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Abstract— In reinforcement learning for legged robot lo-
comotion, crafting effective reward strategies is crucial. Pre-
defined gait patterns and complex reward systems are widely
used to stabilize policy training. Drawing from the natural
locomotion behaviors of humans and animals, which adapt their
gaits to minimize energy consumption, we propose a simplified,
energy-centric reward strategy to foster the development of
energy-efficient locomotion across various speeds in quadruped
robots. By implementing an adaptive energy reward function
and adjusting the weights based on velocity, we demonstrate
that our approach enables ANYmal-C and Unitree Go1 robots
to autonomously select appropriate gaits—such as four-beat
walking at lower speeds and trotting at higher speeds—resulting
in improved energy efficiency and stable velocity tracking
compared to previous methods using complex reward designs
and prior gait knowledge. The effectiveness of our policy
is validated through simulations in the IsaacGym simulation
environment and on real robots, demonstrating its potential
to facilitate stable and adaptive locomotion. Videos and more
details are at https://sites.google.com/berkeley.
edu/efficient-locomotion

I. INTRODUCTION

Humans and animals exhibit various locomotion behaviors
at different speeds, optimizing for their energy efficiency.
For instance, humans typically walk at low speeds and run
at higher speeds, rarely opting for jumping. Prior research
demonstrated through optimal control on planar models the
correlation between speed and optimal gait choices concern-
ing the cost of transport (CoT). For quadrupeds, the optimal
gaits were four-beat walking1 at low speeds, trotting at
intermediate speeds, and trotting/galloping at high speeds [1].

Due to the rich information in the gaits, using a gait
as guidance for locomotion policies is popular among lots
of reinforcement learning (RL) based methods [2], [3].
However, crafting a versatile and robust locomotion policy
that can adapt to and transition between multiple speeds
while generalizing across different platforms poses substan-
tial challenges. One of the main challenges here is the reward
design. Gait reference can be used as extended state or
extra regularization terms in reward functions to provide
more supervision. Previous works [3], [4], [5] trained on
different quadruped robots within simulation environments
like IsaacGym [6], [7] and successfully transferred these
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1Four-beat walking, two-beat walking, trotting and galloping are typical

gaits for quadruped robots defined in [1] based on feet contact schedule.
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Fig. 1: Compared to legged-gym baseline [4], our single
policy (from one-time RL training) autonomously adopted
different energy-efficient gaits (four-beat walking and trot-
ting). It achieved lower energy consumption (low leg-swing)
at varying speeds (0.1m/s interval; mean and variance from
50 independent runs).

policies to physical hardware. However, they often neces-
sitate intricate reward designs and weight tuning. Apart
from gait information, reward terms like feet-air time and
contact force penalizing [4] were also used to encourage
specific behaviors and help stabilize the training. While
these additional reward components are aimed at inducing
or preventing specific behavioral traits, they inadvertently
align with the broader objective of reducing energy costs.
This convergence prompts a reconsideration of our reward
strategy: could a more straightforward, energy-centric reward
term be used to replace the specifically designed terms used
in prior policy training? Such a term would encapsulate the
core objective of reducing energy consumption and fostering
stable and efficient locomotion.

Building on the concept that energy-efficient gaits corre-
late with speed [1] and aligning with prior work emphasizing
that energy minimization at pre-selected speed results in
the emergence of specific gaits [8], this study investigates
a more streamlined reward formulation for energy-efficient
locomotion. By focusing on energy minimization without
intricately designed reward components, we aim to verify
if such a simplified approach can yield stable and effective
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velocity-tracking in quadruped robots across various speeds.
Instead of generating multiple velocity-specific energy opti-
mal policies [8], we focus on getting a single energy-optimal
policy across all target velocities via RL training.

In our research, we examine the influence of energy reg-
ularization weights on policy performance, identifying that
both excessively low and high weights can lead to unnatural
movements or immobility. Recognizing that energy terms
have different scales across velocities and require adaptive
velocity-conditioned weights, we first design a non-negative
energy reward function and then find an adaptive reward form
by interpolating the maximum energy weights at selected
speeds to facilitate effective velocity tracking.

Employing this adaptive reward structure within IsaacGym
enables the training of robust policies for the ANYmal-C [9]
and Unitree Go1 [10] quadruped robots. Our methodology,
illustrated in Figure 1, identifies appropriate gaits, such as
four-beat walking at lower speeds and trotting at higher
speeds, without predefined gait knowledge—outperforming
baseline approaches [4] in energy efficiency. Our policy
also significantly improves velocity tracking and energy
consumption performance compared to a policy trained with
fixed-weight energy rewards. The trained single policy is
deployed on a real Go1 robot to verify its stable moving
and transition locomotion skills in the real world.

The main contribution of this paper includes:
• Introduction of a streamlined reward formula integrat-

ing basic velocity-tracking and adaptive energy mini-
mization to foster stable, velocity-sensitive locomotion
policies.

• Demonstration that the derived policies autonomously
adopt different energy-efficient gaits at varying speeds
without preset gait knowledge.

• Evaluation of the velocity-tracking and energy effi-
ciency across reward structures and weight tunings for
ANYmal-C and Unitree Go1, culminating in the real-
world application of these policies on a Go1 robot,
affirming their efficacy in stable locomotion and gait
transition.

II. RELATED WORKS

A. Reinforcement Learning for Locomotion Skills

After deep RL demonstrated its capability to fit general
policies in an unsupervised manner, researchers actively
sought its potential to be deployed on legged locomotion.
Hwangbo et al. [11] achieved RL-generated walking policies
on a plane ground using a pre-trained actuator net to reduce
the sim-to-real gap. Further research also achieved training
the policy with adaptive actuator net [12] or motor control
parameters [13], [14]. In Hwangbo’s follow-up works, lo-
comotion on complicated terrains using a similar approach
was also accomplished [15], [16], [17]. With modern GPU-
accelerated simulators [6], [7], more time-efficient training
frameworks were proposed [4], [18]. Due to the intensive
reward engineering in these approaches, the model-free RL
tends to converge to a single gait, usually trotting gait, which

may not be the most efficient for all terrains and target
velocities [19].

Many efforts were made to overcome this limitation by
promoting the behavioral diversity of legged robots. Re-
searchers in [20] proposed a hierarchical framework that pre-
specifies a set of gait primitives and allows an RL model
to choose from them. In [21], [22], gait primitives were
parameterized using the contact schedule and RL policy was
trained to select these parameters. These works used model
predictive control (MPC) as the lower-level controller, which
demands preliminary knowledge of locomotion and contact
modeling [23]. In [3], behavioral-related arguments such as
body height, step frequency, and phase are directly added
to the RL model input for end-to-end training. Although
various two-beat gaits (where legs touch the ground in pairs)
were realized, they cannot generate four-beat gaits (where
legs touch the ground in orders) and require manual gait
specification in different scenarios. It is more desirable if
the quadruped robot can select the most suitable behavior
by itself. In [8], a pipeline was proposed to output differ-
ent gaits under different velocities via minimizing energy
consumption. However, this pipeline relies on training and
distillation of several velocity-specific RL policies.

B. Energy Studies on Locomotion

The energetic economy of legged robots has always been
an important concern for researchers. The cost of transport,
namely the amount of energy used per distance traveled,
was introduced in [24], [25], where the minimization of
CoT was connected to the choice of speeds [26] and step
lengths [27] in human locomotion behaviors. The optimal
velocity varies for different gaits, allowing animals to transit
between different gaits to move at various speeds.

Conceptual legged models of bipedal [28], [29], and
quadruped [30], [31], [1] robots are later designed by re-
searchers to search for energetically optimal motions on
various gaits. For quadruped robots, genetic algorithms were
used in [30] to study potential gaits at different speeds.
Our research is mainly inspired by [1], where optimal
control problems are formulated on realistic robot models
considering the effects of leg mass, plastic collisions, and
damping losses. This work uses an unbiased search on
energy-efficient locomotion patterns at various velocities and
demonstrates the energy vs. velocity curve for different gaits.
Inspired by the results, we believe there exists a policy
that can transit between gaits at different velocities with an
energy-optimization reward. Among previous works, [8] is
close to ours in utilizing relations between energy and gaits.
It generated multiple policies, with each policy velocity-
specific and energy-optimal. In contrast, our work focuses
on generating a single energy-optimal policy across various
speeds, and it aims to replace the complex-designed reward
terms in RL.
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Fig. 2: Top row: Gait plot generated from the ANYmal-C simulation where the legged robot is first commanded to move
at 0.5 m/s from 0 to 2 seconds and demonstrated four-beat walking (four legs touch the ground one by one in order, refer
to [1] for details), then at 1.0 m/s from 2 to 4 seconds and demonstrated a transition gait between walking and trotting,
finally at 2.0 m/s for 4 to 6 seconds and demonstrated trotting (legs touch the ground in pairs). Middle row: Snapshots
from the ANYmal-C simulation taken approximately at the vertical purple lines in the gait plot. Bottom row: Snapshots of
Go1 moving on a playground. Its feet contact state approximately corresponds to the vertical purple line in the gait plot.

III. LOCOMOTION REWARD DESIGN

A general form of energy regularized locomotion reward
takes the following form:

R = Rmotion +Renergy +Rothers (1)

where Rmotion encourages accurate velocity tracking,
Renergy discourages energy consumption and Rothers in-
cludes other necessary rewards to stabilize training. In pre-
vious work [8], motion rewards include penalty on linear
and angular velocity tracking errors; energy rewards include
penalty on motor power with a fixed weight; survival bonus
is also added. In experiments, we found the training process
unstable potentially due to the negative nature of tracking
and energy rewards. Besides, each energy reward weight
usually only works within a very narrow range of reference
speeds. It is hard to find a single energy reward weight
value that works for all reference velocities without knowing
more simulation settings and training details. As a result,
we proposed the following reward function to promote the
automatic generation of energy-efficient behavior of legged

robots under various reference velocities.

R =
1

Z(v̂x)

[
Rlin + αangRang + α(v̂x)Ren

]
(2)

where αang = 0.5, v̂x is the user-specified reference velocity,
α(v̂x) is the adaptive energy reward weight, Z(v̂x) is the
normalizing index for total reward, Rlin, Rang are velocity
tracking rewards, and Ren is the energy reward. The remain-
ing section elaborates on each component in (2).

1) Motion Rewards: Rlin and Rang respectively encour-
age the legged robot to track the linear reference velocities
in two directions v̂x, v̂y and angular reference velocities ω̂z .

Rlin = exp
(
− |vx − v̂x|2 + |vy − v̂y|2

σv

)
Rang = exp

(
− |ωz − ω̂z|2

σω

) (3)

v̂y and ω̂z are not user-specified commands, but randomly
sampled during training as explained in section IV. σv and
σω are scaling factors depending on the training veloc-
ity range. The structure of motion rewards, the coefficient
αang = 0.5 for angular velocity tracking, and the scaling
coefficients follow the default setting in legged-gym [4].



2) Energy Rewards: Ren rewards the system for consum-
ing less energy while moving.

Ren = exp
(
−

∑
i |τi||q̇i|
σen

)
(4)

The exponential form guarantees a positive reward. τ are
each joint’s actuated torques, and q̇ are joint velocities. We
multiply the absolute values of each entry of τ with each
entry of q̇ and sum them up in (4) to follow the fact that
a motor does not get charged back even when the applied
torque is opposite to the motion [32]. σen is an energy scaling
constant.

3) Adaptive Energy Weight: α(v̂x) is the weight of the
energy reward terms. Previous works take this value as a
constant [8], [32], but we argue that it should be adaptive
to the reference velocity v̂x to achieve suitable behaviors
directly from RL. To verify this, we first run RL under fixed
sampled v̂x using pre-selected σen and try various values
of α(v̂x). When α(v̂x) is too large, the robot tends to stay
unmoved to save energy, neglecting the velocity tracking
task. When α(v̂x) is too small, the robot tends to use a highly
inefficient and unnatural way to walk.

To find an adaptive weight, we first collect the largest
α(v̂x) when the velocity tracking error is smaller than a
pre-defined small threshold δ for a set of speeds v̂x. After
collecting velocity-weight sample pairs (v̂x,j , α(v̂x,j))Mj=1 for
a range of velocities, we see a clear trend (see Figure 3): with
velocity increasing, the maximum allowed α decreases. This
trend corresponds to the fact that the kinetic energy increases
quadratically with the velocity. While the motion rewards
are expected to converge close to zero, the energy reward
has variant optimal values across velocities. Therefore, we
can set a larger weight for lower-speed training but need to
decrease it as the velocity increases. When training velocity-
conditioned locomotion policies, we linearly interpolate be-
tween selected pairs to acquire the velocity-conditioned en-
ergy weight α(v̂x) for the current sampled velocity. We will
show in experiments that this is a simple but effective way of
training energy-effective policies across different velocities.

4) Normalization Index: Z(v̂x) is an adaptive normaliza-
tion index. Due to the adaptive α(v̂x), the reward scale under
different command velocities varies. This often leads to
instability in RL training. As such, for each velocity-weight
sample pair (v̂x,j , α(v̂x,j)), we also record the final achieved
reward Z(v̂x,j) and analogously use linear interpolation to
get the normalization index curve Z(v̂x) to stabilize training.

IV. LOCOMOTION SKILL TRAINING DETAILS

Section III focused on the reward design of the proposed
method, which constitutes the most essential part of RL
training. However, the energy reward is not a stand-alone
one that can be used directly for RL training, and we have
to use it together with the basic locomotion rewards. Across
quadruped locomotion baselines, the default training settings
and locomotion rewards slightly differ. This section explains
the basic RL training and simulation settings other than
energy regularization. These basic settings can also generate

a naive locomotion policy without energy regularization, but
these policies usually have low energy efficiency and might
have undeployable abnormal behavior. The two baselines we
use in this research are legged-gym [4] for ANYmal-C and
walk-these-ways [3] for Unitree Go1.

A. ANYmal-C Settings

We utilized the robot model and PPO training package
in [4]. The system outputs the position command of the
12 joints in the next time step. The system inputs include
the linear and angular velocities of the trunk, projected
gravity in the robot frame, the commanded x-y velocities,
the commanded yaw rate, each joint’s position and velocity,
as well as the action at previous time step. The commanded
y-velocity and yaw rate are fixed at zero here; only the
commanded x-velocity will be set. The training episode will
reset after 1000 time steps or if any part of the robot except
its feet touches the floor.

The policy was trained on a flat ground with the coefficient
of friction randomized between [0.0, 1.5]. We also disturbed
the mass of the robot with a uniform random value in
[−5.0, 5.0] kg. A uniformly distributed noise was added to
the observation. A random push with x-y velocity uniformly
sampled between [−1, 1] m/s lasting 15 seconds was exerted
on the robot. All these randomized domain parameters are
renewed every time the training episode resets, except ob-
servation noise is resampled after every time step.

In motion rewards (3), during fixed velocity training (to
get results in Figure 3) and when the v̂x is large, the policy
may fail to converge to a desirable tracking accuracy. Hence,
we use σv(v̂x) = |v̂x|2/3 to overcome this difficulty and σω

is fixed at 0.25. In energy rewards (4), the energy scaling
constant σen is fixed at 800. To obtain the energy weight
curve α(v̂x) and the normalization index Z(v̂x), we trained
fixed-velocity policies by setting v̂x at 0.5 to 2.0 m/s, with
0.1 common difference. For each fixed reference velocity, we
trained 11 policies using different α(v̂x) values ranging from
0.5 to 4.5. Figure 3 summarizes the corresponding α(v̂x) and
Z(v̂x) for each reference velocity. These dense parameter
pairs are exhibited to visualize the α-v̂x relation; in real
experiments, only a few pairs of parameters at representative
speeds are required.

B. Go1 Settings

We mainly inherited the training methods released by [3].
Similar to [4], the system also outputs the position command
of the 12 joints, but its input excludes the linear and angular
velocities of the trunk. In addition, the inputs of the previous
30 time steps are also given to the RL system. Compared to
ANYmal-C, we found that the energy reward Ren alone is
insufficient to regularize Go1’s behavior, which is likely due
to the lighter weight compared to its motor power. Thus,
following the settings in [3], we further add a fixed auxiliary
reward Raux to (2) as an amendment to the normalization
index Z(v̂x). This auxiliary reward is derived mainly from
safety concerns, such as penalizing limb-ground collision,
out-of-range joint position, and high frequency joint action.



Fig. 3: α(v̂x) and Z(v̂x) corresponding to each reference
velocities. These two values are defined in (2). For each
reference velocity, fixed-velocity trainings were conducted
across various α(v̂x), then we select the largest α(v̂x) whose
velocity tracking error is smaller than a threshold.

The details of Raux can be found on the project website.
The training episode will reset after 1000 time steps or if
the trunk touches the floor. Similar domain randomization in
section IV-A is applied here. Compared to [3], we did not
include any gait-related rewards.

We also discovered that curriculum technique is es-
sential even for fixed velocity training. Given a refer-
ence velocity v̂x, the sampling range of x-velocity starts
with [−min{v̂x, 1},min{v̂x, 1}] m/s. the sampling range
increases when the total reward achieves a certain threshold,
and the maximal sampling range is set at [−v̂x−0.1, v̂x+0.1]
m/s. The fixed velocity training is considered a success if the
x-velocity sampling range expanded to [−v̂x− 0.1, v̂x+0.1]
m/s in the end and the tracking error for speed v̂x is smaller
than a threshold δ.

In motion rewards (3), both σv(v̂x) and σω were fixed
at 0.25. In energy rewards (4), the energy scaling constant
σen is fixed at 300. We trained fixed-velocity policies by
setting v̂x from 0.5 to 2.5 m/s, with a 0.5 common difference.
For each reference velocity, we trained eight policies using
different α values ranging from 0.7 to 2.1, then fit the α(v̂x)
curve with the method in section III.

V. EXPERIMENTS

The experiments were designed to show the following
after the legged robot was trained using the adaptive energy-
regularized reward shown in Equation (2).

• With adaptive α(v̂x) and Z(v̂x), the legged robot au-
tomatically selects suitable behaviors to move with the
reference velocity. We also demonstrate that the trained
policy is deployable to a real quadruped robot.

• If α(v̂x) and Z(v̂x) are constants, the legged robot may
not be able to find an energy-efficient walking policy
for all target velocities.

• Our method can generate a more energy-efficient walk-
ing policy compared to established baselines.

A. One Policy with Different Gaits at Different Velocities

To demonstrate natural emergence of efficient locomotion
gaits, we evaluate the trained walking policy under different
reference velocities. Fig. 2 demonstrates a trial run where
the legged robot was commanded to move at v̂x = 0.5,
1.0 and then 2.0 m/s. Each commanded velocity lasts for
two seconds. We plot the gait recorded from the ANYmal-C
simulation and show the snapshots for simulated ANYmal-
C and real world Go1. We can see that our trained policy
exhibits four-beat walking at low speed (0.5 m/s) by moving
one leg each time in the order of right hind, right front, left
hind and left front. At medium speed (1.0 m/s), the policy
exhibits an intermediate gait between walking and trotting.
At this gait, the right hind and left front legs move at the
same time, while the right front and left hind legs have a
displacement in their motions. At high speed (1.0 m/s), the
trained policy exhibits a standard trotting gaits, where the
right hind and left front legs move together, and the right
front and left hind legs move together. This gait transition is
endorsed by previous works [1], [21] that four-beat walking
and trotting are respectively the most energy-efficient gaits
under low and high speeds.

A closer look at the snapshots in Figure (2) uncovers that
the swing ratio was also regularized. The legged robot only
lifts up its leg to a height necessary to reach the reference
velocity v̂x to avoid wasting energy. At low speed, it only
mildly lifts up its feet. As the reference velocity increases,
the robot also lifts its feet higher, but only to a necessary
height. Without considering energy-efficiency, the trained
policy usually tends to lift the feet redundantly high. This
will be argued in more detail in section V-C.

Finally, Figure 5 also showcases a successful hardware
deployment of our policy. Videos can be found in our project
website stated in the abstract.

B. Ablation Studies with Fixed Energy Rewards

In ANYmal-C simulation, when the reference velocity is
fixed at 1.0 and 2.0 m/s, we found that velocity tracking
error was reasonably small when α was set as 3.0 and 0.9.
Therefore, we run ablation experiments by fixing α at these
values and 0.0 to compare with varying α(v̂x).

Figure 4a shows the energy consumption for adaptive α,
α = 0.9 and α = 3.0. The policy with α = 0.0 is dropped
because it consumes multiple orders more energy. We ob-
serve that adaptive α reaches the lowest energy consumption.
Figure 4b shows the velocity tracking error. Only the α = 0.9
policy has comparable tracking accuracy with adaptive α, but
Figure 4a shows that α = 0.9 policy consumes considerable
more energy. These observations conclude the non-triviality
of finding a constant energy reward scale α and elaborates
the usefulness of α(v̂x) varying with reference velocity.

C. Comparison to Other Methods on Go1

We also compare our method with built-in MPC and
walk-these-ways on real world Go1 robot. All policies are
commanded to move at 0.5 m/s. Such low velocity requires
only mild movement of each leg for Go1. Figure 5 shows

https://sites.google.com/berkeley.edu/efficient-locomotion
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(a) Comparison of energy consumption (b) Comparison of velocity tracking error

Fig. 4: Ablation study in ANYmal-C simulation. Reference velocities are chosen from 0.5 to 2.0 m/s with 0.1 common
gap. Results of each velocity are obtained from 50 independent runs. The solid line indicates the average and the shadow
indicates the variance. Left: Energy consumption per unit moving distance under different reference velocities. We can see
that adaptive energy regularization generates the most energy-efficient policy compared to fixed energy regularization. The
α = 0 policy is neglected because it consumes an uncontrollable amount of energy. Right: Velocity tracking error under
different reference velocities. Among all fixed energy regularization policies, only α = 0.9 has a comparable tracking error.
However, the left figure shows that α = 0.9 policy is considerably less energy efficient.

MPC @ 0.5 m/s
High CoM High Swing

WTW @ 0.5 m/s
Low CoM High Swing

Ours @ 0.5 m/s
Low CoM Low Swing

Fig. 5: Three policies walking at 0.5 m/s. Built-in MPC and walk-these-ways (WTW) [3] swing the legs to a redundant
height, while our policy only makes necessary lifting of the leg. This demonstrates the energy-efficiency of our policy.

snapshots of each policy. It can be seen that both built-
in MPC and walk-these-ways over-swing the legs, which
squanders energy. Our policy swings the leg only to a
necessary height, which can be visually recognized as the
most energy-efficient.

VI. DISCUSSIONS

This paper focuses on developing energy-efficient locomo-
tion strategies for quadruped robots, employing a simple yet
effective reinforcement learning approach. However, there
are some inherent limitations which provide avenues for
future research.

1) Limitations: The core limitation of the presented ap-
proach lies in the requirement for pre-running experiments
to determine appropriate energy regularization weights. This
necessity stems from our method’s reliance on empirical
observations to calibrate the weights, which, while effective,
does not afford the flexibility in a fully adaptive reinforce-

ment learning system. Although the policy developed is
applicable across different speeds post-training, it cannot
be obtained with only one training for a new quadruped
platform. Moreover, we only tested its generalizability across
speeds. We did not verify the adaptive capability of energy
rewards in different environments, which would be crucial
for deploying these robots in real-world scenarios where they
might encounter multiple operational challenges.

2) Future extensions: Future research could address these
limitations to develop methodologies for automatically tun-
ing energy regularization weights within one single rein-
forcement learning training. This would enable the system
to dynamically adjust its strategy in response to multi-task
RL [33] or cross-embodiment settings [34], [35], [36].

Moreover, while this study concentrated on locomotion
tasks, the underlying principle of leveraging energy effi-
ciency to drive behavior selection holds broader potential.
Future work could explore applying this energy-centric



approach across different robotic tasks. For instance, ma-
nipulation and interaction tasks could also benefit from
strategies prioritizing energy efficiency, potentially finding
natural, efficient behaviors analogous to those observed in
biological systems [37], [38]. Such a framework would align
robotic systems more closely with sustainability principles
and environmental consciousness.

VII. CONCLUSIONS

This paper presented a novel approach to energy-efficient
locomotion in quadruped robots through the implementation
of a simplified, energy-centric reward strategy within a re-
inforcement learning framework. Our method demonstrated
that quadruped robots, specifically ANYmal-C and Unitree
Go1, could autonomously develop and transition between
various gaits across different velocities without relying on
predefined gait patterns or intricate reward designs. The
adaptive energy reward function, adjusted based on velocity,
enabled these robots to select the most energy-efficient
locomotion strategies naturally. Our policy showed energy-
efficient behaviors and gait transitions in both simulation
experiments (ANYmal-C) and hardware experiments (Go1).
We also demonstrated the usefulness of adaptive energy
regularization via ablation studies.
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