
Point Cloud-Based Control Barrier Function Regression for Safe and
Efficient Vision-Based Control

Massimiliano de Sa, Prasanth Kotaru, and Koushil Sreenath

Abstract— Control barrier functions have become an increas-
ingly popular framework for safe real-time control. In this
work, we present a computationally low-cost framework for
synthesizing barrier functions over point cloud data for safe
vision-based control. We take advantage of surface geometry
to locally define and synthesize a quadratic CBF over a point
cloud. This CBF is used in a CBF-QP for control and verified in
simulation on quadrotors and in hardware on quadrotors and
the TurtleBot3. This technique enables safe navigation through
unstructured and dynamically changing environments and is
shown to be significantly more efficient than current methods.

I. INTRODUCTION

A. Motivation

Safety-critical systems are all around us in the modern
world, from autonomous cars to aerial systems. In recent
years, Control Barrier Functions (CBFs) [1] have proven to
be a versatile method for designing provably safe controllers
for such systems, and have demonstrated strong performance
in tasks such as safety-critical control and obstacle avoid-
ance.

The ability to deploy vision-in-the-loop control in a safety-
critical manner is extremely valuable. In aerial robotics, for
instance, safe vision-based navigation is vital to applications
such as construction-site surveying and search & rescue.

Due to the complexity of vision-based data and the chal-
lenge of dealing with unstructured environments, performing
safe and efficient vision-in-the-loop control remains an open
challenge. To efficiently maintain safety for vision-in-the-
loop systems, we aim to formulate control barrier functions
over depth data with minimal processing.

B. Prior Work

Traditionally, the problem of processing vision data for
safe control is performed by generating a metric map of
the environment. However, mapping using classical SLAM
techniques such as the occupancy grid [2] involves slow,
computationally intensive processing of vision data, thus
proving ineffective for agile and resource-constrained robots.

Vision-based control barrier functions have been explored
as a means of developing verifiable vision-based control in
recent work [3]–[6]. For instance, an online learning-based
CBF controller for static environments was designed based
on stereo depth data [3]. However, this approach relies on
the assumption that the environment is static in time and
requires computationally expensive training.

Authors are with the Department of Mechanical Engineering, Univer-
sity of California, Berkeley, CA, 94703, United States. {mz.desa,
prasanth.kotaru, koushils}@berkeley.edu

Fig. 1. Resource-constrained systems need an efficient way to verify the
safety of their actions in unstructured environments. By thinking about depth
data as representing a surface in space, we may efficiently formulate depth-
based CBFs to ensure no collisions with the environment occur.

Control barrier functions were also formulated over neural
radiance fields (NeRFs) for safe vision-based control [5].
However, this approach was largely limited by computation
speed, achieving a limited control frequency of 10 Hz
due to the heavy computations associated with the NeRF.
Additionally, the NeRF requires a static environment.

Many practical systems in robotics face a unique combi-
nation of being computationally constrained and requiring a
high control frequency. Furthermore, the ability to adapt to
environments that evolve in time is crucial for many systems.
Current safe vision-based control techniques are inadequate
for platforms like quadrotors, where computational power is
limited, but fast control and rapid adaptation to changing
environments are crucial.

To provide a safe and efficient technique for the vision-
based control of resource-constrained systems, we propose
Depth-CBF, a technique which formulates control barrier
functions over point clouds. This technique requires no
training and minimal computation while allowing for the safe
exploration of unstructured and dynamic environments.

C. Contributions

Our contributions in this work are summarized as follows:
1) We present Depth-CBF, a novel technique for formu-

lating vision-based control barrier functions and esti-
mating their Lie derivatives for control affine systems.

2) We detail the design of depth-based barrier function
controllers with only a single optimization constraint.

3) We validate the performance of the Depth-CBF in sim-
ulation in unstructured environments on a quadrotor.

4) We validate the efficacy of this control technique in
unstructured and dynamic environments on hardware
using a TurtleBot3 and a quadrotor. This technique is
shown to be significantly faster than previous methods.

D. Paper Organization

In Section II, we provide the background on barrier func-
tions and point clouds. In Section III, we formulate barrier
functions over point clouds. In Section IV, we discuss point
cloud CBF control design for the TurtleBot and quadrotor. In
Section V, we present and discuss simulation and hardware
results, and in Section VI we provide concluding remarks.

II. BACKGROUND

A. Control Barrier Functions

Consider a locally Lipschitz control affine system for
which we wish to define safety,

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm. (1)
A safe set C for (1) is defined to be the zero superlevel set
of a continuously differentiable function h : D ⊆ Rn → R,

C = {x ∈ D | h(x) ≥ 0} ⊆ D ⊆ Rn. (2)
To define a control barrier function for C, we first consider
the set of extended class K∞ functions, denoted Ke

∞. A
function α : R → R belongs to class Ke

∞ if it is strictly
increasing, continuous, and satisfies α(0) = 0.
h is said to be a control barrier function (CBF) of system

(1) if the following conditions are satisfied:
1) ∂h

∂x ̸= 0 on the boundary ∂C of the safe set.
2) There exists a function α ∈ Ke

∞ such that for all x ∈ D

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)), (3)

where U ⊆ Rm is the set of admissible inputs and
Lfh = ∂h

∂xf(x), Lgh = ∂h
∂xg(x) are Lie derivatives.

If h is a CBF, then for all t there exists an input u(t) ∈ U
that ensures x(t) remains within the safe set C [1].

B. CBF-QP Controller

A popular technique for deploying a CBF for safe real-
time control is the CBF-QP controller [1], which frames the
search for a safe input as a quadratic program.

Suppose k(x) is a nominal controller for system (1), for
instance a trajectory tracking controller. If h(x) is a CBF
for the system, the CBF-QP “filters” the nominal input k(x)
into a safe input by solving the quadratic program

u∗ = arg min
u∈U

1

2
||u− k(x)||22 (4)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)). (5)
This optimizes for the closest safe input u∗ to the nominal
input k(x) within the set U of admissible inputs.

C. Point Clouds

Point clouds convey the 3D spatial geometry of an envi-
ronment. In this work, we consider point clouds generated
by digital stereo depth cameras and lidar sensors. We define
such point clouds to be finite sets of points

P = {(xi, yi, zi)}Ni=1, (6)

Fig. 2. A point cloud, pictured above in blue, samples the surface of the
environment. The barrier function (8) defines a safety buffer of size δ with
respect to the point cloud, providing a safe distance from the environment.

where each (xi, yi, zi) ∈ P represents the 3D coordinates of
a point on the surface of the environment and N ∈ N repre-
sents the number of points sampled from the environment.

III. DEPTH-CONTROL BARRIER FUNCTION

In this section, we detail the design of CBFs over point
clouds.

A. Depth-CBF Formulation

We wish to define the safe set C such that the system
remains a safe distance away from collision with the envi-
ronment. We assume that the system’s only knowledge of the
environment comes from a point cloud P = {(xi, yi, zi)}Ni=1

in the spatial frame. Assuming the system’s spatial position
q ∈ R3 is contained in its state vector, we define safety with
the barrier function

h(q) = min
p∈P
{(q − p)T (q − p)− δ2}, (7)

where δ > 0 is a buffer that defines the minimum safe
distance to the environment. As h(q) considers the minimum
distance from the system to the point cloud, h(q) > 0 implies
the system is not in collision with any point in the point
cloud.

This barrier function may be conveniently rewritten as
h(q) = (q − p∗)T (q − p∗)− δ2, (8)

where p∗ ∈ P is the closest point in the point cloud to the
system at position q. This function is illustrated in Figure 2.

B. Depth-CBF Gradient Computation

The challenge in using this barrier function comes in the
form of computing the spatial gradient ∂h

∂q , which is required
for the computation of Lie derivatives for CBF-QP control.

Since the closest point p∗ in the point cloud varies with
q, computing the gradient of h with respect to q is not as
simple as treating p∗ as a constant and differentiating h(q).

To model how h(q) varies with respect to q, we perform
a local smooth fit of h(q) across a mesh of points near the
current position q of the system. We define a mesh of points
M with spacing ϵ≪ 1 surrounding the current position q as

M = {q + ϵ(ie1 + je2 + ke3) | − L ≤ i, j, k ≤ L}, (9)
where e1, e2, e3 ∈ R3 are the standard Euclidean basis
vectors. The CBF (8) is then computed across the mesh as

h(M) = {h(qm) | qm ∈M}. (10)
Critically, each h(qm) is computed with respect to the closest
point p∗m to qm in the point cloud. This provides a mesh of
CBF values that consider the dependence of p∗ on q.

Fig. 3. By sampling the closest point in P to the system in a region
surrounding the position q, we gain a local model of the barrier function.

Now, we wish to estimate the spatial gradient ∂h
∂q of the

true barrier function from the mesh of sampled values h(M).
This is achieved with a local fit of h(q). Theorem 1 suggests
a form for this local fit.
Theorem 1. [7], [8] Consider a smooth surface embedded
in 3D space. With respect to the spatial frame S, the second
order Taylor approximation of the squared distance function
from a point q ∈ R3 to the surface is of the form
d(q) = qTAq + bT q + c, A ∈ R3×3, b ∈ R3, c ∈ R. (11)
The proposed CBF (8) is a squared distance function to the

surface of the environment, offset by a scalar δ2. According
to Theorem 1, a second order estimate of the CBF (8) in the
spatial frame S is therefore of the form

ĥ(q) = qT Âq + b̂T q + ĉ. (12)
The parameters Â, b̂, ĉ of this second order estimate are

found by solving the following optimization across the mesh
of points M surrounding the position q of the system

arg min
A,b,c

∑
qm∈M

||h(qm)− (qTmAqm + bT qm + c)||22. (13)

This may be recast as an ordinary least squares problem in
A, b, c and solved efficiently in closed form.

Importantly, the estimate ĥ (12) is everywhere differen-
tiable, enabling estimation of the gradient of (8) as

∂h
∂q ≈

∂ĥ
∂q = qT (Â+ ÂT) + b̂T . (14)

For a control-affine system q̇ = f(q) + g(q)u, where q rep-
resents the spatial position of the system, the Lie derivatives
Lfh, Lgh are thus locally estimated using the CBF fit as

Lfh ≈ Lf ĥ = (qT (Â+ ÂT) + b̂T)f(q) (15)

Lgh ≈ Lgĥ = (qT (Â+ ÂT) + b̂T)g(q). (16)
Estimates of the second order Lie derivatives L2

fh, LgLfh,
required for relative degree 2 systems, are computed

L2
f ĥ = Lf [Lf ĥ], LgLf ĥ = Lg[Lf ĥ]. (17)

C. Depth-CBF Pipeline

The Depth-CBF pipeline is outlined in Algorithm 1.
Notice that each mesh M is created by adding the current
position q of the system to a default mesh M0 centered at 0.

The implementation of this Depth-CBF pipeline depends
largely on efficient computation of the closest point in the
point cloud to the system, as this point must be repeatedly
queried to generate the mesh of barrier function values.

Querying efficiency is achieved by inserting the K nearest
points to the current position into a k-d tree, a binary tree

Algorithm 1 Depth-CBF Pipeline
M,M0 ← {ϵ(ie1 + je2 + ke3), −L ≤ i, j, k ≤ L}
Pkd ← kdtree(03×K) ▷ Initialize k-d tree with zeros
while robot is running do

if new point cloud P captured then
Pkd ← kdtree(KNN(P, q)) ▷ Update k-d tree

end if
M ← q +M0 ▷ Update mesh
h(M)← {h(qm) | qm ∈M} ▷ Update h values
Â, b̂, ĉ← arg min

∑
||h(qm)−(qTmAqm+bT qm+c)||22

end while

that enables querying in expected logarithmic time [9].
A new k-d tree is generated for each new point cloud to

enable adaptation to changing environments. This must be
traded off with a lack of “history” of previous point clouds.

In simulation, the k-d tree improved the speed of Algo-
rithm 1 by a mean of 22.62 Hz compared to a naive search.
This includes the extra time necessary to generate the tree.

IV. DEPTH-CBF CONTROL DESIGN

Once the local fit of the barrier function has been per-
formed, an input is computed using a modified CBF-QP
controller. In the place of Lfh, Lgh, the estimates Lf ĥ, Lgĥ
are used. For k(q) a nominal controller for the system q̇ =
f(q)+g(q)u, the Depth-CBF-QP controller is formulated as

u∗ = arg min
u∈U

1

2
||u− k(q)||22 (18)

s.t. Lf ĥ+ Lgĥu ≥ −α(h(q)). (19)
This formulation allows for safe control using only a single
optimization constraint across the entire point cloud.

Since the Depth-CBF-QP simply relies on a point cloud, it
can be used with both lidar sensors and stereo depth cameras.
Additionally, it is easily generalized to the relative degree 2
case, which is detailed below.

A. TurtleBot Depth-CBF Design

First, we detail the design of a relative degree 1 Depth-
CBF for the TurtleBot, modeled with the unicycle dynamicsẋẏ

φ̇

 =

cosφ 0
sinφ 0
0 1

[
v
ω

]
, (20)

where x, y are the center of the TurtleBot and φ is the
heading angle. This system is controlled by two inputs, a
linear velocity v and an angular velocity ω [10].

To deploy the Depth-CBF on such a system, we propose a
cascaded control structure. In the first stage, a desired (x, y)
trajectory qd(t) : R → R2 is passed into a Depth-CBF-QP
controller built around the integrator dynamics q̇ = u. Here,
q = [x, y]T ∈ R2 is the spatial position of the integrator
and the control input u ∈ R2 is its velocity. For this system,
Lf ĥ = 0 and Lgĥ = qT (Â + ÂT) + b̂T . This produces the
following Depth-CBF-QP optimization

u∗ = arg min
u∈R2

1

2
||u− k(q)||22 (21)

s.t. Lgĥu ≥ −αh, (22)

Fig. 4. The Depth-CBF-QP control structure for a TurtleBot system.

TABLE I
PARAMETERS OF THE 3D QUADROTOR

Parameter Description
m ∈ R Total mass
g ∈ R Acceleration due to gravity
q ∈ R3 Position of center-of-mass in spatial frame
v ∈ R3 Velocity of center-of-mass in spatial frame
ω ∈ R3 Angular velocity in body frame
F ∈ R Total thrust
M ∈ R3 Total moment applied in body frame
e3 ∈ R3 Euclidean basis vector (0, 0, 1)
J ∈ R3×3 Inertia tensor in the body frame
R ∈ SO(3) Rotation matrix from body to spatial frame

where k(q) is a nominal tracking controller for the integrator
and α ∈ R>0. This QP produces a safe velocity vector u∗ ∈
R2 which may be tracked by the TurtleBot using a velocity
tracking controller. This structure is visualized in Figure 4.

Note that the structure of tracking the Depth-CBF-QP
input to an integrator is easily adapted to any system for
which a velocity tracking controller may be designed.

B. Quadrotor Depth-CBF Design

Here, we discuss the design of a Depth-CBF-QP controller
for the quadrotor. With respect to the parameters defined in
Table I, the dynamics of the quadrotor are described as [11]

q̇ = v, mv̇ = fRe3 −mge3, (23)

Ṙ = Rω̂, Jω̇ + ω̂Jω = M, (24)
for ·̂ : R3 → so(3) defined such that x̂y = x×y ∀x, y ∈ R3.

A controller is designed by separating the translational and
rotational dynamics of the quadrotor [12]. First, a nominal
trajectory tracking controller is designed around point mass
dynamics, which are represented in control affine form as[

q̇
v̇

]
=

[
v
−ge3

]
+

[
03×3
1
mI3×3

]
u, (25)

for u ∈ R3 a force vector input and x = (q, v) the state
vector. For a desired trajectory xd(t) : R → R6, where
xd(t) = (qd(t), vd(t)), a tracking input k(x) is chosen

k(x) = −K(x− xd) +mq̈d +mge3, (26)
where K ∈ R3×6 is a gain matrix and q̈d ∈ R3 is the desired
acceleration. Now, we design a CBF-QP controller.

As this system is relative degree 2 with respect to the
CBF (8) a second order formulation of the Depth-CBF-QP
constraint must be used. The input is then evaluated as

u∗ = arg min
u∈R3

1

2
||u− k(x)||22 (27)

s.t. L2
f ĥ+ LgLf ĥu+ α1Lf ĥ+ α0h ≥ 0, (28)

where α0, α1 are selected such that the characteristic polyno-
mial of the constraint has negative real roots [1], [13]. This
constraint provides safety in the relative degree 2 case.

The solution to (27) is passed to a force-tracking con-
troller, which produces a thrust f ∈ R and a moment

Fig. 5. The Depth-CBF-QP control structure for a quadrotor system.

Fig. 6. TurtleBot trajectory and squared distance to obstacle in the presence
of a stationary wall in hardware. The Depth-CBF controller enables the
TurtleBot to stop short of collision with the wall. The authors interpret the
“steps” and oscillation visible in the value of the squared distance as a
byproduct of the low refresh rate of the lidar.

M ∈ R3 that allows the quadrotor to track the safe force
u∗ [12]. This control structure is visualized in Figure 5.

V. RESULTS & DISCUSSION

In this section, we illustrate the performance of the rel-
ative degree 1 and 2 Depth-CBF-QP controllers. First, we
present the performance of the relative degree 1 Depth-CBF-
QP on TurtleBot hardware. Following this, we discuss the
performance of the relative degree 2 Depth-CBF-QP on the
quadrotor with simulation and preliminary hardware results.

The QP optimizations detailed above were solved us-
ing OSQP [14] for both simulation and hardware experi-
ments. Code for the results presented in this work can be
found at https://github.com/HybridRobotics/
depth_cbf.

A. Relative Degree 1 Results

Here, we discuss the performance of the relative degree
1 Depth-CBF on TurtleBot3 hardware. This platform is
equipped with a lidar sensor that scans the environment at 5
Hz. Computations were performed on an i7-4770 and relayed
to the TurtleBot via ROS Noetic. A buffer of δ = 0.275 m
was selected to account for noise and for the TurtleBot’s
radius. A CBF-QP constraint constant of α = 6 was chosen.

1) Stationary Wall: In the first test, the TurtleBot is
commanded to drive towards a stationary, flat wall. As shown
in Figure 6, the Depth-CBF prevents collision with the wall.

Figure 6 also illustrates the effect of the buffer δ, as the
TurtleBot always remains a distance away from the wall.
This helps ensure safety under sensor noise and is valuable
for dealing with low frequency sensors such as the TurtleBot
lidar.

Fig. 7. Depth-CBF performance on the TurtleBot hardware in the presence
of a moving obstacle. An obstacle is brought towards the system and
removed, and the TurtleBot is able to successfully avoid the moving
obstacle.

Fig. 8. The TurtleBot must move from one end of the cluttered hallway
to the other without colliding with any of the obstacles.

2) Moving Wall: Next, we discuss the performance of
the Depth-CBF under a moving obstacle. The system is
commanded to stay at (0, 0, 0) while a flat obstacle is
periodically brought towards it and removed from view.

As shown in Figure 7, the Depth-CBF smoothly drives the
TurtleBot away from the moving obstacle. When the obstacle
is removed, the TurtleBot returns to the origin. This process
is then repeated a second time. We thus observe the ability
of the Depth-CBF to adapt to a dynamic environment.

3) Cluttered Hallway: In this test, a narrow hallway with
numerous obstacles, depicted in Figure 8, was constructed.
The TurtleBot was placed at the origin and given a nominal
straight-line trajectory from (0, 0, 0) to (3, 0, 0) at the end of
the hall. This path passes through multiple obstacles.

We visualize the trajectory of the TurtleBot through the
cluttered hallway in Figure 9. Despite having no planner
other than a single open-loop trajectory, the Depth-CBF
enabled the TurtleBot to steer around every obstacle and

Fig. 9. The trajectory of the TurtleBot through the hallway in hardware.
The black lines and boxes represent the obstacles depicted in Figure 8.
Using the Depth-CBF, the TurtleBot successfully avoids the obstacles and
navigates to the end of the hall with no information other than a straight
open-loop trajectory.

Fig. 10. Simulation results for the quadrotor: in plot 1, we see the x
position of the quadrotor with respect to the wall, in plot 2 the squared
distance from the quadrotor to the wall, and in plot 3 the x component of
the force vector from the Depth-CBF-QP optimization. We observe that the
Depth-CBF enables the quadrotor to smoothly avoid collision with the wall.

navigate its way to the end of the hall. The TurtleBot also
stopped short of an obstacle obstructing the goal state.

B. Relative Degree 2 Results

Now, we discuss the performance of the relative degree 2
Depth-CBF on the quadrotor. Simulations were performed in
Gazebo with the Intel Realsense-ROS plugin to simulate a
30 Hz depth camera. Hardware experiments were performed
on a quadrotor equipped with an Intel NUC and an Intel
D435i depth camera. A buffer of δ = 0.75 m was chosen
to account for the quadrotor’s radius and for sensor noise.
CBF-QP constraint constants of α0 = α1 = 4 were chosen.

1) Stationary Wall: In the first simulation test, the quadro-
tor is commanded to fly towards a flat, stationary wall, and
the Depth-CBF must ensure that no collisions occur. The
results of this test are visualized in Figure 10. We observe
that the Depth-CBF ensures safety throughout the flight.

2) Moving Wall: A preliminary moving obstacle test was
performed in hardware on the quadrotor. As observed in
Figure 11, the quadrotor successfully evades an obstacle
moving towards it. When the obstacle is removed, the
quadrotor returns to its original position.

Fig. 11. Quadrotor hardware test: using the Depth-CBF, the quadrotor is
able to successfully avoid a moving obstacle which is brought towards it at
a constant velocity. When the obstacle is removed, the quadrotor returns to
its initial position.

Fig. 12. The quadrotor must navigate through an unstructured, cluttered
environment in simulation with no planning while maintaining safety.

3) Unstructured Environment: Now, we consider the per-
formance of the quadrotor in a simulated unstructured envi-
ronment, depicted in Figure 12. The quadrotor is commanded
to follow a straight-line trajectory from (0, 0, 0) ∈ R3 to
(11, 0, 1) ∈ R3, which would take it into direct contact with
several obstacles. Using the Depth-CBF, the quadrotor must
navigate around the obstacles and reach the goal state. This
test is then repeated with a new goal state of (11, 2, 1) ∈ R3.

As observed in Figure 13, the quadrotor successfully
navigates around the obstacles and reaches the goal state
for both trajectories. This safe navigation is provided purely
by the Depth-CBF-QP controller with no outside planning.

C. Discussion

Overall, the Depth-CBF controller successfully ensured
the system did not come into collision with the environment
in a variety of simulation and hardware tests.

Fig. 13. The trajectories of the quadrotor through the simulated cluttered
environment. The quadrotor is successfully able to navigate around the
environment without collision for both of the open loop trajectories.

A major attractive point of the Depth-CBF control struc-
ture is its computational efficiency. Across the TurtleBot
tests, the Depth-CBF ran at an average frequency of 485
Hz. This frequency is measured across the entire pipeline,
from receiving a new point cloud to computing the CBF ap-
proximation and CBF-QP control inputs. This is a significant
increase in speed compared to prior approaches.

A drawback of this approach is the lack of ”history”, that
is Algorithm 1 does not consider prior states or point-clouds.
Further, using a single closest point could prove challenging
in extremely dense environments. One approach to mitigate
that is to consider a set of closest points (that are relatively
far enough from each other), however, this increases the
computational cost. The tradeoff to the lack of history is
the ability to react to moving obstacles and the computation
speed. Quick reactions to obstacles could be helpful during
teleoperations when the operators might not be able to react
fast enough to dynamic environments.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the Depth-CBF-QP, a
lightweight method for synthesizing CBF controllers over
point clouds. The Depth-CBF-QP only requires a single
optimization constraint and enables fast, accurate estimation
of the CBF Lie derivatives. Further, the Depth-CBF-QP can
be formulated for both the relative degree 1 and 2 cases, and
can be applied to both stereo depth and lidar sensors.

We validated performance in simulation and hardware for
both the relative degree 1 and 2 cases. We performed static
braking, moving obstacle, and cluttered hallway navigation
tests on the TurtleBot and quadrotor. In all three tests,
the systems never came into contact with the environment.
The cluttered hallway test demonstrated the ability of the
Depth-CBF to enable safe navigation through unstructured
environments with no outside planning.

The Depth-CBF proved to be very fast, running at an
average rate of 485 Hz in TurtleBot experiments. This
represents a significant performance increase over previous
methods.

Future extensions of this work include performing ex-
tensive validations of the Depth-CBF on other hardware
platforms and in performing an analysis of the effect of noise
and time delay in receiving point clouds on performance.

ACKNOWLEDGMENTS

The authors would like to thank UC Berkeley courses
EECS C106A/B for providing access to their TurtleBots,
and HiPeRLab, UC Berkeley for the use of their flightspace.
This work was partially supported through funding from the
Tsinghua-Berkeley Shenzhen Institute (TBSI) program.

REFERENCES

[1] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in European control conference, 2019, pp. 3420–3431.

[2] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[3] R. K. Cosner, I. D. J. Rodriguez, T. G. Molnar, W. Ubellacker, Y. Yue,
A. D. Ames, and K. L. Bouman, “Self-supervised online learning for
safety-critical control using stereo vision,” in International Conference
on Robotics and Automation (ICRA), 2022, pp. 11 487–11 493.

[4] W. Xiao, T.-H. Wang, M. Chahine, A. Amini, R. Hasani, and D. Rus,
“Differentiable control barrier functions for vision-based end-to-end
autonomous driving,” arXiv preprint arXiv:2203.02401, 2022.

[5] M. Tong, C. Dawson, and C. Fan, “Enforcing safety for vision-based
controllers via Control Barrier Functions and Neural Radiance Fields,”
in IEEE International Conference on Robotics and Automation (ICRA),
2023, pp. 10 511–10 517.

[6] C. Dawson, B. Lowenkamp, D. Goff, and C. Fan, “Learning safe,
generalizable perception-based hybrid control with certificates,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 1904–1911, 2022.

[7] G. Folland, Advanced Calculus. Prentice-Hall, 2002.
[8] H. Pottmann and M. Hofer, Geometry of the squared distance function

to curves and surfaces. Springer, 2003.
[9] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An Algorithm for

Finding Best Matches in Logarithmic Expected Time,” ACM Trans.
Math. Softw., vol. 3, no. 3, p. 209–226, 1977.

[10] S. Sastry, Nonlinear systems: analysis, stability, and control. Springer
Science & Business Media, 2013, vol. 10.

[11] G. Wu and K. Sreenath, “Safety-critical control of a 3d quadrotor with
range-limited sensing,” in Dynamic Systems and Control Conference,
vol. 50695. American Society of Mechanical Engineers, 2016, p.
V001T05A006.

[12] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor UAV on SE(3),” in IEEE conference on decision and
control (CDC), 2010, pp. 5420–5425.

[13] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints,” in American
Control Conference (ACC), 2016, pp. 322–328.

[14] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[15] H. Abdi, G. Raja, and R. Ghabcheloo, “Safe Control using Vision-
based Control Barrier Function (V-CBF),” in IEEE International
Conference on Robotics and Automation (ICRA), 2023, pp. 782–788.

[16] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” in American
Control Conference (ACC), 2021, pp. 3882–3889.

[17] Y. Ma, S. Soatto, J. Košecká, and S. Sastry, An invitation to 3-d vision:
from images to geometric models. Springer, 2004, vol. 26.

[18] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[19] X. Xu, T. Waters, D. Pickem, P. Glotfelter, M. Egerstedt, P. Tabuada,
J. W. Grizzle, and A. D. Ames, “Realizing simultaneous lane keeping
and adaptive speed regulation on accessible mobile robot testbeds,”
in IEEE conference on control technology and applications (CCTA),
2017, pp. 1769–1775.

[20] Q. Liao, Z. Li, A. Thirugnanam, J. Zeng, and K. Sreenath, “Walking in
Narrow Spaces: Safety-critical Locomotion Control for Quadrupedal
Robots with Duality-based Optimization,” in IEEE International Con-
ference on Intelligent Robots and Systems (IROS), Detroit, MI, October
2023.

