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Abstract—A quadrotor with a cable-suspended load with zQ €R% R e S0(3)

eight degrees of freedom and four degrees underactuation is

considered and the system is established to be differentially-

flat hybrid system Using the flatness property, a trajectory

generation method is presented that enables finding nominal

trajectories with various constraints that not only result in pE
minimal load swing if required, but can also cause a large

swing in the load for dynamically agile motions. A control

design is presented for the system specialized to the planar

case, that enables tracking of either the quadrotor attitude, tle

load attitude or the position of the load. Stability proofs for the

controller design and experimental validation of the proposed xr; € R3
controller are presented.

I. INTRODUCTION @) (b)

Cable-suspended systems are underactuated systems, Wigh 1: (@) A 3D quadrotor with a cable suspended load.
the control of these systems being extensively studied ¥Yhen the cable is taut, the system evolvessii(3) x S,
the literature. Early work is split into developing contess ~and has3 degrees of freedom with degrees of underactu-
for rapid stabilization of the load swing [16], [17], and/orat'on-_ (b) A planar quadrotor with a cable suspended load
trajectory generation to achieve fast motion of the loachwit€volving onSE(2) x S*
minimal swing [18], [19], [14], [15].

With the introduction of inexpensive micro UAVs and
sophisticated sensors in recent years, controllers hage be
designed to enable these systems to demonstrate aggresg#egiback control, and (b) the suspended load is allowed to
maneuvers [8], dynamic trajectory generation [9], balagci have finite durations of time during which the tension in the
a flying inverted pendulum [4], etc. This leads very wellcable is zero, have not been addressed. In particular, we wis
to using UAVs for transportation of external loads. Havingo study how to control the position of the load, while the
grippers for grasping and transporting load is possible, séoad undergoes large swings, and on how to address the case
[10], however the additional inertia of the load results in avhen the tension in the cable goes to zero. More specifically,
slower response for changes in the attitude. An alternativge would like to design trajectories with phases of large
is to have cable-suspended loads, retaining the agilithef t oscillations in the load, and phases when the tension in the
aerial vehicle while still achieving the task of lifting and cable goes to zero for a finite duration of time, and track the
carrying the suspended load. trajectories with appropriately designed feedback cdieti®

Transportation of suspended-load systems through UAVS To demonstrate that such a capability would be necessary,
has been studied in recent years. Early attempts involveglo motivating scenarios are briefly presented next. For
quasi-static motions to position and orient a suspendedi loghstance, to enable a UAV carrying a long cable suspended
[11]. Control design for the suspended load transportatiggad to enter / exit short openings (such as a window), the
using single and multiple micro helicopters was studied angad needs to be dynamically swung into the opening, such
demonstrated in [1], [7]. Quadrotors with suspended loadfat the tension in the cable goes to zero at the right point
have also been studied, [13], where the quadrotor is flowq time. This enables the UAV to go through the window
along a trajectory generated to minimize the load swing afhile the load undergoes free fall, prior to the tension i@ th
the end of the motion. However, the primary focus in thigable being reestablished. Alternatively, to enable UAY's t
early research has been to minimize the load swing througfansport suspended loads while flying under a strict agilin
a combination of trajectory generation and active feedbagieight, either to avoid radar detection or when flying indoor
control. requires dynamic motion of the load to avoid large obstacles

An entire class of dynamic motions, where (a) the susn the ground.
pended load is not just restricted to swing minimally, but iS - Generating trajectories and designing controllers to kenab
rather allowed to undergo large swings while under activgye joad to track these trajectories is hard due to the undera
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tor with a cable-suspended load, and develops a coordina#e- Dynamical Model with Nonzero Cable Tension

free dynamic model by employing the Lagrange-d’Alembert The configuration of the system is defined by the location
principle and considering variations on manifolds. For thgg the |0ad with respect to the inertial frame, the load wadiit
quadrotor with the cable suspended load, the dynamiggq the quadrotor attitude. When the cable is taut, the system
evolve either onSE(3) x §%, or SE(3) x R?, depending on  has eight degrees of freedom with configuration space

which mode the_system is in, i.e., if the cable is te_lut or noggE(g)) x 52, and four degree underactuation. The quadrotor
The quadrotor with cable-suspended load system is shownjgq |0ad positions are related by

be differentially-flat [3], with the position of the load sémg
as the float output. The notion ofdifferentially-flat hybrid xqg =z — Lp, 1)

systemis introduced, where the dynamics of one flat systefere 7, is the cable length, ang € S is the unit vector

switch to the dynamics of another flat system. This enablgg,m, quadrotor to the load as defined earlier. The equations
trajectory generation for the differentially-flat hybrigssem, ¢ \otion are obtained using the method of Lagrange. The

to handle the case when the tension in the cable goes to Z8Qgrangian for the system; : TQ — R, is defined by
A controller design is presented for the planar version of — T —U, whereT : TQ — R andi{ : Q — R are the

the problem, to enable either tracking the quadrotor @#{u | inetic and potential energies of the mechanism, resghgtiv
the load attitude or the load position. Experimental resultryase are defined as

are presented to demonstrate the validity of the proposed

trajectory generation, and the designed feedback coetroll T = lvaQ “vg + lvaL svr + 1((2, @), 2
The paper is organized as follows. Section Il develops 2 2 2
a coordinate-free dynamical model for the dynamics of a U =mqges-xq +mrges -, ®)

quadrotor with a cable suspended load. Section 1lI demOWherer is obtained as the derivative of (1), -) : s0(3) x
strates the differential flatness of the system by presgntigo(3) — R is the inner product oso(3), and thehat map

a set of flat outputs. The system under consideration is 3 _, s0(3) is defined such thaty = = x y, Va, y € R3.
also shown to be a special class of differentially-flat hgbri e dynamics of the system satisfy the Lagrange-
system. Nominal trajectories are generated and presentgeajembert principle,

Section IV specializes the developed dynamics to a planar -

case and develops a three-tier inner-outer loop basedotontr 5/ (E (W, M) LW, fR63) dt =0, (4)
scheme for regulating either the quadrotor attitude, tlael lo 0

attitude or the load position in the plane. Section V presenjyhere ¢ is the thrust magnitude)/ is the moment vector,
several experimental results. Finally, Section VI presenand, = RT6R, W, = oz = 6z, — Ldp are variational

concluding remarks. vector fields [12], with the infinitesimal variations sayissfg
II. DYNAMIC MODEL OF A QUADROTOR WITH CABLE [61, [2]. [5]
SUSPENDEDL OAD Sp=Exp, E€RPsLE-Pp=0
This section will describe a coordinate-free dynamic p=ExXp+Exp
model for the quadrotor with a cable suspended load by using SR = R, ncR3
rotation matrices for the quadrotor attitude represeumeand o~
the two-sphere for the load attitude representation. Eidar 6 = Qn+,
illustrates the system under consideration. We define with 6p being a variation ons?, and 6R a variation on
mg € R mass of the quadrotor

SO(3).

Since (4) is satisfied for all possible variations, the equa-
tions of motion for the quadrotor with cable-suspended load
are obtained as

Jo € R**®  inertia matrix of the quadrotor with re-
spect to the body-fixed frame

R € SO(3) rotation matrix of the quadrotor from
body-fixed frame to the inertial frame

NeR? angular velocity of the quadrotor in the Ty =g, (5)

, Dodyfixed frame (mq +me)(is + ges) = (p- fRes —moL(p-p)p, (6)
zg,vo € R*  position and velocity vectors of the cen- .

ter of mass of the quadrotor in the p=wxp )
inertial frame mqL w = —p X fRes, (8)
feR magnitude of the thrust for the quadrotor R = RQ, (9)
M e R3 moment vector for the quadrotor in the : .
body-fixed frame T+ x ot = M. (10)
myp € R mass of the suspened load Remark1: The quadrotor attitude dynamics in (10) is
peS? unit vector from quadrotor to the load decoupled from the load attitude and position dynamics in
weR? angular velocity of the suspended load (8), (6) respectively, while the load attitude dynamics is

zr,vr, € R®  position and velocity vectors of the sus- decoupled from the load position dynamics. Also notice that
pended load in the inertial frame. gravity does not influence the load attitude dynamics. Both



these observations will motivate the choice of our contrah cable-suspended load is differentially-flat, and moredve
structure in Section V. is a differentially-flat hybrid system as defined below.

) ) ) Definition 1: (Differentially-Flat Hybrid System)Con-
B. Dynamical Model with Zero Cable Tension sider the following hybrid system

When the tension in the cable goes to zero, the system

evolves on@., = SE(3) x R?, with the quadrotor and load ‘."i: fl(x1)7+ g1(z1)us, ‘Tlfz Si
as separate systems, with the load being in free fall. The w. )P = Ay (), ry €81 1)
dynamical model in this case is, ) @2 = fo(z2) + ga(w2)us, T2 & So
i = vy, (11) af = Ag(3), Ty € So,
mp(0r + ges) = 0, (12) and suppose the dynamics of,z, are differentially-flat

with a set of flat output9); and ), respectively, the post-

tg = 13 " :
) T = (13) transition value of the outpu¥, are a function of the pre-
mQ(vg ﬂ‘ge?{: [Res, (14)  transition value of the flat outpuy; and its higher-order
R = RQ, (15) derivatives, then the systed is a differentially-flat hybrid
JoSt+Q x JoQ = M. (16) System.

The consequences of having a differentially-flat hybrid

Next, for the purpose of the controller design in Sectiosystem are that everything about the system is encoded in
IV, the dynamics (6), (8), (10) are specialized to the planahe flat outputs, including the instant when the switching
case. occurs from one dynamics to another. For instance, since
the switching surfacé; is embedded in the state space, and
can be written as the zero surface of some function of the

The configuration space for the planar quadrotor witltate, it can equivallently written as another zero surfaice
cable suspended load @, := SE(2) x S, with ¢, :== some function of the flat outpug®, and their higher-order
(xr;dr;00) € Qp, Where with an abuse of notation, wederivatives.
definez;, € R as the load positiong;, the roll angle of  To show that the system comprising the quadrotor with
the load,¢q the roll angle for the quadrotor; see Figure 1bga cable-suspended load is differentially-flat, we will look
Also defining Jo € R the inertia of the quadrotor in the at the dynamical equations of motion arising from Newton-
plane,es = [0,1]7, andp € S, R € SO(2), the dynamics Euler, such that the internal constraint force of the system

C. Dynamical Model Specialized to the Plane

are obtained as, corresponding to the tension in the cable, is introduced.
_ { sin(¢r) ] _ [cos(qu) —sin(¢q)] a7 Looking at Figure 1a, the equations of motion can be written
—cos(¢r)|’ sin(¢g)  cos(¢q) as,

The dynamical equations of the quadrotor with cable- mqiq = fRez —mqges + Tp (22)
suspended system specialized to the plane can then benwritte JQO+QxJQ=M (23)
directly from (6)-(10), miip = —Tp — mrges, (24)

(mq +mp) (L + ges) = (fcos(pg — ) —mqléi)p  whereT € R is the tension in the cable.

(18) Lemmal: Y, = (x1,¢), is a set of flat outputs for
leggL = sin(pg — ér.) (19) the above system, wher¢ € R is the yaw angle of the
v uadrotor.
Jobg =M 20

Proof: The quantitylp can be determined from (24),
Note that we abused notation and have used the sarfem which the unit vectop = T'p/||Tp|| and the tension
variable names in both th8D and the planar case. TheT = T’p - p are determined. The quadrotor position can then

controller designed in Section IV will be developed on thée determined using (1). All remaining quantitiés (2, f, M

planar model presented here. can be determined from knowledge afy,+ and their
Next, we demonstrate that the quadrotor with a cableigher-order derivatives, sincerq,v) are flat outputs for
suspended load is differentially flat with the load positiora quadrotor as shown in [9]. ]
being the flat outputs. This holds both D and in the Remark2: The input)M is obtained from th&'" deriva-
planar case. tive of the position of the load.
Knowing ); and its higher-order derivatives, we know
I1l. DIFFERENTIAL FLATNESS everything about the:; system (quadrotor with cable sus-

A system is differentially flat if there exists a set of flatpended load), including the instant whey < S; and
outputs, such that the state and inputs of the system can $&gitching would occur. For our system, the transition map

expressed as smooth functions of the flat outputs and thel; mapsz; € TQ — x5 € TQ.. For the z, system
higher-order derivatives [3]. Differential-flatness haseb (quadrotor and free load), knowiny, = (zq,) and

employed for planning dynamic trajectories for quadrotoits higher order derivatives, and the post-transitionestft
systems [9]. Here we demonstrate that the quadrotor withe load, z; (which can be computed frord; and its



Position Attiade Attitude Cames"spm‘de” Proposition2: (Exponential Stability of Load Attitude

Controller Controller Controller Load

wherezg = [eq, ég]T € R?, and My, Mo, Wg € R**? are
Toad Toad ]%[ Quadrotor Quadrotor wzth positive definite matrices. ]

Controlled Flight Modg Consider the computed quadrotor

. . . attitude defined as
Fig. 2: Controller structure for tracking load position.

T
%:¢meﬁ<¢q@q+@¢Q>,Q@

derivatives andA,), completely specifies everything aboutwheree;, = ¢, — ¢ is the error in tracking the desired load

the z, system, since th@), is a set of flat outputs for the attitude, and the initial conditions satisfy

quadrotor dynamics, and the load dynamics under free fall

.
is analytic and we only require the initial conditiory . | — k;eL — kiéL + ¢Lm@l| <1, (30)
Thus, from the flat outputs we can once again determine f
the pre-transition state;2—, for the x5 system and using where0 < 5 < «. DefineWr, Wiq € R2*2 as
A map this back to the post-transition staat;é for the x;
system. Thus, the quadrotor with a cable-suspended load is ke aky ey
a differentially-flat hybrid system. This fact will be utit:d W = |t . : (1)
for designing trajectories in Section V. —5— oky -

IV. CONTROL DESIGN Wi = [0152 Oﬂ , (32)

Having derived the dynamics of a general 3-dimensional L
quadrotor with a cable suspended load system and shown thdterek,, , k,, c; are positive constants such that,
the load position forms a set of differentially-flat outpéds

i ko k.,
the system, we will develop a controlle_r_ that can be used ¢ < min{y/ak?, —2 d 1, (33)
for tracking one of the following quantities (a) quadrotor ky, +k;/2
attitude, (b) load attitude, or (c) load position. Figurel2 i IWeoll?
lustrates the controller structure. However, the contesiigh Am (W) > (34)

. . . L AN (Wo)’
will be carried out on the dynamics specialized to the plane. o m _Q) _
This is done to carry out an initial study and to provide avhere\,,(-) denotes the minimum eigenvalue of a matrix.

intuition for designing controllers for the fullD case. Then, the load attitude error dynamics is exponentiallpplsta
It must be noted that the propositions being presentd@r all initial conditions satisfying (30).

could be extended t®D. For instance [6] develops a Proof: See Appendix I. u

quadrotor attitude controller for almost global stabiliaa Proposition3: (Exponential Stability of Load Position

on SO(3). Similarly, extending the load attitude controllerControlled Flight Mode) Consider the quadrotor thrust and
to 3D should be doable by considering the configuratiolesired load attitude defined as,
error function onS? defined in [2], but the full load position

tracking problem might be hard. f=(A+B)- Res, (35)
Proposition1: (Exponential Stability of Quadrotor Atti- _ A — ¢ — tan—! —4y 36
tude Controlled Flight Mode Consider the quadrotor mo- Pd [|A]l 9 = tan As ) (36)

ment defined as where A, B are defined as below,

_ Q Q. d ® x
M = Jo(=k,eq — kqyéq + 00), (29) A = ke, —kyé, +mpit +mpges  (37)
whereeg = ¢g — ¢dQ ig thg error in tracking the desired B = mQﬁéé +mgges
quadrotor attitude, and, , k, are positive constants. Then,

the quadrotor attitude error dynamics is exponentiallplsta
Proof: The quadrotor attitude error dynamics is giverand A1, A> are the two components of. Further assume,

= mL:'z':GLl - lej)'d + mgges, (38)

by llmp (i + ges) +ma(Ed + ges)| | < C,  (39)

. - . 1 . Q Q.
éQ =dq — 04 = %M — ¢ =—kyeq—kyéq, (26) and assume there exisfs, d, > 0, such that,

where we substituted for the moment defined in (25). This mol|[p — p%| < diler| + daléL. (40)
second order dynamics c(:)an Qbe easily shown to be EXPONELTich a bound exists singeis driven top? exponentially.
tially stable for positivek, , %k, , and by the converse Lya- Next, definelV, € R2%2, 17, € R9%6 as '
punov theorem, there exists a Lyapunov function satisfying ,
coky (1+B8)+k. B
25 Myzg < Vo < 25 Mgzg, (27) W, — cak, (1+ ) iliggglAJLf (41)

VQ < —ZZ;WQZQ7 (28) M k (1 + 6) — C2
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where the “-” are to be filled to mak#8/; symmetric, and
k,,k,,co are positive constants such that,

= Kk (14 5)?
p’ @ x2
k, +k;"/4

Then the load position errer, exponentially goes to zero. _ _
Proof: See Appendix II. [ ] y (m) 5 X (m)

¢y < min{,/k

b (43)

V. EXPERIMENTAL RESULTS Fig. 3: A nominal trajectory for the load position is generit

We first discuss trajectory generation prior to presentingSing the differential-flainess property 3. An open-loop
results of tracking with the feedback control. We parargetri Simulation is performed with the feedforward moments com-
each flat output as a function of time and pick a suitable bagid!t€d from the flatness. The blue curve shows the planned
function. An optimization problem is then posed to solve fofo@d trajectory, while the red curve shows the resulting
the coefficients of the basis polynomials to minimize th&luadrotor motion to obtain the planned load motion.
sixth-derivative of the load position, subject to consttai
of initial and final states. Minimizing the sixth-derivagiv
of the load position ensures minimum snap motion for th

guadrotor. Thus we solve, £
e gk | ;
. 7 2 =
m/ g Pt w
wherex;(t) = X7_c; ;3;(t), is a parametrized flat output,  °f
and 3;(t) are the basis functions. E-osp

As an example to illustrate the trajectory generation, w
choose a sinusoidal basis to generate a trajectory for tl -
load position in3D. Figure 3 depicts the result of simulating
the system dynamics, (6), (8), (10), in open-loop with thtg o
feedforward input computed from the differential-flatness ™ -
The planned load profile is highlighed, along with the ™
resulting required quadrotor motion to obtain the desicexd| o 2 4 e * tme CO0oo®®
profile.

With nominal trajectories generated, we study the perfo
mance of the proposed controller first in simulation. Figlire
illustrates tracking of a sinusoidal wave for the load poasit
at close to the natural frequency of the load system. Wit
a cable length ofim, the load has a natural frequency of!
1/2 Hz. This makes tracking close to this frequency hard.
As seen in the figure, even with large initial errors in the
load position (uptal m in the horizontal load position), the  To study the performance of the controller to track the
tracking error converges to zero. load position while the load is undergoing large oscillatip

Next, we conduct preliminary experiments to demonstratee design a fixed-amplitude sinusoidal motion for the load
the validity of the proposed controller. Figure 5 depicts thin the horizontal and vertical directions. The frequency of
experimental setup used. A Hummingbird quadrotor is enmotion, however, varies slowly with time, startinglats Hz
ployed along with a suspended load with Vicon markers. Thand increasing to the natural frequency of the suspended loa
markers enable sensing the load position and the loaddstituat 1/2 Hz. As expected, controlling the motion of the load
for use in the feedback control. As a first experiment, wavhile exiting it close to resonance is extremely hard. Our
demonstrate tracking of the load position while commandingroposed controller is able to track the load trajectoryoupt
it to move from one point to another. Figure 6 illustrates tha frequency 00.49 Hz, beyond which the system becomes
tracking of the load position. unstable. Figure 4 illustrates the tracking for this expent,

rEig. 4: Simulation results for tracking a sinusoidal loaak tr
jectory, close to the natural frequency of the suspended loa
with large initial errors. The load and quadrotor trajeiesr
re shown converging to the nominal designed trajector, an
e error in the quadrotor and load attitude converges to. zer
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Fig. 6: Experimental results for tracking a trajectory for
the load position to move from point-to-point with minimal
oscillations in the load.
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Fig. 5: A Hummingbird quadrotor with a cable suspende( -os
load. Both the quadrotor and the suspended load are equipy
with Vicon markers for enabling sensing their position anc
attitude for feedback control. The cable lengthlisn, and 12
the load weigh®90 gm. E
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with plots for the horizontal and vertical position tracgin o
of the load, and the load angle. As can be seen, the loig °
has to swing almost0 deg at the very end to track the |
load position. The constant offset in tracking the vertica =%

position of the load is due to not correcting for the smal % "0 100 w_ 130 140 150
variations that occur in the system mass (different batseri Time (9

weigh different) and in the thrust to rotor speed mapping thdig- 7: Experimental results for tracking a fixed-amplitude
changes with temperature and other environmental condiinusoidal load trajectory for both the horizontal and icait
tions. Figure 8 shows the tracking in the plane. Correctinig f positions of the load. The frequency of the sinusoid varies
the constant offset in the vertical tracking would resulain Slowly from 1/5 Hz to very close to the natural frequency
better aligned plot. Figure 9 illustrates the horizontatio Of the suspended load (2 Hz. Plots of the horizontal, and

of the quadrotor to achieve tracking of the load positionvertical load positions along with the load angle is shown.
Notice the reduction of peak-to-peak motion of the quadrotolhe proposed controller tracks the load position uot9

by almost70% at the end of the trajectory. To track a fastetz, during when the load is swinging almogt deg.

frequency load trajectory, the quadrotor moves less, while

the load swings more.

This shows fairly good tracking of the load position eversigned for the planar case. The flathess property has been
for large oscillations of the load at frequencies close ® thutilized to design trajectories and preliminary resultveha
natural frequency of the suspended load, validating the coheen demonstrated in simulations and in experiments.
troller design. It must be noted that additional experirment This work provides several future paths. Firstly, the pre-
for performing load tracking, where the tension in the cableented controller will be studied to extend it to the f3i
goes to zero for a part of the trajectory will need to becase. Early investigations demonstrate that the loadidétit
done for a complete experimental validation of the proposechn be almost globally stabilized of?>. Another path to
method. take is to study cooperative, dynamic manipulation of a
suspended load, which is more interesting and challenging
due to the high degree of freedom. For instance, for planar

We have presented a coordinate-free development of th@o quadrotor system with a shared cable suspended load, a
dynamics of a quadrotor with a cable suspended load, asgstem with seven degrees of freedom and three degrees of
have shown that this system is a differentially-flat hybridunderaction, the system can be shown to be differentiadly-fl
system. An inner-outer loop-based controller has been deith four flat outputs.

VI. CONCLUSION



The time derivative ofl; along trajectories of the system is
given by,
VL Zak;CLéL +érér, + Clé% + crenér,
1 §a(éL+CleL)(fk;6L7k§éL+X)+Oék;6LéL+Clé2L
L 2 L .2 L .
=—ak,cie] — (aky —c1)é] — akyjcrepérn+
] alér + cren)X.
] (49)
095 Next we obtain a bound o in (46) by making a small
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 . . .
s angle assumption ong and using the fact that the cosine

Fig. 8: Experimental results for tracking a ﬁxed-amplitudéerm in (46) is upper bounded bl to obtain
sinusoidal load trajectory with varying frequency. Cotieg X < / e < ae
for the constant offset in tracking the vertical positionttoé ~ mgl @="re

load could potentially result in a better alignment with thghere , is as defined in the Proposition. Substituting this
nominal trajecotry. into (49), we obtain,

VL S —Z%WLZL + (eL + CleL)Oé2 eQ’ (50)

wherezy, = [er,ér]T € R? and W, as defined in (31).
The condition one; in (33) ensures positive-definiteness
of the matrices¥V; and M;, M; € R?*? where,

1 [ak: —cl} 1 [ozk‘L cl}
1 1 L 1 1 1 M =5 b ) M =5 P ) 51

_0'580 90 100 110 120 130 140 150 : 2 |:—Cl 1 o 2 C1 1 ( )

Fig. 9: Experimenally obtained horizontal motion of thesuch that a bound on the Lyapunov functidf, can be

qguadrotor to track the fixed-amplitude sinusoidal load trawritten as

jectory with varying frequency. Notice the peak-to-peak 2 Mz <V < 2EMpzp.

reduction in the quadrotor motion by almos&i% to en- Taking the L function/r e — Vo 4 Vo f

able tracking the load position. At larger frequencies, th% a "?)g te yapunov ur;ﬁ |o|n Lé? _d L —g tQ Otrt't d

guadrotor moves less, while the load swings more. Vertic§e SUDSYS emhcomprlt;smgd € load and quadrotor attitude

guadrotor motion does not change significantly and is n ynamics, we have a bound i}, as,

shown. Z%MZZL —|—ngqu <Vig < Z%MQZQ —&-Z{MLZL. (52)

Moreover, the time-derivative df.¢ is given by,

APPENDIX| Vig < =2 Wrzp + 21 Wigzg + —25Wazq,  (53)
PROOF OFPROPOSITION2

The load attitude error dynamics is given by whereW.q is as defined in (32).

From the assumptions of Propositian and the con-

6 = bp—dt = sin(¢q — o) F— e ditions on ¢;, we have all the following matrices
L L= oL mal L M,, Mg, Wq, My, M, W, and the Lyapunov functiol, ¢
sin(¢% — or, . to be positive-definite, and
_ MR d) ;e x, CON. 2
mql Vig < = Am(Wo)ll2ell” + [[Weell2llzcll|zel| (54)
where X € R is defined as, — A (Wo)ll2olI?
¥ - sin(¢q — ¢r) — sin(¢h — o) s The condition given by (34) ensur&s, becomes negative-
N mql definite. Therefore the load and quadrotor attitude error
. i .
25in(<9) cos(w) dynamics exponentially converge to zero.
- mol f (46) APPENDIXII
Substituting forcd in (45) with 42 defined in (29 PROOF OFPROPOSITION3
ollajta?nl uting forg, in (45) with ¢, defined in (29), we Instead of looking at the load position dynamics (6) or its
' B f L L planar analogue (18), we form a simpler equation by looking
€L = le(*kp er —kgér) + X. (47)  at the dynamics of.,,,, the center of mass of the system.
. . : . We have,
Consider a candidate Lyapunov function given by,
akL 1 (mQ + mL)a'écom = mQﬁfQ +mrig
Vi = —Let + -2 +crepér. (48) = fRes — (mg+my)ges, (55)

2 2



where M;
diag[MX,ML,MQ].
V' is given by,

which vyields,
(mQ + mL)jﬁL = —(mQ + mL)g€3 + lep + fR637 (56)

where we have differentiated (1) twice with respect to time

diag[My, My, M),
Moreover,

and M,
the time-derivative of

V<-2TWz+ zT(Wl +Wwg)z,

and used in the above equation. Defining the load positiamhereW = diag[Wx, W, Wg].

error ase, = =7, — x1%e, = é,, the error dynamics are
given by,

(1]
(mg +mp)és = —(mq+mr)ges +melp +
fRes — (mq +my)if, 2
= —kyer —kgés + mol(p — pa) +Y, 3]
whereY € R is defined as,
_B. [4]
Y — fRe,—p-1-B fes
pa - Res
_ [ ((pa- Res)Res — pa) + (B - Reg)ps — (pa - Reg) B [9]
pd - Res 7
such that, (6]
Yl < ler +eql(l[A+ B[+ |Bl) 7]
< lew + eql(kyllexll + kalléal] + C),  (57)
where C' is as defined in (39), an@ < 1/|pg - Res| <
ler +eq| < B < 1. (8]
Consider a candidate Lyapunov function given by,
k.’ﬂ
Vo = ?pew “ep + 561} “€ey T+ 26y - €y (58) 1l

The time derivative of, along trajectories of the system is[1qj
given by,

Ve =kyes - ey + caey - €y + (ey + c2es) - €y

. @ . [11]
< — (kg —ca)ey - ey — Cokjeq - ep — Cokges - eyt
(ey + coey)(dr]er] + dalér| +Y) [12]
< — (kg — c2)llen|” = cakylleal® — cokgllealllleo] [+ 123
di(ey + caez)ler| + da(e, + cae)|éL]
(v + caez)ler + eql(kyllex|| + kqlléxl| + C)) [14]
< -— ZZWsz + zTVVlz,
(59) 15
where,z, = [||ez]], lles]]], 2 = [22, 21, 20, andWx, W are

as defined in (41),(42). The condition @n in (43) ensures [16]
positive-definiteness of the matricé®x and M,, Mx €

R2*2 are defined similar to (51), such that a bound on the
Lyapunov functionV,, can be written as [17]

szwzm <Vx < szsz. [18]

Next, considering the Lyapunov functidin = V,, + Vi
for the complete system, we can perform a similar analys'ﬁg]
to demonstrate exponential stability of the load error dyna
ics.We have a bound oW as,

zTMlz <V< zTMgz,
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