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Abstract
We cast real-world humanoid control as a next
token prediction problem, akin to predicting the
next word in language. Our model is a causal
transformer trained via autoregressive prediction
of sensorimotor trajectories. To account for the
multi-modal nature of the data, we perform pre-
diction in a modality-aligned way, and for each
input token predict the next token from the same
modality. This general formulation enables us to
leverage data with missing modalities, like video
trajectories without actions. We train our model
on a collection of simulated trajectories coming
from prior neural network policies, model-based
controllers, motion capture data, and YouTube
videos of humans. We show that our model en-
ables a full-sized humanoid to walk in San Fran-
cisco zero-shot. Our model can transfer to the
real world even when trained on only 27 hours
of walking data, and can generalize to commands
not seen during training like walking backward.
These findings suggest a promising path toward
learning challenging real-world control tasks by
generative modeling of sensorimotor trajectories.

1. Introduction
The last decade of artificial intelligence (AI) has shown
that large neural networks trained on diverse datasets from
the Internet can lead to impressive results across different
settings. The core enablers of this wave of AI have been
large transformer models (42) trained by generative model-
ing of massive quantities of language data from the Inter-
net (29, 8, 30, 31, 4). By predicting the next word, these
models acquire rich representations of language that can be
transferred to downstream tasks (29), perform multi-task
learning (30, 31), and learn in a few-shot manner (4).

Are such modeling techniques exclusive to language? Can
we learn powerful models of sensory and motor representa-
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tions in a similar fashion? Indeed, we have seen that we can
learn good representations of high-dimensional visual data
by autoregressive modeling (6) and related masked model-
ing approaches (13). While there has been positive signal
on learning sensorimotor representations in the context of
manipulation (32), this area remains largely unexplored.

In this paper, we cast humanoid control as data modeling
of large collections of sensorimotor trajectories. Like in
language, we train a general transformer model to autore-
gressively predict shifted input sequences. In contrast to
language, the nature of data in robotics is different. It is
high-dimensional and contains multiple input modalities.
Different modalities include sensors, like joint encoders or
inertial measurement units, as well as motor commands.
These give rise to sensorimotor trajectories which we view
as the sentences of the physical world. Adopting this per-
spective suggests a simple instantiation of the language
modeling framework in the robotic context. We tokenize
the input trajectories and train a causal transformer model
to predict shifted tokens. Importantly, we predict complete
input sequences, including both sensory and motor tokens.
In other words, we are modeling the joint data distribution
as opposed to the conditional action distribution.

This has several benefits. First, we are training the neu-
ral network to predict more bits of information and conse-
quently acquire a richer model of the world. Second, we
can leverage noisy or imperfect trajectories that may contain
suboptimal actions. Third, we can generalize our framework
to learning from trajectories with missing information.

Our core observation is that if a trajectory is incomplete, i.e.,
some of the sensory or motor information is missing, we
can still learn from it by predicting whatever information
is present and replacing the missing tokens with learnable
mask tokens. The intuition is that if the model has learned to
make good predictions, even in the absence of information,
it will have acquired a better model of the physical world. A
very important source of such data are human videos from
the Internet. Namely, we can observe human movement in
videos but we do not get access to the motor commands or
complete sensory inputs. We demonstrate that our method
can learn from such data sources effectively.
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Figure 1: A humanoid that walks in San Francisco. We deploy our policy to various locations in San Francisco over
the course of one week. Please see our project page for videos. We show that our policy can walk over different surfaces
including walkways, concrete, asphalt, tiled plazas, and sanded roads. We find that our policy follows omnidirectional
velocity commands well and enables deployment in a challenging city environment like San Francisco.

humanoid-next-token-prediction.github.io
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To validate our method, we apply it to the challenging task
of real-world humanoid locomotion. We use the full-sized
Digit humanoid robot developed by Agility Robotics. We
first collect a dataset of sensorimotor trajectories in simu-
lation. These include complete trajectories from a neural
network policy trained with reinforcement learning (33), as
well as incomplete trajectories from three different sources:
(i) Agility Robotics controller based on model predictive
control, (ii) motion capture of humans, and (iii) YouTube
videos of humans. We reconstruct human videos by using
computer vision techniques and retarget both motion capture
and YouTube trajectories via inverse kinematics. We then
train a transformer model to autoregressively predict trajec-
tories. At test time, we execute the actions autoregressively
and ignore the sensory predictions.

We demonstrate that our policy can be deployed in the real
world zero-shot and walk on different surfaces. Specifically,
deploy our model across a range of different locations in
San Francisco over the course of one week. Please see
Figure 1 for examples and our project page for videos. To
quantitatively evaluate different aspects of our approach,
we perform an extensive study in simulation. We find that
our autoregressive policies trained from offline data alone
are comparable to the state-of-the-art approaches that use
reinforcement learning (33) in tested settings. We further
find that our approach can readily benefit from incomplete
trajectories and has favorable scaling properties.

These findings suggest a promising path toward learning
challenging real-world robot control tasks by generative
modeling of large collections of sensorimotor trajectories.

2. Related Work
Generative modeling. The study of data has been exten-
sive, ranging from Shannon’s foundational work (37) to the
recent era of large language models. Various such mod-
els emerged over the last decade. Notable such models
includes, GAN (12) and Diffusion models (39, 16) for gen-
erating pixels, LSTM (17) and GPT (29) for generating
language tokens. These models have been adopted for other
modalities as well (27, 11, 43). Among these, autoregres-
sive transformer models became the front runner, due to
the impressive scaling behaviours (19) and ability to learn
from in-context examples (3). This behavior is even shown
to extend to other modalities such as pixels (6), language-
pixels (36), and language-pixels-audio (21). We explore au-
toregressive generative models in the context of real-world
humanoid locomotion.

Transformers in robotics. Following the success of trans-
former models (42) in natural language processing (29, 8,
30, 3) and computer vision (9, 13), over the last few years,
there has been an increased interested in using transformer

models in robotics. We have seen several works showing
that transformers can be effective with behavior cloning.
For example, (38) learns multi-task transformer policies
with language, and (2) trains language-conditioned manipu-
lation policies from large-scale data. (10) trains language
models with embodied data. We have also seen that trans-
former policies can be effective for large-scale reinforce-
ment learning (33). (32) learns sensorimotor representations
with masked prediction. (1) trains goal-conditioned poli-
cies are learned from demonstrations. Likewise, we share
the goal of using transformer models for robotics but fo-
cus on autoregressive modeling of diverse trajectories for
real-world humanoid locomotion.

Humanoid locomotion. Mastering the ability for robots
to walk has been a long-standing challenge in robotics. In
the past several decades, roboticists have built a variety
of humanoid robots (20, 15, 26, 40, 7) to explore human-
like locomotion skills. Stable locomotion behaviors have
been achieved through model-based control approaches
(34, 18), and optimization-based methods further enable
highly dynamic humanoid motions (22). Although signifi-
cant progress has been made with these strategies and com-
bining them with learning (5), learning-based approaches
are gaining attention for their ability to improve and adapt to
a wide range of environments. Recently, we have seen that
a purely learning based approach trained with large-scale
reinforcement learning in simulation can enable real-world
humanoid locomotion (33). Like in prior work, our model
is a causal transformer. Unlike prior work, we perform
autoregressive modeling instead of reinforcement learning.

3. Approach
In this section, we assume that a dataset D of sensorimotor
trajectories T is given and describe our approach below.

3.1. Objective

Each sensorimotor trajectory is a sequence of sensory ob-
servations and actions: T = (o1, a1, o2, a2, ..., oT , aT ).
We first tokenize the trajectory into K tokens to obtain
t = (t1, t2, t3, ..., tK). Our goal is to train a neural net-
work to model the density function p(t) autoregressively:

p(t) =

K∏
k=1

p(tk|tk−1, ..., t1) (1)

We train our model by minimizing the negative log-
likelihood over our trajectory dataset:

L =
∑
t∈D

− log p(t) (2)

humanoid-next-token-prediction.github.io
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Figure 2: Humanoid locomotion as next token prediction. We collect a dataset on trajectories from various sources, such
as from neural network policies, model-based controllers, human motion capture, and YouTube videos of humans. Then we
use this dataset to train a transformer policy by autoregressive modeling of observations and actions. Our transformer allows
a humanoid to walk zero-shot on various terrains around San Francisco. Please see our project page for video results.

We assume a Gaussian distribution with constant variance
and train a neural network to minimize the mean squared
error between the predicted and the ground truth tokens:

L =
1

K

K∑
k=1

(t̂k − tk)
2 (3)

Instead of regressing the raw token values, we could quantiz-
ing each dimension into bins or perform vector quantization.
However, we found the regression approach to work reason-
ably well in practice and opt for it for simplicity.

3.2. Missing modalities

In the discussion so far we have assumed that each tra-
jectory is a sequence of observations and actions. Next,
we show how our framework can be generalized to se-
quences with missing modalities, like trajectories extracted
from human videos that do not have actions. Suppose we
are given a trajectory of observations without the actions
T = (o1, o2, ..., oT ). Our key insight is that we can treat
a trajectory without actions like a regular trajectory with
actions masked. Namely, we can insert mask tokens [M]
to obtain T = (o1,[M], o2,[M], ..., oT ,[M]). This trajec-
tory now has the same format as our regular trajectories and
thus can be processed in a unified way. We ignore the loss
for the predictions that correspond to the masked part of
inputs. Note that this principle is not limited to actions and
applies to any other modality as well.

3.3. Aligned prediction

Rather than predicting the next token in a modality-agnostic
way, we make predictions in a modality-aligned way.
Namely, for each input token we predict the next token
of the same modality. Please see Figure 3 for diagrams.

3.4. Joint training

We have two options for training on collections that con-
tain diverse trajectories in terms of noise levels or modality
subsets. We can either train jointly with all data at once, in-
cluding complete and incomplete trajectories. Alternatively,
we can first pre-train on noisy and incomplete trajectories.
This can be viewed as providing a good initialization for
then training on complete trajectories. We find that both
approaches work comparably in our setting and opt for joint
training in the majority of the experiments for simplicity.

3.5. Model architecture

Our model is a vanilla transformer (42). Given the trajec-
tories from either complete or incomplete data, we first
tokenize the trajectories into tokens. We learn separate lin-
ear projection layers for each modality but shared across
time. To encode the temporal information we use positional
embeddings. Let’s assume oi ∈ Rm and ai ∈ Rn, then:

ti = concat(oi, ai), (4)

h0
i = Wti, (5)

where W ∈ Rd×(m+n) is a linear projection layer to project
concatenated observation and action modalities to d dimen-
sional embedding vector. The superscript 0 indicates the
embedding at 0-th layer, i.e., the input layer. When action is
unavailable, we use a mask token [M] ∈ Rn to replace ai,
and [M] is initialized as a random vector and learned end-
to-end with the whole model. The model takes the sequence
of embedding vectors H0 = {h0

1, h
0
2, ..., h

0
t} as input.

The transformer architecture contains L layers, each con-
sisting of a multi-head self-attention module and an MLP
module. Assume the output of the layer l is Hl, then the

humanoid-next-token-prediction.github.io
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Figure 3: A general framework for training with different data sources. Our data modeling allows us to train our
transformer with multiple modes of training. In the case of observation-action pairs being available, we train our transformer
to predict the next pair of observation-action. When there is no action data available, with MoCap and internet data, we
only train our transformer to predict the next observations by masking the actions with a mask token. These two models of
training allow our model to utilize both types of data, and this enables us to scale our training in terms of data.

layer l + 1 output is computed as follows:

H̃l = LayerNorm(Hl) (6)

H̃l = H̃l +MHSA(H̃l) (7)

Hl+1 = H̃l +MLP (H̃l) (8)

Here, the multi-head self-attention has causal masking,
where the token only attends to itself and the past tokens.
Once the tokens are processed through all the layers, we
project the embedding to predicted states and actions, by
learning a linear projection layer Ŵ ∈ R(m+n)×d:

t̂i+1 = ŴhL
i (9)

ôi+1 = (t̂i+1)0:m (10)

âi+1 = (t̂i+1)m:(m+n) (11)

Then we train the transformer with the objective in (3). In
the cases where the token is masked, we do not apply any
losses. We train our transformer with both types of data, as
shown in Figure 3. This allows us to use various sources of
data, thus enabling scaling in terms of data.

3.6. Model inference

At inference time, our transformer model will always have
access to observation-action pairs. In this setting, we apply
our transformer model autoregressively for each observation-
action pair token. By conditioning on past observations and
actions, we predict the next actions (or observation-action
pair) and execute the action. Then we take the observations
from the robot and discard the predicted observations. We
use the observed observation and predicted action as the
next set of tokens and concatenate them with past pairs to
predict the next observation-action pair.

4. Dataset
Our approach motivates building a dataset of trajectories for
training our model. Our dataset includes trajectories from
different sources: (i) neural network policies, (ii) model-
based controllers, (iii) human motion capture, and (iv) hu-
man videos from YouTube. An illustration of different data
sources is shown in Figure 4. We describe each in turn next.

4.1. Neural network trajectories

As the first source of training trajectories, we use a neu-
ral network policy trained with large-scale reinforcement
learning (33). Specifically, this policy was trained with
billions of samples from thousands of randomized environ-
ments in Isaac Gym (25). We run this policy in the Agility
Robotics’ simulator and collect 10k trajectories of 10s each
on flat ground, without domain randomization. Each trajec-
tory is conditioned on a velocity command sampled from a
clipped normal distribution as follows: linear velocity for-
ward [0.0, 1.0] m/s, linear velocity sideways [−0.5, 0.5] m/s,
and turning angular velocity [−0.5, 0.5] rad/s.

Since we have access to the data generation policies, we
are able to record complete observations as well as the
exact actions that the model predicted. We use this set as
our source of complete sensorimotor trajectories that have
complete observations as well as ground truth actions.

4.2. Model-based trajectories

As the second source of trajectories, we use the model-based
controller developed by Agility Robotics. It is the controller
that is deployed on the Digit humanoid robot and available
in the Agility Robotics’ simulator as well. We collect two
sets of 10k trajectories of walking on a flat ground of 10s
each. In both cases, we sample the velocity commands
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Figure 4: Training dataset. To train our model, we construct a dataset of trajectories coming from four different sources. (i)
neural network policy: provides trajectories with complete observations and actions. (ii) model-based controller: produces
trajectories without actions. (iii) motion capture of humans: does not contain actions and is approximately retargeted
onto the robot. (iv) internet videos of humans: noisy human poses are first reconstructed via 3D reconstruction and then
approximately retargeted onto the robot.

as follows: linear velocity forward [−1.0, 1.0] m/s, linear
velocity sideways [−1.0, 1.0] m/s, and turning angular ve-
locity [−1.0, 1.0] rad/s. We use the default model-based
configurations for one set and randomize the leg length, step
clearance, and bounciness of the floor for the other.

As this controller outputs joint torques, which are not con-
sistent with our joint position action space. We only record
the observations without the actions. This data serves as
a source of trajectories with reasonably good observations
from the same morphology but without the actions.

4.3. Human motion capture trajectories

As the next source of trajectories, we use the motion capture
(MoCap) recordings of humans from the KIT dataset (28)
distributed via the AMASS repository (24). This data was
recorded using optical marker-based tracking in a laboratory
setting. The dataset consists of ∼4k trajectories. We use a
subset of ∼1k standing, walking, and running trajectories.

In addition to not containing the ground truth actions, the
MoCap trajectories come with an additional challenge: dif-
ferent morphology. Namely, MoCap trajectories capture
human keypoint positions in 3D. In order to use these trajec-
tories for training a robot, we solve an inverse kinematics
problem to find the corresponding robot poses.

We formulate an inverse kinematics optimization problem:

min
q[t],q̇[t]

N∑
t=1

φtraj[t] + φreg[t] (12a)

s.t. q[t+ 1] = q[t] +
q̇[t+ 1] + q̇[t]

2
dt, (12b)

q ∈ Q, q̇ ∈ V (12c)

where q is the robot state in the generalized coordinates, and
N and dt are the optimization horizon and sampling time.

The optimization variables include q, q̇. For constraints,
(12b) is the Euler integration of posture q, (12c) constrains
the range of q and q̇ to their admissible sets Q and V . In the
cost function, φtraj tracks keypoint locations from human
trajectories, and φreg represents the regularization costs,
such as joint velocity minimization and smoothness.

4.4. Trajectories from YouTube videos

Internet videos of people doing various activities are poten-
tially a vat source of data for learning human locomotion.
However, the raw pixels have no information about the state
and actions of the human. To recover this, we first we run a
computer vision tracking algorithm PHALP (35) to extract
human trajectories in 3D. This provides an estimate of the
3D joints of the human body SMPL (23) parameters and
a noisy estimate of the human joints in the world coordi-
nates. We use the human body joint positions to retarget the
motion to the humanoid robot using the inverse kinematics
optimization described above. Once we retarget the motion
from the Internet videos to humanoid trajectories, we filter
the trajectories with the low optimization cost. Note that the
scale of this data comes with the cost of being noisy.

5. Experiments
We evaluate our approach on the challenging task of hu-
manoid locomotion. We perform outdoor experiments on
real hardware and systematic evaluations in simulation.

5.1. Experimental setup

Robot platform. Digit is a humanoid robot platform devel-
oped by Agility Robotics. It is a full-sized humanoid that
is 1.6m tall and weighs 45 kilograms. It has 30 degrees of
freedom of which 20 are actuated. Due to its high dimen-
sionality and four-bar linkage structure, it is challenging
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Figure 5: Comparison to state of the art, trajectory ad-
herence. The robot is commanded to walk starting from
the origin with a fixed heading command of 0.5 m/s and
varying yaw commands in [−0.4, 0.4] rad/s. We plot the
desired (dotted) and actual (solid) trajectories for our policy
and a reinforcement-learning trained policy (RL).

to optimize fast which makes it particularly interesting for
learning approaches that can learn efficiently from trajectory
collections like ours.

Model. Our model has a hidden size of 192 dimensions,
with 4 layers of self-attention layers and MLP layers. Each
self-attention has 4 heads. We use LayerNorm before each
attention layer and ReLU activation after the MLP layer.
We use a BatchNorm layer to process the input before the
transformer model. When predicting a token at time k, to
keep the context length at a reasonable size, we only keep
the past 16 steps in input. In Section 5.9, we show the model
is able to scale up to more parameters and longer context
length and achieve higher performance.

5.2. Real-world deployment

We begin by reporting the results of deploying our policy
in the real world. Specifically, we evaluate deploying our
robot at various locations in San Francisco over the course
of one week. Please see Figure 1 for examples and project
page for videos. We find that our policy is able to walk over
a variety of surfaces including walkways, concrete, asphalt,
tiled plazas, and dirt roads. Note that the deployment in a
large city environment, like San Francisco, is considerably
more challenging than in constrained environments. The city
environment is much more crowded, less patient, and not
forgiving. This makes the error tolerance low and requires a
policy that works consistently well.

5.3. Evaluation Metrics

We evaluate locomotion policies with two metrics: tracking
error and prediction error. Tracking error measures how
accurately the robot follows a specific locomotion command.
The prediction error is the next token prediction loss mea-
sured on a separate set of validation data. We introduce two

Figure 6: Tracking error comparisons. We measure the
tracking error of our policy against a state-of-the-art bench-
mark (left), as well as the improvement produced by com-
plementing action-labeled RL trajectories with action-free
trajectories (right).

metrics with details as follows and show that two metrics
can consistently predict locomotion performance.

Tracking error. In all experiments, the robot starts from rest
in a simulated environment and is issued a constant natural
walking command consisting of a desired heading veloc-
ity sampled in [0.35, 0.70] m/s, angular velocity sampled
in [−0.4, 0.4] rad/s, and zero lateral velocity. We compute
x∗(t), the ideal robot base position trajectory that fully sat-
isfies the velocity command v∗(t) at all time steps. To
measure the accuracy of command tracking, we define the
position tracking error as 1

T

∑T
t=0 ∥x(t)− x∗(t)∥. We use

the MuJoCo simulator (41) for evaluations, and all trajecto-
ries last for a duration of 10 seconds.

Prediction error. Since the model is trained with the next
token prediction, we test the prediction error on a set of vali-
dation data that is separated from training data and contains
state-action trajectories collected from the RL policy. This
is similar to the language modeling evaluation for large lan-
guage models (14). We test both state and action prediction
errors and add them together as the final error metric.

5.4. Comparison to the state of the art

Trajectory Adherence. We compare our policy to a
neuralfig:tracking network controller trained with rein-
forcement learning (RL) (33). Figure 5 presents a vi-
sual comparison of the trajectory adherence of our con-
troller against these state-of-the-art baselines. Starting
with a robot at the origin, we plot the actual trajec-
tory of the robot with eleven different yaw commands
selected from {0.00,±0.05,±0.10,±0.20,±0.30,±0.40}
rad/s. For each policy, we jointly plot the desired and actual
path traced by the robot base. Our model exhibits superior
tracking to the RL controller at all turning speeds, and has
near-perfect tracking for straight-line walking.

humanoid-next-token-prediction.github.io
humanoid-next-token-prediction.github.io
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Figure 7: Prediction error correlates with performance.
We plot the tracking error and prediction error for 14 models.
The prediction error linearly correlates with task tracking
error with r = 0.87, which means lower prediction loss
likely indicates more accurate command following.

Quantitative Evaluation. In Figure 6, left, we repeat the
above comparison to the RL controller (N = 245), with
the full range of heading and yaw velocities mentioned
in Section 5.3. We plot the mean position tracking error,
binned by the commanded angular yaw. While both models
have lower tracking errors at lower yaw, ours consistently
outperforms the baseline RL policy. This is an interesting
result, since our model was trained on next token prediction
on trajectories produced by this very policy.

5.5. Prediction error correlates with performance

We collect 14 models trained with different training recipes,
model architectures, data size and types, and test tracking
error and prediction error for each one of them. We plot
the tracking and prediction errors of all the models into
a single scatter plot, as shown in Figure 7. We can see
that tracking and prediction error are highly correlated with
Pearson coefficient r = 0.87, which means models with
lower prediction error on the validation set likely follow
different commands with higher accuracy. This suggests
that the prediction error is predictive task performance.

5.6. Gait quality

In humanoid locomotion, the smoothness in the robot’s gait
is contingent on the rhythmic functioning of its actuated
knee joints. One way to measure this is a phase portrait,
which is a parametric plot of a joint’s generalized position
and velocity over time. Patterns in the plot can reveal infor-
mation about the type of movement the joint is undergoing.
For example, a cyclic pattern may indicate repetitive motion,
while irregular patterns might suggest complex or varied
movements, such as stumbling. In Figure 8, we command
the robot to walk forward at 0.5 m/s, and plot the associated
phase portrait of its left knee joint. Notice that our policy re-

Figure 8: Gait quality. We command the robot with a head-
ing velocity of 0.5 m/s and plot the resulting phase portrait
of the left knee joint. Compared to the RL policy, our policy
features fewer irregularities and a smoother, cyclic gait.

tains the overall shape of the RL policy while having fewer
aberrations. This supports our qualitative assessment of the
more regularized behavior seen on our policy.

5.7. Generalization to unseen commands

We find that our policy also extrapolates new skills such as
walking backward, which was not included in the action-
labeled training data. As Figure 9 illustrates, by prompting
our controller with negative values for the heading com-
mand, we find that the robot naturally performs backward
walking at speeds up to 0.5 m/s without falling.

5.8. Training with action-free data

One of the benefits of our approach is that it can be applied
to trajectories from diverse sources, including missing in-
formation like actions in the case of human videos from
YouTube. In Figure 6, right, we compare the performance
of training only with complete trajectories to joint training
on both complete and incomplete trajectories. We observe
that including incomplete trajectories consistently leads to
better performance. This is a promising signal for scaling
our approach to a large collection of diverse trajectories.

Figure 9: Unseen commands. Our policy is able to follow
backward commands at test time, unseen during training.
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Figure 10: Scaling studies. We find that our approach scales with the number of trajectories in the training dataset (left),
context length (middle), and larger models (right).

5.9. Scaling studies

Training data. In Figure 10, left, we study the scaling
of our model’s performance by increasing the size of the
training dataset. We find that training on more trajectories
reduces position tracking error, which is a positive signal
for increased performance when training on larger datasets.

Context length. We study the effect of increasing the num-
ber of tokens used in the context window of the transformer
policy, varying it between 16, 32, and 48 steps in Figure
10 middle. Larger context windows produce better policies,
which suggests that our generative policy performs a form
of in-context adaptation that improves with scale.

Model size. We compare models with increasing number
of parameters (1M, 2M, 8M) by varying the embedding
dimension (144, 192, 384), number of attention heads (3, 4,
12), and number of transformer blocks (4, 4, 6) respectively.
Tracking error monotonically decreases with model size.

5.10. Ablation studies

Concatenated vs. separate tokens. For the input of trans-
former, we can either concatenate observation and action at
each step into a single token, or embed them into two sepa-
rate tokens. We compare these two choices in Table 1a. We
can see that concatenation has lower prediction error while
separating tokens has lower tracking error. Overall these two
perform comparably while using separate tokens doubles
the input length and introduces computation overhead.

Modality-aligned vs. non-aligned prediction. When we
use separate tokens for observation and actions as input, we
can either predict ôi+1 from oi and âi+1 from ai, which
aligns modality between prediction and input, or we can
predict ôi+1 from ai and âi+1 from oi+1, which does not
have alignment. From Table 1b, we can see that modality
alignment has clearly better performance than no alignment.
We suspect this is because, at t-th step during inference,

when predicting action of (t + 1)-th step, since there is
no alignment, we need to first predict ôi+1 and use this
prediction as input to predict âi+1. If the predicted ôi+1

is not accurate compared to real oi+1 (which is used to
predict âi+1 during training), there will be a discrepancy
between test and training data which will cause error in
action prediction.

Joint training vs. staged training. Given both complete
data with action and incomplete data without action, we can
either jointly train on both data as described in Section 3,
or we can first pre-train the model on all the data with state
prediction only, then fine-tune the model on complete data
with action prediction. We compare these two approaches
in Table 1c. We observe no significant difference between
these two, which indicates that pre-training on state pre-
diction then fine-tuning on action prediction also gives a
reasonable locomotion policy.

State-action prediction vs. action-only prediction. We
compare the performance of our policy when trained with
only predicting actions, versus when trained with predicting
both states and actions. The results in Table 1d show that
the state-action prediction improves model performance on
trajectory tracking. We hypothesize that the additional learn-
ing signal enables the model to learn richer representations
of the world that are beneficial for the locomotion task.

6. Discussion
We present a self-supervised approach for real-world hu-
manoid locomotion. Our model is trained on a collection
of sensorimotor trajectories, which come from prior neural
network policies, model-based controllers, human motion
capture, and YouTube videos of humans. We show that our
model enables a full-sized humanoid to walk in the real-
world zero-shot. These findings suggest a promising path
toward learning challenging real-world robot control tasks
by generative modeling of large collections of trajectories.
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Track Err. Pred. Err.

Concat 0.310 0.88
Separate 0.299 0.98

(a) Concatenated vs. separate tokens for states and action. Two
modeling designs have comparable performance while concatenat-
ing state and action gives shorter input length and faster inference.

Track Err. Pred. Err.

Align 0.299 0.98
Non-align 0.338 1.05

(b) Alignment vs. non-alignment of states or actions for next
token prediction. Prediction with aligned modality performs better
on bothe tracking error and next token prediction error.

Track Err. Pred. Err.

Joint training 0.310 0.88
Staged training 0.311 -

(c) Joint vs. staged training on data with and without actions.
Staged training which pre-trains on state prediction and finetunes
on action prediction has similar performance as joint training.

Track Err. Pred. Err.

State-action 0.305 0.97
Action-only 0.335 -

(d) State-action vs. action-only prediction. Predicting both
states and actions leads to lower tracking error than only predict-
ing action as in vanilla behavior cloning.

Table 1: Ablations on different design choices in modeling and training. For each ablation we compare the average
tracking error on a set of commands, as well as the next token prediction error on the test set. For a fair comparison, we do
not report next token prediction error for models that only predict actions.
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