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Abstract— A quadrotor with a cable-suspended load with
eight degrees of freedom and four degrees underactuation is
considered and the system is established to be adifferentially-
flat hybrid system. Using the flatness property, a trajectory
generation method is presented that enables finding nominal
trajectories with various constraints that not only result in
minimal load swing if required, but can also cause a large
swing in the load for dynamically agile motions. A control
design is presented for the system specialized to the planar
case, that enables tracking of either the quadrotor attitude, the
load attitude or the position of the load. Stability proofs for the
controller design and experimental validation of the proposed
controller are presented.

I. I NTRODUCTION

Cable-suspended systems are underactuated systems, with
the control of these systems being extensively studied in
the literature. Early work is split into developing controllers
for rapid stabilization of the load swing [16], [17], and/or
trajectory generation to achieve fast motion of the load with
minimal swing [18], [19], [14], [15].

With the introduction of inexpensive micro UAVs and
sophisticated sensors in recent years, controllers have been
designed to enable these systems to demonstrate aggressive
maneuvers [8], dynamic trajectory generation [9], balancing
a flying inverted pendulum [4], etc. This leads very well
to using UAVs for transportation of external loads. Having
grippers for grasping and transporting load is possible, see
[10], however the additional inertia of the load results in a
slower response for changes in the attitude. An alternative
is to have cable-suspended loads, retaining the agility of the
aerial vehicle while still achieving the task of lifting and
carrying the suspended load.

Transportation of suspended-load systems through UAVs
has been studied in recent years. Early attempts involved
quasi-static motions to position and orient a suspended load
[11]. Control design for the suspended load transportation
using single and multiple micro helicopters was studied and
demonstrated in [1], [7]. Quadrotors with suspended loads
have also been studied, [13], where the quadrotor is flown
along a trajectory generated to minimize the load swing at
the end of the motion. However, the primary focus in this
early research has been to minimize the load swing through
a combination of trajectory generation and active feedback
control.

An entire class of dynamic motions, where (a) the sus-
pended load is not just restricted to swing minimally, but is
rather allowed to undergo large swings while under active
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Fig. 1: (a) A 3D quadrotor with a cable suspended load.
When the cable is taut, the system evolves onSE(3)× S2,
and has8 degrees of freedom with4 degrees of underactu-
ation. (b) A planar quadrotor with a cable suspended load
evolving onSE(2)× S1

feedback control, and (b) the suspended load is allowed to
have finite durations of time during which the tension in the
cable is zero, have not been addressed. In particular, we wish
to study how to control the position of the load, while the
load undergoes large swings, and on how to address the case
when the tension in the cable goes to zero. More specifically,
we would like to design trajectories with phases of large
oscillations in the load, and phases when the tension in the
cable goes to zero for a finite duration of time, and track the
trajectories with appropriately designed feedback controllers.

To demonstrate that such a capability would be necessary,
two motivating scenarios are briefly presented next. For
instance, to enable a UAV carrying a long cable suspended
load to enter / exit short openings (such as a window), the
load needs to be dynamically swung into the opening, such
that the tension in the cable goes to zero at the right point
in time. This enables the UAV to go through the window
while the load undergoes free fall, prior to the tension in the
cable being reestablished. Alternatively, to enable UAVs to
transport suspended loads while flying under a strict ceiling
height, either to avoid radar detection or when flying indoors,
requires dynamic motion of the load to avoid large obstacles
on the ground.

Generating trajectories and designing controllers to enable
the load to track these trajectories is hard due to the underac-
tuated nature of the problem, and the switching dynamics that
arise when the cable is not taut. This paper studies a quadro-



tor with a cable-suspended load, and develops a coordinate-
free dynamic model by employing the Lagrange-d’Alembert
principle and considering variations on manifolds. For the
quadrotor with the cable suspended load, the dynamics
evolve either onSE(3)×S2, or SE(3)×R

3, depending on
which mode the system is in, i.e., if the cable is taut or not.
The quadrotor with cable-suspended load system is shown to
be differentially-flat [3], with the position of the load serving
as the float output. The notion of adifferentially-flat hybrid
systemis introduced, where the dynamics of one flat system
switch to the dynamics of another flat system. This enables
trajectory generation for the differentially-flat hybrid system,
to handle the case when the tension in the cable goes to zero.
A controller design is presented for the planar version of
the problem, to enable either tracking the quadrotor attitude,
the load attitude or the load position. Experimental results
are presented to demonstrate the validity of the proposed
trajectory generation, and the designed feedback controller.

The paper is organized as follows. Section II develops
a coordinate-free dynamical model for the dynamics of a
quadrotor with a cable suspended load. Section III demon-
strates the differential flatness of the system by presenting
a set of flat outputs. The system under consideration is
also shown to be a special class of differentially-flat hybrid
system. Nominal trajectories are generated and presented.
Section IV specializes the developed dynamics to a planar
case and develops a three-tier inner-outer loop based control
scheme for regulating either the quadrotor attitude, the load
attitude or the load position in the plane. Section V presents
several experimental results. Finally, Section VI presents
concluding remarks.

II. DYNAMIC MODEL OF A QUADROTOR WITH CABLE

SUSPENDEDLOAD

This section will describe a coordinate-free dynamic
model for the quadrotor with a cable suspended load by using
rotation matrices for the quadrotor attitude representation and
the two-sphere for the load attitude representation. Figure 1a
illustrates the system under consideration. We define

mQ ∈ R mass of the quadrotor
JQ ∈ R

3×3 inertia matrix of the quadrotor with re-
spect to the body-fixed frame

R ∈ SO(3) rotation matrix of the quadrotor from
body-fixed frame to the inertial frame

Ω ∈ R
3 angular velocity of the quadrotor in the

body-fixed frame
xQ, vQ ∈ R

3 position and velocity vectors of the cen-
ter of mass of the quadrotor in the
inertial frame

f ∈ R magnitude of the thrust for the quadrotor
M ∈ R

3 moment vector for the quadrotor in the
body-fixed frame

mL ∈ R mass of the suspened load
p ∈ S2 unit vector from quadrotor to the load
ω ∈ R

3 angular velocity of the suspended load
xL, vL ∈ R

3 position and velocity vectors of the sus-
pended load in the inertial frame.

A. Dynamical Model with Nonzero Cable Tension

The configuration of the system is defined by the location
of the load with respect to the inertial frame, the load attitude
and the quadrotor attitude. When the cable is taut, the system
has eight degrees of freedom with configuration spaceQ =
SE(3)×S2, and four degree underactuation. The quadrotor
and load positions are related by

xQ = xL − Lp, (1)

whereL is the cable length, andp ∈ S2 is the unit vector
from quadrotor to the load as defined earlier. The equations
of motion are obtained using the method of Lagrange. The
Lagrangian for the system,L : TQ → R, is defined by
L = T − U , whereT : TQ → R andU : Q → R are the
kinetic and potential energies of the mechanism, respectively.
These are defined as,

T =
1

2
mQvQ · vQ +

1

2
mLvL · vL +

1

2
〈Ω̂, ĴQΩ〉, (2)

U = mQge3 · xQ +mLge3 · xL, (3)

wherevQ is obtained as the derivative of (1),〈·, ·〉 : so(3)×
so(3) → R is the inner product onso(3), and thehat map
·̂ : R3 → so(3) is defined such that̂xy = x× y, ∀x, y ∈ R

3.
The dynamics of the system satisfy the Lagrange-

d’Alembert principle,

δ

∫ T

0

(
L+ 〈W1, M̂〉+W2 · fRe3

)
dt = 0, (4)

wheref is the thrust magnitude,M is the moment vector,
andW1 = RT δR, W2 = δxQ = δxL − Lδp are variational
vector fields [12], with the infinitesimal variations satisfying
[6], [2], [5]

δp = ξ × p, ξ ∈ R
3 s.t. ξ · p = 0

δṗ = ξ̇ × p+ ξ × ṗ

δR = Rη̂, η ∈ R
3

δΩ̂ =
̂̂
Ωη + ˆ̇η,

with δp being a variation onS2, and δR a variation on
SO(3).

Since (4) is satisfied for all possible variations, the equa-
tions of motion for the quadrotor with cable-suspended load
are obtained as

ẋL = vL, (5)

(mQ +mL)(v̇L + ge3) = (p · fRe3 −mQL(ṗ · ṗ))p, (6)

ṗ = ω × p, (7)

mQL ω̇ = −p× fRe3, (8)

Ṙ = RΩ̂, (9)

JQΩ̇ + Ω× JQΩ =M. (10)

Remark1: The quadrotor attitude dynamics in (10) is
decoupled from the load attitude and position dynamics in
(8), (6) respectively, while the load attitude dynamics is
decoupled from the load position dynamics. Also notice that
gravity does not influence the load attitude dynamics. Both



these observations will motivate the choice of our control
structure in Section IV.

B. Dynamical Model with Zero Cable Tension

When the tension in the cable goes to zero, the system
evolves onQz = SE(3)× R

3, with the quadrotor and load
as separate systems, with the load being in free fall. The
dynamical model in this case is,

ẋL = vL, (11)

mL(v̇L + ge3) = 0, (12)

ẋQ = vQ, (13)

mQ(v̇Q + ge3) = fRe3, (14)

Ṙ = RΩ̂, (15)

JQΩ̇ + Ω× JQΩ =M. (16)

Next, for the purpose of the controller design in Section
IV, the dynamics (6), (8), (10) are specialized to the planar
case.

C. Dynamical Model Specialized to the Plane

The configuration space for the planar quadrotor with
cable suspended load isQp := SE(2) × S2, with qp :=
(xL;φL;φQ) ∈ Qp, where with an abuse of notation, we
definexL ∈ R

2 as the load position,φL the roll angle of
the load,φQ the roll angle for the quadrotor; see Figure 1b.
Also defining JQ ∈ R the inertia of the quadrotor in the
plane,e3 = [0, 1]T , andp ∈ S1, R ∈ SO(2), the dynamics
are obtained as,

p =

[
sin(φL)

− cos(φL)

]
, R =

[
cos(φQ) − sin(φQ)
sin(φQ) cos(φQ)

]
. (17)

The dynamical equations of the quadrotor with cable-
suspended system specialized to the plane can then be written
directly from (6)-(10),

(mQ +mL)(v̇L + ge3) = (f cos(φQ − φL)−mQlφ̇
2
L)p

(18)

mQlφ̈L = sin(φQ − φL) (19)

JQφ̈Q =M (20)

Note that we abused notation and have used the same
variable names in both the3D and the planar case. The
controller designed in Section IV will be developed on the
planar model presented here.

Next, we demonstrate that the quadrotor with a cable
suspended load is differentially flat with the load position
being the flat outputs. This holds both in3D and in the
planar case.

III. D IFFERENTIAL FLATNESS

A system is differentially flat if there exists a set of flat
outputs, such that the state and inputs of the system can be
expressed as smooth functions of the flat outputs and their
higher-order derivatives [3]. Differential-flatness has been
employed for planning dynamic trajectories for quadrotor
systems [9]. Here we demonstrate that the quadrotor with

a cable-suspended load is differentially-flat, and moreover it
is a differentially-flat hybrid system as defined below.

Definition 1: (Differentially-Flat Hybrid System)Con-
sider the following hybrid system

Σ :





ẋ1 = f1(x1) + g1(x1)u1, x1 /∈ S1

x+2 = ∆1(x
−

1 ), x−1 ∈ S1

ẋ2 = f2(x2) + g2(x2)u2, x2 /∈ S2

x+1 = ∆2(x
−

2 ), x−2 ∈ S2,

(21)

and suppose the dynamics ofx1, x2 are differentially-flat
with a set of flat outputsY1 andY2 respectively, the post-
transition value of the outputsY2 are a function of the pre-
transition value of the flat outputY1 and its higher-order
derivatives, then the systemΣ is a differentially-flat hybrid
system.

The consequences of having a differentially-flat hybrid
system are that everything about the system is encoded in
the flat outputs, including the instant when the switching
occurs from one dynamics to another. For instance, since
the switching surfaceS1 is embedded in the state space, and
can be written as the zero surface of some function of the
state, it can equivallently written as another zero surfaceof
some function of the flat outputsY1 and their higher-order
derivatives.

To show that the system comprising the quadrotor with
a cable-suspended load is differentially-flat, we will look
at the dynamical equations of motion arising from Newton-
Euler, such that the internal constraint force of the system,
corresponding to the tension in the cable, is introduced.
Looking at Figure 1a, the equations of motion can be written
as,

mQẍQ = fRe3 −mQge3 + Tp (22)

JΩ̇ + Ω× JΩ =M (23)

mLẍL = −Tp−mLge3, (24)

whereT ∈ R is the tension in the cable.
Lemma1: Y1 = (xL, ψ), is a set of flat outputs for

the above system, whereψ ∈ R is the yaw angle of the
quadrotor.

Proof: The quantityTp can be determined from (24),
from which the unit vectorp = Tp/||Tp|| and the tension
T = Tp · p are determined. The quadrotor position can then
be determined using (1). All remaining quantities,R,Ω, f,M
can be determined from knowledge ofxQ, ψ and their
higher-order derivatives, since(xQ, ψ) are flat outputs for
a quadrotor as shown in [9].

Remark2: The inputM is obtained from the6th deriva-
tive of the position of the load.

Knowing Y1 and its higher-order derivatives, we know
everything about thex1 system (quadrotor with cable sus-
pended load), including the instant whenx−1 ∈ S1 and
switching would occur. For our system, the transition map
∆1 mapsx−1 ∈ TQ → x+2 ∈ TQz. For the x2 system
(quadrotor and free load), knowingY2 = (xQ, ψ) and
its higher order derivatives, and the post-transition state of
the load, x+L (which can be computed fromY1 and its



Fig. 2: Controller structure for tracking load position.

derivatives and∆1), completely specifies everything about
the x2 system, since theY2 is a set of flat outputs for the
quadrotor dynamics, and the load dynamics under free fall
is analytic and we only require the initial conditionx+L .
Thus, from the flat outputs we can once again determine
the pre-transition state,x2−, for the x2 system and using
∆2 map this back to the post-transition statex+1 for the x1
system. Thus, the quadrotor with a cable-suspended load is
a differentially-flat hybrid system. This fact will be utilized
for designing trajectories in Section V.

IV. CONTROL DESIGN

Having derived the dynamics of a general 3-dimensional
quadrotor with a cable suspended load system and shown that
the load position forms a set of differentially-flat outputsfor
the system, we will develop a controller that can be used
for tracking one of the following quantities (a) quadrotor
attitude, (b) load attitude, or (c) load position. Figure 2 il-
lustrates the controller structure. However, the control design
will be carried out on the dynamics specialized to the plane.
This is done to carry out an initial study and to provide an
intuition for designing controllers for the full3D case.

It must be noted that the propositions being presented
could be extended to3D. For instance [6] develops a
quadrotor attitude controller for almost global stabilization
on SO(3). Similarly, extending the load attitude controller
to 3D should be doable by considering the configuration
error function onS2 defined in [2], but the full load position
tracking problem might be hard.

Proposition1: (Exponential Stability of Quadrotor Atti-
tude Controlled Flight Mode) Consider the quadrotor mo-
ment defined as

M = JQ(−k
Q

p eQ − k
Q

d ėQ + φ̈dQ), (25)

where eQ = φQ − φdQ is the error in tracking the desired

quadrotor attitude, andk
Q

p , k
Q

d are positive constants. Then,
the quadrotor attitude error dynamics is exponentially stable.

Proof: The quadrotor attitude error dynamics is given
by

ëQ = φ̈Q − φ̈dQ =
1

JQ
M − φ̈dQ = −k

Q

p eQ − k
Q

d ėQ, (26)

where we substituted for the moment defined in (25). This
second order dynamics can be easily shown to be exponen-
tially stable for positivek

Q

p , k
Q

d , and by the converse Lya-
punov theorem, there exists a Lyapunov function satisfying

zTQMqzQ ≤ VQ ≤ zTQMQzQ, (27)

V̇Q ≤ −zTQWQzQ, (28)

wherezQ = [eQ, ėQ]
T ∈ R

2, andMq,MQ,WQ ∈ R
2×2 are

positive definite matrices.
Proposition2: (Exponential Stability of Load Attitude

Controlled Flight Mode) Consider the computed quadrotor
attitude defined as

φcQ := φL + sin−1

(
−k

L

p eL − k
L

d ėL +
φ̈dLmQl

f

)
, (29)

whereeL = φL−φ
d
L is the error in tracking the desired load

attitude, and the initial conditions satisfy

| − k
L

p eL − k
L

d ėL +
φ̈dLmQl

f
| < 1, (30)

where0 < f
mQl

≤ α. DefineWL,WLQ ∈ R
2×2 as

WL =


αk

L

p c1
αk

L

d c1
2

αk
L

d c1
2 αk

L

d − c1


 , (31)

WLQ =

[
c1α

2 α2

0 0

]
, (32)

wherek
L

p , k
L

d , c1 are positive constants such that,

c1 < min{
√
αkL

p ,
k

L

p k
L

d

kL

p + k
L

d /2
}, (33)

λm(WL) >
||WLQ||

2

4λm(WQ)
, (34)

whereλm(·) denotes the minimum eigenvalue of a matrix.
Then, the load attitude error dynamics is exponentially stable
for all initial conditions satisfying (30).

Proof: See Appendix I.
Proposition3: (Exponential Stability of Load Position

Controlled Flight Mode) Consider the quadrotor thrust and
desired load attitude defined as,

f = (A+B) ·Re3, (35)

pd = −
A

||A||
=⇒ φdL = tan−1(

−A1

A2
), (36)

whereA,B are defined as below,

A = −k
x

pex − k
x

d ėx +mLẍ
d
L +mLge3 (37)

B = mQẍ
d
Q +mQge3

= mLẍ
d
L −mQlp̈

d +mQge3, (38)

andA1, A2 are the two components ofA. Further assume,

||mL(ẍ
d
L + ge3) +mQ(ẍ

d
Q + ge3)|| ≤ C, (39)

and assume there existsd1, d2 > 0, such that,

mQl||p̈− p̈d|| ≤ d1|eL|+ d2|ėL|. (40)

Such a bound exists sincep is driven topd exponentially.
Next, defineWx ∈ R

2×2,W1 ∈ R
6×6 as

Wx =


 c2k

x

p(1 + β)
c2k

x

d (1+β)+k
x

p β

2
c2k

x

d (1+β)+k
x

p β

2 k
x

d(1 + β)− c2


 , (41)



W1 =




0 0 d1c2 + c2C d2c2 c2C 0
− 0 d1 + C d2 C 0
− − 0 0 0 0
− − − 0 0 0
− − − − 0 0
− − − − − 0



, (42)

where the “-” are to be filled to makeW1 symmetric, and
k

x

p , k
x

d , c2 are positive constants such that,

c2 < min{
√
kx

p ,
k

x

pk
x

d(1 + β)2

kx

p + k
x

d

2
/4

}, (43)

Then the load position errorex exponentially goes to zero.
Proof: See Appendix II.

V. EXPERIMENTAL RESULTS

We first discuss trajectory generation prior to presenting
results of tracking with the feedback control. We parametrize
each flat output as a function of time and pick a suitable basis
function. An optimization problem is then posed to solve for
the coefficients of the basis polynomials to minimize the
sixth-derivative of the load position, subject to constraints
of initial and final states. Minimizing the sixth-derivative
of the load position ensures minimum snap motion for the
quadrotor. Thus we solve,

min

∫ t1

t0

||
dkxi
dtk

||2dt, (44)

wherexi(t) = Σn
j=0ci,jβj(t), is a parametrized flat output,

andβj(t) are the basis functions.
As an example to illustrate the trajectory generation, we

choose a sinusoidal basis to generate a trajectory for the
load position in3D. Figure 3 depicts the result of simulating
the system dynamics, (6), (8), (10), in open-loop with the
feedforward input computed from the differential-flatness.
The planned load profile is highlighed, along with the
resulting required quadrotor motion to obtain the desired load
profile.

With nominal trajectories generated, we study the perfor-
mance of the proposed controller first in simulation. Figure4
illustrates tracking of a sinusoidal wave for the load position
at close to the natural frequency of the load system. With
a cable length of1m, the load has a natural frequency of
1/2 Hz. This makes tracking close to this frequency hard.
As seen in the figure, even with large initial errors in the
load position (upto1 m in the horizontal load position), the
tracking error converges to zero.

Next, we conduct preliminary experiments to demonstrate
the validity of the proposed controller. Figure 5 depicts the
experimental setup used. A Hummingbird quadrotor is em-
ployed along with a suspended load with Vicon markers. The
markers enable sensing the load position and the load attitude
for use in the feedback control. As a first experiment, we
demonstrate tracking of the load position while commanding
it to move from one point to another. Figure 6 illustrates the
tracking of the load position.
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Fig. 3: A nominal trajectory for the load position is generated
using the differential-flatness property in3D. An open-loop
simulation is performed with the feedforward moments com-
puted from the flatness. The blue curve shows the planned
load trajectory, while the red curve shows the resulting
quadrotor motion to obtain the planned load motion.
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Fig. 4: Simulation results for tracking a sinusoidal load tra-
jectory, close to the natural frequency of the suspended load,
with large initial errors. The load and quadrotor trajectories
are shown converging to the nominal designed trajectory, and
the error in the quadrotor and load attitude converges to zero.

To study the performance of the controller to track the
load position while the load is undergoing large oscillations,
we design a fixed-amplitude sinusoidal motion for the load
in the horizontal and vertical directions. The frequency of
motion, however, varies slowly with time, starting at1/5 Hz
and increasing to the natural frequency of the suspended load
at 1/2 Hz. As expected, controlling the motion of the load
while exiting it close to resonance is extremely hard. Our
proposed controller is able to track the load trajectory upto
a frequency of0.49 Hz, beyond which the system becomes
unstable. Figure 4 illustrates the tracking for this experiment,



Fig. 5: A Hummingbird quadrotor with a cable suspended
load. Both the quadrotor and the suspended load are equipped
with Vicon markers for enabling sensing their position and
attitude for feedback control. The cable length is1 m, and
the load weighs90 gm.

with plots for the horizontal and vertical position tracking
of the load, and the load angle. As can be seen, the load
has to swing almost40 deg at the very end to track the
load position. The constant offset in tracking the vertical
position of the load is due to not correcting for the small
variations that occur in the system mass (different batteries
weigh different) and in the thrust to rotor speed mapping that
changes with temperature and other environmental condi-
tions. Figure 8 shows the tracking in the plane. Correcting for
the constant offset in the vertical tracking would result ina
better aligned plot. Figure 9 illustrates the horizontal motion
of the quadrotor to achieve tracking of the load position.
Notice the reduction of peak-to-peak motion of the quadrotor
by almost70% at the end of the trajectory. To track a faster
frequency load trajectory, the quadrotor moves less, while
the load swings more.

This shows fairly good tracking of the load position even
for large oscillations of the load at frequencies close to the
natural frequency of the suspended load, validating the con-
troller design. It must be noted that additional experiments
for performing load tracking, where the tension in the cable
goes to zero for a part of the trajectory will need to be
done for a complete experimental validation of the proposed
method.

VI. CONCLUSION

We have presented a coordinate-free development of the
dynamics of a quadrotor with a cable suspended load, and
have shown that this system is a differentially-flat hybrid
system. An inner-outer loop-based controller has been de-
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Fig. 6: Experimental results for tracking a trajectory for
the load position to move from point-to-point with minimal
oscillations in the load.
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Fig. 7: Experimental results for tracking a fixed-amplitude
sinusoidal load trajectory for both the horizontal and vertical
positions of the load. The frequency of the sinusoid varies
slowly from 1/5 Hz to very close to the natural frequency
of the suspended load (1/2 Hz. Plots of the horizontal, and
vertical load positions along with the load angle is shown.
The proposed controller tracks the load position until0.49
Hz, during when the load is swinging almost40 deg.

signed for the planar case. The flatness property has been
utilized to design trajectories and preliminary results have
been demonstrated in simulations and in experiments.

This work provides several future paths. Firstly, the pre-
sented controller will be studied to extend it to the full3D
case. Early investigations demonstrate that the load attitude
can be almost globally stabilized onS2. Another path to
take is to study cooperative, dynamic manipulation of a
suspended load, which is more interesting and challenging
due to the high degree of freedom. For instance, for planar
two quadrotor system with a shared cable suspended load, a
system with seven degrees of freedom and three degrees of
underaction, the system can be shown to be differentially-flat
with four flat outputs.
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Fig. 8: Experimental results for tracking a fixed-amplitude
sinusoidal load trajectory with varying frequency. Correcting
for the constant offset in tracking the vertical position ofthe
load could potentially result in a better alignment with the
nominal trajecotry.
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Fig. 9: Experimenally obtained horizontal motion of the
quadrotor to track the fixed-amplitude sinusoidal load tra-
jectory with varying frequency. Notice the peak-to-peak
reduction in the quadrotor motion by almost70% to en-
able tracking the load position. At larger frequencies, the
quadrotor moves less, while the load swings more. Vertical
quadrotor motion does not change significantly and is not
shown.

APPENDIX I
PROOF OFPROPOSITION2

The load attitude error dynamics is given by

ëL = φ̈L − φ̈dL =
sin(φQ − φL)

mQl
f − φ̈dL

=
sin(φdQ − φL)

mQl
f − φ̈dL +X, (45)

whereX ∈ R is defined as,

X =
sin(φQ − φL)− sin(φdQ − φL)

mQl
f

=
2 sin(

eQ
2 ) cos(

φQ+φd
Q−2φL

2 )

mQl
f. (46)

Substituting forφdQ in (45) with φcQ defined in (29), we
obtain,

ëL =
f

mQl
(−k

L

p eL − k
L

d ėL) +X. (47)

Consider a candidate Lyapunov function given by,

VL =
αk

L

p

2
e2L +

1

2
ė2L + c1eLėL. (48)

The time derivative ofV1 along trajectories of the system is
given by,

V̇L =αk
L

p eLėL + ėLëL + c1ė
2
L + c1eLëL

≤α(ėL + c1eL)(−k
L

p eL − k
L

d ėL +X) + αk
L

p eLėL + c1ė
2
L

=− αk
L

p c1e
2
L − (αk

L

d − c1)ė
2
L − αk

L

d c1eLėL+

α(ėL + c1eL)X.
(49)

Next we obtain a bound onX in (46) by making a small
angle assumption oneQ and using the fact that the cosine
term in (46) is upper bounded by1, to obtain

X ≤
f

mQl
eQ ≤ α eQ,

whereα is as defined in the Proposition. Substituting this
into (49), we obtain,

V̇L ≤ −zTLWLzL + (ėL + c1eL)α
2 eQ, (50)

wherezL = [eL, ėL]
T ∈ R

2 andWL as defined in (31).
The condition onc1 in (33) ensures positive-definiteness

of the matricesWL andMl,ML ∈ R
2×2 where,

Ml =
1

2

[
αk

L

p −c1
−c1 1

]
, ML =

1

2

[
αk

L

p c1
c1 1

]
, (51)

such that a bound on the Lyapunov functionVL can be
written as

zTLMlzL ≤ VL ≤ zTLMLzL.

Taking the Lyapunov functionVLQ = VL + VQ for
the subsystem comprising the load and quadrotor attitude
dynamics, we have a bound onVLQ as,

zTLMlzL + zTQMqzQ ≤ VLQ ≤ zTQMQzQ + zTLMLzL. (52)

Moreover, the time-derivative ofVLQ is given by,

V̇LQ ≤ −zTLWLzL + zTLWLQzQ +−zTQWQzQ, (53)

whereWLQ is as defined in (32).
From the assumptions of Proposition1, and the con-

ditions on c1, we have all the following matrices
Mq,MQ,WQ,Ml,ML,WL and the Lyapunov functionVLQ

to be positive-definite, and

V̇LQ ≤− λm(WL)||zL||
2 + ||WLQ||2||zL||||zQ||

− λm(WQ)||zQ||
2

(54)

The condition given by (34) ensuresV̇LQ becomes negative-
definite. Therefore the load and quadrotor attitude error
dynamics exponentially converge to zero.

APPENDIX II
PROOF OFPROPOSITION3

Instead of looking at the load position dynamics (6) or its
planar analogue (18), we form a simpler equation by looking
at the dynamics ofxcom, the center of mass of the system.
We have,

(mQ +mL)ẍcom = mQẍQ +mLẍL

= fRe3 − (mQ +mL)ge3, (55)



which yields,

(mQ +mL)ẍL = −(mQ +mL)ge3 +mQlp̈+ fRe3, (56)

where we have differentiated (1) twice with respect to time
and used in the above equation. Defining the load position
error asex = xL − xL

d, ev = ėx, the error dynamics are
given by,

(mQ +mL)ėv = −(mQ +mL)ge3 +mQlp̈+

fRe3 − (mQ +mL)ẍ
d
L

= −k
x

pex − k
x

d ėx +mQl(p̈− p̈d) + Y,

whereY ∈ R is defined as,

Y = fRe3 −B −
f −B ·Re3
pd ·Re3

pd

=
f ((pd ·Re3)Re3 − pd) + (B ·Re3)pd − (pd ·Re3)B

pd ·Re3
,

such that,

||Y || ≤ |eL + eQ|(||A+B||+ ||B||)

≤ |eL + eQ|(k
x

p ||ex||+ k
x

d ||ėx||+ C), (57)

whereC is as defined in (39), and0 < 1/|pd · Re3| ≤
|eL + eQ| ≤ β ≤ 1.

Consider a candidate Lyapunov function given by,

Vx =
k

x

p

2
ex · ex +

1

2
ev · ev + c2ex · ev. (58)

The time derivative ofVx along trajectories of the system is
given by,

V̇x =k
x

pex · ev + c2ev · ev + (ev + c2ex) · ėv

≤− (k
x

d − c2)ev · ev − c2k
x

pex · ex − c2k
x

dex · ev+

(ev + c2ex)(d1|eL|+ d2|ėL|+ Y )

≤− (k
x

d − c2)||ev||
2 − c2k

x

p ||ex||
2 − c2k

x

d ||ex||||ev||+

d1(ev + c2ex)|eL|+ d2(ev + c2ex)|ėL|

(ev + c2ex)|eL + eQ|(k
x

p ||ex||+ k
x

d ||ėx||+ C))

≤− zTxWXzx + zTW1z,
(59)

where,zx = [||ex||, ||ev||], z = [zx, zL, zQ], andWX ,W1 are
as defined in (41),(42). The condition onc2 in (43) ensures
positive-definiteness of the matricesWX and Mx,MX ∈
R

2×2 are defined similar to (51), such that a bound on the
Lyapunov functionVx can be written as

zTxMxzx ≤ VX ≤ zTxMXzx.

Next, considering the Lyapunov functionV = Vx + VLQ

for the complete system, we can perform a similar analysis
to demonstrate exponential stability of the load error dynam-
ics.We have a bound onV as,

zTM1z ≤ V ≤ zTM2z,

where M1 = diag[Mx,Ml,Mq], and M2 =
diag[MX ,ML,MQ]. Moreover, the time-derivative of
V is given by,

V̇ ≤ −zTWz + zT (W1 +WLQ)z,

whereW = diag[WX ,WL,WQ].
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[3] M. Fliess, J. Ĺevine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: introductory theory and examples,”International
journal of control, vol. 61, pp. 1327–1361, 1995.

[4] M. Hehn and R. D’Andrea, “A flying inverted pendulum,”2011 IEEE
International Conference on Robotics and Automation, no. 2, pp. 763–
770, May 2011.

[5] T. Lee, M. Leok, and N. H. McClamroch, “Discrete Control Systems,”
Springer Encyclopedia of Complexity and Systems Science, pp. 2002—
-2019, 2008.

[6] T. Lee, M. Leok, and N. H. Mcclamroch, “Geometric Tracking Control
of a Quadrotor UAV on SE ( 3 ),” inIEEE Conference on Decision
and Control, no. 3, Atlanta, GA, 2010, pp. 5420–5425.

[7] I. Maza, K. Kondak, M. Bernard, and A. Ollero, “Multi-UAVCooper-
ation and Control for Load Transportation and Deployment,”Journal
of Intelligent and Robotic Systems, vol. 57, no. 1-4, pp. 417–449, Aug.
2010.

[8] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,” The
International Journal of Robotics Research, vol. 31, no. 5, pp. 664–
674, Jan. 2012.

[9] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,”2011 IEEE International Conference on
Robotics and Automation, pp. 2520–2525, May 2011.

[10] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, mod-
eling, estimation and control for aerial grasping and manipulation,”
2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 2668–2673, Sep. 2011.

[11] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and
transportation with aerial robots,”Autonomous Robots, vol. 30, no. 1,
pp. 73–86, Sep. 2010.

[12] J. Milnor,Morse Theory. Princeton: Princeton University Press, 1963.
[13] I. Palunko, R. Fierro, and P. Cruz, “Trajectory generation for swing-

free maneuvers of a quadrotor with suspended payload: A dynamic
programming approach,”2012 IEEE International Conference on
Robotics and Automation, pp. 2691–2697, May 2012.

[14] J. Schultz and T. Murphey, “Trajectory generation for underactuated
control of a suspended mass,”2012 IEEE International Conference
on Robotics and Automation, pp. 123–129, May 2012.

[15] G. Starr, J. Wood, and R. Lumia, “Rapid Transport of Suspended
Payloads,” inInternational Conference on Robotics and Automation,
no. April, 2005, pp. 1394–1399.

[16] N. Yanai, M. Yamamoto, and A. Mohri, “Feedback Control forWire-
Suspended Mechanism with Exact Linearization,” inInternational
Conference on Intelligent Robots and Systems, no. October, 2002, pp.
2213–2218.

[17] J. Yu, F. L. Lewis, and T. Huang, “Nonlinear Feedback Control of a
Gantry Crane,” no. June, 1995.

[18] D. Zameroski, G. Starr, J. Wood, and R. Lumia, “Rapid Swing-
Free Transport of Nonlinear Payloads Using Dynamic Programming,”
Journal of Dynamic Systems, Measurement, and Control, vol. 130,
no. 4, p. 041001, 2008.

[19] D. Zameroski, G. Starr, J. Wood, R. Lumia, and A. P. Work, “Swing-
Free Trajectory Generation for Dual Cooperative Manipulators using
Dynamic Programming,” inInternational Conference on Robotics and
Automation, no. May, 2006, pp. 1997–2003.


