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Abstract: Pendulum dynamics are widely utilized in robotics control literature to test and
evaluate novel control design techniques. They exhibit many interesting features commonly
seen in real-world nonlinear systems and yet they are simple enough for quick prototyping,
further analysis, and benchmarking. In this work, we study the impact of a 3D pendulum’s
orientation parametrization on stabilization performance. Mainly, we show that using a global
or coordinate-free formulation for dynamics and control is not only singularity-free but also more
input-efficient. We validate this empirically by running over 700 stabilization simulations across
the full configuration space of a 3D pendulum and compare the performance of a geometric and
a Euler-parametrized controller. We show that the geometric controller is able to leverage the
inherent manifold curvature and flow along geodesics for efficient stabilization.

1. INTRODUCTION

Pendular systems are widely studied in the robotics and
control community to discover and characterize nonlinear
dynamical phenomena like symmetries, bifurcations, or-
bital stability, etc. (Lewis et al. (1992); Chaturvedi et al.
(2011b); Lee et al. (2011)). The deeper understanding of
these behaviors helps control theorists devise nonlinear
control techniques for effective stabilization and track-
ing (Chung and Hauser (1995); Åström and Furuta (2000);
Shiriaev et al. (1999)). The impact of pendular systems
in robotics cannot be understated. Most complex robotic
systems commonly apply pendular abstractions to model
and control their dominant behaviors. For example, see
pendulum-like models in robotic manipulation (Lefrançois
and Gosselin (2010); Cunningham and Asada (2009); Zan-
otto et al. (2011)), inverted pendulum models in legged lo-
comotion (Kajita et al. (2001); Chevallereau et al. (2018);
Poulakakis and Grizzle (2009)), and multi-link pendular
models in brachiation (Saito et al. (1994); Farzan et al.
(2019)). To date, multi-link pendula, remain the best
nonlinear system models for benchmarking performance
of new control algorithms on typical real-world challenges
like underactuation, model uncertainity, stochasticity, etc.

Traditionally, nonlinear control design techniques used for
stabilization or swinging up of a 3D or spherical pendulum
(a.k.a 3D pendulum that cannot yaw) used Euler angles to
define the pendulum configuration (Shiriaev et al. (1999);
Liu et al. (2005); Aguilar-Ibanez et al. (2006)). However,
more recently, coordinate-free formulations have been pro-
posed to define pendulum configuration and corresponding
dynamical models (Chaturvedi et al. (2011b); Lee et al.
(2011); Bittner and Sreenath (2016)) and suitable control
laws (Chaturvedi et al. (2011a); Lee (2011)) have been de-
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vised. These globally-defined dynamical formulations are
singularity-free, i.e., they are devoid of kinematic singular-
ities like gimbal-lock seen in locally-defined formulations
like Euler angles (For example, the ZXY -ordering Euler-
angles ([φ θ ψ]T ) exhibit a singularity when φ = π/2).
The singularity-free property of global formulations has
implications in control design, particularly, recovery from
large angle disturbances is possible and the controllers can
be designed to be almost-globally attractive (as opposed to
weaker local attractivity properties of Euler-based control
designs). A new sub-field in nonlinear control, called geo-
metric control has emerged that exploits these control laws
and its been heavily applied in UAV literature, see Lee
et al. (2013); Sreenath and Kumar (2013); Lee (2017);
Mueller (2018) and more recently in legged locomotion,
see Sreenath and Sanyal (2015); Siravuru et al. (2018);
Ding et al. (2019).

Prior literature on geometric control has primarily focused
on providing mathematical rigor and experimental vali-
dation to geometric control, specifically the almost-global
attractivity property and the freedom from singularities.
While these two properties are more meaningful for de-
veloping UAV maneuvers to quickly recover from large
disturbances, for legged robots and other systems, the use
of geometric control needs further motivation. Large angle
recoveries are uncommon (restricted to acrobatic motions)
and may be impractical during regular locomotion tasks
like walking, running, etc. due to limited control authority,
finite time (to impact) and narrow region-of-attraction.

In this work, we demonstrate the other advantages of
geometric control that make it an appealing choice even
for legged locomotion. Through a comprehensive empirical
evaluation of 3D Pendulum stabilization to its hanging
equilibrium position, we show that geometric control is
more input-efficient than traditional Euler angles-based



Fig. 1. A 3D pendulum is a rigid body pinned at one end
(pivot) restricting its motion to be purely rotational.

nonlinear control. This fact purely stems from the ex-
ploitation of inherent curvature in the SO(3) manifold
space that is thrown away when an Euler-parameterization
is used. The feedback laws built directly on SO(3) use
the geodesics for error correction and are therefore more
efficient. As both nonlinear controllers are equivalent to
the first order, the efficiency of the geometric controller is
more pronounced for larger error recovery.

The rest of this paper is organized as follows. In Section 2,
we summarize the 3D pendulum dynamical model using
both Euler and geometric formulations. Next, in Section 3,
we define feedback linearization control laws for both
the Euler and geometric formulations and compare the
error metric choices of the two formulations. In Section 4,
we comprehensively evaluate the performance of the two
models, and finally, we provide concluding remarks in
Section 5.

2. MODEL DEFINITIONS

To define the mathematical model of the 3D pendulum, we
first need to define a stationary fixed frame (inertial frame)
about which the pendulum configuration is measured. De-
note this frame as {I} and fix it at the origin, which is also
the pivot for the pendulum. Second, we attach a moving
frame (body frame), denoted as {B}, to the center-of-
mass (CoM) of the pendulum. Having defined the frames,
the next step is to choose a suitable parametrization to
represent a 3D rotation - this translates to estimating
the orientation of {B} w.r.t. {I}, as shown in Fig. 1.
In this work, we use two methods, 1) Euler-based (ZYX
ordering): q ∈ R3, and 2) Geometric: R ∈ SO(3). Other
model parameters used for modeling and control design
are defined and summarized in Table 1.

2.1 3D Pendulum Dynamics

Pendulum dynamics using both Euler and SO(3) formula-
tions can be compactly expressed as,

Euler:
De(q)q̈ + He(q, q̇)q̇ = Beue, (1)

where q = [φ θ ψ]T , q̇ = [φ̇ θ̇ ψ̇]T , and ue ∈ R3.

SO(3):

Ds(R)Ω̇ + Hs(R,Ω)Ω = Bsus. (2)

where R ∈ SO(3), Ω ∈ TRSO(3), and us ∈ T ∗RSO(3). Here,
TRSO(3) and T ∗RSO(3) are tangent and co-tangent spaces
on SO(3) at the configuration R.

{I} Inertial frame fixed to the pivot.
{B} Body frame fixed at the CoM of pendulum.
e3 ∈ R3 Standard unit vector pointing upward.

m ∈ R Mass of the pendulum link.
J ∈ R3×3 Inertia of the pendulum expressed in frame

{B}.
lc ∈ R Length of the pendulum CoM w.r.t the pivot.

R ∈ SO(3) Rotation matrix from {B} to {I}.
Ω ∈ R3 Angular velocity of the pendulum expressed

in the body frame {B}.
φ, θ, ψ ∈ R Roll, Pitch and Yaw angles used to express

pendulum configuration using an Euler
parametrization.

(̂.) hat map is a linear mapping from R3 to so(3).
(.)∨ vee map is a linear mapping from so(3) to R3.

Table 1. Symbols and parameter definitions for
3D Pendulum modeling and control design.

The Euler dynamics can be easily derived and we omit
it here for brevity. However, De(q) will be used later to
check for singularities and to define suitable mappings to
go back and forth between Euler and geometric inputs.
The SO(3) dynamics equations of motion are compact, as
shown below:

Ṙ = RΩ̂, (3)

Ω̇ = J−1(−Ω̂JΩ−mgl̂cRT e3 + us). (4)

For the derivation of these equations, see Lee et al. (2017)
and Chaturvedi et al. (2011b). The hat map used in
equation 4, and its inverse - the vee map - are defined
in Table 1. Note that the dynamics cannot be directly
compared and we need to define suitable mapping between
the Euler angles, rates and inputs to their counterparts in
SO(3).

2.2 Transfer Maps

Using the ZXY ordering of Euler angles, we define R(q) :
R3 → SO(3) whose expression is given as,

R(q) =

(
cθ cψ − sφ sθ sψ −cφ sψ cψ sθ + cθ sφ sψ
cθ sψ + cψ sφ sθ cφ cψ sθ sψ − cθ cψ sφ

−cφ sθ sφ cφ cθ

)
,

(5)

s.t. R = R(q). Here, we compactly represent cos(α) and
sin(α) as cα and sα, respectively, and α is a placeholder
for any Euler angle in q.

Next, we define Tq̇(q) : R3 → R3×3 to convert Euler
rates (q̇) to angular velocities (Ω) as shown below:

Tq̇(q) =

(
cθ 0 −cφ sθ
0 1 sφ
sθ 0 cφ cθ

)
, s.t. Ω = Tq̇(q)q̇. (6)

Finally, to convert Euler input (ue) to SO(3) input (us),
we define Tu(q,R) : R3 × SO(3)→ R3×3 as,

Tu(q,R) = (D−1
s Bs)

−1Tq̇(q)(D−1
e Be), (7)

s.t us = Tu(q,R)ue.

Tq̇ Derivation: We first define Rw(α) : R → SO(3) as
a mapping from an Euler angle α to its corresponding
axis-specific rotation matrix Rwi . Following the ZXY



Euler sequencing, we have α ∈ [ψ φ θ]T representing
a rotation about an axis denoted by wi ∈ [Z X Y ]T

and whose unit vector is denoted by ei. Accordingly, we

have Ṙwi = Rwi
̂̇αei. Using this notation, we express R

as a product of its individual axis-wise rotation elements
Rz(ψ), Rx(φ), and Ry(θ). We can then compute its first

derivative, Ṙ, as a function of Euler angles q and their
Euler rates q̇, as shown below:

R = RzRxRy,

=⇒ Ṙ = ṘzRxRy +RzṘxRy +RzRxṘy,

= Rz
̂̇
ψe3RxRy +RzRx

̂̇
φe1Ry +RzRxRy

̂̇
θe2.

From equation (3), we know that Ω = (RT Ṙ)∨. Therefore,

Ω̂ = RTy R
T
xR

T
z Rz

̂̇
ψe3RxRy +RTy R

T
xR

T
z RzRx

̂̇
φe1Ry+

RTy R
T
xR

T
z RzRzRxRy

̂̇
θe2,

= RTy R
T
x
̂̇
ψe3RxRy +RTy

̂̇
φe1Ry +

̂̇
θe2,

= ̂RTy R
T
x ψ̇e3 + R̂Ty φ̇e1 +

̂̇
θe2.

Finally, we apply a vee map on both sides to get,

Ω = [RTy e1 e2 RTy R
T
x e3]

 φ̇

θ̇

ψ̇

 , (8)

=⇒ Tq̇(q) = [RTy e1 e2 RTy R
T
x e3] =

(
cθ 0 −cφ sθ
0 1 sφ
sθ 0 cφ cθ

)

Tu Derivation: We can obtain Tu by taking the time
derivative of equation (6), then substituting the dynamics

from equations (12) and (13) for q̈ and Ω̇. Finally, we
equate the input vector fields on both sides to finish the
derivation. In particular,

Ω = Tq̇(q)q̇,
=⇒ Ω̇ = Ṫq̇ q̇ + Tq̇ q̈,

−D−1
s Hs︸ ︷︷ ︸

=:Ãs

+D−1
s Bsus︸ ︷︷ ︸
=:B̃s

= Ṫq̇ q̇ − Tq̇D−1
e He︸ ︷︷ ︸

=:Ãe

+ Tq̇(D−1
e Beue)︸ ︷︷ ︸
=:B̃e

.

(9)

Note that, the equality in equation (9) must hold for all

ue and us. Setting ue = us = 0 results in Ãe = Ãs.
Eliminating, Ãe and Ãs, we can define,

us = (D−1
s Bs)

−1Tq̇(D−1
e Be)︸ ︷︷ ︸

Tu

ue,

=⇒ Tu = (D−1
s Bs)

−1Tq̇(D−1
e Be).

Using these transfer maps it is easy to compare the Euler
and geometric control laws which are going to be defined
in the next section.

2.3 Pendulum State Sampling:

In the following sections, we empirically evaluate kine-
matic and dynamical defects like singularities, control de-
sign attributes like error metrics, input profiles, etc. for
both SO(3) and Euler models for a wide range of pen-
dulum configurations/states. The main emphasis of this

Fig. 2. The figure shows a coarse grid of the sampling
points used in this study along with their sample
number. The starting and final experiment indices
are highlighted in red, and correspond to (φ = θ =
ψ = −π) and (φ = θ = ψ = π), respectively. To
better visualize the control studies, the desired final
position (hanging equlibrium) is also shown in green
and corresponds to (φ = θ = ψ = 0).

Fig. 3. A scatter plot of Ds(q) matrix condition number
(on the log scale) for all the state samples from
Sec. 2.3. All the yellow points are singular.

work is to use this comprehensive empirical evaluation to
highlight the benefits of geometric control and complement
mathematically rich previous works.

The states are sampled from a [−π, π] range of φ, θ, and ψ
values with a resolution of π/4. The corresponding SO(3)
states can be obtained using transfer map R. For dynamic
and kinematic studies, these configurations can be treated
as a potential intermediate state in the pendulum motion
trajectory. For control studies, they are used as initial
conditions from which the pendulum is stabilized to its
hanging equilibrium position. Some of these state samples
are shown in Fig. 2 along-with the sample numbers to be
used in plots that follow.

Note that both Tq̇ and De lose rank when φ = π/2. This is
the singularity issue that plagues Euler parametrization.
Singular states are littered all over the configuration space,
as shown in Fig. 3, making large disturbance recovery
challenging using Euler parametrization.



Fig. 4. Ψe for qd = [0 0 0]T and for all q in Sec. 2.3.

Fig. 5. Ψs for Rd = I and for all R in Sec. 2.3.

3. CONTROL LAWS

Error Metrics: Before designing controllers and testing
their performance, it is worth defining suitable error met-
rics for the Euclidean and SO(3) spaces to measure error
growth between desired and actual pendulum states as
they spread apart. This metric is directly proportional to
the control expense involved. This helps us visualize apriori
configurations that require greater control effort.

Euler: Define non-negative function Ψe : R3 ×R3 → R as,

Ψe =
1

2

√
(q − qd)T (q − qd). (10)

SO(3): Define Ψs : SO(3)× SO(3)→ R as,

Ψs =
1

2
tr[I −RTdR]. (11)

Assuming the hanging equilibrium configuration (i.e. qd =
[0 0 0]T or Rd = I) is desired, we pick q from all the states
defined in the earlier section (Fig. 2) and plot Ψe in Fig. 4
and Ψs in Fig. 5.

On the SO(3) manifold, configurations where either one
or two Euler angles ≈ π (antipodal configurations) are
the farthest from qd. These configurations are depicted by
the cross-type bands around face centers on the samples
cube in Fig. 5. On the other hand, note that the highest
error points in Fig. 4 pertain to instances where all the
three Euler angles ≈ π (depicted by the edges of the
samples cube). This is non-intuitive as these points are
actually very close to the desired configuration on the
SO(3) manifold and should require minimal effort to reach
qd. Even before evaluating the controller performance, the
error metrics clearly highlight the inefficiencies induced by
an Euler-based controller design.

Control Design: In this work, we choose Feedback Lin-
earization (FL) for pendulum stabilization. We begin by
rewriting equations (1) and (2) in the control-affine form
as,

ẋe = fe(xe) + ge(xe)ue, (12)

ẋs = fs(xs) + gs(xs)us, (13)

where, xe = [q q̇]T and xs = [R Ω]T . Note that xs is a set.
The Feedback Linearization schemes for both models are
summarized below:

Euler: For the Euler case, it is fairly straightforward
to derive an appropriate feedback linearizing policy by
defining a suitable output as ye = he(q) = q − qd.
Here, qd(t) can be time-varying and the control problem
transitions to tracking from regulation. The output is
relative degree 2. The control goal is to drive the output
ye → 0, i.e.,

ye := he(q) = q − qd(t)→ 0, (14)

=⇒ ẏe = Lfehe = q̇ − q̇d(t), (15)

=⇒ ÿe = L2
fehe + (LgeLfehe)ue − q̈d(t) = q̈ − q̈d(t),

(16)

where, Lfehe is the lie derivative and Lfehe(q) = ∂he

∂q f .

Now lets define suitable feedforward and feedback terms,

uffe := −(LgeLfehe)
−1(L2

fehe), (17)

ufbe := −(LgeLfehe)
−1(Kpye +Kdẏe). (18)

Applying ue := uffe + ufbe in equation (16) results in a
closed-loop linear system,

ÿe +Kdẏe +Kpye = 0. (19)

SO(3): Feedback Linearization for SO(3) dynamics is non-
trivial. Here we use geometric PD error functions previ-
ously introduced in Lee (2012, 2011) and presented in (20).
Here eR is the configuration error akin to angle errors in
the Euclidean space. Similarly, eΩ is angular velocity error.
The extra term (RTRd) in eΩ is called a transport map.
Since the tangent spaces on SO(3) change with configura-
tion (Ω ∈ TRSO(3) & Ωd ∈ TRd

SO(3)), the transport map
helps project desired angular velocities onto the tangent
space at the current configuration (TRd

SO(3)→ TRSO(3))
for correct comparison.

Error Functions on SO(3)

eR =
1

2
[RTdR−RTRd]∨ (20a)

eΩ = Ω− (RTRd)Ωd (20b)

ėR =
1

2
[tr(RTRd)I −RTRd]︸ ︷︷ ︸

=:Υ(R,Rd)

eΩ (20c)

ėΩ = Ω̇ + Ω̂RTRdΩd −RTRdΩ̇d. (20d)

Similar to equation (19), we desire an exponentially stable
closed-loop error dynamics of the form

ėΩ +KdeΩ +KpeR = 0. (21)

Using a non-negative constant c, we define a candidate
Lyapunov function V as



V =
1

2
eTΩJeΩ + JKpΨs(R,Rd) + ceTReΩ, (22)

where Ψs is an error metric on SO(3) × SO(3) defined
earlier in (11), and for a given Rd, Ψs ≤ 2. Further, the

time derivative of Ψs is Ψ̇s = eTReΩ (for proof, see Lee et al.
(2010)). Using this we can compute the time derivative of
V as,

V̇ = eTΩJėΩ + JKpe
T
ReΩ + cėTReΩ + ceTRėΩ. (23)

Using equations (2), (20c), and (20d) and defining us as

us = Ω̂JΩ +mgl̂cR
T e3 − JΩ̂RTRdΩd + JRTRdΩ̇d︸ ︷︷ ︸

uff
s

−JKpeR − JKdeΩ︸ ︷︷ ︸
ufb
s

, (24)

we get,

V̇ = −(JKd − cΥ)||eΩ||2 − cKp||eR||2 − cKde
T
ReΩ. (25)

Since Υ in (20c) satisfies ||Υ|| ≤ 1, this is bounded by

V̇ ≤ −ηTWη, (26)

where η = [||eR||, ||eΩ||]T , and the matrix W ∈ R2×2 is

W =

[
cKp − cKd

2

− cKd

2 λM (J)Kd−c

]
, (27)

with c, Kp, and Kd chosen such that W is positive
definite. Finally, λM (J) denotes the largest eigen value of
J . Thus, using V and uS defined in (22) and (24), we can
convert error dynamics in (20d) to the desired closed-loop
exponentially stable dynamics in (21). A more detailed
convergence proof can be derived following the process
shown in Lee et al. (2010)(Appendix B).

4. RESULTS AND DISCUSSION

The control objective in this study is to stabilize the 3D
pendulum to its hanging equilibrium position. Euler rates
in q̇d are randomized for each trial with a max of 4 rad/s
per state and Ωd is determined using the Tq̇ mapping.
The initial condition of the pendulum could be any state
from the samples defined in Sec. 2.3. All the experiments
are run for a fixed time T . For the pendulum model, we
choose, mass as m = 1 kg, length as l = 0.5 m, and inertia
w.r.t body-frame as J = diag(0.1625, 0.1625, 0.01) kg m2.
The controller gains are kept same for both the Euler and
geometric controllers (as Kp = 100, Kd = 20) to better
visualize and compare performance. We applied an Euler
controller for the Euler dynamics and a geometric con-
troller for the SO(3) dynamics and logged key performance
metrics like input integral over time, power integral over
time, max input, and max power.

How to compare the two? After applying the two
controllers and logging performance data across a range
of initial conditions, we compare both of them in the
Euler-space. We use the maps defined in Sec. 2.2 to map
R(t), Ω(t), and us(t) to q̃(t), ˙̃q(t), and ũe, respectively.
Therefore,

q̃ = R−1(R), ˜̇q = T −1
q̇ (Ω), ũe = T −1

u (us). (28)

Geometric Control is more efficient:

Having logged both ue and ũe, we plot joint-wise integrals
for each experiment in Fig. 6. Note that, ũφ is particularly
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Fig. 6. Individual joint input integrals for each experiment.
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Fig. 7. The top plot shows normed input integral and the
bottom plot shows power integral for each experiment.
Note that orange points indicate ũe and blue points
indicate ue.

efficient compared to uφ. The existence of singularity in
the φ direction impacts all trajectories in the Euler model
with large φ errors.

Next, we evaluate metrics for full attitude control perfor-
mance. We show normed input integral and power integral
plots in Fig. 7 and max input and max power plots in
Fig. 8. Note that both over time and in magnitude the
geometric controllers are consistently more efficient. Also,
the max input and power values for Euler controller are
particularly high in some cases, mainly while crossing the
singularity configuration where the numerical integrator
applies arbitrarily large inputs. However, on a real system
with strict input saturation this difference would be less
severe.

5. CONCLUSIONS AND FUTURE WORK

In this work, we presented two formulations for modeling
and control of a 3D pendulum - one is Euler-parameterized
and the other is coordinate-free geometric formulation in
the SO(3) manifold space. Through comprehensive empir-
ical evaluation, we demonstrate that geometric control is
generally more input efficient than the more conventional
Euler-parametrized nonlinear control, not just for large
error recovery as was mainly shown so far.
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Fig. 8. The top plot shows max input norm and the bottom
plot shows max power for each experiment.

We hope that this study assists in a wider adoption
of coordinate-free modeling and control design beyond
aerial robotics. As a part of future work, we wish to
extend our empirical performance assessment studies to
underactuated double pendular systems popularly studied
in the legged and brachiating robot communities. Further,
we also plan to develop trajectory optimization routines to
discover optimal motion plans directly in the SO(3) space.
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