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Abstract— This paper formulates a methodology to plan
and control flat-terrain motions of an underactuated bipedal
robot riding a snakeboard, which is a steerable variant of the
skateboard. We use tools from non-holonomic motion planning
to study snakeboard gaits and develop feedback control
strategies that enable bipedal robots to produce the desired
gaits while maintaining balance, regulating the magnitude and
direction of the velocity of the snakeboard, achieving sharp
turns, and avoiding obstacles.

I. INTRODUCTION

Legged robots are highly versatile machines that exhibit
a wide variety of locomotion modes like walking, running
and jumping which enable them to traverse over extremely
rough terrain unlike wheeled robots. On flat terrain however,
wheeled robots outperform their legged counterparts in both,
speed and energy efficiency. This paper attempts to bridge
this performance gap by introducing a faster and efficient
alternative to legged locomotion on flat terrain - riding a
passive wheeled platform. With this research, we hope to
optimize the ability of legged robots by offering them a
medium where they could use a wheeled platform to travel
faster on smooth terrains while also having the option to
walk or run in more challenging terrain. In particular, we
develop control strategies for a high degree-of-freedom and
underactuated bipedal robot, Cassie1 to autonomously ride
an unpowered wheeled platform known as the snakeboard
as illustrated in Fig. 1.

The snakeboard is composed of a central bar that connects
two rotating pads where the rider places their feet. These
rotating foot-pads are connected to the axles of the wheels
and allow the rider to independently steer the wheels. Unlike
a skateboard, the snakeboard allows the users to propel
themselves by rotating their body and the foot-pads, without
the need for placing their feet on the ground. By interacting
with the snakeboard pads through different gait patterns, the
rider can achieve various motions in the inertial frame.

A. Challenges

Enabling a bipedal robot to safely ride a snakeboard
involves many challenges. First, snakeboards are highly
dynamic platforms that are sensitive to the input forces
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Fig. 1: Cassie Riding a snakeboard along a sinusoidal path.
A video of the simulation results can be found here: https:
//youtu.be/fapcnAvYbko

and thus, being able to balance on them is challenging.
Second, Cassie can only control the snakeboard motion
when the contact between its feet and the board is sustained
and no slip occurs. Therefore motion plans and control
design should provide these additional guarantees. Third,
rapid modulation of torso yaw momentum is a critical
component in snakeboard propulsion. Since Cassie is arm-
less, this ability is severely constrained. These limitations
restrict the range of feasible gaits for riding the snakeboard.
Cassie is also a high degree-of-freedom, under-actuated robot
making the system challenging to control. In addition, riding
a snakeboard also requires achieving multiple tasks such
as oscillating the hip joints, leaning the body forwards
or sideways, and maintaining stable balance. In order to
address these challenges and successfully execute dynamic
flat-terrain motion plans, we propose an operational space
controller that allows Cassie to achieve multiple tasks, while
also maintaining friction constraints between the foot and the
snakeboard pads.

B. Related works

Multi-modal locomotion, and in particular, combining
wheeled and legged locomotion is an active area of research.
There is a great variety in the types of systems that are paired,
the control methodologies used, and how contact between
legs and wheels is enforced. For instance, the authors
in [1] integrated and successfully demonstrated wheeled
locomotion of Cassie with hovershoes and with segways in
[2]. The work with ANYmal in [3], is another example of
multi-modal locomotion which combines the advantages of
both walking and using wheels at its feet. Ascento [4], is also
a mobility robot that uses a combination of legs and wheels
to maneuver quickly on flat terrain while also being able
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to jump and avoid obstacles. Quattroped [5] is a quadruped
robot that can transform its legs to wheels which can be
utilized for better performance and efficiency for different
ground locomotion platforms.

With regards to combining legged locomotion with passive
wheeled devices, [6] considers the problem of stabilizing a
planar bipedal robot on a ball. In [7], the authors present
an MPC framework to manipulate a ball using a quadruped
robot to follow desired trajectories. The work in [8] develops
a framework for a 3D humanoid robot to ride a passive
skateboard.

The snakeboard considered in this paper is a dynamical
system with non-holonomic constraints and motion planning
for such systems has been extensively studied in prior work,
beginning with [9] that considered various sinusoidal gaits
for the snakeboard joints which was later extended to an
optimal control framework in [10]. The work in [11], [12]
formulated the motion planning problem of steering the
snakeboard to a desired goal location by considering various
kinematic trajectories. In [13], the authors propose a gait
generation technique to achieve displacement along a given
direction and present an analytical framework in [14] for
the joint configurations to follow desired trajectories in the
task space. In [15], the authors consider the problem of
trajectory planning by considering only the local curvature
of the desired path and in [16] analyze the snakeboard with
viscous friction. In [17], the authors analyze human riders
on a waveboard, which is another form of a system with
non-holonomic constraints.

C. Primary Contributions

Our work draws motivation primarily from the studies
made in the non-holonomic motion planning for snakeboards
[9] and a force balance control strategy for bipedal robots
[18]. In this paper, we modify gaits so that Cassie could
achieve some desired features for trajectory planning and
compute the desired center-of-mass for Cassie to still be able
to maintain its balance while riding on the snakeboard.

Distinct from prior work in [3], [4], [5] which consider
the wheels to be fixed to the legs or [1], [2] which
consider combining powered wheeled devices with legged
robots, we present a trajectory planning and optimization-
based feedback controller for a bipedal robot, Cassie to
ride a passive wheeled platform, the snakeboard. Through
our proposed framework, the combined Cassie-snakeboard
system is able to follow desired trajectories in the task-space,
achieve sharp turns and avoid obstacles, while maintaining
balance and friction constraints.

D. Organization

The rest of the paper is organized as follows. Section
II describes the dynamical model of Cassie integrated with
the snakeboard. Section III discusses different approaches
for generating various gaits to propel the snakeboard along
different desired trajectories. Section IV presents a balance
control strategy for Cassie to be able to achieve the different
gaits and regulate the center-of-mass and angular velocities

TABLE I: Physical parameters of the snakeboard.

Symbol Description
ms mass of the snakeboard
mr mass of the rotor
J inertia of the snakeboard
Jr inertia of the rotor
Jw inertia of the wheels
l length from the snakeboard’s center-of-mass to the wheels

O

Front foot-pad

Back foot-pad

Rotor

(a) (b)

Fig. 2: Simplified model of a snakeboard. (a) Snakeboard as
viewed from top. (b) Rotor lean angle in the lateral direction
of the snakeboard.

of the snakeboard. Section V presents results from numerical
simulations for various scenarios such as obstacle avoidance,
achieving sharp turns and tracking desired velocities. Section
VII summarizes the work explored in this paper and
describes future directions.

II. DYNAMICAL MODEL OF CASSIE ON A SNAKEBOARD

With the challenges described above, this section
investigates the dynamical model of Cassie, snakeboard and
how they interact with one another.

A. Dynamical Model of Cassie

Cassie is a 20-dimensional bipedal robot with 10 degrees
of actuation and the dynamics can be expressed as

Dq̈c +Cq̇c +G = Bτ + JT
s τs + JT

c fc, (1)

where qc ∈R20 is the configuration of the robot, D ∈R20×20

is the inertia matrix, C ∈ R20×20 is the Coriolis matrix,
G ∈ R20 is the generalized gravity vector, B ∈ R20×10 is the
actuation distribution matrix, τs ∈R4 are the spring torques,
Js is the jacobian of the spring deflections, τ ∈ R10 are
the input joint torques, fc ∈ R12 are the contact forces and
Jc :=

[
JT

c,1 · · ·JT
c,4
]T ∈ R12×20 is the jacobian of the contact

positions. For later use, we define J̄c :=
[
JT

c,1B · · ·JT
c,4B
]T ∈

R12×10. The configuration variables q consist of the position
of the robot, the orientation ε :=

[
θc ψc φc

]T of the pelvis
represented in Z-Y-X euler angles and the joint angles. These
are detailed in [19]. In later sections, we will particularly
use the yaw of the pelvis θc and the hip yaw angles denoted
by qhip :=

[
qhip,b qhip, f

]T corresponding to the legs on the
back and front foot-pads of the snakeboard.



B. Simplified Dynamical Model of Snakeboard

For the purpose of path planning, we derive a simplified
dynamical model of the snakeboard from [9]. Figure 2
depicts this model which consists of a rotor at the center
of the snakeboard to model a rider rotating their body. The
configuration variables of the snakeboard qs include the
inertial position xs, ys, orientation θs, the angles of the front
and back foot-pads φ f and φb, and the relative angle of the
rotor with the snakeboard ψ . The various physical parameters
of the snakeboard are mentioned in Table I. Assuming wheels
do not slip sideways, non-holonomic constraints (2), (3) are
imposed on the snakeboard,

−sin(φb +θs)ẋs + cos(φb +θs)ẏs− lθ̇s cosφb = 0, (2)

−sin(φ f +θs)ẋs + cos(φ f +θs)ẏs− lθ̇s cosφ f = 0. (3)

With the motion of the snakeboard restricted to level
ground, the potential energy of the snakeboard remains
constant and the Lagrangian dynamics for the snakeboard are
based solely on the kinetic energy. The equations of motion
of the snakeboard [9] are then obtained as

ẍs =
1

ms +mr

(
λ1 sin(φb +θs)+λ2 sin(φ f +θs)

)
, (4)

ÿs =−
1

ms +mr

(
λ1 cos(φb +θs)+λ2 cos(φ f +θs)

)
, (5)

θ̈s =
1
J

(
−u1−u2−u3 +λ1l cosφb−λ2l cosφ f

)
, (6)

ψ̈ =
1
Jr

(
u1− Jrθ̈s

)
, (7)

φ̈b =
1
Jw

(
u2− Jwθ̈s

)
, (8)

φ̈ f =
1
Jw

(
u3− Jwθ̈s

)
, (9)

where u1, u2 and u3 are the input torques at the joints
corresponding to the configuration variables ψ , φb and φ f
respectively, and λ1 and λ2 are Lagrange multipliers that
arise due to the non-holonomic constraints in (2) and (3).
The particular solution for λ1 and λ2 can be found in [9].

Remark 1. The variables ψ , φb and φ f correspond to the
local configuration of the snakeboard that the rider has
control over. The variables xs, ys and θs correspond to the
configuration of the snakeboard in the inertial frame. Due to
the non-holonomic constraints in (2) and (3), by modulating
the local configuration variables, the rider can cause a
desired net change in the inertial frame.

C. Contact Model between Cassie and the Snakeboard

In Section II, we used a model of the snakeboard where the
rotor was used as a simplification of the dynamics of the rider
[9]. While this simplified model is useful for path planning of
the snakeboard, it does not capture the true dynamics of the
rider. In particular, the dynamics of the rider (here, Cassie)
are given by the robot dynamics in Section II-A and the
inputs to the snakeboard u j, j ∈ {1,2,3} are determined by

Low-Level 
Joint Torque Controller

(Section IV-A)

X-Y Control
(Section IV-B)

Velocity Control
(Section IV-C)

Turning Control
(Section IV-D)

Fig. 3: Feedback control diagram. Here qc represents Cassie’s
states and qs represents the snakeboard’s states
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Fig. 4: Trajectory of the center-of-mass of the simplified
snakeboard model for various gaits, all with 0 initial velocity.

the contact forces between the foot and the snakeboard pads
as

u1 =
[
0 0 1

]
Σ

4
i=1rc

i ×− f i
c, (10)

u2 =
[
0 0 1

]
Σ

2
i=1r f p

i ×− f i
c, (11)

u3 =
[
0 0 1

]
Σ

4
i=3r f p

i ×− f i
c, (12)

where r f p
i represents the ith location of the contact point

with respect to the foot-pads, rc
i denotes the ith location

of the contact point with respect to center-of-mass of the
snakeboard, f i

c denotes the contact forces at the ith contact
point, with i = 1,2 representing the back foot-pads and
i = 3,4 representing the front foot-pads of the snakeboard.

III. PATH PLANING AND GAIT GENERATION

As mentioned in Remark 1, a desired net change in
the global position and orientation of the snakeboard can
be achieved by regulating the local coordinates of the
snakeboard and the problem of trajectory planning of the
snakeboard turns into a problem of gait generation of the
shape variables. We define a trajectory of the snakeboard in
the global frame as the tuple (xs(t),ys(t),θs(t)) denoting the
global positions and orientation of the snakeboard, and a gait
as the tuple (ψ(t),φb(t),φ f (t)) denoting the shape variables
at time t ∈ [0,T ] for T > 0.

For the sake of completeness, we present below the results
in [9] and illustrate the effects of different gaits on the
trajectories in the global frame. Consider the following
time-varying sinusoidal inputs for the simplified model
snakeboard in (7), (8), (9)

ui = ai sin(wit), i ∈ {1,2,3}, (13)

where the parameters of the sinusoids for various trajectories
are presented in Table II. The drive gait (Fig. 4a) propels the
snakeboard forward or backward depending on the phase



TABLE II: Gait parameters for different gaits from [9].

Parameter Drive Gait Parking Gait Rotate Gait
a1 0.3 rad 1 rad 1 rad
w1 1 rad/s 3 rad/s 2 rad/s

a2,−a3 0.3 rad 1 rad 1 rad
w2,w3 1 rad/s 2 rad/s 1 rad/s

difference between the foot-pads and the rotor. The parking
gait (Fig. 4b) results in a net displacement along the lateral
direction. The rotate gait (Fig. 4c) results in a net change in
orientation of the snakeboard with very small displacement
in both, x and y directions.

Remark 2. The distinguishing factor of the drive gait from
other gaits is the equal frequencies for both, the foot-pads
and the rotor. In the following sections, we will particularly
make use of the drive gait presented here on the simplified
snakeboard model to formulate a gait planner for Cassie to
follow various trajectories.

IV. CONTROL DESIGN

Having presented the gait generation technique for the
snakeboard using the simplified model, in this section, we
discuss the low-level control strategy implemented on Cassie
in order to achieve the desired trajectory while still being able
to balance on the snakeboard.

A. Low-Level Joint Controller

Our low-level feedback controller is derived from [18]
which presents an optimization-based framework to obtain
desired forces f d

c =
[

f d
c,1

T · · · f d
c,4

T ]T ∈ R12 at the four
contact points that stabilizes the center-of-mass position rc ∈
R3 and velocity ṙc of the robot as well as the orientation ε

and rotational velocity ε̇ of the pelvis to desired values rd
c ,

ṙd
c , εd and ε̇d . This is achieved by considering a fictitious

wrench Fcom ∈ R6 at a frame coincident with the center-of-
mass of the robot and parallel to the orientation of the pelvis,

Fcom =

[
mcge3−Kp(rc− rd

c )−Dp(ṙc− ṙd
c )

R
(
−2
(

δ I+ ξ̂

)
Krξ −Dr

(
ω−ωd

))] , (14)

where e3 =
[
0 0 1

]T , R is the equivalent rotation matrix
representation of the orientation of the pelvis given by R =
Rz(θc)Ry(γc)Rx(φc), with Rz, Ry and Rx denoting the rotations
about the Z, Y and X axes respectively. The rotation matrix
Rd corresponding to the desired orientation can be similarly
obtained. The terms ξ and δ denote the vector and scalar
part of the quaternion corresponding to the orientation error
RdT R. Additionally, ω and ωd denote the actual and desired
body angular velocities of the pelvis respectively, which can
be obtained from the euler angles and their velocities. The
desired height rd

c with respect to the snakeboard is kept at a
constant value and the desired yaw of the robot’s pelvis with
respect to the snakeboard is a sinusoidal function as in (13).

The center-of-mass wrench Fcom can be transformed to
equivalent contact forces f d

c through the grasp map Gc and
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Fig. 5: Results for velocity tracking simulation in Section
V-A. Top: Velocity tracking results with the Cassie-
snakeboard system initially at rest. Middle: Foot-pad angles
of the snakeboard. Bottom: Center-of-mass position of the
snakeboard follows a nearly straight line.

wrench basis W as, Fcom = GcW f d
c , where the wrench basis

W is required to transform a force f d
c,i at a contact point

to an equivalent wrench F i
c =

[
f d
c,i

T 0T
3×1
]T

. The desired
contact forces can then be obtained by finding the minimizer
of ‖Fcom − GcW f d

c ‖2. However, in order to oscillate the
foot-pads of the snakeboard as in (13), we require the legs
of Cassie to follow a sinusoidal trajectory, in addition to
maintaining a desired center-of-mass position and orientation
of the pelvis. We also require that the feet do not slip on
the foot-pads. We achieve this by formulating the feedback
control as the following optimization problem,

min
f d
c ,τ
‖Fcom−GcW f d

c ‖2
WF

+‖τhip− τ
d
hip‖2

Wτ
+‖τ + J̄T

c f d
c ‖2

Wδ

s.t. f d
c ∈K f ric, (15)

− τ̄ ≤ τ ≤ τ̄,

where τhip ∈R2 are the torques at the hip yaw joints, τ̄ ∈R10

denotes the joint torque limits on Cassie, K f ric corresponds
to the linearized friction cone constraints [20] and τd

hip is
given by the linear feedback term,

τ
d
hip =−Khip(qhip−qd

hip)−Dhip(q̇hip− q̇d
hip), (16)

where qd
hip =

[
qd

hip, f qd
hip,b

]T
∈ R2 and q̇d

hip are desired
sinusoidal trajectories for the hip joint angles and velocities
on the front and the rear foot-pads, Khip and Dhip are
appropriate feedback gains. The term ‖τ + J̄T

c f d
c ‖2

Wδ
in

the cost function captures the quasi-static relationship τ =
−J̄T

c f d
c between the joint torques and the contact forces.

Remark 3. As mentioned earlier, due to the lack of arms
and an upper torso, Cassie has limited control over the
yaw momentum which limits the types of trajectories and



behaviors that Cassie can execute with the snakeboard. In
the following sections, we will specifically use the drive gait
presented in Section III. In addition, while (13) considers
sinusoids for the input torques ui of the simplified snakeboard
dynamics, in the next sections, we will instead consider
sinusoidal trajectories for the desired hip angles qd

hip(t) and
desired pelvis yaw θ d

c (t). We also make an assumption that
the feet do not slip on the snakeboard foot-pads. With this
assumption, the foot-pads follow the hip joint trajectories.

B. Snakeboard X-Y controller

To achieve a desired displacement in the XY plane, we
consider a modified version of the drive gait. In particular,
we consider the following desired trajectories for the hip
joints and pelvis yaw,

qd
hip, f (t) = c+asin(wt), qd

hip,b(t) =−asin(wt), (17)

θ
d
c (t) = asin(wt), (18)

with c =−Kx(xs−xd
s )−Dx(ẋs− ẋd

s ), where xd
s represents the

desired x location. This controller prevents the board from
drifting too far from the desired x-direction.

C. Velocity Controller

Velocity control is accomplished by regulating the
amplitude of the sinusoids in (17)-(18) given by the
proportional feedback law,

a =−Kv(vs− vd
s ), (19)

where vs =
√

ẋ2
s + ẏ2

s represents the magnitude of the velocity
of the snakeboard.

D. Turning Controller

The turning controller maintains a desired heading angle
θ d

s of the snakeboard. We consider the following gait for the
desired hip angles qd

hip,

qd
hip, f = c+asin(wt), qd

hip,b =−c−asin(wt), (20)

where c =−Kθ (θs−θ d
s )−Dθ (θ̇s− θ̇ d

s ).
To account for sharp turns, Cassie would need to lean in

the direction of the turn to ensure stability and balance on the
snakeboard. To further analyze this, we consider an inverted
pendulum model in Fig. 2 that represents Cassie’s center-
of-mass. Here, Fs and Fn denote the tangential and normal
forces acting at the contact points, and Fc =

mv2

R denotes the
centripetal force at the center-of-mass.

Using a comparable model to the snakeboard studied by
[21], the radius of curvature of the trajectory R can be
calculated as,

R =
2l(

tanφ f − tanφb
)

cosω
, (21)

ω = arctan
tanφb + tanφ f

2
, (22)

where ω represents the slip angle at the center-of-mass of
the board and l represent the length of the center-of-mass
of the snakeboard to the foot-pad. Summing up the moment
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Fig. 6: Results for tracking a circular path in Section V-B.
(a) Foot-pad angles of the snakeboard. (b) Center-of-mass
position of the snakeboard.

about point O in Fig. 2 the desired lean angle θ d
l for Cassie

is given by

θl = arctan
v2

gR
. (23)

To achieve the desired lean angle θl , we consider the
following desired center-of-mass position with respect to the
snakeboard rd

c for Cassie in (14) as,

rd
c = ∆z

sinθl cosθs
sinθl sinθs

cosθl

 , (24)

where ∆z is the difference between a nominal desired height
of Cassie from the ground and the height of the snakeboard’s
foot-pads from the ground.

V. SIMULATION RESULTS

Having presented the dynamics of the Cassie-snakeboard
system and a feedback controller for regulating the inertial
position and orientation, we now present results from
numerical simulation for various scenarios.

A. Velocity Tracking

In this section, we consider regulating the velocity of
the Cassie-snakeboard system while following a straight
line. This is achieved by the control strategies presented in
Section IV-B and Section IV-C. Fig. 5 illustrates the results
of velocity tracking of the forward velocity of the Cassie-
snakeboard system.
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Fig. 7: Numerical simulation results for the simplified
snakeboard model moving (a) uphill and (b) downhill.

B. Turning Controller - Circular Path

The turning controller utilizes both, the velocity and
the turning controllers. Fig. 6 illustrates the results from
a numerical simulation of the turning controller. In this
particular case, we consider the desired heading angle to be
θ d

s (t) = 0.2t + θ0, t > 15s where θ0 = π/2. For t ≤ 15 we
use the velocity controller to follow a straight path and build
up speed.

C. Turning Controller - Sinusoidal Path

We consider a sinusoidal trajectory that requires Cassie
to make sharp turns without slipping and illustrate the
importance of leaning during sharp turns. In this example,
we consider an initial velocity of 0.8m/s for the Cassie-
snakeboard system and a desired heading angle θ d

s =
0.8sin t +θ0 where θ0 = π/2.

For the case without leaning into a turn, Cassie slips
within a few seconds as can be seen in Fig. 8 (top-right),
which shows that the ratio between the sum of the horizontal
forces over the normal force exceeded the coefficient of static
friction. However, for the case where the robot was able to
lean, Cassie is able to maneuver itself into sharp turns while
still ensuring the friction constraints are satisfied, as shown
in Fig. 8 (top-left).

D. Obstacle Avoidance

For avoiding obstacles in the task-space, we begin by
defining a path that geometrically avoids the obstacles. Then,
by utilizing the XY controller, we can follow the trajectory
to avoid obstacles. Fig. 9 shows a simulation of the Cassie-
snakeboard system avoiding two different obstacles in the
shape of a sphere with a radius of 0.2m. To achieve this, we
consider the piece-wise function for the desired x position
as a function of y,

xd
s = 0.3sin(ys− y0), (25)

where the particular values of y0 are obtained by considering
the position of the obstacles. In this particular case, Cassie’s
initial velocity is equal to 0.2m/s.

VI. FUTURE WORK

As part of future work, we plan to implement the proposed
controller on hardware. We also seek to explore robots with
an upper torso and arms, like Digit 2, to broaden the range

2https://www.agilityrobotics.com/meet-digit
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Fig. 8: Simulation results for sinusoidal trajectory in Sec.
V-C with (left column) and without (right column) leaning
into sharp turns.

Fig. 9: Center-of-mass position of the snakeboard while
avoiding obstacles (in red).

of achievable motions. Another potential future direction is
to analyze the problem of negotiating inclines. Towards this
goal, we analyzed the dynamics of the simplified model of
the snakeboard on surfaces of a constant incline angles. With
the assumption that the ground makes a constant angle α

with the x−axis, the Lagrangian of the snakeboard can be
written as

L =
1
2
(ms +mr)

(
ẋs

2 + ẏs
2)+ 1

2
Jθ̇

2
s +

1
2

Jr
(
ψ̇ + θ̇s

)2
+

1
2

Jw

((
φ̇b + θ̇s

)2
+
(
φ̇ f + θ̇s

)2
)
− (ms +mr)gxs sinα, (26)

where g denotes the acceleration due to gravity. Fig. 7
illustrates the drive gait from Section III for going up and
downhill with the simplified snakeboard dynamics. As part
of future work, we plan to investigate navigation on severe
inclines and dynamic hybrid motions like flips and jumps
with the snakeboard.

VII. CONCLUSION

In this paper, we presented a gait generation technique and
feedback controller for a bipedal robot to autonomously ride
an unpowered wheeled platform called Snakeboard, which is
a steerable variant of a Skateboard. Our proposed controller
is able to achieve sharp turns, navigate around an obstacle
course and follow desired trajectories in the task space.

https://www.agilityrobotics.com/meet-digit
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