
Deep Visual Perception for Dynamic Walking on Discrete Terrain

Avinash Siravuru, Allan Wang, Quan Nguyen, and Koushil Sreenath

Abstract— Dynamic bipedal walking on discrete terrain, like
stepping stones, is a challenging problem requiring feedback
controllers to enforce safety-critical constraints. To enforce
such constraints in real-world experiments, fast and accurate
perception for foothold detection and estimation is needed.
In this work, a deep visual perception model is designed to
accurately estimate step length of the next step, which serves
as input to the feedback controller to enable vision-in-the-
loop dynamic walking on discrete terrain. In particular, a
custom convolutional neural network architecture is designed
and trained to predict step length to the next foothold using a
sampled image preview of the upcoming terrain at foot impact.
The visual input is offered only at the beginning of each step
and is shown to be sufficient for the job of dynamically stepping
onto discrete footholds. Through extensive numerical studies,
we show that the robot is able to successfully autonomously
walk for over 100 steps without failure on a discrete terrain
with footholds randomly positioned within a step length range
of [45 : 85] centimeters.

I. INTRODUCTION

A. Problem Definition

The objective of this work is to build and systematically
evaluate a Deep Visual Perception system to be used by a
planar dynamic walking robot in order to autonomously walk
on discrete terrain. We build a realistic visual simulator to
generate the robot’s first person view and combine it with
an accurate physics simulator of the bipedal robot walking
on discrete terrain. The physics simulator also contains an
inner-loop safety-critical controller that can generate stable
and safe limit cycle walking of a desired step length [19]. In
this setup, we train a deep neural network to estimate the step
length (distance to the next stepping location) using a single
sampled image preview that is obtained at the beginning of
each step. Detecting footholds and estimating distance is a
classic object localization problem similar to object grasping
in robotic manipulation, however in the case of locomotion
there are additional challenges due to the time-critical and
safety-critical nature of the problem.

Note that, we limit our attention to only autonomous
planar walking, and accordingly, only predict step length
information. This simplification allows us to keep the focus
on the visual simulator development, custom CNN design
(to bound worst-case estimate) and perception-control inte-
gration. However, the method itself can be extended to 3D

This work is supported in part by grants from the Pennsylvania Infras-
tructure Technology Alliance, the Google Faculty Research Award, and in
part by NSF grant IIS-1526515.

A. Siravuru, A. Wang, and Q. Nguyen are with the Department of
Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213,
USA {avinashs,allanwan,quannguyen}@cmu.edu.

K. Sreenath is with the Dept. of Mechanical Engineering, University of
California, Berkeley, CA 94720, koushils@berkeley.edu.

Fig. 1: At the beginning of each step, the convolutional neural
network predicts the step length based on per-step visual
preview from a torso-mounted camera. A suitable limit cycle
is chosen from the gait library [19] and executed to achieve
the predicted step length.

walking without loss of generality as evidenced by (a) our
prior work on dynamic walking over terrain with varying
step width and step height in addition to step length [20],
[19], and (b) the perception system in this paper that takes
an image rendered from a 3D scene as input without making
any geometric simplifications due to the planar walking.

B. Motivation

Conventionally, robot perception involves parsing the en-
tire scene, labeling objects of interest, and feeding this
information for planning and control. As the number of tasks
increase and the decision-making time drops, searching the
entire scene for all tasks is expensive and trade-offs are
inevitable. Reactive vision-in-the-loop control for sub-tasks,
wherever possible, reduces overhead on higher-level planners
and injects more dynamism into the system. The objective
of this work is to serve this need for the sub-task of walking
safely on discrete terrain.

In fact, experiments with humans and cats have shown
that during over 50 − 60% time of the gait cycle, gaze
is invested in target detection and the higher-level spatial
navigation problem [21]. When required to walk on complex
terrain requiring accurate foot placement, humans operate
with intermittent visual samples of the foothold location
and use the information in a feed-forward manner to adjust
step length just 1 − 2 steps a priori [21], [17]. For walking
on discrete terrain, the key finding here is that, instead of
active modulation of gait through visual feedback during
the entire stance phase, humans prefer to adjust their gait
one-two step ahead using an intermittent visual preview
and execute an energy-efficient ballistic motion [16]. If
the foothold remains constant, continuous visual feedback
may even be unnecessary. Our work is inspired by these

biological findings and we wish to elicit similar behavior
from the dynamic bipedal robot ATRIAS. Our paper makes
the following contributions:

1) We present a custom deep convolutional neural net-
work (CNN) architecture for the task of estimating
next step location given a sampled visual preview of
the terrain at the end of the current step. A synthetic
outdoor dataset with dynamic real world textures,
varying lighting conditions and camera positions is
also developed. The network, trained on this dataset,
returns an average prediction error of 1.62 cm and a
worst-case error of 10.38 cm.

2) We integrate the CNN-based step length estimator
with an inner-loop safety-critical controller to enable
vision-in-the-loop dynamic walking on discrete terrain.
The robot with the visual step-length estimator and
the safety-critical controller is shown to successfully
walk at least 100 steps without failure, with the step
lengths randomly sampled from a uniform distribution
of 45− 85 cm.

II. RELATED WORK

Deep Learning for Robotic Vision: Recent advances
of Deep Learning in fields like computer vision, natural
language processing, speech recognition, etc. has lead to
tremendous research interest in extending these gains to
robotics. Large amounts of data available for network train-
ing and parallel computation helped accelerate this effort.
From learning end-to-end visuomotor policies for object
manipulation [15], to learning to fly UAVs in cluttered
environments [23], or in self-driving cars [4], [6], deep
learning is impacting all major robotics sub-domains. In
humanoid robotics also, CNNs were used for innovative
applications like surface friction estimation from images, to
help in slip prediction [5]. However, it is very challenging
to build end-to-end fully data-driven policies for stable and
safe limit cycle walking, let alone on discrete terrain.

Perception in Legged Locomotion: Perception for
bipedal locomotion primarily focused on foot-step planning
for statically stable or linear dynamical model-based walkers.
Usually, LIDAR-camera combination is preferred in this
case. Accurate high resolution depth data obtained from
Lidar is used for safe footstep detection and planning [7],
[11]. Unlike these walkers, dynamics robots have point feet,
move much faster and therefore need faster execution and
the ability to pick footholds of any size. This makes the
search problem harder on the full 3D map. Vision-in-the-loop
walking with gait adjustment (comparable to our approach)
was implemented on a Quadruped in [3] to operate on
steep slopes and dense vegetation. However, the problem of
discrete terrain is not addressed. We believe our solution is
complimentary to their effort and a combined solution could
pave the way for true rough terrain navigation.

III. ROBOT MODEL AND CONTROLLER SUMMARY

Having presented an overview of related work, we will
now briefly develop the dynamical model and controller for

TABLE I: Optimization constraints.

Motor Toque |u| ≤ 7 Nm
Impact Impulse Fe ≤ 15 Ns
Friction Cone µ ≤ 0.6

Vertical Ground Reaction Force F v
st ≥ 200 N

Mid-step Swing Foot Clearance hf |s=0.5 ≥ 0.1 m

achieving stable walking with precise foot placements.

A. Dynamical Model for Walking

We consider the ATRIAS bipedal robot with configuration
q and state x = (q, q̇) that denotes the generalized positions
and velocities of the robot, with u denoting the joint torques.
A hybrid model of walking can then be expressed as{

ẋ = f(x) + g(x)u x /∈ S
x+ = ∆(x−) x ∈ S, (1)

where S is the switching guard, ∆ is the reset or impact
map, and the superscripts − and + denoting pre- and post-
impact variables respectively. A detailed description of the
robot and a derivation of its model can be found in [22].

B. Periodic Gait Design using Virtual Constraints

Virtual constraints are kinematic relations that synchronize
the evolution of the robot’s coordinates via continuous-time
feedback control, thereby simplifying control of high degree-
of-freedom systems, [25]. Virtual constraints are expressed
as an output vector

y(q) = h0(q)− hd(s(q), α), (2)

to be asymptotically zeroed by a feedback controller, with
one virtual constraint typically imposed per each actuator.
Here h0(q) specifies the variables to be controlled, and
hd(s, α) specifies the desired evolution of the controlled
variables, parametrized by the the coefficient α and the gait
phasing variable s which goes from zero at the start of the
gait to one at the end of the gait.

A nonlinear constrained optimization is used to find the
coefficient α so as to create a periodic orbit satisfying a
desired step length, while respecting physical constraints on
torque, motor velocity, and friction cone. The cost function
is taken as the integral of squared torques normalized by step
length,

J =
1

Lstep

∫ T

0

||u(t)||22 dt, (3)

and the constraints for the optimization are formulated as
given in Table I, see [25, Sec. 6.6.2] for more details.
The optimization is solved through a fast direct collocation
framework from [13].

Since walking over stepping stones involves changes in the
step length, one way to easily transition between different
step lengths is to create a 2-step periodic gait that explicitly
considers the step length of the current step as well as the
subsequent step. The optimization process presented above
can be used to design a 2-step periodic orbit with step lengths
(l0, l1) with coefficient α(l0, l1) as shown in Fig. 2a.

(a) (b)

Fig. 2: (a) 2-Step periodic walking with changing step
lengths only. The walking gait is 2-step periodic therefore
the step length of the second step and that of the initial
condition are the same (l2 = l0) and (b) Gait interpolation
for the problem of changing step length.

With a collection of 2-step periodic orbits, We can
then transition at each step between multiple 2-step pe-
riodic orbits in a MPC-like manner with small tran-
sients. However, to prevent an explosion of the number
of periodic gaits that need to be optimized for, here we
use only four 2-step periodic gaits corresponding to step
lengths (lmin, lmin), (lmin, lmax), (lmax, lmin), (lmax, lmax)
and use bilinear interpolation to find the coefficients α for
a desired gait of step lengths (ld0 , l

d
1) as shown in Fig. 2b.

This work builds off recent work on periodic walking gait
libraries in [19], [18], [9], [10].

C. Feedback Control

The presented optimization results in a desired walking
gait encoded through hd(s(q), α) in (2). The goal for the
feedback control is to drive y(q)→ 0. In this work, we use a
nonlinear feedback controller to enforce exponential stability
for the hybrid system through input-output linearization, [2].
If y(q) has vector relative degree 2, then its second derivative
can be expressed through Lie derivatives as,

ÿ = L2
fy(q, q̇) + LgLfy(q, q̇) u. (4)

We can then apply the following pre-control law

u(q, q̇) = u∗(q, q̇) + (LgLfy(q, q̇))−1 µ, (5)

where the nominal feedforward component u∗(q, q̇) :=
−(LgLfy(q, q̇))−1L2

fy(q, q̇) with feedback µ = −Kpy −
Kdẏ stabilizes the system. This combination of the 2-step
periodic gait libary and the feedback controller results in
precise footplacements with specified step lengths in a safety-
critical manner. Formal guarantees on safety for dynamic
walking on discrete terrain can also be achieved through
control barrier functions [18].

IV. DIRECT PERCEPTION FOR ATRIAS

Having presented the robot’s dynamical model and the
safety-critical controller designed to walk on discrete terrain
when provided with accurate step length information, we
will now present a systematic way to build and train a deep
visual perception model that estimates the step length from

(a) Background Textures (b) Stone Textures

Fig. 3: A collage of textures use for the synthetic outdoor
dataset generation: (a) Background Textures, (b) Stone Tex-
tures.

a single monocular image. The system will take an input of
the upcoming terrain through a front-facing camera at the
beginning of each step. This image is to be fed to a CNN
to estimate the step length for the next step. The step length
estimate is then fed to the gait-library based controller to
enable the robot to precisely land on the next foothold.

This CNN-based deep perception model has two critical
components. Firstly, we need a large corpus of step-length
annotated imagery of the robot’s front person view while
walking. This dataset is used to train the model for accurate
step length estimation. The systematic methodology used
to create this synthetic dataset is described in the next
subsection. Secondly, we need a suitable deep neural network
architecture that can best approximate the complex non-
linear mapping from image to step length estimate. The
network needs to be tuned methodically to not only obtain the
best test accuracy but also bound the worst-case prediction.
These details are summarized after the next subsection.

A. Dataset Generation

To generate the image dataset, we use a popular open-
source graphics software called Blender [12] to programat-
ically generate realistic scenes. To create a discrete terrain
scene, we need four key details: 1) Camera location and
intrinsic parameters 2) Stepping stone location, 3) Lighting
model and location, and 4) Color and texture information of
both the stepping stone and background. These parameters
will be randomized in ranges larger than what the robot may
encounter in order to account for error accumulation over
time.

The above four parameters are randomized for image
generation in the following manner:

Camera Location: The camera location is measured with
respect to the stance foot position. For each image, we
randomly sampled from a range of [−10 : 20] × [−10 :
10] × [80 : 120] (cm) to obtain the x, y, z offsets of
the camera from the stance foot, respectively. The ZED
Stereo Camera [14] model is used for rendering the images.
However, since we only focus on the step length, we only
generate monocular images for this study.

Stone Location: From [19], we note that, the robot was
able to walk on a discrete terrain where the step lengths
ranged from [20 : 90] (cm). True step length is the distance
from the robot’s stance foot to the next stone’s center. For this
work we uniformly sample step lengths from [15 : 95] (cm)
range and arrange the stones in a single column accordingly.

Fig. 4: Sample images from the Synthetic Outdoor Dataset
(SOD).

Based on the width of the robot, we spread out stones
[30 : 35] (cm) away of the robot’s center-line. Moreover,
they are alternately positioned on either sides of the center-
line, as shown in Fig. 4. Finally, the stone size itself is varied
randomly between [10 : 20] (cm) in length and [60 : 90] (cm)
in width, respectively. However, the stone height is kept fixed
at 15 cm.

Lighting Properties: The light source is always facing
the current stepping stone. However, its position is randomly
chosen from a semi-spherical dome-like space above the
robot with a 6 meters constant radius to the current stone-
center.

Texture: Here we select real world textures for both stones
and background. We chose 12 unique textures comprising of
grass, sand, water, pebbled terrain, etc. for the background
and 14 unique textures for the stone including granite,
cement, brick, wood, etc. Texture samples are shown in Fig.
3 Each scene is rendered by randomly sampling a texture
pair from the available collection.

The images are rendered with a resolution of 223 × 223
pixels. Additionally, we crop the left and right 15% of
the image to further reduce computational overhead. The
final image resolution is 223 × 149. We generate 40, 000
images and call it the Synthetic Outdoor Dataset (SOD).
Sample images are shown in Fig. 4. Having presented the
dataset generation details, we will present the neural network
architecture design next.

B. Network Architecture Summary

For training our object detector, we propose a custom
neural network architecture. It consists of six convolutional
layers of 32 filters each, followed by two dense layers, both
with 256 neurons each. Unlike traditional designs where the
number of features maps increase with depth, we found that,
a constant number of feature maps throughout does better
and needs fewer parameters. The kernel size of each filter is
(4 × 4). Batch Normalization and Max Pooling are applied
after every two convolutional layers. Additionally, we apply
Batch Normalization just before the final output layer as well.
We use relu activations in all the layers except the last one,

where we use a linear activation function instead. Fig. 5
summarizes the CNN architecture. The detector is trained
using the Mean Squared Error loss and the Adam optimizer.
We use a learning rate of 1e−4 along with a suitable learning
rate decay policy. We use Keras API [8] with TensorFlow
backend [1] to build and train our model. We trained for
40 epochs with a batch size of 50, on a Intel i7 machine
with an NVIDIA Titan X GPU. The model has roughly
2.5 million trainable parameters. Finally we split the dataset
into Training, Validation and Test sets, each comprising of
28900, 5100, 6000 images, respectively.

The step length is estimated as follows: Using the joint
encoders on the robot, the location of the camera is first
estimated. The deep neural network only learns to predict the
distance from the camera to the next stone center. Therefore,
the predicted step length is the sum of these two distances.
Note that the camera position information is not used during
training.

While deep networks have remarkable function approxi-
mation abilities, they have many tunable hyper-parameters
whose fine-tuning critically impacts network performance
and generalization ability. In the next section, we systemat-
ically outline our network design and customization process
while examining the impact of each hyper-parameter on
reducing worst-case test error.

C. Hyper-parameter Search

Deep neural networks have a very high dimensional hyper-
parameter space, where almost every single building block
can be optimized. Most applied deep learning papers use
existing architectures and leverage their transfer learning
properties. Few papers explain in sufficient detail, the impact
of each hyper-parameter on the learning outcomes. Unfortu-
nately, hyper-parameter choices don’t always generalize to all
problems and it is therefore worthwhile to carefully tweak
and specifically examine them for individual problems. Im-
portant insights drawn from this exploration for our problem
are summarized below. Note that, all the results reported
below are on the test set.

• Roughly 89% drop in error occurs within the first
20 epochs. Therefore, a wider hyper-parameter coarse
search was carried out on models trained for 20 epochs
while for the finer search, the models were trained for
40 epochs.

• As already identified in [24], Dropout with any proba-
bility or placement in the network worsens performance.

• Batch Normalization really boosts performance and
results in around 33% drop in mean absolute error. More
interestingly it leads to over 55% drop in the worst-case
prediction error (or the maximum prediction error on the
test set).

• Using L2 Regularization (default is 0.01) for only the
fully connected layers helps further reduce the worst-
case prediction error.

• We tested the Architecture with 5 kernel sizes,
(2, 2), (4, 4), (6, 6), (3, 3), (2, 4). We observed that rect-
angular kernels had the largest worst-case error, fol-

Fig. 5: Deep Network Architecture for predicting step length. Each convolutional block consists of two convolutional layers
followed by a Max-Pool and Batch Normalization layers. Two identically dimensioned fully connected layers are used.
Finally, the output activation function is linear.

lowed by the (3, 3) kernel. Surprisingly, even numbered
kernels did a better job, against conventional wisdom.
The best kernel was (4, 4).

• Adding an extra convolutional block (ie., two additional
convolutional layers followed by a max pool and a
batch norm) increased the mean absolute error. Unlike
classification tasks where depth almost always helps,
in regression tasks, localization accuracy is affected by
max-pooling layers beyond some depth. Therefore, for
regression tasks one must find the sweet spot between
depth (complexity) and accuracy.

Finally, based on the above mentioned hyper-parameter
search, an optimal network architecture is designed and it
is trained with the synthetic outdoor dataset. The qualitative
and quantitative results obtained are presented in the next
section.

V. RESULTS AND DISCUSSION

In this section, we study the performance of the deep
perception model and then integrate it with a physics-based
simulator and gait-library based controller to numerically re-
alize and analyze autonomous dynamic walking on randomly
generated discrete terrain.

A. Step Length Prediction Performance

Once trained, we expect the step length predictor to accu-
rately detect the next stepping stone and output it’s distance
in centimeters. Note that, each image will have anywhere
between 1 − 5 stepping stones. Therefore, even though
they have the same texture and geometry, our perception
framework needs to overlook other stones and actively seek
out the first one. In this situation, we believe perspective
distortion helps in better distinguishing the stone of interest.
Further, due to the safety-critical nature of this problem, in
addition to describing network performance based on mean
squared error, we will also report the variance and the worst-
case prediction.

Test Avg. Loss Std. Dev. of Loss % Above 5 cm Max Pred. Error
(in cm) (in cm)

1.618 1.32 2.116 10.38

TABLE II: Summary of prediction performance on test data.

(a) Predicted v/s Actual Step Length (b) Prediction Error Histogram

Fig. 6: Visualizing step length prediction performance
through plots of (a) Predicted versus True Step Length values
and (b) Prediction Error Histogram. Both plots are for the
test data obtained from the Synthetic Outdoor Dataset.

Error is unavoidable in function approximation. However,
in a safety-critical scenario like discrete terrain walking, the
default approach of choosing the network that gives the least
mean squared error could be detrimental as the worst-case
estimate could still be off the safety limits. In order to avoid
this issue, in this work, hyper-parameters were tuned with
the objective to find the least possible worst-case estimate
with the available dataset. The performance of the CNN was
evaluated on the 6000 sample test data and is visualized in
Fig. 6 and summarized in Table II.

1) Best and Worst predictions:: In addition to studying
the qualitative learning outcomes like average loss, standard
deviation of loss, etc., we also visualize images of the best-
8 and the worst-8 predictions in Fig. 7 to visually interpret
which parameters the model could and couldn’t generalize
over. From the figure, it is clear that the model is able to
generalize over the various foreground and background tex-
tures, including bright and dim lighting conditions. However,
shadows contributed to some of the higher estimation errors.

(a) Best-8

(b) Worst-8

Fig. 7: Snapshots of the best-8 and worst-8 predictions of the
neural network alongwith the corresponding prediction error
in centimeters. The desired (red line) and predicted (blue
line) step lengths are marked along with pixel coordinates
of the resulting foot placement location (yellow dot).

B. Simulation Results

In this section, we integrate the CNN estimator with a
physics-based robot simulator in III-A and the gait-library
based controller in III-B to evaluate the closed-loop au-
tonomous operation of the robot. The robot dynamics are
simulated in Matlab. At the beginning of each step, robot’s
current position (specifically the camera position) is supplied
to Blender to render a first-person-view synthetic outdoor
image using the information from the terrain generator. This
image is in turn supplied to the Convolution Neural Network
(implemented in Keras and TensorFlow) to predict the step
length for the next step. Provided with this predicted step
length, the closed-loop dynamics of the robot and controller
are simlated for one step to enable the robot to take the
step forward. The process is repeated for subsequent steps.
A schematic of the numerical simulation pipeline is shown
in Fig. 8.

Numerical simulations are carried out with stones ran-
domly placed with the inter-stone distance within the [45 :
85] cm range. Recall that the camera position and stone
location were uniformly sampled from dissimilar ranges in

Section IV. The label used for training the CNN is the
distance to the camera which is difference of stone location
and camera position. Therefore, the distribution of labels
used for training is no longer uniform. Accounting for this
fact, the step length ranges have been adjusted to only test the
CNN in the range where there was enough data to guarantee
a good learning outcome.

In this study, we render images with light fixed in an
overhead position and focus on carefully examining sensi-
tivity to potential failure modes like camera position or step
length going outside the range used for dataset generation
during continuous simulation. (We have already noted earlier
that shadows are a failure mode.) Our evaluation is based
on two metrics, 1) Perception Error and 2) Foot Placement
Error. Prediction Error is defined as the difference between
Predicted Step Length and True Step Length and it is
purely an artifact of the perception module. Similarly, Foot
Placement Error is defined as the difference between foot-
contact-point and stone-center. This error is the cumulative
error of both perception and control.

The robot was simulated for 100 steps and these two errors
are plotted, as shown in Fig. 9. Note that the prediction error
is bounded within a 5 cm range from the center for the most
part and doesn’t show significant accumulation of error over
time. In Fig. 9(b), the foot placement error is also plotted
for the case where perception was not used (called WOP
- With Out Perception) and with perception (using SOD -
synthetic outdor dataset) for comparison. In an attempt to
minimize effort, the conservative controller always under-
steps. In contrast, the prediction model over-estimates more
frequently. Therefore, the errors cancel more often and lead
to a desirable and mostly-bounded stepping behavior.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we outlined a systematic way to design a
CNN-based predictor that can estimate step lengths for a
dynamic bipedal walker operating in discrete terrain. It is
shown empirically that a feed-forward gait adjustment based
on intermittent visual feedback is sufficient to walk on a dis-
crete terrain where high-speed prediction and accurate foot
placement are critical. Several visual factors that impact the
predictor’s performance are identified for further refinement.
This paper integrates gait optimization, nonlinear control,
vision, and deep learning.

As part of future work, the direct perception model will
be extended to predict other related gait parameters like
step width, step height and yaw angle, enabling autonomous
rough terrain navigation. Moreover, since multiple steps are
visible in an image, accuracy could be improved through
Recurrent Neural Networks. Domain adaptation techniques
that transfer the predictor from simulation to real world
images will enable testing the algorithm on the real robot.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for
large-scale machine learning,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
Savannah, Georgia, USA, 2016.

Fig. 8: Simulation pipeline for autonomous dynamic walking on discrete terrain. The pipleline integrates gait optimization,
nonlinear control, vision, and deep learning. Simulation Video: https://youtu.be/ijJAPapU7qI.

10 20 30 40 50 60 70 80 90 100

of steps

-10

0

10

er
ro

r
(c

m
)

(a) Prediction Error

10 20 30 40 50 60 70 80 90 100

of steps

-10

-5

0

5

10

er
ro

r
(c

m
)

WOP SOD

(b) Foot Placement Error

Fig. 9: (a) Prediction Error, and (b) Foot Placement Error
plots for 100 step walking simulation with step lengths
varying within [45 : 75] cm. In (b) WOP indicates error
without perception while SOD indicates errors when step
length is estimated using the synthetic outdoor dataset-based
image preview.

[2] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control (TAC), vol. 59,
no. 4, pp. 876–891, April 2014.

[3] M. Bajracharya, J. Ma, M. Malchano, A. Perkins, A. A. Rizzi, and
L. Matthies, “High fidelity day/night stereo mapping with vegetation
and negative obstacle detection for vision-in-the-loop walking,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2013.

[4] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[5] M. Brandao, Y. M. Shiguematsu, K. Hashimoto, and A. Takanishi,
“Material recognition cnns and hierarchical planning for biped robot
locomotion on slippery terrain,” in Humanoid Robots (Humanoids),
2016 IEEE-RAS 16th International Conference on. IEEE, 2016, pp.
81–88.

[6] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015,
pp. 2722–2730.

[7] J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, and
S. Kagami, “Biped navigation in rough environments using on-board

sensing,” IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2009.

[8] F. Chollet, “Keras,” 2015.
[9] X. Da, O. Harib, R. Hartley, B. Griffin, and J. Grizzle, “From 2d

design of underactuated bipedal gaits to 3d implementation: Walking
with speed tracking,” IEEE Access, vol. PP, no. 99, pp. 1–1, 2016.

[10] X. Da, R. Hartley, and J. W. Grizzle, “First steps toward supervised
learning for underactuated bipedal robot locomotion, with outdoor
experiments on the wave field,” in IEEE International Conference on
Robotics and Automation (ICRA), 2017.

[11] M. F. Fallon, P. Marion, R. Deits, T. Whelan, M. Antone, J. McDonald,
and R. Tedrake, “Continuous humanoid locomotion over uneven
terrain using stereo fusion,” IEEE-RAS International Conference on
Humanoid Robots (Humanoids), 2015.

[12] L. Flavell, “Beginning blender: open source 3d modeling, animation,
and game design,” The expert’s voice in open source, 2010.

[13] M. S. Jones, “Optimal control of an underactuated bipedal robot,” Mas-
ter’s thesis, Oregon State University, ScholarsArchive@OSU, 2014.

[14] S. Labs, “Zed stereo camera.” [Online]. Available: https://www.
stereolabs.com/

[15] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[16] J. S. Matthis, S. L. Barton, and B. R. Fajen, “The critical phase for
visual control of human walking over complex terrain,” Proceedings
of the National Academy of Sciences, p. 201611699, 2017.

[17] J. S. Matthis and B. R. Fajen, “Humans exploit the biomechanics of
bipedal gait during visually guided walking over complex terrain,”
Proceedings of the Royal Society of London B: Biological Sciences,
vol. 280, no. 1762, p. 20130700, 2013.

[18] Q. Nguyen, X. Da, J. W. Grizzle, and K. Sreenath, “Dynamic walking
on stepping stones with gait library and control barrier,” Workshop on
Algorithimic Foundations of Robotics, 2016.

[19] Q. Nguyen, X. Da, W. Martin, H. Geyer, J. W. Grizzle, and
K. Sreenath, “Dynamic walking on randomly-varying discrete terrain
with one-step preview,” in Robotics: Science and Systems (RSS), 2017.

[20] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d
dynamic walking on stepping stones with control barrier functions,” in
Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE,
2016, pp. 827–834.

[21] A. E. Patla, “Understanding the roles of vision in the control of human
locomotion,” Gait & Posture, vol. 5, no. 1, pp. 54–69, 1997.

[22] A. Ramezani, J. W. Hurst, K. Akbari Hamed, and J. W. Grizzle,
“Performance Analysis and Feedback Control of ATRIAS, A Three-
Dimensional Bipedal Robot,” Journal of Dynamic Systems, Measure-
ment, and Control, vol. 136, no. 2, 2014.

[23] F. Sadeghi and S. Levine, “CAD2RL: Real singel-image flight without
a singel real image,” 2017.

[24] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” arXiv preprint arXiv:1703.06907, 2017.

[25] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. Choi, and B. Mor-
ris, Feedback Control of Dynamic Bipedal Robot Locomotion, ser.
Control and Automation. Boca Raton, FL: CRC, June 2007.

https://youtu.be/ijJAPapU7qI
https://www.stereolabs.com/
https://www.stereolabs.com/

	Introduction
	Problem Definition
	Motivation

	Related Work
	Robot Model and Controller Summary
	Dynamical Model for Walking
	Periodic Gait Design using Virtual Constraints
	Feedback Control

	Direct Perception for ATRIAS
	Dataset Generation
	Network Architecture Summary
	Hyper-parameter Search

	Results and Discussion
	Step Length Prediction Performance
	Best and Worst predictions:

	Simulation Results

	Conclusions and Future Work
	References

