract the effect of unmodeled cable stretch in the
leg angle direction.

With these changes to the controller developed in
Sections III, IV, the running experiment is carried out
as follows. First, walking is initiated on MABEL using
the walking controller developed in (Sreenath et al.,
2011b). Next, the walking to running transition con-
troller, presented in Section V-A, is executed. Finally, on
transition to running, the running controller is executed.
The running controller induced stable running at an
average speed of1.95 m/s, and a peak speed of3.06
m/s.113 running steps were obtained and the experiment
terminated when the power to the robot was cut off. At
2 m/s, the average stance and flight times of233 ms
and 126 ms are obtained respectively, corresponding to

a flight phase that is35% of the gait. At 3 m/s, the
average stance and flight times of195 ms and123 ms
are obtained respectively, corresponding to a flight phase
that is 39% of the gait. An estimated ground clearance
of 3− 4 inches (7.5− 10 cm) is obtained. The specific
cost of mechanical transport (cmt), defined in (Collins
and Ruina, 2005), was computed to be1.07.

Figure 11(a) depicts snapshots at100 ms intervals of a
typical running step. Figure 12(a) depicts the mean joint
angles, and motor torques temporally normalized over
time, for 50 consecutive steps of running.

The outer-loop event based controller parameters are
depicted in Figures 13(a), 14(a). Considerable variation
in the speed is observed. In particular, when the speed
exceeds2.5 m/s, large changes in the touch down an-
gle, βTD, and theγ-parameter that affects the transi-
tion from stance-compression to stance-decompression,
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seen, cable stretch contributes as much as the spring to the compliance
present in the system. This was hinted at in Table II.

γδsc→sd causes the speed to dramatically drop to under1
m/s. All this is autonomously handled by the controller
with no manual intervention. The ability of the controller
to recover from slow speeds below1 m/s, and high
speeds above2.5 m/s illustrates a good robustness to im-
perfections in the ground contact model. The controller is
also able to account for significant cable stretch (shown
in Figure 15.)

C. Exp. 3: One-step Transition from Running to Walking

This section briefly describes the controller used to
transition from running to walking. To realize such
transitions, the running controller is switched to a walk-
ing controller that creates virtual compliance through
active force control on the stance leg shape motor. This
walking controller essentially treats a running-to-walking
transition as a large step-down, similarly to what was
done in (Park et al., 2012) for walking gaits. Figure 10(b)
illustrates plots of various variables for the transition
from running to walking. The running and walking
sections are clearly marked along with the transition step.
Note that transition from running to walking is achieved
in a single step.

D. Discussion of the Experiments

The experimental implementation of running motions
on MABEL revealed a number of interesting observa-
tions regarding the robot and the proposed controller.
First, it was observed that the robot runs faster in
experiments than what simulations predict based on the
developed models. This behavior is similar to what
was observed in walking experiments with MABEL
(Sreenath et al., 2011b), and is attributed to the inevitable
inaccuracies associated with the ground contact model.
While in (Sreenath et al., 2011b, Sec. VII-B) we suggest
various ways of modeling the ground impact demonstrat-
ing that impact scaling can account for speed differences
in walking, it is not clear how the parameters of the
compliant ground model can be selected to improve the
accuracy of the simulations in the case of running.

Another source of inaccuracy is the assumption of
planar motion that underlies the model based on which
the controller is derived. Clearly, the support boom in the

experimental setup constraints the robot’s hip to move
on the surface of a sphere and not in sagittal plane.
Furthermore, the boom affects the weight distribution so
that the robot weighs10%—approximately7 Kg—more
when supported on the inner leg than when supported
on the outer leg. In running, this asymmetry results
in harder impacts on the inside leg causing its knee
to bend more during the corresponding stance phase.
As a consequence, the outer-loop component of the
controller tends to overcompensate in the following step;
notice the pronounced step-to-step oscillations in the
virtual compliance in Figure 14(a). To account for this
phenomenon, the controller can be modified so that
the virtual compliance is10% stiffer on the inside leg.
Moreover, for smoother running motions, the outer-loop
controllers can perform separate step-to-step updates
over two steps.

As a final remark, note that the proposed con-
troller combines formal control synthesis procedures
with heuristics to experimentally realize running on
MABEL. The inner-loop control components—namely,
Γα, Γαc , and Γβ—are designed through systematic
control methods to meet certain specifications such as
hybrid invariance and local exponential stability. On
the contrary, the outer-loop event-based controllerΓγ

is based on certain intuitive observations aiming to
enhance the robustness of the controller to perturbations
in the knee angle at impact and to imperfections in
the ground contact model. To minimize the reliance
of the controller on heuristics, the softening effect of
the spring for large knee angles can be incorporated
in the continuous-time control component by suitably
modifying the virtual compliance (14) to include the
nonlinear relation between the knee bending angle and
the developed leg force as observed in (Rummel and
Seyfarth, 2008). Similarly the effect of cable stretch
can also be included in (14). With these modifications,
the outer-loop componentsΓγ could be removed from
the design andΓβ would be sufficient to ensuring both
exponential stability and robustness.

VI. CONCLUSION

MABEL contains springs in its drivetrain for the
purposes of enhancing agility and robustness of dynamic
locomotion. This paper has presented a model-based
control design method to realize the potential of the
springs. Experiments have been performed to illustrate
and confirm important aspects of the feedback design.

The controller is based on the hybrid zero dynamics
introduced in (Poulakakis and Grizzle, 2009b) and fur-
ther developed and deployed experimentally in (Sreenath
et al., 2011b). An important modification was the de-
liberate inclusion of actuation in the zero dynamics
during the stance phase of running, which enabled active
force control of the stance knee. Specifically, a virtual
compliant element was created to dynamically vary the
effective leg compliance during stance. An outer-loop



15

(a) (b)

Fig. 11. Snapshots of a typical running step for (a) running with point feet, and (b) running with passive feet, are shown at intervals of100
ms. The snapshots progress temporally from left to right and from top to bottom. Videos of the experiments are available on YouTube (Sreenath
et al., 2011a,c).
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Fig. 12. Ensemble plots of joint angles and motor torques of thestance and swing legs for50 consecutive steps of (a) running with point
feet, and (b) running with passive feet. The solid lines represent the mean recorded joint angle waveforms, while the dotted lines indicate the
upper and lower quartiles over the running steps. The curveswere temporally normalized from initial touchdown (0%) to subsequent touchdown
(100%).
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Fig. 13. Parameter plots for50 consecutive steps for the outer-loop event-based controller,Γβ , for (a) running with point feet and (b) running
with passive feet.sc, sd refer to the values of the correspondingβ-parameters in the stance-compression and stance-decompression subphases
respectively.
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Fig. 14. Parameter plots for50 consecutive steps for the nonlinear outer-loop controllerfor increasing robustness to perturbations ,Γγ , for (a)
running with point feet and (b) running with passive feet.sc, sd refer to the values of the correspondingγ-parameters in the stance-compression
and stance-decompression subphases respectively.

event-based controller was designed to exponentially
stabilize the periodic running gait. An additional outer-
loop event-based controller was designed to improve the
robustness of the periodic running gait to perturbations
in the knee angle at impact and to imperfections in the
ground contact model.

The running controller has been experimentally de-
ployed and stable running has been successfully demon-
strated on MABEL, both with passive feet and with
point feet. The achieved running is dynamic and life-
like, exhibiting flight phases of significant duration and
high ground clearance. For running with point feet, the
developed controller resulted in a kneed-biped running
record of3.06 m/s (10.9 kph or 6.8 mph).
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APPENDIX A
RUNNING WITH PASSIVE FEET

To avoid slipping, MABEL’s original shins terminat-
ing at point feet were replaced with shins terminating
in passive feet enclosed in regular running shoes that
provide a larger surface area for better traction. With
the addition of the passive feet, the model developed
in Section II is no longer valid due to (a) the different
inertia properties between the two designs, and (b) the
different toe-ground interactions, which, in the case of
shoes, result in softer impacts due to the rolling contact
with the ground. To accommodate these differences, a
number of modifications will be made in the controller.

Modifications to regulate speed:At faster speeds, the
time spent in the stance-decompression phase decreases.
As a result, the effective energy injection is reduced,
resulting in a lower peak apex height in flight. To
maintain a well defined flight phase at fast speeds, an
additional parameter,γδsc→sd (see (27)), was added to
Γγ to modify the location of the stance-compression to
stance-decompression switching surface.

As suggested in (McGeer, 1990; McMahon and
Cheng, 1990), animals vary stance leg stiffness to reg-
ulate running speed. Thus, there is a need for the
controller to change the effective leg compliance as
a function of speed. This is achieved by adding an
additional term∆γsc

kvc
to γsc

kvc
computed in (25), where,

∆γsc
kvc

:=

{

−Kksc
vc

√

∆ṗh,avghip , ∆ṗh,avghip > 0

0, otherwise
, (31)

with, ∆ṗh,avghip = (ṗh,avghip − ṗh,avg∗hip ), and ṗh,avg∗hip , ṗh,avghip

being the nominal and last step average horizontal hip
speeds respectively.

Finally, to enable large touchdown angles at faster
speeds to effectively slow down the robot and to prevent
large touchdown angles at slow speeds from causing the
foot to slip, theβ-parameters are bounded, such that,
−βsat ≤ β ≤ βsat, with the saturation for theβ-
parameter corresponding to touchdown,βTD, specified
as a function of speed, as below,

βsat
TD =































2◦, 0 ≤ ṗh,avghip < 1.2

1.5◦, 1.2 ≤ ṗh,avghip < 1.7

2◦, 1.7 ≤ ṗh,avghip < 2

2.5◦, 2 ≤ ṗh,avghip < 2.5

4◦, 2.5 ≤ ṗh,avghip

(32)

Modifications to account for the passive feet:The
softer impacts due to the feet in the shoes result in
the spring not compressing sufficiently and cause flight
phases with smaller durations and with lower ground
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clearance. To account for the softer impacts, the nominal
virtual compliance,k∗vc, was reduced by18%.

During stance-decompression, energy injection causes
the spring to compress initially and then rapidly decom-
press resulting in rapid knee extension causing push off.
However, due to the geometry of the passive foot—
specifically, the absence of an ankle rotation DOF—
when the leg is backward at the beginning of stance-
decompression, only the forward part of the shoe is in
contact with the ground. This causes a significant frac-
tion of the injected energy not to be translated to a push
off; rather it rapidly affects the angle of the foot with
respect to the ground. This effect is more pronounced
when the spring is close to its rest position. To address
this, the stance compression-to-decompression switching
surface is modified to ensure that switching occurs when
the spring is sufficiently compressed,

Sexp
sc→sd := Ssc→sd∩{xs ∈ TQs | θs > θ50%, qBspst

< 20◦},
(33)

where,θ50% is the value ofθs at 50% into stance.
To prevent (a) slipping towards the end of stance when

the stance forces are small, (b) hyper-extension of the
heavy shin, and (c) large vertical velocities at liftoff,
the stance-decompression to flight switching surface is
modified as below,

Sexp
sd→f := Ssd→f ∩ {xs ∈ TQs | qBspst

< 15◦,

qLSst
< 2◦} ∩ {xs ∈ TQs | ṗvhip > ṗv,s−∗

hip },
(34)

where,ṗvhip is the vertical hip velocity, anḋpv,s−∗

hip is the
nominal liftoff vertical hip velocity.

Finally, to prevent the shoes from scuffing the ground
during leg swing, the swing leg shape virtual constraint
is modified to fold the leg by an additional constant
amount.

Modifications to account for unmodeled cable stretch
in leg angle transmission:The running controller ac-
counts for unmodeled cable stretch in the leg shape
coordinates, but not the leg angle coordinates. During
the stance-decompression phase, the nominal virtual
constraint specifies the torso to pitch backward. In
experiments, the torso is sometimes driven forward to
correct tracking errors, which results in forward pitching
during flight causing a significant torso error on impact.
To prevent this, when the torso velocity drops below a
threshold, the controller for the torso pushes the torso
backward instead of enforcing the virtual constraint.

On initiation of the flight phase, the event-based
controller Γαc

f ensures hybrid invariance through the
correction polynomials,hf

c as in (15), such that the
modified virtual constraints smoothly join the nominal
ones half-way into the flight phase. During experi-
ments, large errors at liftoff may cause the modified
virtual constraint to initially reverse the direction of
motion, resulting in significant leg angle cable stretch
and subsequent large touchdown errors. To handle this,
the correction polynomials are modified such that the
modified virtual constraint smoothly joins the nominal

one at an adaptively chosen location that is either50%,
75%, or 95% into the flight phase, depending on the sign
and magnitude of the error on transition to flight.

With these modifications, the running experiments
with passive feet can be performed. The walking con-
troller of (Sreenath et al., 2011b) is employed, along with
a torso offset to lean the torso forward to induce stable
walking with the passive feet at1.26 m/s. The walking-
to-running transition controller developed in section V-A
is used to excite running. On transition, the modified
controller described above is executed to sustain running
at an average speed of1.07 m/s obtaining100 running
steps. Figure 11(b) illustrates snapshots of a typical
running step. The average stance and flight times are
360 ms and151 ms, respectively, i.e. flight amounts for
30% of the gait. The ground clearance is approximately
2 inches (5 cm) and the specific cost of mechanical
transport (cmt) is 0.75. Figure 12(b) depicts the mean
joint angles and motor torques, normalized over time,
for 50 consecutive steps of running. Figures 13(b), 14(b)
illustrate theβ andγ-parameters.

APPENDIX B
ANALYZING STABILITY OF Γγ CONTROLLER

To analyze stability, the Poincaré map is numerically
computed. To ease computation, the sectionS̃γ = {xs ∈
TQs | θs = θ77%} will be considered instead ofSγ ; S̃γ

represents a switching surface77% into the stance phase.
We can then study the eigenvalues of the Poincaré map
P̃γ : S̃γ × B × G → S̃γ . Note that, while the Poincaré
section S̃γ is used instead ofSγ , the β, γ parameters
still continue to be updated on their respective switching
surfacesSβ and Sγ . To define the Poincaré map P̃γ ,
we define three maps:̃P 1

γ : S̃γ × B × G → Sγ which
maps a state oñSγ along with β and γ to the post-
impact surface, which is also the switching surfaceSγ

for the event-based controllerΓγ ; P̃ 2
γ : Sγ×B×G → Sβ

which maps a state onSγ to the stance-compression to
stance-decompression transition surface, which is also
the switching surfaceSβ for the event-based controller
Γβ ; and finally P̃ 3

γ : Sβ × B × G → S̃γ , which maps
a state onSβ back to S̃γ , the Poincaŕe section under
consideration. To further clarify this, we define,

xa
p[k] = P̃1

γ(xp[k], β[k], γ[k]) (35)

xb
p[k] = P̃2

γ(x
a
p[k], β[k],Γ

γ(xa
p[k])). (36)

Then,

xp[k + 1] = P̃γ(xp[k], β[k], γ[k])

= P̃3
γ

(

xb
p[k],Γ

β(xb
p[k]),Γ

γ(xa
p[k])

)

.(37)

Thus theγ parameters continue to be updated on the
switching surfaceSγ , while theβ parameters are updated
on the switching srufaceSβ . The switching sectioñSγ

serves only to define the Poincaré mapP̃γ . With this,
the eigenvalues of the linearized Poincaré map was com-
puted and a dominant eigenvalue of magnitude0.6072
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TABLE III
GLOSSARY OF SYMBOLS.

Symbol Description
αp Coefficients for B́ezier polynomial forp ∈ P
αc
p Coefficients for correction polynomial forp ∈ P

αvc Parameter vector for the virtual compliant element
β Parameter vector forΓβ controller
γ Parameter vector forΓγ controller

∆s→f Stance to flight impact map
∆f→s Flight to stance impact map
Γα
p Continuous-time controller forp ∈ P

Γβ Discrete-time controller for hybrid invariance
Γγ Discrete-time controller for robustness
Be Input matrix for unconstrained dynamics
Ce Coriolis matrix for unconstrained dynamics
De Inertia matrix for unconstrained dynamics

FN
toest

Stance toe normol ground reaction force
fs, ff Drift vector field for stance, flight dynamics
Ge Gravity matrix for unconstrained dynamics
gs, gf Input vector field for stance, flight dynamics
gmLSst

Input vector field for stance motor leg shape input
H

p
0 Controlled variable selection matrix forp ∈ P

hp Virtual constraints forp ∈ P
h
p
d

Desired evolution of virtual constraints forp ∈ P
h
p
c Correction terms for virtual constraints forp ∈ P

P = {s, f} Represents the stance, flight phase set
Pβ Poincaŕe map forΓβ controller
Pγ Poincaŕe map forΓγ controller

ph
hip

, pv
hip

Horizontal and vertical position of the hip
pvtoesw Vertical position of swing toe
Qe Unconstrained / extended configuration space
Qs Stance configuration space
Qf Flight configuration space

qe, qs, qf Generalized coordinate vector inQe, Qs, Qf

qLAst
, qLAsw

Leg angle coordinate for stance, swing leg
qLSst

, qLSsw
Leg shape coordinate for stance, swing leg

qmLSst
, qmLSsw

Leg angle motor angle for stance, swing leg
qBspst

, qBspsw
Bspring pulley angle for stance, swing leg

qTor Torso angle
Sβ Poincaŕe section forPβ

Sγ Poincaŕe section forPγ

Ss→f Stance to flight switching surface
Sf→s Flight to stance switching surface

TQs, TQf Tangent bundle for stance, flight
U Input set
u Input vector

umLSst
Stance motor leg shape torque

ũ Actuators used to enforce stance virtual constraints
u∗

p Input that rendersZαp invariant forp ∈ P
xs, xf State vector for stance, flight dynamics
x−

s , x−

f
Pre-transition stance, flight state

x+
s , x+

f
Post-transition stance, flight state

yp Virtual constraints forp ∈ P
ycp Virtual constraints with corrections forp ∈ P
Zαp Zero dynamics surface forp ∈ P
zp State on zero dynamics surface forp ∈ P

was obtained indicating that the closed-loop system still
remains exponentially stable.


