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Recursively Feasible Probabilistic Safe Online Learning
with Control Barrier Functions
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Abstract— Learning-based control schemes have re-
cently shown great efficacy performing complex tasks for
a wide variety of applications. However, in order to de-
ploy them in real systems, it is of vital importance to
guarantee that the system will remain safe during online
training and execution. Among the currently most popular
methods to tackle this challenge, Control Barrier Func-
tions (CBFs) serve as mathematical tools that provide a
formal safety-preserving control synthesis procedure for
systems with known dynamics. In this paper, we first in-
troduce a model-uncertainty-aware reformulation of CBF-
based safety-critical controllers using Gaussian Process
(GP) regression to bridge the gap between an approxi-
mate mathematical model and the real system. Compared
to previous approaches, we study the feasibility of the
resulting robust safety-critical controller. This feasibility
analysis results in a set of richness conditions that the
available information about the system should satisfy to
guarantee that a safe control action can be found at all
times. We then use these conditions to devise an event-
triggered online data collection strategy that ensures the
recursive feasibility of the learned safety-critical controller.
Our proposed methodology endows the system with the
ability to reason at all times about whether the current
information at its disposal is enough to ensure safety or
if new measurements are required. This, in turn, allows us
to provide formal results of forward invariance of a safe set
with high probability, even in a priori unexplored regions.
Finally, we validate the proposed framework in numerical
simulations of an adaptive cruise control system and a
kinematic vehicle.

I. INTRODUCTION

A. Motivation

In many real-world control systems, such as aircrafts, indus-
trial robots, or autonomous vehicles, in order to prevent system
failure and catastrophic events, it is crucial to ensure that the
system always stays within a set of safe states. Mathematical
models of the system’s dynamics can often be useful to design
controllers that can enforce such safety constraints. However,
since designing accurate models for complex real systems is
not easy, imperfect models are typically used in practice, and
the guarantees of the designed controllers can be lost when
these model imperfections are not addressed appropriately.
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On the other hand, modern data-driven control techniques
have emerged as promising tools for solving complex control
tasks. Nevertheless, in the absence of interpretable model-
based knowledge, such methods usually fall short of the-
oretical guarantees. Moreover, data-driven approaches typi-
cally require collecting enough real-world data to accurately
characterize the system. This presents a dilemma for safety-
critical systems: in order to collect data, we need to deploy the
system but without having previously secured sufficient data
to confidently deploy the system in a safe manner, we cannot
dare to do so.

In this paper, we present an approach to address this
dilemma and guarantee the safety of systems with uncertain
dynamics. Our methodology lies at the intersection of model-
based and data-driven control techniques. An imperfect dy-
namics model is complemented by the information gathered
from data collected safely online from the real system, which
allows us to ensure safety without having a perfect model of
the system nor offline data.

To intuitively illustrate the working principle of our ap-
proach, consider an adaptive cruise control problem where
an ego vehicle must maintain a safe distance from the car
in front. The key idea behind our method is to make sure
that at all times the ego car has enough information about
its dynamics reacting to a safe control action (e.g., brak-
ing), derived from prior knowledge or data. If the braking
effect is well understood and safety is not compromised,
the ego vehicle is allowed to follow the driver’s commands.
However, if the braking uncertainty reaches a critical level,
our method commands the ego vehicle to brake, allowing it
to measure the braking effect and improve confidence. This
critical level constitutes the maximum tolerable uncertainty
before it becomes impossible to assure with high confidence
that the car will be safe after pressing the brake. This way,
if the front car gets closer, the effect of braking is always
sufficiently well characterized so that the ego vehicle is ready
to prevent a collision. Thus, our method fundamentally focuses
on determining if the combination of prior model knowledge
and collected data can maintain low uncertainty in a safe
control direction or if new information is needed instead.

B. Related Work

In the model-based control literature, various approaches
exist for the design of controllers satisfying safety constraints,
including Control Barrier Functions (CBFs, [1]), Hamilton-
Jacobi Reachability [2], and Model Predictive Control [3]
to name a few. In this article, we focus on the CBF-based
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implementations of safe controllers for nonlinear systems. The
main advantages of using CBFs for safety-critical control are
twofold. First, the zero-superlevel set of a CBF, which is
control invariant, explicitly verifies the state domain where
safety is guaranteed. Second, while guaranteeing set invariance
requires long horizon reasoning, CBFs condense this problem
into a simple single time-step condition that should be satisfied
at each time, similar to Lyapunov-based methods for stability.
This single time-step constraint on the control input derived
from a CBF guarantees that the system does not exit the
boundary of the zero-superlevel set and thus, remains safe.

Importantly, such safety constraints based on CBFs depend
on the dynamics of the system. This means that when the
dynamics are uncertain, the usage of an incorrect model in
the CBF-based controller might lead to violation of safety.
By applying the techniques of adaptive control, this issue
can be tackled with an online adaptation of the control law
to capture the effects of the uncertainty [4]–[7]. However,
these approaches usually assume the uncertainties have some
restrictive structure, which is hard to verify a priori. Robust
control approaches instead consider the worst-case effects
of model uncertainty [8], [9], or use the notion of input
(disturbance)-to-state safety [10]–[12]. Nonetheless, with these
methods, an inaccurate characterization of the disturbance
bounds used for the robust design can lead to the violation
of safety when the estimated bounds are too optimistic, or can
lead to impractical conservative behaviors when the bounds
are unnecessarily large.

These limitations allude to the core motivation of using
modern data-driven techniques to address the effects of model
mismatch: learn and adapt to the uncertainties with minimal
structural assumptions, and learn the correct magnitude of the
robustness bounds. Extensive recent research has in fact em-
pirically proved the validity of data-driven control methods for
this purpose. Many of these works use neural networks to learn
the mismatch terms [13]–[16]. Although these approaches are
demonstrated to be practical and effective, it is often difficult
to verify the accuracy of the neural network predictions.

Other works, like this work, use non-parametric regression
methods, most notably Gaussian Process (GP) regression, that
provide a probabilistic guarantee of the prediction quality
under mild assumptions. However, many of these works make
the important simplifying assumption that the uncertainty in
the system dynamics is not affected by actuation [17]–[23]. In
contrast, for many controlled systems, uncertain input effects,
or actuation uncertainty, is very common. For instance, un-
certainty in the inertia matrix of a mechanical system directly
induces uncertain input effects.

Recent work in [24]–[29] has sought to overcome this
limitation. However, most of these methods require access
to high-coverage data that completely characterize the dy-
namics of the system. Usually, collecting this data would
require exciting the system in many control directions, which
might compromise safety in real-world experiments. From
our perspective, guaranteeing safety for uncertain systems by
using only data that can be safely collected remains an open
problem.

C. Contributions

The method proposed in this paper consolidates our pre-
liminary results published in [25]. Our work uses Gaussian
Process regression to learn the effects of an uncertain dynamics
model on the CBF-based safety constraint. Then, a second-
order cone program (SOCP)-based controller is proposed that
gives a probabilistic safety guarantee when the optimization
problem is feasible.

The data quality of the GP model significantly impacts the
GP prediction accuracy and feasibility of the SOCP controller,
consequently affecting the probabilistic safety guarantee. In
[25], we established necessary and sufficient conditions for
the feasibility of the SOCP controller; however, only for a
given fixed GP model and dataset. Thus, our previous analysis
only provided a one-directional linkage between data quality
and safety, that is, a theoretical check of safety given the
dataset. If the SOCP controller navigates to state-space regions
with insufficient data, feasibility can be lost, leading to safety
violations. Frameworks in [28], [29] face similar issues.

The main component we introduce to our framework in this
article is an event-triggered online data collection mechanism
that ensures the recursive feasibility of the SOCP controller.
By achieving this, we fill in the missing linkage between data
quality and safety in the opposite direction: we now use the
safety check to inform the data collection. Thus, the two links
acting together—evaluating safety to judge whether and how to
improve the data, and using the data to make predictions with
the GP model and guarantee safety—constitute a systematic
online learning-based safety framework for uncertain systems.

Our event-triggered online data collection algorithm ensures
at all times the availability of a control input direction that
can render the system safe with high probability. If the
available prior knowledge from the model and past data is
sufficient to characterize such a backup direction, our proposed
method simply acts as a safety filter applied to a performance-
driven control law. However, whenever the uncertainty in the
safe control direction reaches a critical level, our algorithm
takes a safe exploration action that improves the knowledge
of the system’s response to such control inputs. Unlike the
strategy in [30], which aims to improve overall accuracy of
the GP prediction for a feedback linearization-based controller,
our event-triggered data collection focuses on exciting safe
control directions and reducing uncertainty specifically in such
directions.

Finally, we prove local Lipschitz continuity of the prob-
abilistic safety-critical controller and give formal arguments
about the existence and uniqueness of closed-loop executions
of the system under our proposed safe online learning algo-
rithm. In turn, this allows us to provide the main theoretical
result of this paper (Theorem 5), establishing safety in terms
of set invariance with high probability, even in regions where
there is no prior data and the model knowledge is limited.
To our knowledge, this is the first work in the area of CBFs
applied to systems with uncertain dynamics that collects data
online and provides recursive feasibility guarantees of the
CBF-based safe controller.
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D. Organization

The rest of the paper is organized as follows. In Section
II, we briefly revisit CBFs and define our problem statement.
Section III provides background from our prior work on
Gaussian Process regression for control-affine systems [24].
Section IV introduces our proposed probabilistic safety-critical
controller. In Section V, we present the necessary and suffi-
cient conditions for feasibility of the proposed controller. In
Section VI, we propose our probabilistic safe online learning
algorithm and provide the theoretical results that justify its
formulation. In Section VII, we validate our method on
numerical simulations of an adaptive cruise control system and
a kinematic vehicle, and discuss the results. Finally, Section
VIII provides concluding remarks.

II. PROBLEM STATEMENT

Throughout the paper we consider a control-affine nonlinear
system of the following form:

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊂ Rn is the state and u ∈ Rm is the control
input. Many important classes of real-world systems, such as
those with Lagrangian dynamics, can be represented in this
form. We assume that f : X → Rn and g : X → Rn×m

are locally Lipschitz continuous. We will call system (1) the
true plant. The problem addressed in this paper is how to
guarantee the safety of the true plant (1) when its dynamics
f and g are unknown, while trying to accomplish a desired
task. Our proposed method will tackle this problem using real-
time data and an approximate nominal model of the system’s
dynamics, with f̃ : X → Rn and g̃ : X → Rn×m,

ẋ = f̃(x) + g̃(x)u. (2)

We start by introducing some necessary background on
CBFs, which are model-based tools that serve to enforce safety
constraints for systems whose dynamics are known.

A. Safety with Perfectly Known Dynamics

Before introducing the definition of a CBF, we formalize
the notion of safety. In particular, we say that a control law
u : X → Rm guarantees the safety of system (1) with respect
to a safe set Xsafe ⊂ X , if the set Xsafe is forward invariant
under the control law u.

Definition 1 (Forward invariance of a set). A set Xsafe is
forward invariant under a control law u : X → Rm if, for
any x0 ∈ Xsafe, the closed-loop solution x(t) of system (1)
under u remains in Xsafe for all t ∈ [0, τmax).

Here, τmax is the maximum time of existence and unique-
ness of x(t), which is guaranteed to exist and be strictly greater
than zero if the control law u is locally Lipschitz continuous
in x [31].

Definition 2 (Control Barrier Function [1]). Let Xsafe = {x ∈
X : B(x) ≥ 0} be the zero-superlevel set of a continuously
differentiable function B : X → R. Then, B is a Control
Barrier Function (CBF) for system (1) if there exists an

extended class K∞ function γ such that for all x ∈ X the
following holds:

sup
u∈Rm

LfB(x) + LgB(x)u︸ ︷︷ ︸
=Ḃ(x,u)

+γ(B(x)) ≥ 0, (3)

where LfB(x) :=∇B(x) ·f(x) and LgB(x) :=∇B(x) ·g(x)
are the Lie derivatives of B with respect to f and g.

The following result states that the existence of a CBF
guarantees that the control system is safe.

Lemma 1. [1, Cor. 2] Let system (1) admit a CBF B : X →
R. Let Xsafe = {x ∈ X : B(x) ≥ 0} be its associated safe
set, with boundary ∂Xsafe = {x ∈ X : B(x) = 0}. If for
all x ∈ ∂Xsafe it holds that ∇B(x) ̸= 0, then any Lipschitz
continuous control law u : X → Rm satisfying

u(x) ∈ {u ∈ Rm : Ḃ(x, u) + γ (B(x)) ≥ 0} (4)

renders the set Xsafe forward invariant.

Given a safety-agnostic reference controller uref : X → Rm,
the condition in (4) can be used to formulate a minimally-
invasive safety-filter [1]:

CBF-QP:

u∗(x) = argmin
u∈Rm

∥u− uref(x)∥22 (5a)

s.t. LfB(x) + LgB(x)u+ γ(B(x)) ≥ 0, (5b)

which is a quadratic program (QP). This problem is solved
pointwise in time to obtain a safety-critical control law u∗ :
X → Rm that only deviates from the reference controller
uref when safety is compromised. However, note that this
optimization problem requires perfect knowledge of the dy-
namics of the system, since the Lie derivatives of B appear in
the constraint. Therefore, throughout this paper we will refer
to (5b) as the true CBF constraint, since it depends on the
dynamics of the true plant given by f and g. Note that this
constraint is affine in the control input.

In [32, Thm. 8], it is shown that if uref and γ are Lipschitz
continuous functions, B has a Lipschitz continuous gradient
and if it satisfies the relative degree one condition in X , i.e.,
LgB(x) ̸= 0 ∀x ∈ X ; then the CBF-QP of (5) yields a locally
Lipschitz control policy, therefore guaranteeing the forward
invariance of Xsafe by Lemma 1.

B. Safety under Model Uncertainty

In this paper, we consider the problem of guaranteeing that a
system with uncertain dynamics (1) remains safe with respect
to a set Xsafe while trying to accomplish a safety-agnostic task
(as defined by a reference control policy uref : X → Rm).
The dynamics of (1) are uncertain and only a nominal model
(2) is available. Moreover, we do not assume having access to
any dataset containing previous trajectories of the true plant.
Instead, the system must autonomously reason about what data
it needs to collect online in order to stay safe with a high
probability.
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Problem 1. For a given safe set Xsafe = {x ∈ X : B(x) ≥
0} and nominal dynamics model (2), design a data collection
strategy and a data-driven control law u : X → Rm that
together render the set Xsafe forward invariant for system (1)
with a high probability, i.e.,
P{ ∀x0 ∈ Xsafe, x(0) = x0 ⇒ x(t) ∈ Xsafe, ∀t ∈ [0, τmax) } ≥ 1− δ,

where δ ∈ (0, 1] is a user-defined risk tolerance.

Assumption 1. We assume we have access to a function B :
X → R that is a valid CBF for the true plant (1), with zero-
superlevel set Xsafe = {x ∈ X : B(x) ≥ 0}.

Designing good CBFs (in the sense of not overly conserva-
tive CBFs) for uncertain systems is however non-trivial, and
in fact is an active research topic [33]–[37]. Note that our
contribution is tangential to such line of research, since even
when a valid CBF is available, obtaining a control policy
that can guarantee safety of an uncertain system is still an
open problem. In fact, Assumption 1 is also present in the
prior works that most closely align with our research [14],
[16], [24], [26]–[28]. For our simulations, we use the nominal
model to design the CBF. This is known to be a reasonable
procedure for feedback linearizable systems whose relative
degree is known, due to the inherent robustness properties of
CBFs [10], [32].

In practice, Assumption 1 guarantees that there exists a
control policy that keeps the true plant (1) safe. However, since
the true dynamics of the system are unknown, without further
knowledge it is impossible to verify whether a control input
u satisfies the CBF constraint (5b).

Note that the CBF constraint (5b) for the true plant can be
expressed as

Lf̃B(x) + Lg̃B(x)u+∆B(x, u) + γ(B(x)) ≥ 0, (6)

where Lf̃B and Lg̃B are the Lie derivatives of B computed
using the nominal dynamics model (2), and the uncertain term
∆B is defined for each x ∈ X , u ∈ Rm as

∆B(x, u) := (LfB−Lf̃B)(x) + (LgB−Lg̃B)(x)u. (7)

In this paper, we will present a method to estimate the function
∆B using data from the true plant and Gaussian Process
(GP) regression. By doing so, it is possible to formulate
a probabilistic version of the optimization problem (5) that
takes into account the current best estimate of the term ∆B

and the estimation uncertainty. Note that learning ∆B is
advantageous rather than learning the full dynamics of the
system (as is typically done in the model-based reinforcement
learning literature) since ∆B is a scalar function. Indeed, this
function condenses all the safety-relevant model uncertainty
into a scalar. Moreover, following our previous work [24], in
order to retain the convexity of the CBF constraint we exploit
the control-affine structure of ∆B during learning. In the next
section, we briefly explain this learning procedure.

III. GAUSSIAN PROCESS REGRESSION

In this section, we present background knowledge from [24]
on the use of GP regression to obtain predictions of control-
affine functions with high probability error bounds.

A. Gaussian Processes

A Gaussian Process (GP) is a random process for which any
finite collection of samples have a joint Gaussian distribution.
A GP is fully characterized by its mean q : X → R and
covariance (or kernel) k : X ×X → R functions, where X is
the input domain of the process. In GP regression, an unknown
function h(·) is assumed to be a sample from a GP, and through
a set of N noisy measurements DN = {xj , h(xj) + ϵj}Nj=1, a
prediction of h(·) at an unseen query point x∗ can be derived
from the joint distribution of [h(x1), · · · , h(xN ), h(x∗)]

T con-
ditioned on the dataset DN . In this paper, ϵj ∼ N (0, σ2

n) is
white measurement noise, with σn > 0.

Setting the mean function of the prior GP q to zero, the
mean and variance of the prediction of h(x∗) given the dataset
DN are: µ(x∗|DN ) = zT (K + σ2

nI)
−1KT

∗ , (8)

σ2(x∗|DN ) = k (x∗, x∗)−K∗(K + σ2
nI)

−1KT
∗ , (9)

where K ∈ RN×N is the GP Kernel matrix, whose (i, j)th el-
ement is k(xi, xj), K∗ = [k(x∗, x1), · · · , k(x∗, xN )] ∈ RN ,
and z ∈ RN is the vector containing the noisy measurements
of h, zj := h(xj) + ϵj .

The choice of kernel k determines properties of the target
function h, like its smoothness and signal variance. Moreover,
the kernel can be used to express prior structural knowledge
of the the target function [38]. In our case, we want to exploit
the fact that our target function ∆B from (7) is control-affine.
For that, we use the Affine Dot Product compound kernel
presented in [24].

B. GP Regression for Control-Affine Functions

We first introduce some useful notation. We can rewrite (7)
as

∆B(x, u) = ΦB(x) ·
[

1
u

]
, (10)

where ΦB(x) :=
[
LfB(x)−Lf̃B(x) LgB(x)−Lg̃B(x)

]
.

We can then define a GP prediction model for ∆B , with
domain X̄ := X × Rm+1, where Rm+1 is the space of
y := [1, uT ]T .

Now, we are ready to use the compound kernel presented
in [24] to exploit the structure of (10):

Definition 3 (Affine Dot Product Compound Kernel [24]).
Define kc : X̄ × X̄ → R given by

kc

([
x
y

]
,

[
x′

y′

])
:= yTDiag([k1(x, x

′), · · · , km+1(x, x
′)])y′

(11)
as the Affine Dot Product (ADP) compound kernel of (m+1)
individual kernels k1, . . . , km+1 : X × X → R.

For a target function h : X̄ → R, given a dataset of noisy
measurements DN := {(xj , yj), h(xj , yj) + ϵj}Nj=1, we let
X ∈ Rn×N and Y ∈ R(m+1)×N be matrices whose columns
are the inputs xj and yj of the collected data, respectively.
Then, using the ADP compound kernel as the covariance
function for GP regression, Equations (8) and (9) take the
following form for the mean and variance of the GP prediction
at a query point (x∗, y∗):
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µ(x∗, y∗|DN ) = zT (Kc + σ2
nI)

−1KT
∗Y︸ ︷︷ ︸

=: m(x∗|DN )T

y∗, (12)

σ2(x∗, y∗|DN )=yT∗
(
K∗∗−K∗Y(Kc + σ2

nI)
−1KT

∗Y
)

︸ ︷︷ ︸
=: Σ(x∗|DN )

y∗, (13)

where Kc ∈ RN×N is the Gram matrix of
kc for the training data inputs (X,Y ), K∗∗ =
Diag ([k1(x∗, x∗), . . . , km+1(x∗, x∗)]) ∈ R(m+1)×(m+1),
and K∗Y ∈ R(m+1)×N is given by

K∗Y =

 K1∗
...

K(m+1)∗

◦Y, with Ki∗=[ki(x∗, x1), · · · , ki(x∗, xN )].

Here, ◦ denotes the element-wise product. Now, letting the
target function h(x, y) be ∆B(x, u) with y = [1, uT ]T , we
can clearly see that by using the ADP compound kernel the
prediction of ∆B(x∗, u∗) at a query point (x∗, u∗) has a mean
function (12) that is affine in the control input u∗ and a
variance (13) that is quadratic in u∗. This is crucial for the
construction of the convex optimization-based safety filter that
will be introduced in the next section. We will denote the mean
and variance of the prediction of ∆B at a query point (x∗, u∗)
as µB(x∗, u∗|DN ) and σ2

B(x∗, u∗|DN ), respectively.

C. Probability Bounds of the GP Prediction
We now revisit Theorem 2 of [24] (which is based on

[39, Thm. 6]) to give a probabilistic bound on the deviation
of the true value of ∆B from its mean prediction function
µB . In order to provide guarantees about the behavior of
an unknown function at any arbitrary point in its domain
that may not belong to the discrete set of available data
points, [39, Thm. 6] requires some assumptions. In particular,
the target function is required to belong to the Reproducing
Kernel Hilbert Space (RKHS, [40]) Hk(X̄ ) of the chosen
kernel, and have a bounded RKHS norm ∥·∥k. An RKHS,
denoted as Hk(X̄ ), is characterized by a specific positive
definite kernel k. The kernel k evaluates whether a member of
Hk(X̄ ) satisfies a specific property, namely a “reproducing”
property: the inner product between any member function
h ∈ Hk(X̄ ) and the kernel k(·, x̄) should reproduce h, i.e.,
⟨h(·), k(·, x̄)⟩k = h(x̄), ∀x̄ ∈ X̄ . Furthermore, the RKHS
norm ∥h∥k :=

√
⟨h, h⟩

k
is a measure of how “well-behaved”1

the function h ∈ Hk(X̄ ) is.

Lemma 2. [24, Thm. 2] Consider m+1 bounded kernels ki,
for i=1, . . . , (m+1). Assume that the ith element of ΦB is a
member of Hki

with bounded RKHS norm, for i=1, . . . , (m+
1). Moreover, assume that we have access to a dataset DN =
{(xj , uj), ∆B(xj , uj)+ϵj}Nj=1 of N noisy measurements, and
that ϵj is zero-mean and uniformly bounded by σn > 0. Let
β :=

(
2η2 + 300κN+1 ln

3((N + 1)/δ)
)0.5

, with η the bound
of ∥∆B∥kc

, κN+1 the maximum information gain after getting
N+1 data points, and δ ∈ (0, 1). Let µB and σ2

B be the mean
(12) and variance (13) of the GP regression for ∆B , using
the ADP compound kernel kc of k1, . . . , km+1, at a query
point (x∗, y∗ = [1, uT∗ ]

T ), where x∗ and y∗ are elements of

1∥h(x̄)− h(x̄′)∥2 ≤ ∥h∥k ∥k(x̄, ·)− k(x̄′, ·)∥k ∀x̄, x̄′ ∈ X̄

bounded sets X ⊂ Rn and Y ⊂ Rm+1, respectively. Then, the
following holds:

P
{ ∣∣∣∣µB(x∗, y∗|DN )−∆B(x∗, u∗)

∣∣∣∣ ≤ βσB(x∗, y∗|DN ),

∀N ≥ 1, ∀x∗ ∈ X , ∀y∗ = [1, uT∗ ]
T ∈ Y

}
≥ 1− δ. (14)

IV. PROBABILISTIC SAFETY FILTER

We now make use of the probability bound given by Lemma
2 to build an uncertainty-aware CBF chance constraint that can
be incorporated in a minimally invasive probabilistic safety
filter. Let us take the lower bound of (14) and note that
Ḃ(x, u) = ˜̇B(x, u) + ∆B(x, u). Then, as a result of Lemma
2, the following inequality holds with a compound probability
(for all x∈X , [1 uT ]T ∈ Y and N ≥ 1) of at least 1− δ:

Ḃ(x, u) ≥ ˜̇B(x, u) + µB(x, u|DN )− βσB(x, u|DN ), (15)

where ˜̇B(x, u) = Lf̃B(x) + Lg̃B(x)u is the CBF derivative
computed using the nominal dynamics model of (2).

Inequality (15) gives a worst-case high-probability bound
for the CBF derivative of the true plant (1). An important
observation is that the right-hand side of (15) can be evaluated
without having explicit knowledge of the dynamics of the
true plant. For each state and control input, the standard
deviation σB of the GP prediction determines the tightness
(and, therefore, the conservativeness) of the bound.

We use this lower bound of the CBF derivative to construct
a probabilistically robust CBF chance constraint that can be
evaluated without explicit knowledge of the dynamics of the
true plant, and we incorporate it in a chance-constrained
reformulation of the CBF-QP safety filter:

GP-CBF-SOCP:

u∗(x) = argmin
u∈Rm

∥u− uref(x)∥22 s.t. (16a)

˜̇B(x, u)+µB(x, u|DN )−βσB(x, u|DN )+γ(B(x)) ≥ 0. (16b)

This problem is solved at each timestep in real-time to
obtain a safety-filtered control law u∗ : X → Rm that only
deviates from the reference uref when safety is compromised
for the desired probability bound of 1− δ.

The linear and quadratic structures of the expressions for
the mean (12) and variance (13), respectively, of the GP
prediction of ∆B when using the ADP compound kernel lead
to this problem being a Second Order Cone Program (SOCP),
as shown in Theorem 1 below. Therefore, by exploiting the
control-affine structure of the system during the GP regression,
we obtain a convex optimization problem that can be solved
at high frequency rates when using modern solvers.

Theorem 1. For an unknown control-affine system (1) with
associated CBF B, let µB and σ2

B be the mean and variance
functions of the GP prediction of ∆B using the ADP com-
pound kernel from Definition 3. Then, the probabilistic safety
filter of (16) is convex. Specifically, it is a Second-Order Cone
Program (SOCP).
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Proof. In this proof, we rewrite the GP-CBF-SOCP in the
standard form for SOCPs. The resulting form will be useful
for the analysis in the following sections of the paper.

The proof follows the steps of our previous result [24, Thm.
3] replacing the Control Lyapunov Function chance constraint
with the probabilistic CBF constraint of (16b), and with the
different objective of minimizing the distance to the reference
controller uref.

The standard form for an SOCP consists of a linear ob-
jective function subject to one or more second-order cone
inequality constraints and/or linear equality constraints. We
first transform the quadratic objective function into a second-
order cone constraint and a linear objective. Let the objective
be J(u) := ∥u− uref(x)∥22. Note that for a particular state
x ∈ X , minimizing J over u gives the same result as
minimizing J̄(u) := ∥u− uref(x)∥2 over u. Now we can move
the objective function J̄ into a second-order cone constraint by
taking the epigraph form ∥u− uref(x)∥2 ≤ t and minimizing
the new linear objective function ¯̄J(t) := t.

Next, we prove that the CBF chance constraint (16b) is a
second-order cone constraint. Note that ˜̇B(x, u) = Lf̃B(x) +
Lg̃B(x)u is control-affine. Furthermore, using the structures
of (12) and (13), we can express

µB(x, u|DN ) = mB(x|DN )T [1 uT ]T, (17)

σ2
B(x, u|DN ) = [1 uT ]ΣB(x|DN )[1 uT ]T . (18)

Since k is a valid kernel and the measurement noise variance
is strictly positive (σ2

n > 0), ΣB(x|DN ) is positive definite for
any state x ∈ X and dataset DN . We can therefore write

σB(x, u|DN ) =

∥∥∥∥Σ1/2
B (x|DN )

[
1
u

]∥∥∥∥
2

, (19)

where Σ
1/2
B (·) ∈ R(m+1)×(m+1) is the matrix square root of

ΣB(·).
We now define the following quantities, where numerical

subscripts denote elements of vectors or matrices:

L̂fB(x|DN ) := Lf̃B(x) +mB(x|DN )[1] ∈ R, (20)

L̂gB(x|DN ) := Lg̃B(x) +mB(x|DN )T[2:(m+1)] ∈ R1×m,

(21)

Σ
1/2
LfB

(x|DN ) := Σ
1/2
B (x|DN )[1:(m+1)],[1] ∈ Rm+1, (22)

Σ
1/2
LgB

(x|DN ) := Σ
1/2
B (x|DN )[1:(m+1)],[2:(m+1)] ∈ R(m+1)×m.

(23)

Note that L̂fB(x|DN ) and L̂gB(x|DN ) are the mean pre-
dictions of the true plant’s LfB(x) and LgB(x), respec-
tively, at a point x ∈ X . Furthermore, Σ

1/2
LfB

(x|DN ) and

Σ
1/2
LgB

(x|DN ) correspond to the components of the uncertainty

matrix Σ
1/2
B (x|DN ) appearing in expression (19) depending on

whether they multiply the control input or not.
After introducing these quantities, we can now express (16b)

in the standard form for second-order cone constraints:

β
∥∥∥Σ1/2

LgB
(x|DN )u+Σ

1/2
LfB

(x|DN )
∥∥∥
2
≤ L̂gB(x|DN )u

+
(
L̂fB(x|DN ) + γ(B(x))

)
.

The GP-CBF-SOCP can therefore be rewritten in the standard
form for SOCPs as:

GP-CBF-SOCP (Standard Form):

u∗(x) = argmin
(u,t)∈Rm+1

t s.t. (24a)

∥u− uref(x)∥2 ≤ t, (24b)

β
∥∥∥Σ1/2

LgB
(x|DN )u+Σ

1/2
LfB

(x|DN )
∥∥∥
2
≤ L̂gB(x|DN )u

+ L̂fB(x|DN ) + γ(B(x)).
(24c)

V. ANALYSIS OF POINTWISE FEASIBILITY

The GP-CBF-SOCP, if feasible, is guaranteed to provide a
control input that satisfies the true CBF constraint (5b) with
high probability. However, since the GP-CBF-SOCP of (16)
needs to be robust to the prediction uncertainty (through the
term involving σB), and the CBF chance constraint is not
relaxed, the problem will be infeasible when the uncertainty
(σB) is dominant in the CBF chance constraint (16b).

Remark 1. Note that unlike QPs, SOCPs with even only a
single hard constraint can be infeasible. Indeed, the GP-CBF-
SOCP becomes infeasible when the prediction uncertainty
is significant enough to obstruct the discovery of a suitable
control input ensuring the system’s safety, as follows from
(16b). This is in contrast to the uncertainty-free case, where
the CBF-QP (5) is guaranteed to always be feasible by the
definition of CBF. It is therefore essential to study under which
conditions the GP-CBF-SOCP becomes infeasible, as safety
could be compromised in those cases. The initial results of the
feasibility analysis were presented in the conference version
of this work [25].

A. Necessary Condition for Pointwise Feasibility

The first feasibility result we present is a necessary condi-
tion for pointwise feasibility of the GP-CBF-SOCP.

Lemma 3 (Necessary condition for pointwise feasibility of
the GP-CBF-SOCP). If for a given dataset DN , the GP-CBF-
SOCP (16) is feasible at a point x ∈ X , then it must hold
that[
L̂fB(x|DN ) + γ(B(x))

L̂gB(x|DN )T

]T

ΣB(x|DN )
−1

[
L̂fB(x|DN ) + γ(B(x))

L̂gB(x|DN )T

]
≥ β

2
.

(25)

Proof. See Appendix C.

To provide insight into this condition, for a given data
set DN and at a particular point x ∈ X , note that
the left-hand side of (25) encodes a trade-off between
the uncertainty matrix ΣB(x|DN ) and the mean predic-
tion of the terms of the CBF constraint (as in the vector
[L̂fB(x|DN ) + γ(B(x)), L̂gB(x|DN )]). In fact, the left-
hand side of (25) can be expressed as a sum of products,
including the control-independent components (the mean pre-
diction L̂fB(x|DN ) + γ(B(x)) and the upper left block
of ΣB(x|DN )), and the control-dependent components (the
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mean prediction L̂gB(x|DN ) and the lower right block of
ΣB(x|DN )).

The term L̂gB(x|DN ) reflects the mean prediction of how
a control input u can cause a change in the value of the CBF
B(x). Speaking informally, the dynamics of the CBF B(x) are
controllable at a particular point x when LgB(x) is a non-zero
vector, and L̂gB(x|DN ) is our mean prediction of LgB(x).
In this case, the control-dependent components of (25) reveal
that the necessary condition for pointwise feasibility is more
easily satisfied if the value of L̂gB(x|DN ) is dominant over
the lower-right block of ΣB(x|DN ) (which represents the
growth of the prediction uncertainty with respect to u). In fact,
this tradeoff between L̂gB(x|DN ) and the lower-right block
of ΣB(x|DN ) constitutes by itself a sufficient condition for
pointwise feasibility, as will be explained next.

Connecting the previous discussion with the term Σ
1/2
LgB

from (23), we note that the lower-right block of the uncertainty
matrix ΣB(x|DN ), can be expressed as

ΣLgB(x|DN ) := ΣB(x|DN )[2:(m+1)],[2:(m+1)] =

Σ
1/2
LgB

(x|DN )T Σ
1/2
LgB

(x|DN ) ∈ Rm×m. (26)

B. Sufficient Condition for Pointwise Feasibility
We now state the sufficient condition for pointwise feasi-

bility of the GP-CBF-SOCP, which will be the foundation for
the algorithm we present in the next section. This sufficient
condition originates from the following matrix, which we call
the feasibility tradeoff matrix:

F(x|DN ) := β2ΣLgB(x|DN )− L̂gB(x|DN )T L̂gB(x|DN ).
(27)

The matrix F(x|DN ) encodes the tradeoff between uncer-
tainty and safety that was introduced at the end of the last sec-
tion. In fact, the first term of the subtraction, β2ΣLgB(x|DN ),
is a positive definite matrix that informs about the uncer-
tainty growth in each control direction; and the second term,
L̂gB(x|DN )T L̂gB(x|DN ), is a rank-one positive semidefinite
matrix capturing the mean prediction of the true plant’s safest
control direction LgB(x).

Note that the result of subtracting a rank-one positive
semidefinite matrix from a positive definite matrix can have
at most one negative eigenvalue. Our sufficient condition for
pointwise feasibility states that if the rank-one subtraction term
is strong enough to flip the sign of one of the eigenvalues of
the uncertainty matrix, then there exists one feasible control
input direction (defined by the corresponding eigenvector).
Intuitively, along this control input direction, the controllability
of the CBF is dominant over the growth of the prediction
uncertainty. The following Lemma, which formally presents
the sufficient condition, also provides an expression for such
control input direction, that we call usafe(x), in closed from.

Lemma 4 (Sufficient condition for pointwise feasibility of
the GP-CBF-SOCP). Given a dataset DN , for a point x ∈ X
let λ†(x|DN ) be the minimum eigenvalue of the feasibility
tradeoff matrix F(x|DN ) defined in (27), and e†(x|DN ) be its
associated unit eigenvector. If λ†(x|DN ) < 0, the GP-CBF-
SOCP (16) is feasible at x, and there exists a constant αmin >

0 such that for any α > αmin,

usafe(x) = α sgn
(
L̂gB(x|DN )e†(x|DN )

)
e†(x|DN ) (28)

is a feasible solution of (16) at x.

Proof. See Appendix D.

With this condition, a single scalar value, λ†, being negative
guarantees the feasibility of the GP-CBF-SOCP. This can be
easily checked online before solving the optimization problem.
Furthermore, for a particular state x ∈ X , the value of
λ†(x|DN ) can be clearly associated with a notion of richness
of the dataset DN for safety purposes—if it is negative, then
there exists at least one control input direction which keeps
the system safe with high probability. This condition serves as
the foundation for the safe online learning methodology that
we present in Section VI.

C. Necessary and Sufficient Condition for Pointwise
Feasibility

Lastly, we state the necessary and sufficient condition for
pointwise feasibility of the GP-CBF-SOCP. This condition
combines and generalizes Lemmas 3 and 4.

Theorem 2 (Necessary and sufficient condition for pointwise
feasibility of the GP-CBF-SOCP). Given a dataset DN , for a
point x ∈ X let λ†(x|DN ) be the minimum eigenvalue of the
feasibility tradeoff matrix F(x|DN ) defined in (27). Then, the
GP-CBF-SOCP (16) is feasible at x if and only if condition
(25) is satisfied and one of the following cases holds:
1: λ†(x|DN ) < 0;
2: λ†(x|DN ) > 0, and
L̂fB(x|DN ) + γ(B(x))−

L̂gB(x|DN )F(x|DN )−1[β2Σ
1/2
LgB

(x|DN )TΣ
1/2
LfB

(x|DN )−

L̂gB(x|DN )T
(
L̂fB(x|DN ) + γ(B(x))

)]
≥0; (29)

3: λ†(x|DN ) = 0, and
L̂fB(x|DN ) + γ(B(x))−

L̂gB(x|DN )ΣLgB(x|DN )−1Σ
1/2
LgB

(x|DN )TΣ
1/2
LfB

(x|DN ) > 0.

(30)

Case 1 matches the sufficient condition of Lemma 4, and
it corresponds to the feasible set being hyperbolic. Cases
2) and 3) correspond to elliptic and parabolic feasible sets,
respectively.

Proof. See Appendix E.

Under our hypotheses, Theorem 2 provides tight conditions
that the available data DN should satisfy in order to obtain
probabilistic safety guarantees for systems with actuation
uncertainty.

VI. PROBABILISTIC SAFE ONLINE LEARNING

A. Proposed Safe Online Learning Strategy
In this section, we present a safe online learning algorithm

that guarantees safety of the true plant (1) with high probabil-
ity. Our algorithm uses the nominal dynamics model of (2) and
the online stream of data collected by the system as its state
trajectory evolves with time, constructing a dataset DN online.
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The design goal of our safe learning strategy is to ensure
the recursive feasibility of the GP-CBF-SOCP. This will be
accomplished by guaranteeing that the sufficient condition for
pointwise feasibility of Lemma 4 always holds. By doing so,
we ensure that there always exists a backup control direction
usafe (28) that can guarantee safety with a high probability.

Remark 2. Note that Lemma 4 is only a sufficient condition
for feasibility of the SOCP (16), and that the problem could
be feasible at x ∈ X even when the condition λ†(x|DN ) <
0 of Lemma 4 does not hold. In fact, the necessary and
sufficient feasibility condition is given in Theorem 2. However,
if λ†(x|DN ) < 0 does not hold, it means that there does not
exist any control input direction at the current state that can
serve as a backup safety direction, and the problem (16) is
only feasible at x in this case if the CBF condition can be
guaranteed with u → 0. We believe that this situation is not
desirable since the system might later on move towards states
where the true CBF constraint cannot be satisfied unless a
control input is applied, in which case the problem would
become infeasible.

Note that the matrix ΣLgB(x|DN ) appearing in Lemma
4 characterizes the growth of the uncertainty σ2

B in each
control direction. If in the neighborhood of a state x ∈ X ,
all of the data points (xj , uj) in the dataset DN have control
inputs uj coming from a performance-driven control law like
uref, then the uncertainty growth in the unknown safe control
direction LgB(x) can be potentially high, for instance if it is
significantly different from the performance control direction,
because of the resulting structure of ΣLgB(x|DN ). In this
case, the condition λ†(x|DN ) < 0 of Lemma 4 may not be
satisfied and infeasibility would occur if the probabilistic CBF
constraint of (16b) cannot be met when u→ 0 (see Remark 2).
This situation could happen in our case if the system is directly
controlled by the GP-CBF-SOCP (16) in regions where the
CBF constraint is not active, since in that case the collected
data points would have control inputs along the direction of
the reference control policy uref. The problem is that later
on, if the system approaches the safe set boundary and the
CBF constraint becomes active (meaning that a safety control
action is needed), λ†(x|DN ) < 0 may not hold and the SOCP
controller may become infeasible, as it would not be able to
find any control input direction along which the controllability
of the CBF is dominant over the growth of the uncertainty.
This would therefore compromise the recursive feasibility of
the SOCP. As will be explained in the following, the crux of
our safe learning algorithm is to make sure we never end up in
this situation. We accomplish this by applying control inputs
(and adding those points to the dataset) in the safety backup
direction in a precautious event-triggered fashion before the
uncertainty growth in that direction becomes dominant.

Algorithm 1 shows a concrete implementation of our safe
online learning framework. We propose using the GP-CBF-
SOCP of (16) as the control law for system (1) whenever
the value of λ† lies under a threshold −ε < 0, which is
a negative constant close to 0. However, if the value of λ†
reaches −ε, we propose taking a control input along usafe and
adding the resulting measurement to the GP dataset, with the

Algorithm 1: Safe Online Learning
1 Initialize t = 0, x(0) = x0. Get N(0), DN(0).
2 while t < Tmax do
3 x← x(t)
4 λ† ← getLambdaDagger

(
x,DN(t)

)
5 if λ† < −ε then
6 u← u∗(x) from the SOCP (16)
7 else
8 u← usafe(x) from (28)
9 end

10 if (λ† ≥ −ε) or (t mod τ = 0) then
11 Measure zB = ∆B(x, u) + ϵN(t)
12 DN(t) ← DN(t) ∪ {(x, u), zB}
13 N(t)← N(t) + 1
14 end
15 end

goal of reducing the uncertainty along the direction of usafe
and consequently decreasing the value of λ† to below −ε
for the following time steps. Nonetheless, since apart from
guaranteeing safety we also want the reference controller uref
to accomplish its objective without being too conservative, in
addition to the event-triggered updates when λ† reaches −ε we
propose collecting time-triggered measurements to update the
dataset, with triggering period τ . Thus, Algorithm 1 constructs
a time-varying dataset DN(t) and implicitly defines a closed-
loop control law.

Remark 3. Using Algorithm 1, the number of data points N
grows with time. Since each data point is added individually,
rank-one updates to the kernel matrix inverse can be computed
in O(N2). However, if N becomes large-enough to compro-
mise real-time computation, a smart-forgetting strategy such
as the one of [41] could be applied. Note that there exist a
wide variety of methods in the Sparse GP literature whose
objective is to speed up the vanilla GP inference [42]. These
methods can be considered complementary to our approach.

B. Theoretical Analysis
In this section, we provide theoretical results about the

effectiveness of Algorithm 1 in guaranteeing safety of the
unknown system (1) with respect to the safe set Xsafe. We
start by showing that with Algorithm 1 we can keep λ† < 0
for the full trajectory under some assumptions.

Assumption 2. We assume that we have an initial dataset
DN(0) (which can be an empty set) such that at the initial state
x0 ∈ X and initial time t = 0, we have λ†(x0|DN(0)) < 0.

Assumption 3. We assume that the CBF B satisfies the
relative degree one condition in X , i.e., LgB(x) ̸= 0 ∀x ∈ X .
Furthermore, we assume that for any x0 ∈ X , for the trajectory
x(t) generated by running Algorithm 1, with DN(t) being the
dataset at time t, we have L̂gB(x(t)|DN(t)) ̸= 0 ∀t.

Assumption 4. Running Algorithm 1 from any x0 ∈
X , let {tκ}κ∈N be the sequence of times at which
λ†(x(t)|DN(t)) ≥ −ε. We assume that for every κ we
have L̂gB

(
x(tκ)|DN(tκ)+1

)
e†
(
x(tκ)|DN(tκ)

)
̸= 0, where

DN(tκ)+1 is the resulting dataset after the event-triggered
update.
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Assumption 2 requires that at the initial state we have a
backup safety direction usafe available. This can be achieved
through a good nominal model (2) or an initial small set of
points DN(0) in the neighborhood of x0. In the first part of
Assumption 3, we require a relative degree 1 of the CBF B.
This was already required to guarantee Lipschitz continuity
of the solutions of the original CBF-QP (5), as explained in
Section II. The second part of Assumption 3 is needed to not
lose the relative degree of the mean predicition of the CBF
condition, and Assumption 4 makes sure that during an event-
triggered update of the dataset, the new mean controllability
direction of the CBF does not completely cancel the previous
safe direction. Both of these assumptions are in accordance
with the high probability statement of Lemma 2.

Lemma 5. Under Assumptions 2, 3 and 4, for all x0 ∈ X , let
x(t) be the trajectory generated by running Algorithm 1 for
system (1). Let DN(t) be the time-varying dataset generated
during the execution of Algorithm 1. If the trajectory x(t)
exists and is unique during some time interval t ∈ [0, τmax),
then it holds that λ†

(
x(t)|DN(t)

)
< 0 for all t ∈ [0, τmax).

Proof. See Appendix F.

Lemma 4 previously demonstrated that λ†(x|DN ) < 0 is a
sufficient condition for pointwise feasibility of the GP-CBF-
SOCP at a point x ∈ X using a dataset DN . Now, Lemma
5 ensures that λ†(x(t)|DN(t)) < 0 always holds along each
trajectory x(t) and dataset DN(t) obtained by running the safe
learning algorithm. Therefore, we have established recursive
feasibility of the GP-CBF-SOCP when using the proposed safe
learning strategy, as formalized in the following statement.

Theorem 3 (Recursive feasibility of the GP-CBF-SOCP).
Under Assumptions 2, 3 and 4, for all x0 ∈ X let x(t) be
the trajectory generated by running Algorithm 1 for system
(1). Let DN(t) be the time-varying dataset generated during
the execution of Algorithm 1. If the trajectory x(t) exists and
is unique during some time interval t ∈ [0, τmax), then the
probabilistic safety constraint (16b) is feasible at all times
t ∈ [0, τmax) for the trajectory x(t) and dataset DN(t).

Proof. This is a direct consequence of Lemmas 4 and 5.

As a next step, we wish to remove the existence and
uniqueness assumption of Theorem 3. We do this by proving
that the trajectory x(t) generated by running Algorithm 1 in
fact does locally exist and is unique. Note that the policy
that Algorithm 1 defines is a switched control law, since new
data points are added at discrete time instances. We start
by showing that for a fixed dataset DN , the solution of the
GP-CBF-SOCP is locally Lipschitz continuous under some
assumptions:

Assumption 5. We assume that the Lie derivatives of B com-
puted using the nominal model Lf̃B(x), Lg̃B(x), as well as
the function γ(B(x)), the reference policy uref(x) and the GP
prediction functions for any fixed dataset µB(x, u), σB(x, u)
are twice continuously differentiable in x, ∀x ∈ X .

Note that the GP prediction functions are twice continuously
differentiable in x when the components k1, . . . , km+1 of

the ADP compound kernel (11) use the squared exponential
kernel or other common kernels that are twice continuously
differentiable.

Lemma 6 (Lipschitz continuity of solutions of the GP-CBF–
SOCP). Under Assumption 5, for a point x ∈ X and dataset
DN such that λ†(x|DN ) < 0 holds, the solution of the GP-
CBF-SOCP (16) is locally Lipschitz continuous around x.

Proof. See Appendix G.

Remark 4. To the best of our knowledge, Lemma 6 is the
first result concerning Lipschitz continuity of SOCP-based
controllers using CBFs or, equivalently, Control Lyapunov
Functions (CLFs) for a general control input dimension.
Very recently, several SOCP-based frameworks have been
developed for robust data-driven safety-critical control using
CBFs and CLFs [26]–[28], [43], [44], and verifying the local
Lipschitz continuity of the SOCP solution serves to guarantee
local existence and uniqueness of trajectories of the closed-
loop dynamics.

Even though, from Lemma 6, for a fixed dataset the solution
of the GP-CBF-SOCP is Lipschitz continuous, the control law
defined by Algorithm 1 can potentially be discontinuous due
to the dataset updates. This fact makes the closed-loop system
potentially non-Lipschitz when using Algorithm 1.

Using Lemmas 5 and 6, Theorem 4 below establishes local
existence and uniqueness of the solution of the closed-loop
system under the switched control law defined by Algorithm
1 (even when the closed-loop system is non-Lipschitz).

Theorem 4 (Local existence and uniqueness of executions of
the safe learning algorithm). Under Assumptions 2, 3, 4 and
5, there exists a τmax > 0 such that for any x0 ∈ X a unique
solution x(t) of (1) under the control law defined by Algorithm
1 exists for all t ∈ [0, τmax).

Proof. See Appendix H.

Previously, Theorem 3 gave conditions under which the
probabilistic constraint (16b) is recursively feasible when
using the control law defined by Algorithm 1. This means
that, with high probability, the true CBF constraint (5b) can be
satisfied at every timestep, as follows from Lemma 2. This fact
can now be combined with the local existence and uniqueness
result of Theorem 4 to establish forward-invariance of a safe-
set Xsafe with high probability, as was originally formulated in
Problem 1.

Theorem 5 (Main result: forward invariance with high prob-
ability). Under Assumptions 1, 2, 3, 4 and 5, the control law
defined by Algorithm 1 applied to the true plant (1) renders
the set Xsafe = {x ∈ X : B(x) ≥ 0} forward invariant with a
probability of at least 1− δ.

Proof. Let the control law defined by Algorithm 1 be denoted
as ū(x). For all x0 ∈ X , the solution x(t) of (1) under ū(x)
satisfies λ†

(
x(t)|DN(t)

)
< 0, ∀t ∈ [0, τmax) with τmax > 0

from Theorem 4 and Lemma 5. Here, DN(t) is the time-
varying dataset generated by Algorithm 1. Moreover, from
Lemma 4 and Theorem 3, this means that the GP-CBF-SOCP
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Fig. 1. Color map of λ† in the state-space of the adaptive cruise control
system x = [v, z]T when running Algorithm 1 with no prior data. The
region in which λ† < 0 is expanded online as Algorithm 1 collects new
measurements. Top: snapshot when λ† hits the threshold −ε, Algorithm
1 collects a measurement along usafe which expands the region where
λ† < 0 (in blue). Bottom: result at the end of the trajectory.

is feasible ∀t ∈ [0, τmax). Furthermore, note that ū is the
solution of (16), except at times when λ†

(
x(t)|DN(t)

)
≥ −ε

in which case it takes the value of usafe(x(t)). However, since
even at those times λ†

(
x(t)|DN(t)

)
< 0, usafe(x(t)) is also

a feasible solution of (16). Therefore, under ū, the constraint
(16b) is satisfied for all t ∈ [0, τmax). This fact, together with
the probabilistic bound on the true plant CBF derivative Ḃ
(15) that arises from Lemma 2, leads to:

P
{
Ḃ
(
x(t), ū(x(t))

)
+ γ

(
B(x(t))

)
≥ 0,

∀x0 ∈ X , ∀t ∈ [0, τmax)
}
≥ 1− δ. (31)

Noting that the trajectory x(t) is a continuous function of time
that exists and is unique for all t ∈ [0, τmax) (from Theorem
4), we can now use Assumption 1 and the bound of (31) to
obtain

P{ ∀x0 ∈ Xsafe, x(0) = x0 ⇒
x(t) ∈ Xsafe, ∀t ∈ [0, τmax) } ≥ 1− δ. (32)

This is precisely the expression that appears in Problem 1,
and it means that the trajectories x(t) will not leave the set
Xsafe = {x ∈ X : B(x) ≥ 0} for all x0 ∈ Xsafe with a
probability of at least 1− δ, completing the proof.

Remark 5. Theorem 5 establishes the forward invariance of
Xsafe with a probability of at least 1 − δ. This is possible
because of the fact that Lemma 2 is not a pointwise result
on the deviation of the GP prediction at a particular point,
but instead a probability bound on the combination of all of
the possible deviations (for all N , x and u). The note [45]
provides an insightful discussion of this topic.

Remark 6. Note that the proposed framework can be easily
extended to the problem of safe stabilization by adding a
relaxed probabilistic CLF constraint to the SOCP (16), as
done in [25]. The entire theoretical analysis about feasibility
and safety would directly follow as long as Assumption 5 is
adapted to include the CLF-related terms.

VII. SIMULATION RESULTS

In this section, we test our framework on the following two
examples in numerical simulation. The first example of an

Fig. 2. Simulation results of an adaptive cruise control system under
model uncertainty, when controlled using different strategies: Algorithm
1 with no prior data (green); Algorithm 1 with a prior dataset (yellow); the
GP-CBF-SOCP with no prior data using time-triggered updates online
(orange); the CBF-QP using the uncertain dynamics (pink); and the
oracle true-plant-based CBF-QP (black). Even when no prior data is
available, Algorithm 1 keeps the system safe (B > 0) by collecting
measurements in the safety direction (negative u) when λ† approaches
0. This results in the ego car checking the brakes to reduce the
uncertainty (negative spikes in the top plot). Using either the GP-CBF-
SOCP with just time-triggered data collection, or the nominal model-
based CBF-QP, the system becomes unsafe, as shown in the B plot.

adaptive cruise control system highlights how the feasibility of
the controller improves from the data collected online through
Algorithm 1. The second example of a kinematic vehicle
system demonstrates the applicability of our framework to
multi-input systems.

A. Adaptive Cruise Control
We apply our proposed framework to a numerical model of

an adaptive cruise control system

ẋ = f(x) + g(x)u, f(x)=

[
−Fr(v)/m
v0 − v

]
, g(x)=

[
0

1/m

]
, (33)

where x= [v, z]T ∈ R2 is the system state, with v being the
ego car’s velocity and z the distance between the ego car and
the car in front of it; u ∈ R is the ego car’s wheel force; v0
is the constant velocity of the front car (14 m/s); m is the
mass of the ego car; and Fr(v)=f0+f1v+f2v

2 is the rolling
resistance force on the ego car. We introduce uncertainty in
the mass and the rolling resistance.
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A CLF is designed for stabilizing to a desired speed of
vd = 24 m/s, and a CBF enforces a safe distance of z ≥ 1.8v
with respect to the front vehicle. We specifically use V (x) =
(v− vd)2 and B(x)=z−1.8v. Following Remark 6, the CLF-
based stability constraint is added as a soft constraint to the
SOCP controller, replacing the reference control input uref.
Therefore, the CBF acts as a hard safety constraint that filters a
control policy based on the CLF whose objective is to stabilize
the car to the desired speed vd.

Figure 1 shows a state-space color map of the value of
λ† at two different stages of the trajectory generated running
Algorithm 1 for the adaptive cruise control system with
no prior data starting from x0 = [20, 100]T . The top plot
represents an intermediate state, in which the system is still
trying to reach the desired speed of 24 m/s since the safety
constraint (16b) is not active yet (the car in front is still
far). Even though Algorithm 1 is collecting measurements in
a time-triggered fashion using the SOCP (16) controller, the
state gets close to the boundary of λ† = 0 frequently since the
performance-driven control input obtained from the SOCP (16)
when the safety constraint is not active is very different from
usafe. One such case is visualized in the top figure. However,
Algorithm 1 detects that λ† is getting close to zero and an
event-triggered measurement in the direction of usafe is taken,
which expands the region where λ† < 0. The bottom plot
shows the color map of λ† at the end of the process, with the
final dataset. The safety constraint was active for a portion of
the trajectory (when the ego vehicle approached the front one
and reduced its speed), and the system stayed safe by virtue
of using Algorithm 1 to keep a direction usafe available.

Figure 2 shows that while a nominal CBF-QP (in pink) fails
to keep the system safe under model uncertainty, Algorithm 1
with no prior data (in green) always manages to keep B > 0
and λ† < 0 by collecting measurements along usafe (negative
spikes in the control input u in the top plot) when triggered by
the event λ† ≥ −ε. The same algorithm without these event-
triggered measurements, fails (orange), since when the safety
constraint (16b) becomes active, λ† soon gets positive and the
SOCP (16) becomes infeasible.

From another perspective, Figure 2 shows the importance
of having a good nominal model or a prior database that
properly characterizes a safe control direction. As shown in
yellow, with such prior information Algorithm 1 keeps the
system safe without having to take any measurements along
usafe. If no prior data is given, the control law is purely
learned online, which leads to λ† getting close to zero several
times in the trajectory, and steps in the direction of usafe
(negative u) are needed in order to prevent λ† from actually
reaching zero. This clearly damages the desired performance,
as the car would be braking from time to time. Nevertheless,
this is required in order to be certain about how the system
reacts to pressing the brake. Therefore, the proposed event-
triggered design allows Algorithm 1 to automatically reason
about whether the available information is enough to preserve
safety or the collection of a new data point along usafe is
required instead. Note that our algorithm is also useful for
cases in which a large dataset is available a priori since
safety is secured even when the system is brought to out-
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Fig. 3. Illustration of the zero-level set of the CBF for the kinematic
vehicle example. Dm is the safety distance, which is computed by
adding the minimum distance for the vehicle to steer with a maximal yaw
rate without colliding with the obstacle dsteer and a velocity-dependent
distance margin τ(v − v).

of-distribution regions by collecting new measurements.

B. Kinematic Vehicle

Next, in order to gauge our framework’s applicability to sys-
tems with higher state dimensions and multiple control inputs,
we apply our method to a four-dimensional kinematic vehicle
system. The state vector is denoted as x=[px, py, θ, v]

T ∈ R4

which consists of the vehicle’s position (px, py), heading angle
θ, and longitudinal velocity v; the control input is denoted
as u = [w, a]T ∈ R2 which includes the vehicle’s yaw rate
w ∈ [−w̄, w̄] and the longitudinal acceleration a ∈ [−ā, ā].
We use the values ā = 1 and w̄ = 2. The dynamics of the
system are modeled as

f(x)=

 kvv cos θ
kvv sin θ

0
−µv + seh(px, py)

 , g(x)=
 0 0

0 0
kw 0
0 ka

 , (34)

where kv , kw, ka are coefficients that capture the skid, the
term µv represents the drag, and seh(px, py) accounts for the
effect of the slope of the terrain. We assume that the nominal
model does not address such effects (i.e., kv = kw = ka =
1, µ = se = 0), while the uncertainty imposed on the true
system is induced by kv = 2, kw = 1.5, ka = 1, µ = 0.5,
se = 0.5, h(px, py) = (p2x + p2y)

0.1. Note that unstructured
uncertainties are imposed through terms like h(px, py), which
can be arbitrary functions, unlike the previous example that
only imposes parametric uncertainties.

As illustrated in Figures 3 and 4, the objective of the control
is to reach the target points alternating in time while not
colliding into a static circular obstacle of radius Ro = 3
centered at the origin. The reference controller uref has two
objectives: 1) it pursues a target point that alternates among a
given set of points ST = {(5, 5), (5,−5), (−5,−5), (−5, 5)}
every p = 2.5 seconds, and 2) it stabilizes the vehicle’s
velocity to vd while assuring that it is always bounded in [v, v̄].
We use the values v = 1, v̄ = 5, and vd = 3. All units are in
the metric system.
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Fig. 4. Snapshots that show the chronological evolution of a 4-
dimensional kinematic vehicle system under model uncertainty, when
controlled using different methods: Algorithm 1 with no prior data (top
row, blue); the CBF-QP based on the nominal model (bottom row, pink).
Starting at the initial state x0 (orange diamond), the vehicle pursues the
target (yellow star), while not colliding with the obstacle (grey circle).
The curved line indicates the trajectory of the vehicle’s position that
terminates with its position at the time when a snapshot is taken (green
or red circle). Note that the circle is colored red when the vehicle violates
the safety constraint (i.e., B(x) < 0). The blue square positioned
along the trajectory highlights the time stamps at which Algorithm 1
collects the data in event-triggered manner. Finally, the filled circle with a
dotted border represents the zero-sublevel set of CBF. To watch the full
video of the vehicle running under each control algorithm, please visit
https://youtu.be/HM VB mGgeA.

The CBF we use is

B(x)=

√(
px+

Dm

2
cos θ

)2

+

(
py+

Dm

2
sin θ

)2

−
(
Ro+

Dm

2

)
,

where

Dm = τ(v − v) + dsteer; dsteer = Ro

√
1 +

2v̄

Row̄
−Ro.

This CBF adds a safety margin Dm to the obstacle in the
direction of the vehicle’s heading angle, based on its minimum
velocity and maximum steering rate as shown in Figure 3.
We can analytically check that the zero-superlevel set of the
CBF is control invariant and that the CBF constraint is always
feasible under the input bounds.

Figures 4 and 5 illustrate that while the CBF-QP based on
the nominal model (in pink) escapes the zero-superlevel set of
the CBF, Algorithm 1 (in blue) without any prior data always
keeps the vehicle inside. This result not only demonstrates the
validity of the proposed strategy when applied to a multi-input
system but also alludes to the intuition behind our strategy:

Fig. 5. Simulation results of 4-dimensional kinematic vehicle system
under model uncertainty, when using two strategies introduced in Figure
4 with the identical color notation. The four plots illustrate the yaw
rate, the acceleration control inputs, the CBF values, and λ† in time
respectively. The dotted lines denote the input bounds, the zero-level of
the CBF B(x) = 0; and the threshold −ϵ in Algorithm 1. The red bars
in the third plot represent the time stamps when the nominal CBF-QP
violates safety. In contrast, Algorithm 1 ensures B(x) > 0 at all times.
The red cross points in the last plot indicate the time stamps when λ†
hits −ϵ and the safe exploration is executed according to Algorithm 1.

when λ† hits −ϵ, the vehicle steers away from the obstacle
and decelerates more in order to improve the certainty of its
safe control direction.

VIII. CONCLUSION

In this article, we have introduced a Control Barrier
Function-based approach for the safe control of uncertain
systems. Our results show that it is possible to guarantee
the invariance of a safe set for an unknown system with
high probability, by combining any available approximate
model knowledge and sufficient data collected from the real
system. We achieve this by first introducing a safety-critical
optimization-based controller that, by formulation, is proba-
bilistically robust to the prediction uncertainty of the unknown
system’s dynamics. However, this optimization problem only
produces a safe control action when the available information
about the system (prior model knowledge and data) is suf-
ficiently rich, as our feasibility analysis shows. As a means
to fulfill this feasibility requirement, we later presented a
formal method that, by collecting data online when required,
is able to guarantee the recursive feasibility of the controller
and therefore preserve the unknown system’s safety with high
probability. Algorithm 1 presents a simple embodiment of
this idea; however, we believe that future work should not
be restricted to this particular implementation, since the most
important contribution of this article is a principled reasoning
procedure for conducting safe exploration when using data-
driven control schemes.

Finally, we would like to emphasize that, as explained in
Section VII, a practical takeaway from the results of this paper
is that approximate model knowledge and prior data serve to

https://www.youtube.com/watch?v=HM_VB_mGgeA
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reduce the conservatism of safety-assuring data-driven control
approaches. We are convinced that designing control strategies
with useful safety guarantees for uncertain systems requires
combining model-based and data-driven methods, which until
very recently were seen as mutually exclusive by experts in
the field. With this research, we aim to present new evidence
of the potential benefits of combining the two approaches.
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APPENDIX
PROOFS AND INTERMEDIATE RESULTS

A. An Equivalent Formulation of the Chance Constraint
We first provide an additional reformulation of the CBF

chance constraint, equivalent to those of (16b) and (24c),
which will be useful for the proofs of the feasibility results.

Lemma 7. The CBF chance constraint (16b) is feasible at a
point x ∈ X if and only if there exists a control input u ∈ Rm

that satisfies both of the following conditions: [1 uT ]H(x|DN )

[
1
u

]
≤ 0, (35a)

L̂gB(x|DN )u+ L̂fB(x|DN ) + γ(B(x)) ≥ 0, (35b)

where
H(x|DN ) :=

[
H11 H1u

HT
1u Huu

]
, with (36)

H11 =β2ΣLfB(x|DN )− (L̂fB(x|DN ) + γ(B(x)))2,

H1u =β2Σ
1/2
LfB

(x|DN )TΣ
1/2
LgB

(x|DN )−(
L̂fB(x|DN ) + γ(B(x))

)
L̂gB(x|DN ),

Huu =β2ΣLgB(x|DN )− L̂gB(x|DN )T L̂gB(x|DN ).

In (36), we have used the following relations:

ΣLfB(x|DN ) = Σ
1/2
LfB

(x|DN )TΣ
1/2
LfB

(x|DN ) ∈ R,

ΣLgB(x|DN ) = Σ
1/2
LgB

(x|DN )TΣ
1/2
LgB

(x|DN ) ∈ Rm×m.

Proof. The first inequality (35a) is directly obtained by squar-
ing both sides of (24c). The second inequality (35b) is required
to check that the right-hand side of (24c) is non-negative, as
the left-hand side is trivially non-negative.

B. An Intermediate Result of a Necessary Condition for
Pointwise Feasibility
Lemma 8. For a given dataset DN , if the GP-CBF-SOCP
(16) is feasible at a point x ∈ Rn, then the symmetric matrix
H(x|DN ) defined in (36) cannot be positive definite.

Proof. Positive definiteness of H(x|DN ) would mean that
there does not exist any control input u ∈ Rm such that

[1 uT ]H(x|DN )

[
1
u

]
≤ 0. However, this is a contradiction

to Equation (35a) in Lemma 7. Therefore, H(x|DN ) cannot
be positive definite if the GP-CBF-SCOP is feasible.

C. Proof of Lemma 3

In this proof, we show that the condition (25) of Lemma 3
is equivalent to H(x|DN ) of (36) not being positive definite
for the same state x ∈ X and dataset DN . By Lemma 8, this
would mean that (25) is a necessary condition for pointwise
feasibility of the GP-CBF-SOCP, which is the desired result.

Let ψ(x|DN ) := [L̂fB(x|DN ) + γ(B(x)), L̂gB(x|DN )].
Then, condition (25) does not hold if and only if

1− ψ(x|DN )
1

β2
ΣB(x|DN )−1ψ(x|DN )T > 0. (37)

Note that (37) is equivalent to

M(x|DN )/(β2ΣB(x|DN )) > 0, (38)

where we use the operator / for the Schur complement,

and M(x|DN ) :=

[
1 ψ(x|DN )

ψ(x|DN )T β2ΣB(x|DN )

]
. From [46,

Thm. 1.12], since ΣB(x|DN ) is positive definite, (38) holds
if and only if M(x|DN ) is also positive definite. We now
apply again [46, Thm. 1.12], but this time to M(x|DN )/1.
Then, (38) is equivalent to the positive definiteness of
M(x|DN )/1 = β2ΣB(x|DN ) − ψ(x|DN )Tψ(x|DN ) =

β2[Σ
1/2
LfB

(x|DN ) Σ
1/2
LgB

(x|DN )]T [Σ
1/2
LfB

(x|DN ) Σ
1/2
LgB

(x|DN )]−
ψ(x|DN )Tψ(x|DN ) = H(x|DN ). Therefore, (25) does not
hold if and only if H(x|DN ) is positive definite, and the
inverse statement completes the proof.

D. Proof of Lemma 4

For a point x ∈ X and dataset DN , let e†(x|DN ) ∈ Rm×1

be the unit eigenvector of F(x|DN ) ∈ Rm×m associated with
the minimum eigenvalue λ†(x|DN ) ∈ R. Then, clearly,

λ†(x|DN )<0 ⇒ e†(x|DN )TF(x|DN )e†(x|DN )<0. (39)

Using (39) and taking into account the definition of F(x|DN )
in (27), the fact that ΣLgB(x|DN ) is positive definite indicates
that λ†(x|DN )<0 ⇒ L̂gB(x|DN )e†(x|DN ) ̸= 0.

Next, take a control input usafe(x) in the direction of
e†(x|DN ), as defined in (28). Plugging usafe(x) into (35a),
the left-hand side of (35a) becomes a polynomial in α, of the
form α2e†(x|DN )TF(x|DN )e†(x|DN ) + O(α), where O(α)
denotes terms with degree lower than or equal to 1. Note
that the value of the polynomial can be made negative by
choosing a large-enough constant α, since from (39) we
know that e†(x|DN )TF(x|DN )e†(x|DN ) < 0. Lastly, also
plugging usafe(x) into (35b) yields α|L̂gB(x|DN )e†(x|DN )|+
L̂fB(x|DN ) + γ(B(x)) ≥ 0, which again holds for a suffi-
ciently large α. Therefore, by Lemma 7 the GP-CBF-SOCP
(16) is feasible when λ†(x|DN ) < 0 and usafe(x) is a feasible
control input for large-enough α.

E. Proof of Theorem 2

Since Σ
1/2
LgB

(x|DN ) ≻ 0, the GP-CBF-SOCP (16) is fea-
sible if and only if an intersection between the hyperboloid
β
∥∥∥Σ1/2

LgB
(x|DN )u+Σ

1/2
LfB

(x|DN )
∥∥∥
2
= t and the hyperplane

L̂gB(x|DN )u+L̂fB(x|DN )+γ(B(x))= t exists. As ∥u∥2 −→
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∞, the hyperboloid asymptotically converges to the conical
surface β

∥∥∥Σ1/2
LgB

(x|DN )(u− u0)
∥∥∥
2
= t, where

u0 = −ΣLgB(x|DN )−1Σ
1/2
LgB

(x|DN )TΣ
1/2
LfB

(x|DN ) (40)

is the least-squares control input that minimizes∥∥∥Σ1/2
LgB

(x|DN )u+Σ
1/2
LfB

(x|DN )
∥∥∥
2
. We will refer to the

conical surface β
∥∥∥Σ1/2

LgB
(x|DN )(u−u0)

∥∥∥
2

= t as the
asymptote of the hyperboloid. We now analyze each of the
individual cases of Theorem 2.

Case 1 (Hyperbolic): This case matches the sufficient con-
dition of Lemma 4. Note that this condition implies that the
necessary condition (25) is trivially satisfied. In this case,
the slope of the hyperplane L̂gB(x|DN )u + L̂fB(x|DN ) +
γ(B(x)) = t is greater than the slope of the asymptote of the
hyperboloid for the direction of u corresponding to usafe.

Case 2 (Elliptic): Given that the smallest eigenvalue of
F(x|DN ) is positive, then F(x|DN ) ≻ 0. Note that F(x|DN )
is the lower-right block of the matrix H(x|DN ) in (36).
Therefore, F(x|DN ) ≻ 0 implies that the left-hand side of
Equation (35a) must be strictly convex, with a unique global
minimum at some u = u1 ∈ Rm. The first-order optimality
condition gives

u1 =−F(x|DN )−1h, (41)

with h := β2Σ
1/2
LgB

(x|DN )TΣ
1/2
LfB

(x|DN ) − L̂gB(x|DN )T(
L̂fB(x|DN ) + γ(B(x))

)
. Since at u1 the minimum is at-

tained, Equation (35a) holds if and only if

[1 uT1 ]H(x|DN )

[
1
u1

]
≤ 0. (42)

Plugging (36) and (41) into (42), we get

β2ΣLfB(x|DN )−
(
L̂fB(x|DN ) + γ(B(x))

)2−
hTF(x|DN )−1h = H(x|DN )/F(x|DN ) ≤ 0. (43)

Since for this case F(x|DN ) is positive definite, and H(x|DN )
cannot be positive definite by the necessary condition (25),
then from [46, Thm. 1.12] the inequality (43) must be satisfied.
Consequently, (35a) holds for u = u1. Now, plugging u1
into (35b) we have: L̂gB(x|DN )u1+ L̂fB(x|DN )+ γ(B(x))
equals the left-hand side of (29). Thus, from Lemma 7
the feasible set is non-empty if and only if (29) is non-
negative. On the other hand, (29) being negative would
mean that the hyperplane L̂gB(x|DN )u + L̂fB(x|DN ) +
γ(B(x)) = t intersects the hyperboloid’s negative sheet,
−β

∥∥∥Σ1/2
LgB

(x|DN )u+Σ
1/2
LfB

(x|DN )
∥∥∥
2
= t, forming an ellipse,

and therefore cannot intersect the positive sheet. Consequently,
when λ†(x|DN ) > 0, the GP-CBF-SOCP (16) is feasible if
and only if (29) holds.

Case 3 (Parabolic): For this case, λ†(x|DN ) = 0 means
that there exists some control input direction for which the
hyperplane and the asymptote have the same slope. Define

p := L̂fB(x|DN ) + γ(B(x))−
L̂gB(x|DN )ΣLgB(x|DN )−1Σ

1/2
LgB

(x|DN )TΣ
1/2
LfB

(x|DN ).

Then, condition (30) is satisfied if and only if p > 0. Con-
sider the control input u = u0 from (40) that minimizes

∥∥∥Σ1/2
LgB

(x|DN )u+Σ
1/2
LfB

(x|DN )
∥∥∥
2
. Then, we can rewrite p =

L̂fB(x|DN ) + γ(B(x)) + L̂gB(x|DN )u0.
Furthermore, let e†(x|DN ) denote the unit eigenvector of

F(x|DN ) associated with the eigenvalue λ†(x|DN ) = 0. Then,
clearly, e†(x|DN )TF(x|DN )e†(x|DN ) = 0. Based on the
definition of F(x|DN ) (27), since ΣLgB(x|DN ) ≻ 0 then
it must hold that L̂gB(x|DN )e†(x|DN ) ̸= 0. Next, using a
control input of the form

u = u0 + αsgn(L̂gB(x|DN )e†(x|DN ))e†(x|DN ), α > 0,
(44)

we can write the left-hand side of (35a), as

β2ΣLfB(x|DN )−(L̂fB(x|DN ) + γ(B(x)))2+2hTu0+

uT0 F(x|DN )u0 − 2αp|L̂gB(x|DN )e†(x|DN )|.
(45)

And plugging (44) into the left-hand side of (35b), we obtain

p+ α · |L̂gB(x|DN )e†|. (46)

If p is positive, then there exists a large-enough positive
constant α such that (45) is non-positive and (46) positive.
Therefore, from Lemma 7, the GP-CBF-SOCP (16) is feasible.

Note that the geometric interpretation of the condition
p > 0 is that the hyperplane L̂gB(x|DN )u+ L̂fB(x|DN ) +
γ(B(x)) = t, which has the same slope as the asymp-
tote of β

∥∥∥Σ1/2
LgB

(x|DN )u+Σ
1/2
LfB

(x|DN )
∥∥∥
2

= t along the
direction of e†(x|DN ), should be placed over the asymp-
tote in order for it to intersect the positive sheet of
β
∥∥∥Σ1/2

LgB
(x|DN )u+Σ

1/2
LfB

(x|DN )
∥∥∥
2
= t. Furthermore, at u =

u0, the asymptote β
∥∥∥Σ1/2

LgB
(x|DN )(u− u0)

∥∥∥
2
= t takes value

t = 0, and p is the value of the hyperplane L̂gB(x|DN )u+

L̂fB(x|DN ) + γ(B(x)) = t at u = u0. Therefore, when
p ≤ 0, the hyperplane is always under the positive sheet
of the hyperboloid, and never intersects it. Consequently, the
constraint (24c) is not feasible when p ≤ 0.

F. Proof of Lemma 5

Let us consider the trajectory generated by running Algo-
rithm 1 from any x0 ∈ X , which we assume locally exists
and is unique (as stated in the hypothesis of the Lemma). For
a fixed dataset DN , λ†

(
x|DN ) is a continuous function of the

state x by basic continuity arguments. For the event-triggered
updates of the dataset, if at time t we have λ†

(
x(t)|DN(t)) ≥

−ε, then Algorithm 1 applies a control input usafe(x(t))
from (28), collects the resulting measurement, and adds it to
DN(t), forming DN(t)+1. Note that from the posterior variance
expression (13), after adding the new data point we have
e†(x|DN(t))

TΣLgB(x|DN(t)+1)e†(x|DN(t)) → 0 for large
α in usafe. Therefore, using Assumptions 3 and 4, we can
choose α > 0 such that e†(x|DN(t))

T
(
β2ΣLgB(x|DN(t)+1)−

L̂gB(x|DN(t)+1)L̂gB(x|DN(t)+1)
T
)
e†(x|DN(t)) < 0, lead-

ing to λ†
(
x(t)|DN(t)+1) < 0. An equivalent argument proves

that with the time-triggered updates λ† stays negative after the
new data point is added.
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G. Proof of Lemma 6
We use [47, Thm. 6.4] which provides a sufficient condi-

tion for local Lipschitz continuity of solutions of parametric
optimization problems. Twice differentiability of the objective
and constraints with respect to both state and input trivially
follows from Assumption 5 and the structure of (16). For
a given state x ∈ X and dataset DN , λ†(x|DN ) < 0
means that there exists a control input usafe from (28) that
strictly satisfies constraint (16b), meaning that in this case
(16) satisfies Slater’s Condition (SC), since the problem is
convex. [47, Thm. 6.4] requires satisfaction of the Mangasarian
Fromovitz Constraint Qualification (MFCQ) and the Second
Order Condition (SOC2) of [47, Def. 6.1] at the solution of
(16). In [48, Prop. 5.39], it is shown that SC implies MFCQ.
Furthermore, since we have a strongly convex objective func-
tion in the decision variables (u, d), and the constraints are
convex in (u, d), the Lagrangian of (16) is strongly convex in
(u, d), implying SOC2 satisfaction.

H. Proof of Theorem 4
The proof follows from [49, Thm. III.1] using local Lips-

chitz continuity of the continuous dynamics (from Lemma 6
and the expression of usafe in (28)) instead of global Lipschitz
continuity, therefore establishing local existence and unique-
ness of executions of the closed-loop switched system.
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