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Abstract— Motivated towards achieving multi-modal locomo-
tion, in this paper, we develop a framework for a bipedal robot
to dynamically ride a pair of Hovershoes over various terrain.
Our developed control strategy enables the Cassie bipedal robot
to interact with the Hovershoes to balance, regulate forward
and rotational velocity, achieve fast turns, and move over
flat terrain, slopes, stairs, and rough outdoor terrain. Our
sensor suite comprising of VIO and depth sensors for visual
SLAM as well as our Dijkstra-based global planner and timed
elastic band based local planning framework enables us to
achieve autonomous riding on the Hovershoes while navigating
an obstacle course. We present numerical and experimental
validations of our work.

Index Terms— Legged robots, dynamics, control, planning,
vision.

I. INTRODUCTION

While locomotion using legs is efficient when traveling
over rough and discrete terrain, wheeled locomotion is
more efficient when traveling over flat continuous terrain
[1]. Humans are able to optimize locomotion efficiency by
using multiple locomotion modalities that comprise of not
only being able to walk and run, but also being able to
ride various micro-mobility platforms, such as Segways and
Hovershoes. Enabling legged robots to autonomously ride
on various personal mobility platforms will offer multi-
modal locomotion capabilities, improving the efficiency of
locomotion over various terrains.

Autonomous robots with multi-modal locomotion capabil-
ities can have a big impact in the real-world from package
delivery to security and surveillance to search and rescue
missions [2]. In order to address this problem, we use
the Cassie bipedal robot developed by Agility Robotics to
autonomously ride Hovershoes, see Fig. 1.

A. Challenges

There are multiple challenges in developing an au-
tonomous framework for Cassie to ride Hovershoes. First,
Cassie is a complex, underactuated robot with 20 degrees-
of-freedom (DOFs), making it a difficult system to control.
Second, the Hovershoes are a sensitive and highly dynamic
platform that serve as two decoupled moving platforms under
each of Cassie’s feet and are hard to coordinate. Third,
the algorithms we can develop neither have access to the
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Fig. 1: Snapshot of an experiment of the bipedal robot Cassie
autonomously riding on Hovershoes. Experimental videos are at
https://youtu.be/b2fKBb 0iTo.

internal states of the Hovershoes nor can they directly specify
the torque inputs on the Hovershoes, since Cassie can only
indirectly interact with the Hovershoes through the contact
forces. Fourth, the Cassie-Hovershoes system needs to be
robust to kinematic and dynamic variances arising from
(i) manual initialization of the Hovershoes that result in
an initial relative translation and orientation between the
Hovershoes; (ii) manual placement of Cassie’s feet on the
Hovershoes resulting in off-center foot placement; and (iii)
differences in the dynamic characteristics between the Hov-
ershoes due to manufacturing. Fifth, the Cassie-Hovershoes
system needs to be able to autonomously avoid obstacles,
resulting in fast perception and planning demands.

We solve these challenges by designing controllers that
assume the dynamics are decoupled along various degrees-
of-freedom, strategically choosing a minimalist sensor suite
for state estimation, and assuming kinematics is sufficient
for path planning. This motivates the simplest approach to
solving the problem - using PD controllers on decoupled
dynamics, using a VIO and depth sensor for state estimation
and object detection, and simple global and local kinematic
planners. In the future, we will look at more complex
controllers, estimators and planners.

B. Related Work

1) Multi-Modal Locomotion: There are some examples
of multi-modal locomotion. For instance, DRC-HUBO+ is
a bipedal robot that can have wheeled attachments at the
knee joint of each leg [3], enabling both legged and wheeled
locomotion. Boston Dynamics’ Handle robot—designed for
box handling in warehouses—is another legged robot with

https://youtu.be/b2fKBb_0iTo


Fig. 2: Segway, Hoverboard, and Hovershoes are shown from left
to right. The complexity in terms of user control increases along
the arrow head direction.

wheels for feet [4]. ANYmal is yet other wheeled-legged
robot used for traveling on irregular terrain [5]. While these
robots can offer multi-modal locomotion, the integrated leg-
wheel design is neither optimized for legged nor for wheeled
mobility, resulting in complex and heavy feet.

Micro-mobility platforms—such as Segways and Hover-
boards—allow legged robots without wheeled feet to also
have multi-modal locomotion capabilities. This is advan-
tageous since it keeps the legs lighter for faster motions
during legged movement, while also having the option of
wheeled mobility by riding on these platforms when needed.
Segways and Hoverboards are relatively easy to ride since the
platforms for either foot are connected for increased stability
and turning is accomplished through simply leaning on a
bar or differentially actuating the two connected platforms.
However, these micro-mobility systems have limited abilities
since they have a single platform for the user’s feet, as
discussed next.

Hovershoes offer more versatile movements since each of
the user’s feet can move independently. However, Hover-
shoes increase the riding complexity as they are significantly
more sensitive and have no internal controller for turning.
Though the Hovershoes are the most complex to ride, they
offer the greatest versatility as each foot can move indepen-
dently to avoid obstacles and go on uneven terrain, which is
why we selected this platform for our research. We illustrate
the degree of complexity of riding these products in Fig. 2.

2) Controls: There has been research on developing
controls for balancing on unstable environments such as
seesaws and Bongo Boards with robust lateral stabilization
[6]. However, these environments do not translate; but rather,
they only tilt. There has been recent work on balancing
on platforms that both tilts and translates, a Hoverboard,
through sequential online learning control [7]. Addition-
ally, a balancing controller for Cassie worked in riding a
Segway by regulating the center-of-mass (COM) position
[8]. However, these control strategies, though, are only for
rigidly connected wheeled platforms and do not work on
Hovershoes, which are not connected and add additional
degrees-of-freedom for more versatility. Our research aims to
develop a control algorithm for a bipedal robot to balance on
a highly dynamic and decoupled platform under each foot.

3) Planning: Generic planning algorithms are primarily
categorized into sampling-based and search-based methods.
Sampling-based planning methods are computationally eco-

nomical and offer high update rates. Nevertheless, feasible
trajectories are not always guaranteed and there is some
stochasticity in the choice of the plan with the same en-
vironmental layout potentially resulting in different plans
[9]. In contrast, search-based methods produce deterministic
solutions, however, they may incur redundant computation
due to their iterative searches [10].

4) Vision: An accurate odometry source is of vital im-
portance to robot movements and velocity tracking. As a
benchmark study reveals, VINS-Mono, a monocular VIO
algorithm, with loop-closure detection offers decent accuracy
and robustness and so does OKVIS, a stereo algorithm
[11], [12]. Besides, there are also mature back-end map-
ping solutions to collaborate with the front-end VIO, e.g.
ORB-SLAM2 which introduces a lightweight framework and
RTAB-Map that uses OctoMap to achieve good memory
management [13], [14], [15].

For walking tasks on legged robots, there has been re-
search on utilizing the contact between the feet and the static
environment to optimize for odometry [16]. However, since
in our case the feet are always in contact with the Hovershoes
and the motion is relatively smooth, some standard robust
VIO and SLAM solutions are sufficient for our scenario [17].

C. Contribution
The contributions of our work thus are:
1) Dynamics: We developed a dynamical model of the in-

tegrated Cassie-Hovershoes system for numerical validation.
2) Controls: We designed a control strategy for bipedal

robots to robustly balance on independently mobile and
decoupled wheeled platforms.

3) Autonomy: We developed a framework comprising of
a vision system for odometry and obstacle detection, a
path planner for online trajectory generation, and a control
strategy for the Cassie bipedal robot to autonomously ride
the Hovershoes and avoid obstacles.

4) Real-world Experiments: We demonstrated the robust-
ness of our controller for Cassie to robustly ride on Hover-
shoes subject to external perturbations on real-world terrain
(flat and rough ground as well as stairs), track commanded
translational and rotational velocities, perform turning ma-
neuvers, and ride the Hovershoes in a wave pattern.

5) Simplicity: We presented a solution that uses PD
controllers designed assuming decoupled dynamics, an al-
most minimal sensor-suite for pose estimation and object
detection, and kinematic planners to successfully solve the
complex problem of making a bipedal robot autonomously
ride a pair of Hovershoes.

D. Organization
The rest of the paper is organized as follows. Section

II presents the dynamical model of the Cassie-Hovershoes
system. Section III describes our proposed controller design.
Section IV presents the simulation results. The perception
and planning are described in Section V. Section VI demon-
strates experimental results with discussion. Section VII
discusses shortcomings of our work. Finally, Section VIII
summarizes the work and provides thoughts on future work.



II. DYNAMICAL MODEL OF CASSIE ON HOVERSHOES

Having established the need for multi-modal locomotion,
described the challenges, and outlined our solution, we now
present a dynamical model of Cassie and Hovershoes that
also captures the interaction between each other.

A. Dynamical Model of Cassie

Cassie is a highly dynamic, under-actuated bipedal robot.
Cassie has twenty DOFs as listed in (1):

q = [qx, qy, qz, qyaw, qpitch, qroll ,

q1L, q2L, q3L, q4L, q5L, q6L, q7L,

q1R, q2R, q3R, q4R, q5R, q6R, q7R]
T .

(1)

where, (qx qy qz) and (qyaw qpitch qroll) are the Cartesian
coordinates of the pelvis and the Euler Angles in the Z-Y-
X order, and (q1L, ...,q7L), (q1R, ...,q7R) are the generalized
coordinates of the left and right legs, respectively. These
correspond to the DOFs for each leg and are defined in (2).

q1
q2
q3
q4
q5
q6
q7


=



hip roll
hip yaw
hip pitch
knee pitch
shin pitch

tarsus pitch
toe pitch


. (2)

Fig. 3a shows the generalized coordinates of Cassie’s
pelvis and right leg. The generalized coordinates of Cassie’s
left leg are similar to the right leg states. Each of Cassie’s
legs has seven DOFs with five of them being actuated: q1, q2,
q3, q4, and q7. The corresponding motor torques are u1, u2,
u3, u4, and u5. The other two DOFs, q5 and q6, are passive,
corresponding to stiff springs.

The dynamics of Cassie can then be expressed in the
following Euler-Lagrange dynamics:

D(q)q̈+H(q, q̇) = Bu+ JT
s (q)τs + JT

c (q)Fc, (3)

where q is the generalized coordinate vector as defined in
(1), D(q) is the mass matrix, H(q, q̇) contains the centripetal,
Coriolis, and gravitation terms, B is the motor torque matrix,
u is the motor torque vector of dimension 10 corresponding
to the actuators on the two legs, Js(q) is the Jacobian for
the spring torques, τs is the spring torque vector, Jc(q) is the
Jacobian for the ground contact forces, and Fc is the ground
contact force vector.

B. Dynamical Model of Hovershoes

The Hovershoes is a highly sensitive wheeled platform. It
has an internal controller that regulates the pitch to zero when
there is no external force. The internal parameters and states
of the hovershoe are unknown. Here, we develop a closed-
loop dynamical model of the Hovershoe. We consider θ , ψ ,
uθ , uψ to be the pitch and yaw angles and torques in the
body X-Y-Z frame, and x, y, v to be the x, y position and

(a) (b)

Fig. 3: (a) Kinematic model of Cassie showing the robot’s general-
ized coordinates in the body frame. (b) Hovershoe model where uθ

and uψ change the pitch and yaw of the Hovershoe in the X-Y-Z
body frame, respectively.

scalar speed in the global X-Y frame. Our dynamical model
then is,

Jθ θ̈ =−c1θ − c2θ̇ +uθ , (4)
Jψ ψ̈ =−c3ψ̇ +uψ , (5)

ẋ = vcos(ψ), (6)
ẏ = vsin(ψ), (7)

mv̇ = c4θ . (8)

Here, the parameters (c1,c2,c3) correspond to the Hover-
shoe internal controller, and c4 corresponds to the contact
model between the Hovershoe and the ground. The same
dynamics is used for the left and right Hovershoes.

The Hovershoe pitch dynamics is given by (4), where Jθ is
the moment of inertia of the Hovershoe about the y-axis, c1
is the coefficient for the stiffness term, c2 is the coefficient
for the damping term, and uθ is the input torque from a
rider’s toe about the y-axis. The “feedback” with θ and θ̇

terms in this equation account for the Hovershoe’s internal
stabilization controller that drives θ to zero when uθ is zero.

The yaw dynamics of the Hovershoe is described by (5),
where Jψ is the moment of inertia of the Hovershoe about the
z-axis, c3 is the coefficient for the ground contact damping
term, and uψ is the input torque from the rider’s toe about
the z-axis. Here, we only have a ψ̇ term since there is no
internal Hovershoe controller driving ψ to zero when uψ is
zero. Figure 3b shows uθ and uψ on the Hovershoes.

The global translational dynamics of the Hovershoe are
captured by (6)-(7), where v is the speed of the Hovershoe.
Finally, the acceleration dynamics of the Hovershoe is cap-
tured by (8) as a function of Hovershoe pitch angle.

Note that we did not conduct system identification to
determine the parameters of the model. Since computing the
tilt angle and applied torque on an accelerating Hovershoe
was hard, we instead focused on capturing the structure of
the Hovershoe model for use in our control design.

C. Contact Model between Cassie and the Hovershoes

The Cassie robot interacts with the Hovershoes through
feet contacts. The contact force is Fc =

[
F1, · · · ,F4

]T in (3)



Fig. 4: Autonomy framework where ψ̇est is yaw rate of change
estimated from VIO, vest is the estimated velocity from VIO, ψ̇d
is the desired yaw rate of change given from the path planner, and
vd is the desired velocity given from the path planner. The user
provides a goal location as input.

corresponding to the four contacts (front and back contact
locations for either foot) with each Fi having an x, y, and z
components in the local Hovershoe frame, applied on Cassie.

The two torques uθ and uψ , with respect to y-axis and
z-axis, respectively are computed as,[

uθ

uψ

]
=

[
0 1 0
0 0 1

] 4

∑
i=1

ri×−Fi, (9)

where, ri is the relative position of the ith contact locations
with respect to each Hovershoe position, and i = {1,2} for
left hovershoe and i = {3,4} for right hovershoe. The contact
forces Fi are themselves determined through a compliant
ground model with stick-slip friction and are then used in
Fc in (3), while uθ ,uψ from (9) are used in (4)-(5).

III. CONTROL DESIGN

Having presented the dynamical model of the Cassie with
Hovershoes system in Section II, we now proceed to discuss
our control strategy that will be implemented on Cassie
in order to achieve our goal of driving the Hovershoes to
desired locations or at desired speeds while Cassie still
balances on them. It must be noted that we can neither
directly measure the Hovershoes internal states nor can we
directly command input torques on the Hovershoe. Our only
means of interaction between the Cassie and Hovershoe are
through the contact forces. Fig. 4 illustrates our autonomy
framework detailing the interactions between the vision,
planner, controller, and the Cassie with Hovershoes system.

Our proposed control strategy includes a Hovershoe X-
Y controller, a velocity controller, and a turning controller,
all integrated with a balancing controller. The X-Y controller
regulates the relative position of each Hovershoe with respect
to Cassie. The velocity controller tracks a desired transla-
tional velocity and the turning controller maintains a desired
rotational velocity. The balancing controller incorporates the
output of the three controllers and regulates the position of
Cassie’s COM.

A. Hovershoe X-Y Controller

Each Hovershoe serves as a highly dynamic, moving
platform for each foot of Cassie. A low-level controller that
regulates the relative x-y position of each Hovershoe was
designed for Cassie to keep the Hovershoes together. In the

absence of this controller, the Hovershoes drift apart resulting
in Cassie falling off of the moving Hovershoes.

The Hovershoe X-Y controller is also critical since it
makes the system robust to variances that occur when the
Hovershoes are initialized with a non-zero relative translation
or orientation, any off-center placement of Cassie’s feet on
the Hovershoes, and any dynamic variances between the
Hovershoes.

The x-axis controller keeps the relative x-coordinate of
the Hovershoes at zero in the local Cassie frame. If one of
the Hovershoes is ahead of the other, then Cassie needs to
bring one Hovershoe back and the other forward by pitching
the Hovershoe accordingly with its toe (recall from (8) that
increasing the pitch of the Hovershoe results in forward
motion). This is accomplished through an inner-outer loop
controller. The outer loop computes the desired difference in
the pitch of either toe, see (10)-(11), while the inner loop
computes the desired toe pitch torque to realize the toe pitch
difference, see (12)-(13). Here x f ootL and q7L are the left
foot x-position and toe pitch angles respectively. A similar
notation is used for the right leg. The computed toe pitch
torque gets added to the left and subtracted from the right
toe torques that will be specified by the nominal balancing
controller.

qdes
∆toe =−Kx

p(x f ootL− x f ootR), (10)

q∆toe = q7L−q7R, (11)

e∆toe = q∆toe−qdes
∆toe, (12)

u∆toe
5 =−K∆toe

p e∆toe−K∆toe
d ė∆toe. (13)

The y-axis controller is designed to keep the y-coordinate
of the left and right toe at yo f f set and −yo f f set , respectively.
Due to the Hovershoes’ nonholonomic constraint, the Hov-
ershoe can not move sideways directly along the y-axis.
The y-coordinate can only be changed when the Hovershoes
yaw and move forward, so that the legs can come closer or
move apart depending on the yaw angle of each Hovershoe.
The y-axis controller has an inner-outer loop as well. The
outer loop determines each hip’s desired yaw angle through
the difference between each toe’s y-coordinate and desired
yo f f set , see (14)-(15). The hip yaw is used since the toe does
not have an individual motor for toe yaw. In the inner loop,
the desired hip yaw angle is converted into hip yaw motor
torque, see (16).

ey = y f oot ± yo f f set , (14)

qdes
2 =−Ky

p ey, (15)

uy
2 =−Kq2

p (q2−qdes
2 ). (16)

In the above equations, ± refers to addition to one leg and
subtraction for the other. To achieve a wave pattern with the
Hovershoes, we can specify a time-varying yo f f set(t).

B. Velocity Controller

Once Cassie can balance on the Hovershoes and maintain
a relative position between the Hovershoes while they are
moving, we can then design higher-level controllers for



Cassie to perform speed regulation and turning maneuvers.
These high-level controllers are required for interfacing with
the path planner in the autonomous system.

The velocity controller maintains the velocity of Cassie
on the Hovershoes at a specified set point given either
by an operator or by the path planner. Velocity control
is accomplished through regulating the x-COM position of
Cassie, where the desired x-COM position is proportional to
the error in velocity:

COMdes
x =−Kvel

p (velvision− veldes). (17)

Here, velvision is the actual velocity of Cassie computed from
our vision system.

C. Turning Controller

The turning controller maintains a desired yaw rate for
Cassie’s pelvis that is specified either by an operator or by the
path planner. For the two Hovershoes to turn along a curve,
the Hovershoes not only need to constantly yaw but the
outer Hovershoe needs to go faster than the inner Hovershoe.
Furthermore, for fast turns, Cassie will also need to bank by
leaning into the turn. Leaning into a turn ensures Cassie
remains balanced on the Hovershoes during fast turning
maneuvers and does not tip over. This is accomplished by a
three-part controller. The Hovershoes are turned by yawing
Cassie’s hips proportional to the yaw rate error, see (18)-
(19). The outer Hovershoe is made to go faster than the
inner Hovershoe by differentially actuating Cassie’s toes, see
(20) where the computed toe difference torque will be added
to one toe and subtracted from the other in the balancing
controller. Finally, Cassie is made to lean into the turn by
changing the desired COM position along the y-axis when
there is a large angular and/or tangential velocity, see (21)-
(22). Note that L is the distance of Cassie’s COM to the
Hovershoe platform plane.

e ˙yaw = ˙yawvision− ˙yawdes, (18)
uturn

2 =−Kyaw
p e ˙yaw, (19)

uturn
5 =−K pitch

p e ˙yaw, (20)

θtilt = arctan
˙yawvisionvelvision

9.81
, (21)

COMdes
y =−Kshi f t

p (L θtilt). (22)

D. Integrating with a Nominal Balancing Controller

Our proposed controller is based on a nominal balancing
controller for Cassie from [8]. The nominal balancing con-
troller works by regulating the COM position error and the
torso orientation. In order to move the COM along the x-
axis, the controller modules the toe pitch torque. In order
to move the COM along the y-axis, the controller changes
the leg length difference between the left and right legs. We
modify the nominal torque ũi from the nominal balancing
controller as follows:

Fig. 5: Simulation visualization with Cassie on the Hovershoes.
This is a static balancing task demonstration.
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Fig. 6: Simulation results for the Hovershoes (left column) and
Cassie-Hovershoe system (right column) for (a,b) forward velocity
tracking, (c,d) going around in a circle, and (e,f) following a wave
pattern.

u1 = ũ1, (23)
u2 = ũ2 +uy

2 +uturn
2 , (24)

u3 = ũ3(COMdes
y ), (25)

u4 = ũ4(COMdes
y ), (26)

u5 = ũ5(COMdes
x )±u∆toe

5 ±uturn
5 +udamping

5 . (27)

In particular, the hip yaw torque u2 in (24) comprises of
the yaw torque from the nominal balancing controller ũ2, as
well as torques from the y-axis controller uy

2, and turning
controller uturn

2 . The toe torque u5 in (27) comprises of the



Fig. 7: The left picture shows the real scene and the right demon-
strates the segmented ground and obstacles.

nominal balancing controller toe torque ũ5 as well as the
toe pitch difference torque u∆toe

5 from the x-axis controller,
the turning controller torque uturn

5 , and a damping controller
udamping

5 that suppresses the oscillation of the toe pitch joint.
As mentioned earlier, ± refers to a torque that is added to
one leg and subtracted from the other.

IV. SIMULATION RESULTS

In order to verify the proposed controller design presented
in Section III on the dynamical model from Section II, we
ran two numerical simulations. First, we considered two
Hovershoes (without Cassie) and provided the controllers
full state knowledge of the Hovershoes and allowed the
controllers to directly actuate the Hovershoes. In the next
simulation, we considered the Cassie-Hovershoe integrated
system where the controller did not have access to the
Hovershoe state and could only indirectly actuate the Hover-
shoes through Cassie. We discuss these simulation results in
the following subsections. The simulations ran in MATLAB
2018a installed on a laptop (Intel Core i5, RAM 8GB).

A. Hovershoe Simulation

We modeled each Hovershoe in Matlab with the dynamics
specified in (4)-(8). In the simulation, we assumed perfect
state knowledge of the Hovershoes, and the controllers would
provide the input torques: uθ and uψ .

We verified the velocity controller by setting a desired
velocity of 0.1 m/s and verifying the tracking as shown in
Fig. 6a. We verified the turning controller by setting a desired
rotational velocity and ensuring the Hovershoes turned in a
circle as shown in Fig. 6c. Finally, we verified the wave
pattern controller by setting the yo f f set to a sinusoidal wave,
resulting in Fig. 6e.

B. Cassie-Hovershoe System Simulation

We next simulated the Cassie-Hovershoe integrated system
dynamics (3)-(8), with our designed controller. Fig. 5 shows
the visualization of Cassie and the Hovershoes balancing in
the simulation. We used the same set points as the previous
Hovershoe simulation to test our velocity, turning, and wave
pattern controller and obtained a similar performance, see
Figs. 6b, 6d, and 6f.

V. PERCEPTION AND PLANNING

Having numerically validated our control strategy, we
will next pave the path for experiments by presenting our
perception and path planning strategies and also detailing the
communication between perception, planning, and control.

Fig. 8: Hardware infrastructure diagram for the autonomous Cassie
system. The vision and path planning computer and the controller
computer are onboard Cassie, while the monitoring computer is
connected wirelessly and used to see signals and tune parameters.

A. Perception

In order to modularize our set-up to be simple and easy
to manage, and at the same time decrease the computational
load, we opted for an integrated VIO sensor, the Intel
RealSense T265, which is comprised of a pair of fish-eye
lenses is combined with an on-board implementation and
extension of an algorithm utilizing stereo VIO with loop-
closure detection to produce reliable odometry [17]. Addi-
tionally, a rigidly attached depth camera, Intel RealSense
D435i, was used for the obstacle mapping. The D435i camera
processed and matched the stereo images using dedicated on-
board hardware. By designing the vision set-up as above, we
are able to incorporate the entire perception, planning, and
control pipeline using the CPUs on Cassie, and avoid the
need of power-hungry GPUs.

The transformation between the two cameras was known
and published internally via ROS. The depth camera was
slightly tilted towards the ground to cover more ground
space near Cassie. The depth maps were converted to point
clouds, which were then filtered and voxelized to a horizontal
resolution of 5cm and vertical resolution of 10 cm to reduce
the memory usage and accelerate the computation. After
transforming the point clouds to the base frame of the
Hovershoes, a ground segmentation with a tuned tolerance
to noise was applied to remove the ground plane and register
the obstacles onto an global occupancy map. Fig. 7 shows
an example of our segmentation. The map registration was
achieved by using the RTAB-Map ROS package, but the
built-in appearance-based loop closure detector was turned
off. In order to increase the refresh rate for the local
costmap, the segmented 3-D obstacles were further converted
and merged to a pseudo-laser scan to decrease the data
rate. Based on the above perception infrastructure, we next
detail how we can achieve real-time planning in order to
circumvent obstacles.

B. Motion Planning

To create real-time motion plans for the Cassie Hovershoe
system, we require the planner to be reliable and kinemati-
cally feasible. For the global planner, we employed a search-



(a) (b) (c) (d)

Fig. 9: Cassie riding the Hovershoes on (a) different heights, (b)
rough terrain, (c) up a 7◦ incline, and (d) down a 13◦ incline.

Fig. 10: Cassie robustly descending three stairs with heights
79%,93%,93% of the wheel radius respectively.

based method, Dijkstra’s algorithm, for its guarantee of a
solution. The costmap decay rate was tuned to confine the
Dijkstra’s behavior to follow a path that stays in the middle
of two potentially incoming obstacles.

For the local planner, the optimization-based Timed Elastic
Band (TEB) planner was applied on top of the Dijkstra’s
algorithm as the TEB planner looks 1.75 m ahead of the
current position and generates a short-term, kinematically
feasible path for Cassie. In order to emulate the forward
non-holonomic property of the Hovershoes, customized car-
like optimization weights were used to encourage forward
motion. The optimization process was adjusted to adapt the
computing power of Cassie and the resulting planner fre-
quency could reach up to slightly less than 50Hz. However,
10Hz proved to be sufficient for Cassie to autonomously
navigate through a narrow corridor with obstacles.

C. Communication between Perception, Planning & Control

Fig. 8 shows a diagram of the communication setup and
hardware infrastructure. Please note that the router can be
replaced with a Wi-Fi hotspot. In addition, between the
real-time controller and vision system, we use the UDP
to communicate to each other. Finally, the vision and path
planning have a separate computer other than the controller
because only the controller requires a real-time computer. We
use a gantry during experiments for safety purposes only.

VI. EXPERIMENTAL RESULTS

After developing our control strategy, path planning algo-
rithm, and perception system, we now present the results
of our autonomous framework. First, we demonstrate the
robustness of our controller. Then, we show the performance
of our velocity and turning maneuver. Last, we demon-
strate that Cassie successfully navigating an obstacle course
autonomously while riding the Hovershoes. Experimental
videos are at https://youtu.be/b2fKBb 0iTo.

A. Robustness

Once Cassie could balance and perform the tasks in simu-
lation, we transferred the controller to Cassie and checked the
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Fig. 11: Top: velocity response to three successive step inputs;
Bottom: yaw rate of change response to two successive step inputs.

robustness of the controller subject to disturbances that could
cause Cassie to fall. Robustness was checked by kicking the
Hovershoes and pushing Cassie’s pelvis and tarsus while it
was riding the Hovershoes. In addition, Cassie successfully
traversed over rough terrain with cracks and bumps, as well
as riding on up and down slopes with 7◦ and 13◦ inclines
respectively, and riding with Hovershoes at different heights
(see Fig. 9). A challenge task was to go down a variety
of steps. Cassie successfully went down single stairs that
were 79% and 171% of the Hovershoe wheel radius and a
sequence of three stairs that were 79%, 93%, 93% of the
Hovershoe wheel radius, respectively. As can be seen in
Fig. 10, Cassie remains balanced and the Hovershoes remain
level after descending each step.

B. Vision-based Velocity Tracking

We tested the performance of our vision-based velocity
controller by providing a step input change in desired ve-
locity. We found that it can track a desired velocity with a
small steady-state error. As can be see in Fig. 11, the desired
velocity step inputs of 0.5 m/s, 1.0 m/s, and 1.5 m/s, were
tracked with small steady-state errors with the root mean
square error (RMSE) being 0.1467 m/s.

C. Fast Turning

A similar step input for turning yaw rotational velocity
of 0.5 rad/s and 0.0 rad/s produced the response shown in
Fig. 11. Clearly, the tracking is not perfect and has a steady-
state tracking error with RMSE is about 0.1446 rad/s. This
can be improved with better choice of gains or incorporating
an integral feedback. Furthermore, Fig. 12 shows Cassie
performing a high-speed turn. It is clear from the center
graphic of Fig. 12 that Cassie successfully leans into the
turn by shifting its COM position along the y-axis in order
to prevent from tipping over during the turn.

D. Wave Pattern with Feet for Obstacle Avoidance

Certain obstacles are short enough where Cassie does not
need to circumnavigate them in order to avoid collision.

https://youtu.be/b2fKBb_0iTo


Fig. 12: Cassie executing a fast turn by leaning, with the lean angle
directly dependent on the forward and rotational velocities.

Fig. 13: Cassie showing wave pattern with feet task by avoiding an
obstacle without going around it. For certain obstacles, Cassie can
stay on a straight trajectory while still missing the obstacle.

With the Hovershoes, Cassie can split around the obstacle
using the wave pattern controller. Fig. 13 shows that Cassie
successfully avoids an obstacle by doing a wave pattern
maneuver with its feet. The decision making of splitting its
feet was made by a human operator.

E. Obstacle Avoidance

Finally, combining our controllers with the computer vi-
sion obstacle detection system and path planner, we achieved
autonomous locomotion through an obstacle course. The
leftmost graphic of Fig. 14 shows the obstacle course and
the rest show Cassie autonomously navigating through the
obstacle course.

VII. SHORTCOMINGS OF OUR PROPOSED WORK

Our proposed method is the simplest control and autonomy
package for achieving the task of riding Hovershoes. In
particular, our controller decouples the system dynamics into
several simple sub-components, our planner only considers
a kinematical model of the system, and our vision system
only uses the stereo camera and IMU without using the ad-
ditional sensors on the robot. By considering a fully coupled
dynamical system and incorporating the dynamics into the
planner and taking all available sensing into account, we can
further improve our state estimation, controller and planner
performance significantly. Finally, our proposed solution
assumes Cassie is somehow initialized on the Hovershoes,
which is currently done manually and does not truly offer
multi-modal locomotion capabilities yet.

VIII. CONCLUSIONS

In this paper, we have presented a framework for au-
tonomous locomotion of a Cassie bipedal robot over Hover-
shoes. Our developed framework enables the Cassie bipedal
robot to interact with the Hovershoes to balance, regulate
forward and rotational velocity, achieve fast turns, and move
over flat terrain, slopes, stairs, and rough outdoor terrain, as
well as autonomously navigate an obstacle course.

Fig. 14: Cassie performing obstacle avoidance. The leftmost figure
is a picture of the obstacle course. The rest of the pictures are
sequential snapshots of the path planner and 3-D map while the
robot is autonomously navigating through the course.

The future work will focus on combining Cassie walking
to achieve multi-modal locomotion. Currently human oper-
ators are needed to initialize Cassie on the Hovershoes. We
would like to develop a method for Cassie to step up on the
Hovershoes without the need of operators.
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