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Abstract— To navigate over discrete terrain with large dis-
placements in the stepping locations, bipedal robots have to be
able to perform agile and dynamic maneuvers such as jumping
or running while also satisfying strict constraints on foot
placement and ground contact forces. In this paper, we analyze
the problem of bipedal running over stochastically varying
discrete terrain with large changes in step lengths. Specifically,
our method is based on designing a library of running gaits
that are two-step-periodic. We illustrate the capabilities of the
proposed controller through numerical simulations of a five link
underactuated robot RABBIT, running over discrete terrain
with step lengths that vary between 0.6m and 1.2m. This is
about 1.5 times the robot’s leg lengths and twice the step length
that could have been achieved by walking.

I. INTRODUCTION

Legged robots have the promise of being able to serve
in applications such as in space and urban exploration, as
personal robots in homes and in search and rescue operations.
It is their inherent morphology and mechanical structure
that renders them as potentially superior candidates over
their wheeled counterparts. A key task in such applications
is the ability to locomote over discrete footholds such as
in unstructured environments like wooded paths or over
a flight of stairs in indoor environments. This, however,
introduces several challenges and constraints including (a)
Strict constraint on foot placement, (b) Friction constraints
and (c) Input constraints. Violation of any of these constraints
will render the system unstable.

A. Related Work

The problem of robotic legged bipedal walking over
discrete terrain has been studied in the past, with a wide
variety of techniques being used. Early methods for foot-
step planning, such as in [11], relied on simple models like
the 3D inverted pendulum and cart-table models to generate
walking patterns to walk over randomly generated stepping
stones. In [20], the authors present a method based on the
concept of capture points to control a bipedal robot to walk
over discrete steps. The controller regulates the center-of-
pressure on the stance foot so as to ‘guide’ the capture
point to the desired stepping location. More recently, in [23],
the authors present a centroidal momentum based controller
for a high-dimensional robot ATLAS, to walk over partial
footholds including line and point contact surfaces. In [4], a
mixed integer quadratically constrained quadratic program is
presented for footstep planning of a humanoid robot to walk
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Fig. 1: Illustration of the stepping stones problem. The goal
of the feedback control design is for the bipedal robot to
traverse over a set of discrete terrain with wide gaps. Such a
terrain can only be traversed by performing agile maneuvers
like running or jumping.

on uneven terrain with obstacles. In [17], the authors present
a method based on Control Barrier Functions (CBFs) to
design feedback controllers for high dimensional 3D robots
to walk over stochastically generated discrete steps with
changing step heights and step lengths. In [14], the authors
propose a method that combines a one-step-periodic gait
library approach with a CBF based feedback controller that
significantly improved the performance as in [18]. In [6], the
authors propose a bio-inspired controller based on Central
Pattern Generators (CPGs) to achieve step length and step
height modulations over a wide range for bipedal walking.

With regards to bipedal robotic running, while numerous
studies have been carried out, there have been limited studies
on agile locomotion, like running, of legged systems over
discrete terrain. One of the earliest works on running over
rough terrain was by Hodgins and Raibert [9]. The authors
presented three intuitive control designs for regulating the
step length for a bipedal robot that could run over rough
terrain including stairs with changing step heights. In [19],
the authors propose a reinforcement learning based approach
to control a physics-based legged character to navigate over
terrain with wide gaps, steps and obstacles. The authors are
able to translate their method to a wide variety of high-
dimensional characters including a 21-link planar dog and
a 7-link planar biped. In [5], the authors propose an intuitive
dead-beat control strategy based on a point-mass model
for running over 3D stepping stones. The authors perform
numerical simulations on a point-mass model with massless
legs for running over 3D stepping stones. In [7], the authors
present a neuromuscular controller for bipedal running.

In our most recent work [15], [16], we presented a method
to design a feedback controller for an underactuated legged
robot to walk over discrete terrain with stochastically varying
step heights and step lengths. The method relied on pre-



computing a library of a small number of walking gaits
(through an offline nonlinear program) that were two-step-
periodic and parametrized by the step lengths and step
heights in the first and second steps. The controller then
performed a bilinear interpolation between the different gaits
based on the current and desired step lengths/heights during
run-time. By switching among a set of two-step-periodic
gaits, the controller was able to achieve aperiodic walking,
with precise footstep placement over randomly generated
discrete terrain. The control method was successfully im-
plemented on an underactuated bipedal robot, ATRIAS, over
a wide range of complex terrain.

B. Problem Statement and Approach

In this paper, we study the problem of bipedal robotic
running over randomly varying discrete terrain with large
changes in step lengths (Figure 1). In particular, we develop a
model-based feedback controller for an underactuated legged
system that does not have knowledge of the entire terrain
ahead of time but only the position of the next stepping
location is known. By only using a one-step preview of
the upcoming stepping location, the method renders itself
capable of being combined with vision sensors (like cameras
and LiDAR) to estimate the stepping locations.

Motivated by the success of the ‘two-step-periodic’ gait
library approach, we extend this approach to the case of
bipedal running. A primary advantage of the proposed
method is that, unlike most other methods that rely on
simplifications of the system dynamics, it considers the
full nonlinear hybrid dynamics of the system, both, during
offline gait generation and during the control phase. Given
the current state-of-the-art in trajectory optimization for
nonlinear hybrid systems and computational power, another
advantage of our method is that it is easy to implement
on a physical system. A key reason for the success of the
two-step-periodic gait approach in [16] was it allowed for
smooth transitions between walking gaits at different step-
lengths/heights, thereby inherently preventing violations in
friction cone and unilateral ground reaction force constraints
and by using only a small number of gaits in the gait library.
The method, therefore, seems promising to use in richer
locomotion behaviors such as running and jumping.

The problem of robotic running over discrete footholds,
however, places some additional challenges which stems
from the loss of control authority of the angular momentum
during flight phases (i.e. when the robot is completely in the
air). Additional challenges also arise due to the increased
number of possible hybrid modes of the system. These are
potential reasons for why the applicability of the ’two-step-
periodic’ gait library approach might not be straightforward.
In particular, we show that by reasoning about the dynamics
and by the proper choice of output variables to be controlled,
the two-step-periodic gait library approach can be extended
to the case of running as well.

C. Contributions

The key contributions of this paper are as follows:

1) We extend the two-step-periodic gait library approach,
initially presented in [15], [16] to develop a con-
trol strategy for bipedal robotic running over discrete
footholds that follows strict constraints on the states
and control inputs of the system;

2) By doing so, we are able to expand the capabilities of
the robot to traverse over wider gaps in the discrete
footholds that was not possible with only walking;

3) We show that, by a proper selection of output variables
to be controlled, we can significantly reduce the error
in the foot placement locations while running.

D. Organization

The rest of the paper is organized as follows: In Section
II, we present the hybrid model for running, followed by the
trajectory optimization and control design method in Section
III. Finally, in Section IV, we present results from numerical
simulation of a five link underactuated bipedal robot.

II. DYNAMICAL MODEL FOR RUNNING

In this section, we present a brief overview of the dynam-
ical model of a planar five-link two legged robot for running
behaviors. These models will be used for generating optimal
trajectories as well as for control synthesis. The specific
robot under consideration is RABBIT. More details about
the dynamical model can be found in [2].

Figure 2 illustrates a schematic diagram of
the robot. The configuration variables, defined as
q :=

[
pxhip pzhip qT q1R q2R q1L q2L

]T
include

the world frame position of the hip
[
pxhip pzhip

]T
, world

frame orientation of the torso qT and the relative joint angles
of the thigh q1 and shin q2 links. The subscripts L and R refer
to the left and right links respectively. For future reference,
we define the actuated joints qa :=

[
q1R q2R q1L q2L

]
The equations of motion are derived using the method of
Lagrange and have the form during stance,

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JTF, (1)

where u ∈ R4 are the control inputs that actuates each of the
joints qa, F ∈ R2 are the ground reaction forces at the stance
foot and J := ∂pst

∂q ∈ R2×7 is the Jacobian of the stance foot
position pst. We note that during flight, since there are no
external contact forces acting on the robot, F ≡ 0.

Like walking, the dynamics for running motions is also
hybrid. Specifically, running comprises of alternating phases
of single-support Σs and flight Σf phases as illustrated in
Figure 3. The hybrid dynamics is written as

Σs :

{
ẋ = fs(x) + gs(x)u, (x, u) /∈ Ss→f

x+ = ∆s→f (x−) , (x, u) ∈ Ss→f

Σf :

{
ẋ = ff (x) + gf (x)u, x /∈ Sf→s

x+ = ∆f→s (x−) , x ∈ Sf→s

(2)



Fig. 2: Generalized coordinates of the bipedal robot RAB-
BIT.

Stance Flight

Fig. 3: Illustration of the domains in running.

Here Ss→f := {(x, u) | F z(x, u) = 0} is the switching
surface corresponding to the transition between stance and
flight domains and is defined as the set of states and control
inputs such that the vertical ground reaction force F z(x, u)
is zero (this corresponds to the case when the stance foot
lifts off from the ground). Similarly, we define the switching
surface Sf→s := {x | pzsw(x) = 0} corresponding to the
transition between flight to stance as the set of states such
that the vertical component of the position of the swing foot
is zero.

In addition, ∆s→f = I is the identity operator and ∆f→s

is obtained from rigid impact dynamics. The vector fields
f(x) and g(x) are obtained for stance and flight phases using
Lagrange’s equations of motion (1).

In the next sections, we present our control approach based
on the ‘two-step-periodic’ gait library.

III. HYBRID ZERO DYNAMICS BASED CONTROL

In this section, we briefly present the Hybrid Zero Dynam-
ics (HZD) framework [22], [21] which uses the dynamical
model presented in Section II to generate periodic gaits and
design feedback controllers for running. The HZD method
begins by selecting a set of outputs ya for the hybrid
dynamical system as in (2). Driving these outputs to a set

of desired quantities yd define how the various links of the
robot move. The HZD controller then implements an Input-
Output (IO) Linearizing controller to drive the outputs ya to
yd.

A. Output Selection

In this section we present our choice of outputs ya (also
known as virtual constraints). We note that several valid
choices for the outputs exist. As in [15], a candidate for
ya is the set of actuated joint angles qa. However, since
we are interested in achieving precise step-lengths, which is
achieved through the flight phase, we choose the horizontal
velocity of the center of mass as one of the outputs during
the stance phase. This choice of output is motivated by the
fact that the horizontal distance achieved during flight is
dependent on the exit-velocity of the stance phase (velocity
of the center of mass at the instant before entering flight
phase). We also note that this is a relative degree 1 output
[10] [1]. The complete set of outputs during the stance phase
is chosen as

ysa =


vxcom
qst1
qsw1
qsw2

 . (3)

During flight, we choose the following outputs to be
controlled

yfa :=


qT
qst2
qsw1
qsw2

 (4)

The superscripts st and sw in ys denote stance and swing
legs respectively, and st = L/R (and sw = R/L), depending
on whether the Left or Right Leg is in stance respectively. In
yf , the superscripts st and sw denote the stance and swing
legs in the preceding stance phase.

The desired outputs yd := yd (τp, αp) are parametrized by
Bézier splines, where αp are the coefficients of the Bézier
spline and τp is a phase variable that monotonically increases
from 0 to 1 and p ∈ {s, f}. Specifically, we will find the
Bézier parameters αp and phase variable parameters through
a Nonlinear Program such that enforcing the outputs ya to the
desired outputs yd (τp, αp) through a feedback controller will
result in a two-step-periodic solution for the hybrid model
in (2). This is schematically illustrated in Figure 4. We note
that, there are several choices for the phase variable τp. In
particular, we choose the normalized absolute stance leg-
angle qstLA as the phase variable during stance and normalized
time during flight,

τs :=
qstLA − qstLA,max

qstLA,max − qstLA,max

, (5)

τf :=
t− tmin

tmax − tmin
, (6)



Fig. 4: Illustration of two-step-periodic gait design. We
optimize over two running steps with constraints on the
step lengths l0 and l1 in the first and second running steps
respectively. The periodicity constraint enforces the states of
the robot at the end of the second step x2 to return to the
states at the beginning of the first step x0.

with qstLA defined as

qstLA := qT + qst1 +
qst2
2
− π

2
; (7)

qstLA,max, q
st
LA,min, tmin, tmax are constants to be deter-

mined. For future reference, we collect the constant param-
eters used in the gait phase variable definitions above into
the following vectors,

θs :=

[
qstLA,max

qstLA,min

]
, (8)

θf :=

[
tmax

tmin

]
. (9)

B. Two-Step-Periodic Gait Design

Having presented the hybrid dynamical model for running
and the choice of outputs ya to be controlled, we now present
a method to find the parameters αs, αf , θs and θf , such that
the resulting gaits are two-step-periodic.

The two-step-periodic gait design involves obtaining gait
parameters such that the post-impact states of the system
after two running steps return to the initial states at the start
of the first step. The gaits are parametrized by the step-
lengths in the first and second second running step l0 and l1
respectively and we define the set of parameters as

P (l0, l1) := {αs (l0, l1)αf (l0, l1) , θs (l0, l1) , θf (l0, l1)}.
(10)

Subsequently, we find parameters P (l0, l1) for (l0, l1) ∈
L× L to build a library of gaits,

G := {P (l0, l1) | (l0, l1) ∈ L× L}, (11)

Motor Torque |u| ≤ 10Nm

Friction Cone
∣∣∣∣Fh

st
Fv
st

∣∣∣∣ ≤ 0.6

Vertical Ground Reaction Force during stance F v
st ≥ 0N

Swing Foot Clearance during stance hf | ≥ 0.05m

TABLE I: Optimization constraints

where L is a predefined set of step lengths. Specifically, we
choose L = {0.6, 0.8, 1.0, 1.2}, with a total of 16 gaits in
the gait library.

The problem of obtaining the gait library G is cast as a
nonlinear program with the objective function taken as the
integral of squared torques over step length:

J =

∫ T

0

||u(t)||22 dt. (12)

and constraints for the optimization are formulated as in
Table I.

In addition to the above constraints, we also need to
guarantee the periodicity of the gait through the periodicty
constraints:

1) The initial state at start of the first stance phase is given
by x = x+0 with corresponding (initial) step length l0.

2) Transition constraints between stance and flight: The
state at the end of the first stance phase is equal
to the state at the beginning of the first flight phase
(corresponding to the step length l0).

3) Step Length constraint: The step-length constraint is
enforced as the difference between the position of the
stance foot at the beginning of the flight phase and the
position of the swing foot at the end of the flight phase
being equal to the desired step-length l0.

4) The state at the end of the first flight phase (before
impact) is x = x−1 with (resulting) step length l0.

5) Impact constraints at the end of the first flight-phase
are enforced as x+1 = ∆(x−1 ).

6) The initial state at start of the second stance phase
is given by x = x+1 with corresponding (initial) step
length of l1.

7) Transition between Stance and Flight phase: The con-
straint is enforced as in 2 between the second stance
and flight phase.

8) The state at the end of the second flight phase (before
impact) is x = x−2 with (resulting) step length of l2.

9) Impact constraints at the end of the second step are
enforced as x+2 = ∆(x−2 ).

10) Periodic constraints are then enforced as x+2 = x+0 ,
resulting in l2 = l0.

The generation of the two-step-periodic running gaits
using direct collocation with the specifications mentioned
above, involves discretization of each phase in time by a
specified number of nodes N ,

0 = t0 < t1 < t2 < · · · < tN = T, (13)



Fig. 5: Snapshots of the robot running over the discrete footholds using the control method presented in this paper.

Fig. 6: Illustration of gait interpolation. The desired gait
parameters are obtained based on the desired step length
of the previous step ld0 and the desired step length of the
current step ld1 . Points marked by blue circles denote gait
parameters in the gait library. Red star denotes the gait
parameters based on the desired step lengths and obtained
using bilinear interpolation of the existing gaits in the gait
library.

where T represents the time to impact. In particular, we
use N = 10 for each phase and use the method of Direct
collocation to solve the following trajectory optimization
problem,

J = min
u(t)

∫ T

0

||u(t)||22 dt (14)

st. x(t) =

∫ t

0

f(x(t)) + g(x(t))u(t)dt

c(x(t), u(t)) ≤ 0, 0 ≤ t ≤ T.

Here, c(x(t), u(t)) represent the physical constraints de-
scribed in Table I as well as periodicity constraints. The
desired gait parameters P (l0, l1) can be extracted from the
optimal state trajectories through a simple Bézier curve fit.
We use the open-source optimization and simulation toolbox
FROST [8] to perform the above optimization. We refer
the reader to [12] for more details on the specifics of the
trajectory optimization scheme. We then generate the gait
library G by obtaining the parameters P (l0, l1) for different
values of (l0, l1) ∈ L×L through the NLP described above.

C. Control Design

We use an input-output linearizing controller as in [22],
[21]. We first define the outputs to be regulated to zero as
the difference between the actual and desired quantities ya
and yd as:

yp := ypa − y
p
d, p ∈ {s, f}. (15)

We further differentiate between the relative degree one
and relative degree two outputs during stance as

ys1 :=
[
1 0 0 0

]
(ysa − ysd) , (16)

ys2 :=

0 1 0 0
0 0 1 0
0 0 0 1

 (ysa − ysd) . (17)

The IO Linearizing controller is then given by,

u = (Ap)
−1

(−Bp (x, αp, θp) + vp) , p ∈ {s, f}, (18)

where Ap is the decoupling matrix and is defined as

As :=

[
Lgy

s
1

LgLfy
s
2

]
(19)

Af := LgLfy
f (20)

and Bp is defined as

Bs :=

[
Lfy

s
1

L2
fy

s
2

]
(21)

Bf := L2
fy

f . (22)

Here, Lfy and Lgy denote the Lie-derivatives of the output
y with respect to the vector fields f and g. Further, v is
a feedback term, which could be, for example, a linear
feedback controller

vs :=

[
−K1y

s
1

−K2y
s
2 −K3ẏ

s
2

]
(23)

vf := −K4y
f −K5ẏ

f , (24)

where Ki > 0, i = 1, 2, ...5 are appropriate gain matrices.
The specific values of the parameters αp and θp depend on

the desired step-lengths of the preceding step ld0 and current
step ld1 . The superscript d represents a desired quantity. We
restrict the desired step lengths ld1 to be within the range
of L. This is schematically illustrated in Figure 6 We use
bilinear interpolation of the gait parameters P (10) as in
[15] to compute the gait parameters P (l0, l1) corresponding
to the step lengths ld0 and ld1 .
Remark: 1. In our method, we perform a linear interpolation
of the Bézier parameters that parametrize the periodic gaits
rather than the time trajectories of the states. The inter-
polated gait is therefore also a smooth Bézier curve. The
main motivation behind doing so is since the desired step
length is different in every step, planning for each of these
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Fig. 7: Resulting location of foot steps from 300 steps, over
10 experiments (30 steps per experiment). Outer dashed lines
indicate a 5cm deviation from the desired step length. Red
dots denote the actual value of the step length obtained from
simulation.

transients would cause an explosion of planned trajectories.
Instead, we plan for periodic gaits - specifically a two-step
periodic gait to build a library of gaits G as in (11). During
implementation, depending on the current step length l0 and
the desired step length l1 of the next step, we select the four
closest gaits (in terms of step length) from G and perform
a bilinear interpolation (See Figure 6) resulting in P (l0, l1).
Specifically, we only use the first step of the interpolated
two-step periodic gait and then switch to another interpolated
gait at the end of the first step. This makes the transients
smoother (as opposed to large jumps in the desired outputs
which generally causes a violation of unilateral constraints
such as friction constraints and input constraints) as the exit
state at the end of the first step is close to the entry state of
the periodic gait used for the second step.

Remark: 2. The proposed method performs a linear inter-
polation as opposed to a nonlinear interpolation. There are
certainly several ways to represent this nonlinear model.
For example, in [3], the authors propose Support Vector
Machines (SVMs) and neural network model to interpolate
between the different gaits.

IV. NUMERICAL VALIDATION

In this section, we present our numerical results from
simulation of 5-link underactuated robot RABBIT. We per-
formed multiple simulations with randomly varying desired
step lengths. The desired step lengths were sampled from a
uniform distribution between 0.6m and 1.2m which is about
twice the desired step length reported in [18] and about 1.5
times the robot’s leg length.. Figure 5 presents snapshots of

Fig. 8: Motor Torques from one of the simulations. The top
and bottom red lines indicate the maximum and minimum
allowable control inputs.
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Fig. 9: Vertical Ground Reaction Forces from one of the
simulations.

the robot running over one realization of the discrete terrain.
Figure 7 illustrates the foot step locations along with the
desired stepping locations from ten such simulations with
30 steps per simulation. We note that the average step-length
error increases as the desired step-length increases.

In all our simulations, the foot placement was accurate to
±5cm of the desired step lengths while all other constraints
such as input limits (Figure 8) and unilateral vertical ground
reaction force (Figure 9) constraints were met. The average
running velocity was 1.8m/s.

Remark: 3. As mentioned in Section III-A, a candidate
choice for the outputs during the stance phase are the
actuated joint angles qa (all outputs have relative degree two).
However, the results we obtained using these outputs were
very different from those obtained using the outputs defined
in (3) with one relative degree one output. In particular, we
observe a significantly poor performance in the placement of
footsteps with a maximum error of 39cm. We attribute the
success of the outputs in (3) to the fact that the horizontal
displacement of the center of mass depends solely on its exit
velocity during stance. Regulating the exit velocity directly
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Fig. 10: Resulting location of foot steps from 50 steps from
a single simulation using qa (vector relative degree 2) as the
outputs during stance phase. Outer dashed lines indicate a
39cm deviation from the desired step length. Red dots denote
the actual value of the step length obtained from simulation.

during stance will potentially lead to an accurate step-length
at the end of the flight phase and hence smaller errors in step
length. Figure 10 illustrates the performance of the controller
using the actuated joints qa as the outputs.

V. CONCLUSION

In conclusion, we have presented a control strategy for
bipedal robotic running over stochastically varying discrete
terrain and potentially increased the range of step lengths
to twice that could have been achieved only by walking.
The controller maintains the stability of the robot while
respecting critical safety constraints such as constraints on
foot placement and ground reaction forces. With proper
choice of the outputs to be controlled, the resulting step
length from simulation is accurate to 5cm of the desired step
length. While we are yet to formally prove any theoretical
guarantees on switching between the different periodic gaits,
we provide some intuitive explanation about the success of
the method as in Remark 1. A potential direction to address
this are the stability conditions for switching controllers
between different exponentially stable periodic orbits as
provided in [13]. Moreover, the method here is simple to
implement and requires a small number of two-step periodic
gaits to run over a terrain with a wide range of step lengths.
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