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Abstract— We introduce Berkeley Humanoid, a reliable and
low-cost mid-scale humanoid research platform for learning-
based control. Our lightweight, in-house-built robot is designed
specifically for learning algorithms with accurate simulation,
low simulation complexity, anthropomorphic motion, and high
reliability against falls. The narrow sim-to-real gap enables
agile and robust locomotion across various terrains in outdoor
environments, achieved with a simple reinforcement learning
controller using light domain randomization. Furthermore,
we demonstrate the robot traversing for hundreds of meters,
walking on a steep unpaved trail, and hopping with single
and double legs as a testimony to its high performance in
dynamic walking. Capable of omnidirectional locomotion and
withstanding large perturbations with a compact setup, our
system aims for rapid sim-to-real deployment of learning-
based humanoid systems. Please check our website https://
berkeley-humanoid.com/ and code https://github.
com/HybridRobotics/isaac_berkeley_humanoid/.

I. INTRODUCTION

There is a strong need for mid-scale humanoid robots
designed for effective deployment of learning-based policies,
with the ability to perform highly dynamic motions, while
being inexpensive and robust to falls and failures. Most
current bipedal and humanoid robots [1]–[5] are larger,
unsafe, and require a team of people to operate. Mid-sized
robots [6]–[12], in comparison, are light-weight and easier
to handle, requiring as few as one operator. They are more
manageable to work with when experimenting with highly
dynamic motions. Falls typically do not damage the environ-
ment or the robot, making the setup more forgiving. These
robots can be deployed in cramped lab spaces, and creating
rough terrain for testing is simple due to their limited ground
clearance. Furthermore, their experiment-friendly nature and
relatively low cost make it easier to scale up and conduct
multi-agent research, especially in academia settings.

However, designing a mid-scale humanoid robot posts
distinctive challenges. Mechanical design is more difficult
due to limited space for housing components such as motors,
sensors, and wiring, necessitating the use of compact power-
dense actuators that are often very expensive or not available
off-the-shelf [7], [13], [14]. Integrating all components in a
compact volume without sacrificing performance or cost is
difficult. Furthermore, as a more handy platform for testing
highly dynamic tasks [9], it requires an even higher torque-
to-weight ratio and greater impact reliability.

Control for mid-scale humanoids is also challenging, due
to the instability from a low center of gravity, high natural
frequency, and high sensitivity to external perturbations.
Their lower mass and inertia make these robots more agile
but also more sensitive: even small forces produce large
motions. The shorter legs lead to a reduced stride length,
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Fig. 1. Design, training, and sim-to-real deployment of our custom-
built humanoid with learning-based control. With designs tailored for
learning-based control, the robot is able to traverse a diverse set of
outdoor terrains robustly, as well as climb stairs and perform single-
leg hopping. Please check https://youtu.be/8pR1HE-wMHw?si=
1FNtxJhIay_Vdpur for details.

requiring higher frequency leg movements to adjust foot
placement rapidly, demanding precise coordination and con-
trol. Furthermore, learning-based policies face substantial
sim-to-real gaps, particularly in such rapid and dynamic
movements for controlling these robots. These characteristics
mean that the actuation of the joints must be quick and
accurate to support high-frequency motions, and the control
policies need to be exceptionally precise and robust to match
the short-time constants of the dynamics.

As shown in Figure 1, we propose to custom-build a
mid-scale humanoid platform with a special emphasis on
accommodating and facilitating learning-based control. To
achieve accurate, robust, and agile control, we leverage a
learning-based algorithm and focus on narrowing the sim-
to-real gap with adequate hardware design. Learning-based
algorithms enable us to leverage cheaper and noisier sensors
to cut down costs. To optimize for simulation performance
and accuracy while achieving high-performance actuation,
we utilize custom modular actuators with simple, integrated
transmission, hollow shafts, and EtherCAT field bus.

Our contributions are summarized as follows: (i) We
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present a reliable, low-cost, mid-scale humanoid research
platform focusing on narrowing the sim-to-real gap with
designs tailored for learning-based control. (ii) We demon-
strate that our design choices facilitate us to be able to use a
minimally composed control policy to perform dynamic and
robust locomotion on complex terrain, notably the challeng-
ing task of walking on a steep, narrow, and unpaved trail. (iii)
The codebase for policy training with the recent Isaac Lab
release is open-sourced to support future humanoid research.

II. RELATED WORK

Humanoid Design. As shown in Table I, we categorize hu-
manoid robots into three primary sizes: (a) full-scale, which
corresponds to the size of an average adult, (b) mid-scale,
comparable to the size of a child, and (c) miniature, which
refers to tiny non-human-sized robots. Full-scale humanoid
or biped research platforms typically have a large weight and
use high gear ratio Harmonic Drive actuators [1]–[3]. These
platforms are primarily enabling basic walking and arm
manipulation. Some platforms utilize Cycloidal Drive Actu-
ators for high-load joints, combined with spring and linkage
designs [4], [16]. This setup simplifies the design of reduced-
order, step-to-step model-based controllers. However, for
more recent learning-based algorithms, these designs op-
timized for model-based control advertedly affect training
and deployment. In comparison, more lightweight platforms
featuring proprioceptive actuators [24] and primarily dummy
arms have been recently developed, capable of performing
more dynamic tasks [5], [15]. Besides full-scale humanoids,
mid-scale or miniature humanoid research platforms have
gained popularity over the recent years [10], [17]–[19],
[25]. All of these platforms opt for proprioceptive actuators
and are designed for better dynamic performance, but most
of them lack fully articulated legs. On the other hand,
new humanoid robots from some companies deviate from
proprioceptive actuators: Tesla Optimus, for example, uses
linear actuators and harmonic drives, some with load cells for
force control, and features complex transmissions between
joints and actuators [26]. Boston Dynamics’ hydraulic Atlas
[27] excels in highly dynamic tasks, and the newly released
electric Atlas [27] showcases simplified joint designs with a

TABLE I
COMPARISON OF EXISTING ELECTRIC HUMANOID LOCOMOTION

RESEARCH PLATFORMS.

Robot Sizea Avg. Leg b Leg Weight Price Actuatorc Max HFE Max KFE Transmission T/F
Len.(m) Dof (kg) (USD) Type Tor.(Nm) Tor.(Nm) Complexity Sensor

TORO [1] F ∼0.4 6 76.4 - H 100 130 ++ Joint
LOLA [2] F ∼0.44 6 68.2 - H 370 390 +++ Feet

WALK-MAN [3] F ∼0.38 6 132 - H 270-400 270-400 ++ Feet
Unitree H1 [5] F ∼0.4 5 47 90K P 270 360 + ✗

Digit [4] F ∼0.5 6 50 250K C, H 200 230 +++ ✗
ARTEMIS [15] F ∼0.38 5 37 - P 250 250 + Feet

Cassie [16] F ∼0.5 5 35 250K C, H 195 195 +++ ✗
MIT [17] M ∼0.28 5 24 - P 72 144 + ✗

Unitree G1 [18] M ∼0.3 6 35 16K P 88 139 + ✗
HECTOR [19] M ∼0.22 5 16 - P 33.5 51.9 + ✗

iCub [20] M ∼0.2 6 24 300K H 40 40 ++++ Feet
BRUCE [10] T ∼0.17 5 3.3 6.5K P 10.5 10.5 + ✗

NAO [21] T ∼0.15 6 4.5 14K S 1.61 1.61 + Feet
DARwIn-OP [22] T ∼0.09 6 2.8 - S 2.35 2.35 + Feet
Surena-Min [23] T ∼0.085 6 3.3 - S 3.1 7.3 + ✗

Ours M ∼0.2 6 16d 10Ke P 62.6 81.1 + ✗

a F, M, and T represent full-scale, mid-scale, and miniature, respectively.
b Average length of thigh and calf.
c H, P, C, and S represent Harmonic Drive, Planetary, Cycloidal Drive, and Servo Motor with a

high reduction ratio, respectively.
d Without arms. The estimated weight of two 4 DoF arms is 6kg, the total weight will be 22kg.
e Without arms. The estimated cost of two 4 DoF arms is 5K USD, the total non-profit cost will be 15K USD.
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Fig. 2. Overview of design: (a) main components, (b) joints and key
dimensions, (c) key actuators and joints of the left leg.

large range of motion. The robots from companies are well-
designed and well-tested, but unfortunately, most of them are
not available for researchers in labs or do not provide access
to modify or improve the low-level system.
Humanoid Control. Humanoid control is a challenging
problem in the robotics field. Utilizing control approaches
ranging from heuristic-based methods to model-based con-
trol, humanoids have been equipped with stable move-
ment abilities [28]–[32]. Recently, learning-based approaches
demonstrate promising capabilities for humanoid robots,
ranging from locomotion [33]–[37] to manipulation [38]–
[41]. Dynamic humanoid locomotion has been demonstrated
such as walking on rough terrain [42], [43], resisting large
disturbances [44], running [45], and parkour [46]. These
works often utilize complex neural networks and training
pipelines for high expressiveness or require a history of
state-action pairs for online adaptation, reducing the sim-to-
real gap in deployment. In comparison, performing dynamic
motions with a simple algorithm and architecture remains
challenging. Furthermore, prior works often include wide
distributions of domain randomization due to the higher ro-
bustness requirement to counteract the imprecise models with
complex transmissions. However, excessive randomization
may hinder successful policy learning or lead to exceedingly
conservative policies [47]. Despite the progress in full-scale
humanoid robots, learning control policies for smaller-scale
humanoids pose different challenges due to the shorter-
legged design as discussed in Sec. I. Prior works, such as
teaching miniature humanoid robots to play soccer, address
these challenges with large flat foot designs and servo motors
[48], resulting in limited dynamic motion capabilities. In
contrast, our design uses smaller flat feet and more powerful
actuators, enabling more dynamic motions but presenting
greater control challenges.

III. DESIGN FOR LEARNING-BASED CONTROL

We introduce our humanoid robot design by providing an
overview of the system design and detailing specific design
considerations tailored for learning-based control algorithms.

A. System Overview

Berkeley Humanoid is a 16 kg, fully electric drive mid-
scale robot for humanoid research. The main component is
shown in Figure 2(a). The robot has a torso and two 6 DoF
legs, with a thigh length of 220 mm, a calf length of 180
mm, and a total height of 0.85 m in a nominal standing
configuration, resembling a 5-year-old child in body size.



TABLE II
CUSTOM ACTUATOR SPECIFICATIONS.

Actuator 5013 8513 8518 10413

Mass (g) 251 756 856 1011
Gear Ratio 9:1 9:1 9:1 9:1

Hollow Shaft ✗ ✓ ✓ ✓
Diameter × Thickness (mm) 54.6 × 53 104 × 50 104 × 55 123 × 50

Peak Torque (Nm) 9.7 45.3 62.6 81.1
Sustained Torque (Nm) 4.59 18.9 26.1 34.2

Max. Speed at 48V (rad/s) 83.7 40.7 29 27.9
Max. Power (W) 220 570 730 890

Rotor Inertia (kgm2) 6.1e-6 6.9e-5 9.4e-5 1.5e-4
Joint FAA FFE, HR, HAA HFE KFE

Inside the torso, an Intel NUC, a power management
board, and a cheap cellphone-level IMU sensor are installed
along with 2 battery packs in a protected compartment.
Each leg is equipped with 6 actuators, most of which are
directly attached to the link and act as a joint. Two 4-
DoF arms were designed but left out as we focus on the
locomotion abilities in this work. To adapt to different torque
requirements on each joint, we built 4 types of actuators and
2 types of motor drivers, as shown in Table II. These high-
performance actuators allow our robot to perform highly
dynamic maneuvers.

For the communication system, to achieve better accuracy
with minimum latency, we opt for high-bandwidth EtherCAT
protocol. We develop custom EtherCAT slaves for both motor
drivers and the IMU. The onboard PC runs the custom
EtherCAT master and communicates with the peripherals at
frequencies ranging from 1 kHz to 4 kHz. USB and Ethernet
connection are also supported for the perceptive sensors, such
as RGBD cameras, lidar.

B. Design Considerations

Faster and More Precise Simulation. Learning-based loco-
motion algorithms mostly rely on model-free reinforcement
learning with parallel simulation, making simulation cost-
critical. In many instances of robot design for model-based
control, transmission linkages with unilateral springs can
reduce motor load and limb weight, absorb impacts, and
be modeled with simplified models, but they also introduce
complex dynamical equations that are difficult to simulate.
To optimize efficiency, we eliminate such flexible compo-
nents and closed kinematic chains, opting for direct actuator-
joint transmissions. Leveraging cross-roller bearings, the
actuators can be directly mounted at the joints, and their
rotor inertia can be conveniently modeled by adjusting the
joint mass matrix directly. One exception is the Foot Flex-
ion/Extension (FFE) joint, where a linkage transmission is
used to reduce leg inertia. However, this linkage is designed
with a linear joint-actuator mapping, allowing us to treat it as
a joint in the simulation similar to other joints. Furthermore,
for better simulation, we opt for planetary gearboxes with
a small gear ratio, which helps reduce overall friction and
minimizes the quadratic amplification of cogging torque,
friction, and reflected inertia errors. In addition, low latency
(0.5-2 ms) with EtherCAT avoids the need to simulate
latency. These optimizations enable over 90,000 simulation
steps per second on an NVIDIA A4500 GPU.

TABLE III
COST OF EACH COMPONENT IN SMALL QUANTITY PRODUCTION.

Module Actuator Sensor Misc Off-the-shelf Total5013 8513 8518 10413 IMU Torso Leg PC Battery

Cost (USD) 422 570 639 676 50 410 974 347 153 9955
Quantity 2 6 2 2 1 1 2 1 2 -

Reliability and Low Cost. Our goal is to build a durable
and low-cost robot. To achieve reliability, we use high-
performance materials like 7075 and 6061 aluminum for the
main structure and tool steel for the gearbox and linkage,
ensuring the robot withstands heavy impacts while remaining
lightweight, as opposed to [11], [49]–[52]. To improve cable
durability, which is crucial for humanoids performing agile
motions, we use hollow shaft designs, routing power, and
communication cables through the joint axis to minimize
tearing from movement. Reducing the number of sensors
not only lowers the cost but also simplifies the structure and
improves reliability. Eliminating the need for foot contact
force sensors, our proprioceptive actuators enable us to
leverage a generalized momentum observer [53] to accu-
rately estimate foot contact forces without strain gauges
as additional sensors. A significant advantage of learning
algorithms is their robustness against sensor inaccuracies.
Thus, we opt for cheaper sensors, such as a cellphone-level
IMU ($1 for sensor IC, $50 with interface board) instead
of the typical $1,000-priced units in prior robots [4], [7],
[16], [54]. These optimizations lower the robot cost to around
$10,000 (details in Table III), with further reductions possible
through scaled production. Only the computers and batteries
are commercially sourced for performance and safety.
Experiment-Friendly. Traditional full-sized humanoid
robots are often heavier than adults and require multiple
operators to handle, making experiments cumbersome and
dangerous, especially with high-torque actuators. Unlike
model-based methods, learning-based control especially
requires extensive hardware testing to determine its
effectiveness in real-world settings. To address this, we
scale our robot down to a mid-scale humanoid and reduce
its weight to merely 16 kg. This allows a single operator to
conduct experiments indoors, and an additional cameraman
outdoors, for all of the tasks including commanding, data
collection, and resetting the robot. All experiments in this
work are conducted with this setup.
Anthropomorphic Design. An important advantage of
learning-based algorithms is their ability to directly imitate
human motions without the need for tedious trajectory op-
timization; however, to fully leverage this capability, an an-
thropomorphic robot design is necessary. Our robot achieves
this by incorporating 6 DoFs per leg, mirroring the dominant
DoFs in human legs [55] and a common 6 DoF contact
wrench in foot surface contact [56]. Compared to [5], [15]–
[17], [19], the additional actuation in the ankle’s roll direction
not only improves stability in difficult poses, such as bal-
ancing on one foot or manipulating distant objects, but also
enables learning from human motions directly. Additionally,
joint limits are aligned with human physical constraints,



protecting the hardware while providing sufficient range for
natural motion imitation.

IV. MINIMALLY COMPOSED LEARNING CONTROLLER

With a humanoid platform designed for learning-based
control, we are able to achieve robust and agile locomotion
with a minimally composed RL controller. First, we outline
the RL controller’s design. Then, we explain how we reduce
the sim-to-real gap based on the hardware platform.

A. Reinforcement Learning Formulation

We formulate our tasks as Markov Decision Processes
(MDPs) and leverage RL to solve them thanks to its promis-
ing performance in humanoid control. We create a minimally
composed learning-based controller by formulating the MDP
with minimal observations. Specifically, we only use imme-
diate state feedback as the actor input, without formulating
a short or long history [42], [57] or teacher-student train-
ing [58], [59] to estimate environment parameters. Similarly,
we opt out of pre-defined phase signals [33] or reference
motion [57] to reduce human biases. The immediate state
feedback includes raw proprioceptive readings (base angular
velocity, projected gravity vector, joint positions, velocities),
base linear velocity v from a state estimator [60], [61],
velocity commands vc

x,y and ωc
z , and the previous action.

Likewise, the action is the desired joint positions, which
are converted into torques by a PD controller on the motor
driver. The reward function has four components: tracking
desired velocities, smoothing by penalizing undesired ve-
locities and actions, regularizing joint positions to avoid
aggressive motions, and gait quality terms for longer air time
and preventing slippage.

We design the architecture of the actor-critic with the most
basic multilayer perceptron (MLP) networks. Specifically,
each network has hidden sizes of [512, 256, 128] neurons and
ELU activation. The policy is optimized via PPO [62] and
trained in Isaac Lab [63]. The RL policy executes at 50 Hz,
the state estimator at 1 kHz, and the PD controller at 25 kHz.

This minimally-composed RL controller validates the ef-
ficacy of our hardware design for learning-based control.
Without the ability to do online system identification or
reference motion guidance, our policy relies solely on the
synergy of the hardware and simulation setup to achieve a
narrow sim-to-real gap, ensuring that the robust and agile lo-
comotion performance in training can be fully demonstrated
on the real-world robot.

B. Closing the Sim-to-Real Gap

Hardware Side. We focus on closing the sim-to-real gap
through hardware design choices. The main factors of the
sim-to-real gap, aside from sensor noise, are modeling errors
and command execution rate, accuracy, and delay [64]–
[66]. To reduce modeling errors, we choose the simulator-
friendly design strategies as introduced in Sec. III. To im-
prove command execution, we employ real-time Linux with
EtherCAT, which leads to a precise execution rate and low
communication latency; transparent proprioceptive actuator

dynamics with high bandwidth torque control, so that the
commanded torque is accurately tracked and has negligible
actuator dynamics. All of these reduce the discrepancy
between the hardware and the simulated dynamics.
Design-enabled Accurate Domain Randomization. While
most of the learning controllers rely on domain randomiza-
tion, extensive domain randomization slows down training
and results in conservative policies [47]. To avoid this while
still preserving a robust policy, in this work, we leverage
a different approach aimed at providing accurate domain
randomizations given the hardware design. For a humanoid
robot performing locomotion tasks, we identify two sources
of uncertainties: uncertainty in the robot physics property,
e.g., the mass of each link, and that in performing tasks,
e.g., contact with the environment.

For hardware uncertainty, our detailed design allows us to
obtain a small and accurate range of parameter variations.
Specifically, we use CAD to retrieve accurate mechanical
parameters like rotor inertia and conduct simple experiments
to characterize the friction of each actuator separately. This
demonstrates the benefits of an in-house-built robot, as
obtaining such detailed hardware parameters for commercial
robots would be difficult.

For uncertainty in contact with the environment, we apply
a wide range of domain randomization to cover as many
real-world environment conditions as possible. This includes
ground friction, restitution, and external perturbation forces
from obstacles and unstable ground conditions.

Unlike previous work [57], [65], [67], we opt not to
randomize properties that cannot be identified in these two
categories, such as a general “motor strength” ratio or PD
gains, which were often used as a “lazy approach” to
approximate actuation uncertainties. However, because it is
hard to accurately analyze the range of uncertainties with
PD approximation, prior works rely on heuristics, which can
lead to unnecessarily large ranges of domain randomization,
which we aim to avoid.

As we will show later, with design-enabled accurate do-
main randomizations, we can achieve robust and agile loco-
motion skills when zero-shot transferring to robot hardware,
even with a minimally-composed RL controller.

V. EXPERIMENTAL VALIDATION

In our experiments, we aim to validate how our humanoid
design facilitates learning locomotion control from three
aspects: (1) The effectiveness of our minimally-composed
RL controller in humanoid locomotion tasks. (2) The sim-
to-real gap for the minimal RL policy with our adequate
hardware design. (3) The hardware reliability of the robot.

A. Locomotion Performance

Compared to previous works leveraging advanced archi-
tectures, in this work, we emphasize how our adequate
hardware design for learning-based algorithms facilitates us
to achieve robust and agile locomotion performance with a
basic RL controller introduced in Sec. IV.
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Fig. 3. Omnidirectional Walking and Disturbance Rejection. The robot is
able to: (a-c) walk forward, turns in place, and walk backward in the lab
environment. (d, e) walks forward and sideways in the wild, and recover
from large external perturbations, such as being kicked (f) from behind
while walking in the lab, and (g) from the side while walking in the wild.
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Fig. 4. Walking on Various Terrains. The robot (a) walks on eight different
types of outdoor terrains, (b) climbs a relatively steep and narrow unpaved
hiking trail covered with dust and rocks, (c) traverses on an uneven pathway
with slipping slabs, (d) makes a turn on rocky stairs.

Omnidirectional Walking. We train our robot to perform
omnidirectional locomotion by following linear velocity
commands in sagittal and lateral directions as well as angular
velocity commands in yaw. In Figure 3, we show examples
of walking forward, backward, and turning left and right.
Disturbance Rejection. A crucial test of the robustness of
the policy and the reliability of the hardware is the ability to
recover from external perturbations. We exert instantaneous
force randomly by kicking different parts of our robot while
it is stepping in place. As shown in Figure 3, this perturbation
causes a significant deviation from the nominal walking pose,
making the robot almost fall over. Nevertheless, our robot is
able to respond immediately, regain its stability from the
perturbation within a few steps, and resume stepping.

In addition to the flat ground in the controlled lab envi-
ronment, we repeat this test in outdoor environments, such
as on uneven grass terrains. In these conditions, our robot
is also able to recover from heavy external forces, as shown
in Figure 3(g). This further showcases the robustness of our
humanoid robot in real-world scenarios.
Walking on Various Terrains. Perhaps the best demonstra-
tion of the advanced performance of a humanoid is its capa-
bility to traverse various everyday environments robustly. As
shown in Figure 4(a), our robot is able to walk robustly on
diverse outdoor terrains, such as grass fields, brick sidewalks,
unpaved trails, asphalt roads, bridges, concrete roads, running
tracks, and tiled surfaces, as well as stairs and inclines.

Among these environments, we emphasize the two most
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Fig. 5. Visualization of GPS data of a long-distance walk.

challenging terrains. First, as shown in Figure 4(b) and the
accompanying video, surprisingly, our robot is able to climb
a relatively steep and narrow unpaved trail covered with dust
and rocks, even though inclined surfaces were not in training
distribution. This trail is a bit steep to climb even for adults,
let alone our robot which resembles only a 5-year-old child
in size. Specifically, the trail’s average incline is 20 degrees,
exceeding the ankle’s upward pitch range, requiring the robot
to step backward to maintain an upright torso. Despite this,
our robot is able to walk stably, make turns, and recover
from stepping on loose rocks.

Second, as shown in Figure 4(c), our robot handles uneven
pathways with large gaps and different heights between the
slabs effectively. These gaps and slippery slabs require extra
attention as this could cause a loss in balance, leading to the
potential to fall over. On this challenging terrain, our robot
is able to navigate both forward and backward inside the
small pathway across changes in step heights and recover
from stepping on slipping slabs.

In order to further demonstrate uneven terrain, we create a
set of rocky stairs with step heights of 4 cm (10% of full leg
length) and find that our robot is able to traverse the stairs
smoothly and make turns on them, as seen in Figure 4(d).

Being able to handle these challenging terrains shows
an advanced performance on locomotion control for our
humanoid, even with such a basic RL controller. We attribute
this to the careful adaptations for learning-based control
algorithms in the hardware design.
Long Distance Walking. With the ability to traverse ter-
rains and reject perturbations, the robot is able to perform
relatively long-distance walking for several hundred meters
over multiple terrains. As shown in Figure 5, the robot
rambles freely on the campus of UC Berkeley for 10 min-
utes, traversing a total distance of 364 m with uphills and
downhills. Furthermore, the robot is able to climb steadily
along a rough hiking trail shown in Figure 4(b) for more
than 5 minutes non-stop, covering 96 m in distance and an
elevation gain of 10.5 m. The video of the campus walking
can be found at https://youtu.be/STbB12-oc_w
and the video of walking on the hiking trail at https:
//youtu.be/Z2Bzslmu7DA.

B. Evaluation of Sim-to-Real Transfer

Because the majority of learning-based algorithms are
trained entirely in simulation, the sim-to-real gap becomes
a critical component of the performance of learning-based
controllers in the real world. We demonstrate the small sim-
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Fig. 6. Sim-to-real gap evaluation. We show trajectories for base linear
velocities in command (blue), simulation (purple), and real-world (yellow).
The values are smoothed by a moving average filter to better illustrate the
steady-state error. We observe a closely aligned oscillation magnitude and
frequency between sim and hardware, indicating a small sim-to-real gap.
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Fig. 7. Hopping with (a) both legs and (b) a single leg, with noticeable
flight phases marked with purple frames.

to-real gap of our robot in two aspects: (i) A quantitative
analysis of the locomotion task metrics. (ii) The ability to
perform highly dynamic locomotion tasks.

First, we present a quantitative analysis of the sim-to-real
transfer by plotting the tracking performance with random
velocity commands given by the operator. As shown in
Figure 6, our robot is able to follow the rapidly changing
command closely in both lateral and sagittal directions with
small steady-state errors. Over a 60-second trial, the average
tracking error in the sagittal direction is 0.051 m/s in simula-
tion and 0.058 m/s on hardware. In the lateral direction, the
error is 0.086 m/s in simulation and 0.1156 m/s on hardware,
respectively. Note that our RL controller is unable to perform
online system identification or adaptation as it does not have
access to the observation history during either training or
deployment. Thus, these small differences in tracking errors
indicate that the gap between the simulation MDPs during
training and the MDPs of the real-world deployment is
indeed small, which confirms the narrow sim-to-real gap for
our hardware design.

Second, we showcase the ability to perform highly dy-
namic motions by demonstrating a hopping controller trained
with the same settings as in Sec. IV except for the rewards.
As shown in Figure 7(a), our robot can perform omnidi-
rectional hops, accelerate, and decelerate while maintaining
balance. Notably, the robot further demonstrates exceptional
agility by being able to perform hops using only one leg in
Figure 7(b), a highly challenging feat. Although a safety rope
is used and minor balance assistance is needed during single-
leg hopping experiments, the rope is mostly slack, and the
robot is able to maintain its balance on its own. Compared
to complex algorithm designs in prior works, this further
shows that the hardware design facilitates us to perform agile
motions with simple algorithmic design.

C. Hardware Reliability

Validating the robot’s reliability is challenging. A notable
systematic perturbation analysis is presented in [68], which
applies perturbation forces but does not push the robot to
the point of falling and focuses primarily on controller
reliability rather than hardware reliability. We attempt to
demonstrate the hardware’s reliability more intuitively by
recording instances of the robot falling. We documented a
total of 38 times our robot falling over on various terrains
including concrete pavements and unpaved roads. Note that
these falls resulted from debugging or systematic errors in
low-level systems (e.g., actuator controller, IMU filtering)
or from testing the model-based controller, rather than the
final policy described in the paper. Thanks to the reliable
and lightweight design, we did not experience any damage
to the hardware itself except for two failures caused by loose
screws and glue. In most fallovers, we are able to reset the
robot and resume the control policy within 3 to 5 seconds.
The ability to reset easily and rapidly not only relieves the
burden of experiments but more importantly, is necessary for
the ultimate goal of scalable real-world deployment.

VI. CONCLUSION AND FUTURE WORKS

In this work, we have presented Berkeley Humanoid, a
reliable and low-cost research platform for learning-based
bipedal locomotion control with a narrow sim-to-real gap.
Our in-house-built humanoid robot is designed specifically
for learning-based control, featuring accurate simulation,
low simulation complexity, easier real-world experiments,
and anthropomorphic ranges of motion. As a result, our
minimally-designed policy, without history or phase sig-
nal as input, is able to withstand large, random external
perturbations and perform omnidirectional locomotion over
challenging terrains, demonstrating the efficacy of these
learning-oriented design features and the resulting narrow
sim-to-real gap. Notably, it demonstrates the ability to walk
long distances on campus, climb steadily along steep and
narrow unpaved hiking trails, and hop with a single leg, a
highly dynamic feat. Furthermore, the Berkeley Humanoid
has served as an open research platform for various other
locomotion studies across the globe [69], [70].

Our future plan is to conduct experiments with two pre-
designed arms, enabling future loco-manipulation research.
As a reliable, low-cost, and high-performance research plat-
form, the ultimate goal is to deploy scalably for learning in
the real world.
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