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Abstract

Safe Control of Robotic Systems under Uncertainty: Reconciling Model-based and
Data-driven Methods

by

Fernando Castaneda Garcia-Rozas

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Koushil Sreenath, Chair

Safety is a primary concern for deploying autonomous robots in the real world. Model-based
control theoretic tools provide formal safety guarantees when a mathematical model of the
dynamics of the system is available. However, constructing analytical models that accu-
rately predict future states from sensory measurements and designing controllers that use
such models can be costly, labor-intensive, or even unattainable for intricate real robotic sys-
tems. In contrast, learning-based control strategies have demonstrated the ability for robots
to execute complex tasks directly from data, eliminating the need for analytical dynam-
ics models. However, these learning-based control policies are typically trained intensively
on vast datasets collected through simulations, which may not encompass the full range of
complexities found in real-world interactions. Furthermore, the resulting policies often lack
interpretability, making it hard to formally analyze their robustness properties.

This dissertation focuses on establishing core principles for developing reliable and intelligible
controllers for real-world autonomous systems. Specifically, it introduces formal techniques
that leverage approximate model knowledge when available, and utilize data to nimbly adapt
to the intricacies of the real world. The thesis unfolds in two main sections, each examining
how control-theoretic model-based strategies and data-driven methodologies can mutually
enhance each other. In the first section, the emphasis is on the application of control theory
principles to enhance the interpretability and trustworthiness of data-driven approaches.
Conversely, the second section flips this narrative, investigating how data can boost control-
theoretic approaches and transfer the assurances provided by model-based controllers on
approximate models to the actual system being controlled.

Delving into the first part of the dissertation, a principled reward design methodology for
model-free policy optimization problems is presented. By exploiting the underlying geometric
structures of the system, the proposed reward functions guide the policy search towards safe
and stabilizing control policies. It is demonstrated that these policies can be learned directly
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on hardware from only a few minutes of experimental data. Following this, the dissertation
draws on nonlinear control methods to propose an end-to-end distributional shift prevention
mechanism for learning-based policies. Preventing distributional shift is, in fact, a critical
matter for assuring the safety of data-driven controllers, as operating in unexplored regions
can lead to the unexpected behavior of these policies. Taking raw high-dimensional sensory
observations as input, the proposed mechanism constitutes an effective safety layer for a
wide variety of applications, from robotic manipulation to autonomous driving.

The second part of the dissertation introduces several approaches, ranging from reinforcement
learning to Bayesian inference methods, able to safely bridge the gap between an approximate
dynamics model and the real system when using model-based controllers. By quantifying
the uncertainty within the learning model, it also presents a safe online learning strategy
that empowers the system to assess whether its current information is adequate for ensuring
safety, or if acquiring new measurements is necessary. Additionally, it puts forward a data
selection method that ascertains the impact of individual data points on the overall decision-
making process.
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Chapter 1

Introduction

1.1 Thesis Motivation

In this era of swift technological advancement, human society is witnessing an unprecedented
rise in automation. This growth is driven by factors such as greater accessibility to computing
resources, high-speed internet, and remarkable progress in artificial intelligence. Automation
has spread far beyond the industrial sphere, now affecting various aspects of our daily lives.
For instance, a vast range of software applications running on our smartphones constantly
generates information and recommendations tailored to our needs.

Robotics has emerged as a crucial area of innovation in the automation landscape.
Robotic systems, once exclusive to factories, now consist of electromechanical devices ca-
pable of sensing, decision-making, and action-taking, steadily becoming integrated into our
everyday lives. Robotic vacuum cleaners are now a household item [63], while robotic pros-
thetics are already enhancing the quality of life for individuals with disabilities [137, 33].
Drones are being massively sold worldwide for both recreational and professional applica-
tions, including photography, environmental monitoring, and search and rescue. Legged
robots are starting to be commercialized to private users and industries alike [22, 195], and
the deployment of autonomous vehicles has already begun [158], with the promise to revo-
lutionize urban transportation and significantly improve road safety. It is evident that the
potential of robotic technologies to empower human endeavors and enhance our collective
well-being is immense.

However, as these complex automated systems become more widespread, new concerns
about safety and reliability emerge. The improper functioning of an autonomous vehicle, for
example, could lead to severe accidents affecting both the passengers and other road users
[74]. Thus, as we continue to develop and implement safety-critical robotic systems in the
coming years, it is crucial to prioritize avoiding catastrophic failures.

This dissertation seeks to explore methods for systematically assessing the safety of ex-
isting and future robotic systems, determining the extent to which these technologies can
be assured, and incorporating safety guarantees into their automated decision-making pro-
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cesses. A special emphasis is placed on the safety of learning-based and data-driven al-
gorithms that control robotic systems. Reinforcement learning has showcased remarkable
results in controlling robotic systems [174, 117, 2, 142], enabling them to adapt and excel
in complex tasks. Learning-based approaches, in general, are highly promising due to the
ever-increasing amounts of data available to train these algorithms. However, in contrast
to studies that exclusively use data for control, this dissertation illustrates how established
model-based control methods can effectively augment data-driven techniques, providing a
solid foundation for evaluating the safety and performance of the learned control policies.
Ultimately, this combined approach allows us to propose feasible, rigorous, and efficient
methods that enable robotic systems to uphold safety with a high degree of confidence, even
in the face of considerable uncertainties.

1.2 Challenges in Safe Robotic Control

1.2.1 Model-based Control

Model-based controllers play a crucial role in various domains, leveraging mathematical
models to predict outcomes and guide decision-making. However, the effectiveness of these
models is often hindered by model uncertainty and the complexity inherent in real-world sys-
tems. One of the primary concerns is that the assurances provided by mathematical models
may not hold in practice when the model fails to accurately represent the underlying system.
The potential consequences of relying on an inaccurate model are numerous and could lead
to undesirable outcomes, particularly in safety-critical applications like autonomous vehicles
or robotic surgery.

Another challenge is designing accurate models for multi-agent systems, particularly those
involving human interactions. In the real world, robotic systems cannot be expected to
operate in isolation. Instead, they must coexist and cooperate with other agents, including
humans, whose behavior is often unpredictable and complex. Accurately modeling such
multi-agent systems is essential for ensuring safe and efficient collaboration between agents.
However, the process of developing a robust model that takes into account the intricacies of
human behavior and effectively bridges the reality gap is not an easy task.

Lastly, even when a dynamics model is available, model-based optimal controllers can
face difficulties related to computational complexity and numerical conditioning, making it
challenging to find good solutions using common optimization solvers. High-dimensional and
nonlinear problems present particular challenges, which become even more pronounced when
dealing with high-dimensional sensory data like images. State estimation for such data is a
complex issue in itself, and integrating this information into model-based methods presents
additional challenges.
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1.2.2 Learning-based Control

The prospect of using data-driven approaches for designing controllers has become increas-
ingly appealing, given the vast amounts of data now available. However, ensuring the safety
of learning-based controllers is a complex and daunting task. One key issue is that data-
driven controllers often involve highly overparameterized neural networks, which are difficult
to understand and tend to be treated as black boxes. This lack of interpretability makes it
particularly challenging to guarantee the safety of these methods when they are deployed in
real-world systems. Ensuring that learning-based controllers operate safely and effectively
requires a deep understanding of their behavior, which remains an ongoing challenge for
researchers and engineers.

A further complication arises in anticipating the behavior of learning-based controllers
when they operate beyond the scope of their training data distribution. It is often unfeasible
to predict how these controllers will respond to situations not encountered during training.
To tackle this issue, it is necessary to develop reliable methods that either keep the systems
within the bounds of the training data distribution, promoting well-founded decision-making,
or that manage to safely explore unvisited regions.

Furthermore, developing accurate uncertainty estimation techniques for the learned poli-
cies and models is crucial, as this allows the controllers to assess when their understanding
of the world is inadequate to take action, potentially prompting human intervention. Un-
certainty quantification should also enhance the understanding of which data is vital to
acquire, and therefore facilitate the development of life-long learning approaches that effec-
tively utilize the most valuable collected data. In addition, it is important for learning-based
controllers to be able to safely gather missing data when needed, enabling them to adapt
and improve their performance over time. Developing strategies that strike the right balance
between exploiting existing knowledge and safely exploring new information is an essential
aspect of ensuring the safety of learning-based controllers, ultimately contributing to their
successful deployment in real-world applications.

1.3 Contributions

This thesis takes a first principles approach for the design of reliable and interpretable
controllers for real-world uncertain systems. In particular, we present formal methods that
exploit approximate model knowledge when available, and use data to flexibly adapt to the
complexities of real systems. With this, we provide evidence about the potential of combining
both model-based and data-driven control paradigms to get the best of both worlds. The key
contributions of this dissertation are the following:

1. Supervising reinforcement learning with structural model knowledge: We propose novel
methods to exploit approximate model knowledge in the design of reinforcement learn-
ing reward functions, leading to better conditioned and more sample efficient policy
learning problems. By exploiting the underlying geometric structure of the system, we
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guide the policy search towards safe and stabilizing solutions. As such, these meth-
ods constitute principled approaches for reward-shaping. We apply these techniques
to rapidly learn safe and stabilizing control policies directly on real robotic systems,
including the A1 quadrupedal robot.

2. Long-term distributional shift prevention with a safety certificate self-supervision: We
propose a self-supervised learning approach to constrain learning-based control poli-
cies to remain in-distribution with respect to the training data. Precisely, we study
how to embed the mathematical property of set invariance into a deep learning-based
framework. We use these ideas to build safety filters that, taking high-dimensional ob-
servations as inputs, constrain autonomous vehicles and robotic systems from entering
out-of-distribution regions of the state space.

3. Augmenting model-based controllers with data to safely bridge the reality gap: We
propose several supervised learning frameworks to learn the uncertainty gap between an
approximate dynamics model and the real system when using model-based controllers.
Our decision making module is able to reason about its prediction quality confidence
based on the current available information. This allows us to robustify model-based
controllers in order to account for the model mismatch.

4. Control theoretic safe online learning: Finally, we show that model-based knowledge
serves to add meaning to data collected from real systems, and to understand which
kind of information is required to prevent failure. We use these insights to propose safe
active learning strategies, in which the system can safely collect data when needed in
order to stay safe. Furthermore, we propose data selection approaches which quantify
the importance that each datapoint has on the decision making process.

1.4 Dissertation Outline

First, in Chapter 2 we introduce some important concepts that constitute the theoretical
foundation for the results of this dissertation. In particular, we present necessary background
on the different model-based and data-driven control techniques that we use throughout the
thesis. Afterwards, the main body of the dissertation is broken up into two parts, as follows.

Part I: Model-based Supervision for Safe Robotic Learning. The first part of
the thesis provides guidance on how to use tools from the nonlinear control literature to
supervise deep-learning algorithms for decision making. In particular, Chapters 3 and 4
show that it is possible to guide policy optimization algorithms for systems with unknown
dynamics towards safe and stabilizing solutions. Then, in Chapter 5, we propose a Lyapunov-
based reward shaping strategy for reinforcement learning problems that greatly simplifies the
search for stabilizing policies. As a result, our method can be used to efficiently learn policies
from real experimental data. Finally, in Chapter 6, we present an framework whose objective
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is to avoid distributional shift for visuomotor control tasks. We prove that, even for end-
to-end deep learning control frameworks, incorporating control-theoretic inductive biases in
the learning process can serve to encourage the satisfaction of desired properties, such as set
invariance.

Part II: Leveraging Data to Safely Bridge the Reality Gap. The second part of
this dissertation tackles the central challenge of ensuring the safe operation of real systems
despite the use of inevitably inaccurate mathematical descriptions of their dynamics. Specif-
ically, Chapters 7 and 8 propose the use of neural network function approximation schemes
to learn the discrepancy between the real system and the approximate mathematical model.
As shown in these chapters, after properly accounting for the reality gap, a variety of model-
based control methods are effective at controlling complex legged robots. Then, in Chapters
9 and 10, we replace these neural network approximators by Gaussian Process regression
models, which provide probabilistic high-confidence bounds of their predictions. By formu-
lating robust control problems that take into account these worst-case bounds, we show that
it is possible to ensure the safe operation of the real system. Additionally, in Chapter 10,
we propose a safe online learning strategy that empowers the system with the ability to
autonomously and safely collect meaningful data when needed. Taking further these ideas,
Chapter 11 presents a data selection method able to identify and choose data that offers
valuable insights into maintaining safety.

Finally, Chapter 12 provides concluding remarks and identifies critical technical obstacles
that must be overcome in the pursuit of safely deploying advanced autonomous systems.
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Chapter 2

Mathematical Background

2.1 System Dynamics

In this thesis, we will focus on understanding the functioning and evolution of different
robotic systems. We will approach this problem through the mathematical framework of
dynamical systems theory, and investigate an extensive array of robotic platforms, such as
legged robots and autonomous vehicles, among others. To study their evolution over time,
a key notion is that of the state of the system—a minimal set of variables required to define
the current condition of the system at any given time and predict its future behavior in the
absence of external inputs. For robotic systems, there is another important set of variables,
the control input, which consists of those that an external entity, usually called a controller,
can manipulate to alter the state of the system in a desirable way. For example, the motion
of a humanoid robot depends on the applied motor torques, which a user can adjust at any
given instant.

2.1.1 Continuous-Time Dynamics

We can describe the evolution over time of robotic systems using differential equations. For
instance, continuous-time models of the evolution of a robot derived from the Lagrangian or
from the Newton-Euler equations have been extensively used to predict and control robots
for a wide variety of applications.

In a very general form, we can model the dynamics of the robot through the differential
equation

ẋ = f(x, u, t), (2.1)

where x ∈ X ⊆ Rn is the state of the system, u ∈ U ⊆ Rm the control input, and t ∈ R+
1

the time.

1Throughout this thesis, we use R++ to denote the set of positive real numbers, and R+ for the set of
non-negative real numbers.
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However, as will be shown in later sections, while (2.1) is very general in form, for
robotic systems it is often more convenient to exploit the specific structure that results from
the Lagrangian equations of motion that describe these systems. In fact, for most robotic
systems, the derivative of the state does not depend explicitly on time and the control input
appears linearly, resulting in the dynamics

ẋ = f(x) + g(x)u. (2.2)

Because of their structure, these are called time-invariant control-affine nonlinear systems.
Throughout this thesis, we will assume that the real robotic system we want to control is
of the form (2.2), and we will use the term true plant to refer to it. While nonlinear, the
functions f : X → Rn and g : X → Rn×m are assumed to be locally Lipschitz continuous.

The main focus of this dissertation will be on how to design feedback control policies
for system (2.2) to achieve a behaviour with desirable properties. These policies take the
current state as input and should apply corrective control actions to accomplish the desired
outcome. We will let Π denote the space of all control polices π : X → U for the system.

2.1.2 Discrete-Time Dynamics

There are cases in which it can be more convinient to describe the evolution of the system
over discrete time steps k = 0, 1, 2, .... These time steps are typically chosen to be regularly
spaced, with interval ∆t > 0. In this case, we will consider the following representation of
the true plant’s dynamics in discrete time:

xk+1 = F (xk, uk), (2.3)

where xk ∈ X ⊆ Rn is the state at time step k, uk ∈ U ⊆ Rm is the input applied to the
system at that time, and F : X × U → Rn is the discrete-time state-transition function.

Note that this representation is not meant to imply that the system actually evolves in
discrete increments. It is, however, sometimes convenient to use as it allows us to work with
sequences of states and inputs, instead of having to treat them as continuous functions of
time.

2.2 Model-based Control

Now that we have formalized how to describe the evolution of a robotic system, both using
continuous-time representations (2.2) and discrete-time ones (2.3), we can introduce different
methods that use model knowledge to decide which control inputs should be applied at each
time step.

The methods presented in this section assume that perfect knowledge of the true plant’s
dynamics is available, and use this information to design controllers to achieve specific ob-
jectives.
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2.2.1 Optimal Control

Optimal control studies the problem of optimal decision-making regarding the evolution of
a dynamical system. In order to define which decisions are desirable, a notion of cost is
introduced in these methods. Then, the optimal decisions will be those that lead to the least
cumulative cost over a trajectory.

Here, we present a brief introduction to a subclass of optimal control problems for
discrete-time systems of the form (2.3).

We consider a running cost ℓ : X × U → R of the form

ℓ(x, u) = Q(x) +R(u), (2.4)

where Q : X → R is the state cost and R : U → R is the input cost. Both Q and R are
assumed to be positive definite functions (in practice, both are usually quadratic). Given a
policy π ∈ Π, discount factor γ ∈ [0, 1], and initial condition x0 ∈ X , the associated long-run
cost is:

V π
γ (x0) =

∞∑
k=0

γkℓ(xk, π(xk)) (2.5)

s.t. xk+1 = F (xk, π(xk)),

where V π
γ : X → R ∪ {∞} is the value function associated with policy π. Small discount

factors incentivize policies which greedily optimize a small number of time-steps into the
future, while larger discount factors promote policies which reduce the cost in the long-run.
We say that a policy π∗

γ ∈ Π is optimal if it achieves the smallest cost from each x ∈ X :

V
π∗
γ

γ (x) = V ∗
γ (x) := inf

π∈Π
V π
γ (x), ∀x ∈ X , (2.6)

where V ∗
γ : X → R ∪ {∞} is the optimal value function. Together V ∗

γ and π∗
γ capture the

‘ideal’ behavior induced by the cost function (2.5). It is well-known [20] that the optimal
value function will satisfy the Bellman equation:

V ∗
γ (x) = inf

u∈U

[
γV ∗

γ (F (x, u)) + ℓ(x, u)
]
, ∀x ∈ X , (2.7)

and an optimal policy π∗
γ will satisfy:

π∗
γ(x) ∈ argmin

u∈U

[
γV ∗

γ (F (x, u)) + ℓ(x, u)
]
, ∀x ∈ X . (2.8)

While it is a well-defined optimization problem, directly solving (2.5) is usually im-
practical, as it requires optimizing over the infinite-dimensional space of all control policies
Π : X → U for the system. In contrast, (2.7) and (2.8) present a very interesting method
to solve this problem by working backwards through time: if the optimal value function and
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control policy are known for trajectories starting at time step k, then we can find the cor-
responding optimal value function and policy for time step k − 1 by solving a much simpler
optimization problem over control inputs (2.8). This is an embodiment of the dynamic pro-
gramming principle of optimality [17], which constitutes one of the most important results in
decision theory. However, this approach requires computing the optimal value function and
control policy at each state x ∈ X , which presents a remarkable challenge for systems with
high-dimensional state spaces. In particular, by discretizing the state space X and solving
(2.8) at each discrete state, the number of optimization problems that need to be solved
and, therefore, the overall required computation in general increase exponentially with the
number of state variables. This problem is known as the curse of dimensionality.

Most modern reinforcement learning algorithms essentially try to obtain approximate
solutions of optimal control problems from data. By directly collecting data from interactions
and using highly expressive function approximators, they aim to overcome the curse of
dimensionality and the need to know a priori the dynamics model F . An introduction to
reinforcement learning methods is provided later in this chapter.

Finally, even though solving for an optimal control policy is a very challenging problem
for complex systems, optimality in the most strict sense is not required for many robotic
applications. It is often sufficient to obtain control policies that lead to the system satisfying
some desired properties, such as being stable, or that prevent the state of the system from
entering undesired regions—keeping it safe. We will now introduce these notions of stability
and safety, together with model-based controllers that are able to synthesize stabilizing and
safe control policies. These controllers often require far less computation efforts than the
optimal control problem.

2.2.2 Stability and Control Lyapunov Functions

Stability Theory

We now introduce the notion of stability of a system, and how Control Lyapunov Functions
can be used to synthesize stabilizing control policies. Since these controllers were originally
formulated for continuous-time control-affine systems, we adhere to this formulation. Thus,
the systems that we consider in this section are of the form (2.2).

Let us consider a locally Lipschitz continuous control policy π ∈ Π for system (2.2).
Then, the closed loop dynamics of the system can be expressed as

ẋ = f(x) + g(x)π(x) = fcl(x). (2.9)

Suppose xe ∈ X is an equilibrium point of the closed-loop system (2.9); that is fcl(xe) = 0.
We now can introduce the definition of stability of the equilibrium point xe. However, for
simplicity, unless otherwise stated, throughout the thesis we present all the stability-related
definitions and theorems for the case in which the equilibrium point is at the origin of Rn;
that is, xe = 0. This is without loss of generality, as any equilibrium point can be shifted to
the origin via a change of variables.
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We will denote x(t) the solution of system (2.2) under a control policy π ∈ Π starting
at x(0) = x0 ∈ X . Since we assume that the vector fields f , g and the control policy π are
all locally Lipschitz continuous in X ⊆ Rn, then the solution x(t) exists and is unique for
some time t ∈ [0, τmax) [102], where τmax is known as the maximum time of existence and
uniqueneness of x(t).

Definition 2.1 (Stability in the sense of Lyapunov). Suppose that there exists some r > 0
such that, if ∥x(0)∥ < r, the solution x(t) of the autonomous system (2.9) uniquely exists
for all t ≥ 0. Then, the equilibrium point xe = 0 of the closed-loop system (2.9) is said to be
stable in the sense of Lyapunov (SISL) if for each ϵ > 0 there exists a δ = δ(ϵ) > 0 such that

∥x(0)∥2 < δ =⇒ ∥x(t)∥2 < ϵ, ∀t ≥ 0. (2.10)

Definition 2.2 (Unstable equilibrium). We say that the equilibrium point xe = 0 of the
closed-loop system (2.9) is unstable if it is not stable in the sense of Lyapunov.

Stability in the sense of Lyapunov is a desirable property since, it intuitively means that
trajectories that start close to the equilibrium never leave a neighborhood of it. If the origin
of the closed-loop system (2.9) is SISL, we say that the policy π is stabilizing.

However, the equilibrium being SISL does not imply that the trajectories of the system
will converge towards it. Because of this, we now present the definition of asymptotic
stability, which constitutes a more practical and desirable property than SISL.

Definition 2.3 (Asymptotic stability). The equilibrium point xe = 0 of the closed-loop
system (2.9) is asymptotically stable if it is SISL and δ can be chosen such that

∥x(0)∥2 < δ =⇒ lim
t→∞

x(t) = 0. (2.11)

If this is the case, we say that the policy π is asymptotically stabilizing to the origin.
This property still lacks practicality for some applications, as it only guarantees convergence
to the equilibrium as the time goes to infinity, and does not give any notion of how fast this
convergence is. This can be overcome by imposing a more strict notion of stability.

Definition 2.4 (Exponential stability). The equilibrium point xe = 0 of the closed-loop
system (2.9) is said to be exponentially stable with rate of convergence α, if it is SISL and
there exist positive constants M,α > 0 such that

∥x(t)∥2 ≤Me−αt ∥x(0)∥2 , ∀t ≥ 0. (2.12)

Control Lyapunov Functions

Now that we have introduced the different forms of stability of an equilibrium point, we tackle
the problem of designing stabilizing control policies. For this, we can use the model-based
control design paradigm of Control Lyapunov Functions (CLFs). We will first introduce
the definition of CLF for system (2.2), in the case of unconstrained control inputs; that is,
U = Rm.
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Definition 2.5 (Control Lyapunov Function [11]). Let V : X → R+ be a positive definite,
continuously differentiable, and radially unbounded function. V is a Control Lyapunov Func-
tion (CLF) for system (2.2) if there exists a class K∞ function λ : R+ → R+ such that for
each x ∈ X \ {0} the following holds:

inf
u∈Rm

LfV (x) + LgV (x)u︸ ︷︷ ︸
=V̇ (x,u)

+λ (V (x)) ≤ 0, (2.13)

where the functions LfV (x) := ∇V (x) · f(x) and LgV (x) := ∇V (x) · g(x) are known as Lie
derivatives. We say that a function V is radially unbounded if V (x) → ∞ as ∥x∥ → ∞.
Furthermore, a continuous function λ : R+ → R+ is class K∞ if it is strictly increasing and
λ(0) = 0.

If such a CLF exists, the system is globally asymptotically stabilizable to the origin [11].
In this case, it would be desirable to find a locally Lipschitz continuous feedback control law
π : X → Rm such that the condition

LfV (x) + LgV (x)π(x) + λ (V (x)) ≤ 0 (2.14)

holds for any x ∈ X \{0}. It should be noted that not all systems which satisfy (2.13) admit
such a controller [169], but a number of important systems such as the ones considered in
this document are continuously stabilizable.

Note that the key benefit of using a CLF for stabilization is that it condenses into a
simple condition (2.14) the inherently long-horizon problem of finding a stabilizing control
policy.

A simple way of synthesizing a stabilizing control law is by enforcing (2.14) as a constraint
in a min-norm optimization problem. Then, the asymptotically stabilizing control law is
defined point-wise by:

πCLF(x) = argmin
u∈Rm

∥u∥22 (2.15)

s.t. LfV (x) + LgV (x)π(x) + λ (V (x)) ≤ 0. (2.16)

At every point, this controller greedily selects the smallest control input which satisfies the
CLF constraint. This greatly simplifies the policy synthesis problem compared to typical
optimal control methods (2.5), as the use of the CLF removes the need to plan far into the
future.

If V is a CLF for the system, a sufficient condition for πCLF to be locally Lipschitz
continuous is that f , g and the gradient of V are each locally Lipschitz continuous [62].
Furthermore, if u is unconstrained, this min-norm stabilizing controller can be expressed in
closed-form [177] as:

πCLF(x) =

−
(
LfV (x)+λ(V (x))

)
LgV (x)

LgV (x)TLgV (x)
if LfV (x) + λ (V (x)) > 0

0 if LfV (x) + λ (V (x)) ≤ 0
(2.17)
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However, many real-world systems require the addition of input constraints due to actu-
ator limitations, i.e., u ∈ U ⊂ Rm, in which case condition (2.13) becomes infu∈U LfV (x) +
LgV (x)u + λ (V (x)) ≤ 0, which might not be satisfied at every x ∈ X \ {0} even if V is a
valid CLF for system (2.2). This fact motivates the following lemma.

Lemma 2.1 (Stability from a CLF [11]). Let V : X → R+ be a CLF for system (2.2) and
let U ⊂ Rm be the compact set of admissible control inputs. For each c ∈ R+ let Ωc be the
sublevel set of V such that Ωc := {x ∈ X ⊆ Rn : V (x) ≤ c}. If there exists a ci > 0 such that

inf
u∈U

LfV (x) + LgV (x)u+ λ (V (x)) ≤ 0 (2.18)

is satisfied ∀x ∈ Ωci \ {0}, then the origin is locally asymptotically stabilizable from x ∈ Ωci,
and Ωci is a subset of the Region of Attraction (RoA) of the origin.

Proof. See [123, Proposition 2.2].

We can now take cmax as the maximum value of ci ∈ R+ such that (2.18) holds for any
x ∈ Ωci \ {0}. Then, Ωcmax is the largest sublevel set of V from which the system (2.2) is
asymptotically stabilizable.

We can also consider a stronger notion of stabilizability by imposing exponential conver-
gence to the origin. We now restrict the function λ to be linear, and with a slight abuse of
notation, we denote its coefficient also as λ. It is well-known that if there exists a compact
subset D ⊆ Ωcmax such that ∀x ∈ D the following holds for some constant λ > 0,

inf
u∈U

LfV (x) + LgV (x)u+ λV (x) ≤ 0, (2.19)

then the state of the system can be driven exponentially fast to the origin from any initial
state x0 ∈ Ωcexp ⊆ D [9]. If such cexp > 0 exists, we will say that V is a locally exponen-
tially stabilizing CLF. Similarly to the asymptotic stability case, the condition (2.19) can be
incorporated as a constraint into a min-norm optimization problem:

CLF-QP:

πCLF(x) = argmin
u∈U

∥u∥22 (2.20a)

s.t. LfV (x) + LgV (x)u+ λV (x) ≤ 0. (2.20b)

In this thesis, we always assume that the input constraints that define U are linear,
which makes problem (2.20) a quadratic program (QP). We will refer to constraint (2.20b)
as the exponential CLF constraint. This optimization problem defines a feedback control
law πCLF:X →U selecting the min-norm input such that the system state converges to the
origin exponentially quickly. Note that, in practice, constraint (2.20b) is typically relaxed
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by adding a slack variable in order to guarantee the feasibility of the problem if condition
(2.19) is not locally satisfied [65].

The CLF-QP constitutes a model-based controller that synthesizes exponential stabilizing
control policies when perfect knowledge of the dynamics of the system f and g is available.

2.2.3 Safety and Control Barrier Functions

Safety as a Set Invariance Problem

We now formalize the mathematical definition of safety for a continuous-time system (2.2)
that we use in this thesis. In particular, we consider that the system is safe when it never
leaves a set of safe states Xsafe ⊂ X .

Definition 2.6 (Safety as Forward Invariance). We say that a control law π : X → U
guarantees the safety of system (2.2) with respect to a safe set Xsafe ⊂ X , if the set Xsafe

is forward invariant under the control law π, i.e., for any x0 ∈ Xsafe, the solution x(t) of
system (2.2) under the control law π remains in Xsafe for all t ∈ [0, τmax).

Here, τmax is the maximum time of existence and uniqueness of x(t), which is guaranteed
to exist and be strictly greater than zero if the control law π is locally Lipschitz [102].

Control Barrier Functions

Similar to the use case of CLFs being synthesizing stabilizing policies, the model-based
control design paradigm of Control Barrier Functions (CBFs) serves to build safe control
policies.

Definition 2.7 (Control Barrier Function [8]). Let Xsafe := {x ∈ X : B(x) ≥ 0} be the zero-
superlevel set of a continuously differentiable function B : X → R. Then, B is a Control
Barrier Function (CBF) for system (2.2) if there exists an extended class K∞ function γ
such that for all x ∈ X the following holds:

sup
u∈U

LfB(x) + LgB(x)u︸ ︷︷ ︸
=Ḃ(x,u)

+γ(B(x)) ≥ 0, (2.21)

where LfB(x) :=∇B(x)·f(x) and LgB(x) :=∇B(x)·g(x) are the Lie derivatives of B with
respect to f and g. Furthermore, a continuous function γ : R → R is extended class K∞ if
it is strictly increasing and γ(0) = 0.

The following result states that the existence of a CBF guarantees that the control system
can be rendered safe.

Lemma 2.2 (Safety from a CBF [8]). Let system (2.2) admit a CBF B : X → R. Let
Xsafe = {x ∈ X : B(x) ≥ 0} be its associated safe set, with boundary ∂Xsafe = {x ∈ X :
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B(x) = 0}. If for all x ∈ ∂Xsafe it holds that ∇B(x) ̸= 0, then any Lipschitz continuous
control law π : X → U satisfying

π(x) ∈ {u ∈ U : Ḃ(x, u) + γ (B(x)) ≥ 0} (2.22)

renders the set Xsafe forward invariant.

Given a safety-agnostic reference controller πref : X → U , the condition in (2.22) can be
used to formulate a minimally-invasive safety-filter [8]:

CBF-QP:

πCBF(x) = argmin
u∈U

∥u− πref(x)∥22 (2.23a)

s.t. LfB(x) + LgB(x)u+ γ(B(x)) ≥ 0, (2.23b)

which is a quadratic program (QP) if the input bounds are linear. This problem is solved
pointwise in time to obtain a safety-critical control law πCBF : X → U that only deviates
from the reference controller πref when safety is compromised. However, note that this
optimization problem requires perfect knowledge of the dynamics of the system, since the
Lie derivatives of B appear in the constraint. Therefore, throughout this thesis we will refer
to (2.23b) as the true CBF constraint, since it depends on the dynamics of the true plant
given by f and g.

Note that CBFs condense the problem of long-term constraint satisfaction into a single
time step condition (2.22). This is a very attractive property, as it removes the need to plan
far-ahead into the future to make sure that the system never violates safety and leaves the
safe set.

2.2.4 Combining Control Lyapunov Functions and Control
Barrier Functions

In [8], both CLF and CBF conditions are incorporated in a combined min-norm QP. Similar
to the individual CBF and CLF cases, this QP is solved pointwise in time to obtain a
safety-critical stabilizing control law πCBF-CLF : X → U .

CBF-CLF-QP:

πCBF-CLF(x) = argmin
u∈U , d∈R

∥u∥22 + pd2 (2.24a)

s.t. LfV (x) + LgV (x)u+ λV (x) ≤ d, (2.24b)

LfB(x) + LgB(x)u+ γ(B(x)) ≥ 0. (2.24c)
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Here, d ∈ R is a slack variable that is introduced to relax the CLF constraint, giving
preference to safety over stability in case of conflict. Similar to the previous CBF-QP and
CLF-QP, this optimization program requires perfect knowledge of the dynamics of (2.2),
since the Lie derivatives of B and V with respect to f and g appear in the constraints.

2.2.5 Model Uncertainty

So far, all of the presented controllers are designed using a particular mathematical model
of the dynamics of the system we want to control. However, perfectly modelling complex
real-world systems is in general not possible. Since what we ultimately want to study is the
evolution of the real system, not of the approximate mathematical model that we use, it is
important to explicitly account for this gap.

Because of the reasons explained above, in this thesis we never assume we know the
dynamics of the true plant (2.2). Instead, for many of the methods that we introduce, we
exploit approximate model knowledge through a nominal model of the system’s dynamics:

ẋ = f̃(x) + g̃(x)u, (2.25)

where we also assume that f̃ and g̃ are Lipschitz continuous vector fields. As explained
above, the nominal model vector fields (f̃ , g̃) do not perfectly match the true plant vector
fields (f , g) due to the model mismatch.

Obviously, the problem of model uncertainty is especially relevant for model-based con-
trollers, such as the ones that have just been introduced. The theoretical properties that
these controllers hold for the model they are based on might not hold on the real system if
the gap is not accounted for appropriately.

2.3 Data-driven Control

Data-driven controllers, on the other hand, get rid of the need for a mathematical model. By
directly collecting data from the real system, these approaches learn how the system reacts
to different control signals and decide which are the most desirable to apply based on this
information.

Data-driven controllers can be classified into two main groups: those that follow the
system identification paradigm, and those that are completely model-free. (1) The first group
includes approaches that explicitly fit a dynamics model or, more generally, a dynamics-
dependent function (such as the CLF or CBF derivative) from data, and then design a
control law based on the identified model. Thus, once all the required model knowledge has
been obtained from the collected data, for the control synthesis stage they can use one of the
approaches that have been presented in the previous section. (2) The second group includes
all of the model-free reinforcement learning algorithms that have been recently proposed
and are achieving very promising results. By using the data directly for policy optimization,
these later approaches have a simpler decision pipeline, typically with fewer components
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than alternative approaches. However, these methods in general require very large amounts
of data to obtain well-behaved control policies.

2.3.1 System Identification through Gaussian Process Regression

We now present background on the use of Gaussian Process (GP) regression to fit an unknown
function from data. The main role of GP regression in this thesis is to fit functions that
explicitly depend on the dynamics of the system (2.2), when we do not have perfect knowledge
of f and g.

Gaussian Process regression is a powerful method for conducting nonparametric Bayesian
inference on an unknown function h : X̄ → R, where X̄ is the domain of h. Essentially, a
Gaussian Process can be understood as the extension of the multivariate Gaussian distribu-
tion to the infinite-dimensional space of functions.

More formally, a Gaussian Process (GP) is a random process for which any finite collection
of samples have a joint Gaussian distribution. A GP is fully characterized by its mean
q : X̄ → R and covariance (or kernel) k : X̄ × X̄ → R functions. In GP regression, the
unknown function h is assumed to be a sample from a GP, and through a set of N noisy
measurements DN = {xj, h(xj) + ϵj}Nj=1 at points xj ∈ X̄ , a prediction of h(·) at an unseen
query point x∗ ∈ X̄ can be derived from the joint distribution of [h(x1), · · · , h(xN), h(x∗)]T
conditioned on the dataset DN . Throughout this thesis, ϵj ∼ N (0, σ2

n) is white measurement
noise, with variance σ2

n > 0.
Setting the mean function of the prior GP q to zero, the mean and variance of the

prediction of h(x∗) given the dataset DN are:

µ(x∗|DN) = zT (K + σ2
nI)

−1KT
∗ , (2.26)

σ2(x∗|DN) = k (x∗, x∗)−K∗(K + σ2
nI)

−1KT
∗ , (2.27)

where K ∈ RN×N is the GP Kernel matrix, whose (i, j)th element is k(xi, xj), K∗ =
[k(x∗, x1), · · · , k(x∗, xN)] ∈ RN , and z ∈ RN is the vector containing the noisy measurements
of h, zj := h(xj) + ϵj.

Equations (2.26) and (2.27) provide, respectively, the mean estimate of the value of the
unknown function h at a query point x∗ and a measure of the uncertainty of this prediction.
This later uncertainty estimate constitutes an extremely valuable measure of confidence on
the model’s prediction, and it is possible to obtain thanks to the nonparametric nature of
GPs. The trade-off for this nonparametric adaptability is substantial computational de-
mands, as the required matrix inversion expense escalates approximately cubically with the
number of measurements N .

2.3.2 Model-Free Reinforcement Learning

Reinforcement learning (RL) focuses on training algorithms to make decisions based on the
concept of learning from interaction with an environment. The objective of the RL agent
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is to learn an optimal policy that dictates the best action to take in each state in order to
maximize the expected cumulative reward over time.

Note that RL is essentially trying to solve the same problem as in Section 2.2.1. However,
the model-based approaches presented in that Section rely on an accurate model of the system
dynamics and may not be tractable for high-dimensional, nonlinear, or uncertain systems.
RL offers an alternative, data-driven approach for approximating the solution to optimal
control problems, even when the system model is not known a priori.

One of the main components of RL is the agent-environment interaction, which is typi-
cally modeled as a Markov Decision Process (MDP). An MDP consists of a finite set of states,
actions, and rewards, and is characterized by the state-transition probability function and
the reward function. More formally, an MDP is a tuple (S,A, P, r, γ), where:

• S is a finite set of states.

• A is a finite set of actions.

• P : S × A × S → [0, 1] is the state-transition probability function, such that
P (xk+1|xk, uk) denotes the probability of transitioning to state xk+1 when taking action
uk in state xk.

• r : S ×A→ R is the reward function, with r(xk, uk) denoting the expected immediate
reward for taking action uk at state xk.

• γ ∈ [0, 1] is the discount factor, representing the preference for immediate rewards over
delayed rewards.

Note that this problem setting is, in fact, closely related to the one of Section 2.2.1,
in which we defined the cumulative cost (2.5) and the optimal control problem (2.6) for a
deterministic discrete-time dynamic system (2.3). In fact, we can construct an equivalent
Markov Decision Process (MDP) with the following components:

• State space: S = X .

• Action space: A = U .

• State-transition probability function: P (xk+1|xk, uk) = δ (xk+1 − F (xk, uk)), where δ(·)
is the Dirac delta function.

• Reward function: r(xk, uk) = −ℓ(xk, uk).

• Discount factor: γ ∈ [0, 1].

To learn an approximate solution to the optimal control problem in a data-driven manner,
we can employ RL algorithms that approximate the optimal policy and/or the value function.
Highly expressive function approximators, such as neural networks, are typically used for
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this purpose. While this approach enables these methods to optimize high-dimensional
policies, they are data-hungry, can display high-variance and thus frequently return highly
sub-optimal policies when data is limited. This is, in part, due to the fact that these
approaches do not exploit any structural knowledge of the system. Part I of this thesis
will present principled methods that exploit structural model knowledge when formulating
reinforcement learning problems, resulting in improved sample efficiency.
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Part I

Model-based Supervision for Safe
Robotic Learning
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Chapter 3

Learning Min-norm Stabilizing
Controllers

This chapter is based on the paper titled “Learning Min-Norm Stabilizing Control Laws for
Systems with Unknown Dynamics” [210], co-authored by Tyler Westenbroek, Ayush Agrawal,
S. Shankar Sastry and Koushil Sreenath.

This chapter introduces a framework for learning a minimum-norm stabilizing controller
for a system with unknown dynamics using model-free reinforcement learning algorithms.
The approach begins by first designing a Control Lyapunov Function (CLF) for a (possibly
inaccurate) dynamics model for the system. Treating the CLF condition as a constraint
on the desired closed-loop behavior of the real-world system, we use penalty methods to
formulate an unconstrained optimization problem over the parameters of a learned controller,
which can be solved using model-free policy optimization algorithms using data collected
from the plant. We discuss when the optimization learns a stabilizing controller for the
real-world system and derive conditions on the structure of the learned controller which
ensure that the optimization is strongly convex, meaning the globally optimal solution can
be found reliably. We validate the approach in simulation, first for a double pendulum, and
then generalize the framework to learn stable walking controllers for underactuated bipedal
robots using the Hybrid Zero Dynamics framework. By encoding a large amount of structure
into the learning problem, we are able to learn stabilizing controllers for both systems with
only minutes or even seconds of training data.

3.1 Introduction

Recently, the literature has displayed a renewed interest in data-driven methods for con-
troller design [186, 19, 135, 3]. Much of this excitement has been driven by recent advances
in the model-free reinforcement learning literature [86, 119]. Despite their generality, model-
free policy optimization methods are known to suffer from poor sample complexity, as they
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generally are unable to take advantage of known structure in the control system. This chap-
ter bridges the gap between model-based and model-free design paradigms by embedding
Lyapunov-based design techniques into a model-free reinforcement learning problem. By
encoding basic information about the structure of the system into the learning problem
through a Control Lyapunoc Function (CLF), our approach is able to learn optimal stabi-
lizing controllers for highly uncertain systems with as little as seconds or a few minutes of
data.

Specifically, we propose a framework for learning a min-norm stabilizing control law for
an unknown system using model-free policy optimization techniques. Our approach begins
by first designing a CLF for a nominal dynamics model of the system. We then formulate
a continuous-time optimization problem over the parameters of a learned controller which
treats the CLF energy dissipation condition as a constraint. The cost function for the
optimization encourages choices of parameters which minimize control effort, but uses a
penalty term to ensure that the CLF dissipation constraint is satisfied, if possible, when the
penalty term is chosen to be large enough. The terms in the optimization depend on the
dynamics of the unknown system, but discrete-time approximations to the problem can be
solved using policy-optimization algorithms and data collected from the plant. In general, the
problem may be non-convex, but when the learned controller is linear in its parameters the
problem becomes (strongly) convex, meaning the globally optimal solutions for the problem
can be found using standard policy gradient [183] or random search techniques [134].

To demonstrate the utility of the proposed framework, we apply the method in simulation
to a double pendulum and a high-dimensional model of a bipedal robot. For the double
pendulum example, the learned controller is comprised of a linear combination of radial
basis functions so that the convexity result discussed above applies, and we demonstrate
empirically that the learned controller is able to closely match the true min-norm controller
performance. The walking example demonstrates how to extend our results in the body of
the chapter to encompass the Hybrid Zero Dynamics framework as in [9]. For this high-
dimensional system, a feed-forward neural network is used for the learned controller. While
we cannot guarantee that the optimal set of parameters is found, the learned controller still
produces a stable walking motion in the face of high model uncertainty.

3.1.1 Related Work

CLF-based controllers [11, 177] have been proved to be effective for a wide variety of complex
robotic tasks, such as bipedal walking [65],[9], manipulation [7] and multi-agent coordination
[150]. In [65] and [7] quadratic programs (CLF-QP), which integrate the CLF condition as a
constraint, are used to get optimal min-norm stabilizing controllers. The CLF-QP is solved
online and additional constraints, such as input saturation, can be added.

However, the dynamics of many real-world systems have nonlinearities that might be
difficult to model correctly and/or physical parameters which could be difficult to identify.
Input-to-state stability has been used to tackle this problem in [82],[178]. Also, adaptive [145]
and robust [14, 146] versions of CLF-based controllers have been developed in recent years.
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Figure 3.1: RABBIT, a planar five-link bipedal robot with nonlinear, hybrid and under-
actuated dynamics. q1, q2 are the relative stance and swing leg thigh angles referenced to
the torso, q3, q4 are the relative stance and swing leg knee angles, q5 is the absolute torso
angle in the world frame, and x and y are the position of the hip in the world frame. Here
q = [x, y, q1, q2, q3, q4, q5]

⊤.

However, these approaches sometimes fail to account for the correct amount of uncertainty
due to the typical assumptions they make on the uncertainties’ structures and bounds.

Our work most closely aligns with recent research that use data-driven approaches to
tackle the issue of model uncertainty in nonlinear controllers. Our works builds on [209, 28],
where reinforcement learning is used to account for uncertainty when performing feedback
linearization of nonlinear systems. In contrast to recently proposed approaches [186, 38]
which focus on learning the uncertain terms in a CLF-QP in order to indirectly improve
the optimization-based controller, the framework proposed in this chapter directly learns
the optimal stabilizing controller. By directly learning the desired controller, our approach
removes the need for solving a real-time optimization problem involving a potentially complex
learned component, which may take a non-trivial amount of time to process during real-
time applications. On hardware, CLF-based controllers frequently need to be updated at
frequencies exceeding 1000 Hertz to maintain the stability of the system [9], placing strict
timing requirements on the rate at which the CLF-based controller must be updated. Thus,
the direct approach has meaningful advantages in applications.
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3.2 Learning Min-norm Stabilizing Controllers

3.2.1 Learning a Min-norm Stabilizing Controller for a System
with Unknown Dynamics

Despite the wide-spread utility of the CLF-based controllers introduced in Section 2.2.2,
the primary drawback of these methods is that they require an accurate dynamics model
to implement. Our present objective is to learn a min-norm stabilizing controller for the
plant with unknown control-affine dynamics (2.2) while ensuring that the learned controller
adheres to the dissipation constraint imposed by some candidate CLF V : X → R+. In this
chapter, we will consider systems of the form (2.2) without input constraints, i.e., U = Rm.

We will focus on learning the min-norm controller for the plant on a compact subset of
the state-space. Specifically, we will focus on learning the min-norm stabilizing controller
for the system on the set

Ωc := {x ∈ X : V (x) ≤ c} , (3.1)

where c > 0 is a design parameter.
We will make the following technical assumptions throughout the chapter unless otherwise

specified:

Assumption 3.1. The components f , g and ∇V are each locally Lipschitz continuous.

Assumption 3.2. There exists a locally Lipschitz continuous control law π̃ : X → Rm such
that for each x ∈ Ωc

∇V (x)[f(x) + g(x)π̃(x)] ≤ −λV (x). (3.2)

Remark 3.1. Assumption 3.2 ensures that V is a true exponential CLF for the system
with associated dissipation rate λ. While our approach does not explicity require a nominal
dynamics model for the plant, in practice, our candidate CLF for the plant is constructed
using a nominal dynamics model of the form (2.25) which incorporates any information we
have about the plant, but may be inaccurate due to nonlinearities which are difficult to model
or dynamics parameters which are challenging to identify. However, despite model mismatch
between (2.2) and (2.25), we can often design a CLF for the model and reasonably expect
it to also be a CLF for the plant. For example, our two numerical examples systematically
construct CLF’s for the unknown system using feedback-linearizing coordinates. In these
examples Assumption 3.2 is tantamount to knowing the relative degree of the system, a
rather mild structural assumption.

Since we do not know the terms in (2.2), we now propose a method to learn a stabilizing
CLF-based controller for the system using data collected from the plant. Under the preceding
assumptions, and recalling the discussion from the background Section 2.2.2, we know that



CHAPTER 3. LEARNING MIN-NORM STABILIZING CONTROLLERS 24

there is a well-defined control law πCLF : Ωc → R+ which exponentially stabilizes the plant
on Ωc and is given point-wise by

πCLF(x) = argmin
u∈Rm

∥u∥22

s.t. ∇V (x)[f(x) + gp(x)u] ≤ −λV (x).

We will denote our learned approximation for πCLF by π̂ : X × Θ → Rm. For each choice
of parameter θ ∈ Θ ⊂ RK the control law π̂(·, θ) : X → Rm defines the learned control
law supplied to the plant, with Θ ⊂ RK a convex set of allowable learned parameters. It
is assumed that π̂ is locally Lipschitz continuous in its first argument and continuously
differentiable in its second argument. Common function approximators such as feed-forward
neural networks, radial basis functions or bases of polynomials can be used to construct the
learned controller.

Remark 3.2. In general, the learned controller can incorporate information from a nominal
dynamics model by giving it the structure

π̂(x, θ) = πm(x) + δπ(x, θ), (3.3)

where πm is a nominal model-based controller and δπ : X ×RK → Rm is the learned compo-
nent.

Next, in order to find parameters for the learned controller which satisfy the dissipation
constraint (3.2), we will solve optimizations over the parameters of the learned controller of
the form

(Pρ) : min
θ∈Θ

Lρ(θ), (3.4)

where for each ρ ∈ R+ we define the loss function

Lρ(θ) = Ex∼X
[
∥π(x, θ)∥22 + ρ [Ψ(x, θ)]+

]
, (3.5)

where X is the uniform probability distribution over Ωc, the mapping Ψ: Rn × Θ → R is
defined by

Ψ(x, θ) = ∇V (x)[f(x) + gp(x)π̂(x, θ)] + λV (x) (3.6)

and finally [·]+ is defined for each y ∈ R by

[y]+ =

{
y if y ≥ 0,

0 if y < 0.
(3.7)

The first term in the loss Lρ encourages small control efforts while the second term penalizes
violations of the CLF dissipation constraint, with ρ ∈ R+ used to control the magnitude
of the penalty. While we do not know Ψ(x, θ) a priori, we can measure this quantity by
applying the control π̂(x, θ) to the plant at the point x and measuring the resulting time
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derivative of V . Then, equation (3.6) can be used to compute the desired quantity. Thus,
any stochastic optimization algorithm can be used to solve Pρ by running experiments to
evaluate the terms in Lρ. We will discuss this in further detail when we present practical
approaches for solving Pρ below.

Remark 3.3. The uniformity of the distribution X ensures that all points in Ωc are con-
sidered when optimizing over the parameters of π̂. This requirement is seen to be analogous
to the persistency of excitation conditions which are common in the adaptive control litera-
ture [171]. In the proofs of the following theoretical results this condition ensures that each
component of the learned controller is activated sufficiently during the learning process.

3.2.2 Theoretical Results

We now study how the solution set of Pρ changes as the penalty parameter ρ is increased and
derive conditions under which the problem is convex, meaning that it can be solved reliably
to global optimality using iterative gradient-based optimization algorithms. To simplify the
statement of our results, for each ρ ∈ R+ we define

Sρ :=

{
θ ∈ Θ: θ ∈ argmin

θ∈Θ
Lρ(θ)

}
(3.8)

to capture the set of global minimizers for Pρ. We also define

Ξ := {θ ∈ Θ: Ψ(x, θ) ≤ 0, ∀x ∈ Ωc} ⊂ Θ (3.9)

to be the set of parameters for which the corresponding learned controller satisfies the desired
CLF dissipation constraint at every point in Ωc. Next, we present our theoretical results in
Lemma 3.1 and Theorems 3.1 and 3.2, whose proofs can be found in Appendix A.1.

First, we compare the sets Ξ and Sρ as the penalty term ρ is increased:

Lemma 3.1. Assume that Ξ is non-empty so that there exists at least one choice of learned
parameters which satisfy the desired CLF constraint. Then there exists ρ̄ ∈ R+ such that for
each ρ > ρ̄ all global optimizers of Pρ also satisfy the dissipation constraint, namely, Sρ ⊂ Ξ.

In other words, if the penalty parameter ρ ∈ R+ is chosen to be large enough then
Pρ recovers the set of learned parameters which stabilize the plant and satisfy the CLF
constraint. Note that if θ∗ ∈ Ξ is one such choice of parameters then it must be the case
that Ex∼X

[
ρ [Ψ(x, θ∗)]+

]
= 0. Thus, when Ξ is non-empty and ρ is chosen to be large

enough the minimizers of Pρ are selected by the set of parameters which minimize the term
Ex∼X

[
∥π̂(x, θ)∥22

]
, which is the average control effort exerted over the state-space by the

corresponding learned controller. By definition, the min-norm stabilizing controller πCLF

minimizes the control effort needed to satisfy the CLF dissipation constraint at every point
in the state-space. Thus, if ρ is large enough and πCLF is in the space of learned controllers
spanned by π̂, it must be recovered by the optimization:
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Theorem 3.1. Assume that there exists θ̄ ∈ Θ such that π̂(x, θ̄) = πCLF(x) for each x ∈ Ωc.
Then there exists ρ̄ ∈ R+ such that for each ρ > ρ̄ and θ∗ ∈ Sρ we have π̂(x, θ∗) = πCLF(x)
for each x ∈ Ωc.

However, the family of optimization problems we have formulated over the parameters of
the learned controller will generally be non-convex, meaning that we cannot efficiently find
their globally optimal solutions. Thus, we seek conditions under which Pρ becomes convex
so that we can reliably find its global minimizers using iterative methods. Towards this end
we will now assume that

π̂(x, θ) =
K∑
k=1

θkπk(x), (3.10)

where {πk} is a set of locally Lipschitz continuous mappings from X to Rm and θk is the
k-th entry of the learned parameter1. Linearity assumptions of this sort are common in
convergence proofs found in both the adaptive control and reinforcement learning literature.
In the statement of the following result we informally view each basis element πk as a subset
of C(Ωc,Rm), the vector space of continuous functions from Ωc to Rm.

Lemma 3.2. Assume that π̂ is of the form (3.10) and that the set {πk}Kk=1 is linearly inde-
pendent on C(Ωc,Rm). Then for each ρ ∈ R+ the loss Lρ is strongly convex.

This leads to the main theoretical result of this chapter, which follows from an immediate
application of Theorem 3.1 and Lemma 3.2.

Theorem 3.2. Assume that π̂ is of the form (3.10) and that the set {πk}Kk=1 is linearly
independent on C(Ωc,Rm). Further assume that Θ ⊂ RK is convex and that there exists
θ∗ ∈ Θ such that π̂(x, θ∗) = πCLF (x) for each x ∈ Ωc. Then there exists ρ̄ ∈ R+ such that
for each ρ > ρ̄ the problem Pρ is a strongly convex optimization problem with θ∗ its unique
global minimizer.

In practice, since we do not have a parametric model for the system, it is unlikely that
there exists a set of learned parameters which exactly reconstructs the true min-norm con-
trolller for the plant. However, many model-free learning schemes [121] make use of function
approximation schemes which can recover a continuous function up to a desired level of accu-
racy, if enough terms are included in the basis of features. However, in practice the number
of elements required in such an expansion can quickly become prohibitively large as the di-
mension of the state grows. Thus, for high dimensional systems, such as the bipedal robots
we consider below, practical implementations may require the use of more compactly rep-
resented function approximation schemes, such as multi-layer feed-forward neural networks,

1Alternatively, one could also assume that the learned controller is of the form π̂ = πm(x)+
∑K

k=1 θkπk(x)
if the system designer wishes to augment a known model-based controller as in (3.3). The statement and
proof of Theorem 3.2 go through with minor modifications in this case.
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which can also approximate continuous functions to a desired degree of accuracy (Universal
Approximation Theorem [49, 85]), but lead to non-convexities in our optimization problem
(3.10).

3.2.3 Solving Discrete-time Approximations with Reinforcement
Learning

Many real-world systems have digital sensors and actuators which can only be updated at
some maximum frequency, meaning we can only obtain finite difference approximations of
V̇ when different control signals are applied to the plant. Thus, in this section we introduce
discrete-time approximations to Pρ and discuss how they can be solved with standard rein-
forcement learning algorithms [173, 78]. Our description of this process will be brief, since
the approach is similar to the one described in [209].

For the reinforcement learning problem we will assume that the control supplied to the
plant can only be updated at a fixed minimum sampling period ∆t > 0. We will let tk =
k ×∆t for each k ∈ N denote the set of sampling intervals. When the control π̂(x, θ) ∈ Rm

is applied over the interval [tk, tk+1] a Taylor expansion can be used to show that

Ψ(x, θ) =
V (x(tk+1))− V (x(tk))

∆t
+ λV (x(tk))︸ ︷︷ ︸

: =Ψ̃(x,θ)

+O(∆t2). (3.11)

Thus for small ∆t we use the loss

l̃ρ(x, θ) = ∥π̂(x, θ)∥22 + ρ
[
Ψ̃(x, θ)

]+
. (3.12)

We use this approximate pointwise loss to define the following reinforcement learning prob-
lem, which serves as an approximation to Pρ:

P̃ρ : min
θ∈Θ

Ex0∼X

[
N∑
k=0

l̃(xk, θ)

]
(3.13)

s.t. xk+1 = xk +

∫ tk+1

tk

[f(x(t)) + g(x(t))uk] dt

uk = π̂(xk, θ).

Here, the curve x : R → X is the trajectory of the plant starting from initial condition
x(0) = x0, and N ∈ N is the number of time steps in each rollout. Probing noise can be
added to the input to encourage exploration, e.g, by instead setting uk = π̂(xk, θ) + wk,
where wk ∼ N (0, σ2

wI) is zero mean random noise. The policy optimization problem (3.13)
is in a standard form for reinforcement learning problems [183], and in the following section
we demonstrate how these discrete-time approximations can be used to successfully learn
stabilizing controllers for unknown systems.
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3.3 Examples

3.3.1 Double Pendulum

As depicted in Figure 3.3a) the system is parameterized by the masses of the two armsm1,m2

as well as their lengths, l1, l2 ∈ R. For the purposes of simulation, we set m1 = m2 = l1 =
l2 = 1. To set up the learning problem, we assume that we are given an inaccurate dynamics
model with inaccurate estimates m̂1, m̂2, l̂1, l̂2. Specifically, we set m̂1 = m̂2 = l̂1 = l̂2 =

1
2
so

that each of the parameter estimates are half of their true value.
Using the input-output linearization design technique from [9], we design a CLF for the

system of the form V : R4 → R, V := xTPx, with

P =

[
1.5I 0.5I
0.5I 0.5I

]
, (3.14)

where I is the 2 × 2 identity matrix. This can be shown to be a valid CLF for both the
inaccurate dynamics model and the true plant. We focus on learning the min-norm controller
for the plant on the set Ωc = {V (x) ≤ c} with the design parameter c = 2 and construct our
learned controller by setting

π̂(x, θ) = πm(x) + δπ(x, θ), (3.15)

where πm is the min-norm CLF controller computed using the inaccurate dynamic parameters
and the learned augmentation δπ is comprised of a linear combination of 500 radial basis
functions so as to match the assumptions of Lemma 3.2.

We trained the learned component using a policy-gradient algorithm with action condi-
tioned baselines [183]. Each training epoch consisted of 50 1-step roll-outs and a total of
500 epoch were used. The time-step for the simulator was 0.05 seconds. The performance
of the ultimate learned controller is depicted in Figure 3.3, where we see that the learned
controller closely matches the behavior of the true min-norm controller for the system. To
further evaluate the performance of the learned controller, we randomly selected 1000 states
{xi}1000i=1 in Ωc and calculated the ratio

R =
1000∑
i=1

∥π̂(xi, θ∗)− πCLF(xi)∥2
∥πCLF(xi)∥2

, (3.16)

where πCLF is the true min-norm controller for the system and θ∗ is the parameter selected
by the training process. We calculated R = 0.044, indicating that the learned controller was
able to closely match the performance of the true min-norm controller for the system. As
depicted in Figure 3.2, the learning converges in about 200 iterations, which corresponds to
about eight minutes of data. Our implementation of the learning algorithm for this problem
was hand-coded, and we believe the sample efficiency for this problem could match that of
the walking example below by improving the implementation.
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Figure 3.2: Learning curve for the double pendulum simulations using the proposed CLF-
based reward function for reinforcement learning.

Figure 3.3: (a) Depiction of the double pendulum model with the states and physical pa-
rameters shown. (b) Trajectories corresponding to different initial conditions for the learned
controller and true min-norm controller for the system. Each color represents trajectories
starting from a specific initial condition. Solid lines denote the trajectories generated by the
true min-norm controller for the system while the dashed lines correspond to the trajectories
generated by the learned controller. Observe that the learned controller closely matches the
desired closed-loop behavior. Note that the velocities of the trajectories are not depicted,
which is why several of the plotted curves intersect.
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Figure 3.4: Snapshots of the walking gait with the min-norm CLF controller using the
nominal (inaccurate) model. The robot falls after 10 walking steps.

Figure 3.5: Snapshots of the walking gait with the learned controller. The robot walks
indefinitely (the above figure shows the first ten walking steps).

3.3.2 Bipedal Walking

Next, we discuss how to apply our method to the Hybrid Zero Dynamics (HZD) framework
using the CLF-based design approach proposed in [9] in order to learn an efficient, stable
walking controller for a bipedal robot. We model the robot as a hybrid system with impulse
effects as in [9],

Σ :


η̇ = f(η, z) + g(η, z)u,

ż = h(η, z) when (η, z) /∈ S,
η+ = ∆X (η−, z−) ,

z+ = ∆Z (η
−, z−) when (η, z) ∈ S,

(3.17)

where η ∈ T ⊂ Rna represents the controlled (actuated) states, z ∈ Z ⊂ Rnu represents
the uncontrolled states and u ∈ U ⊆ Rm represents the control inputs. The model assumes
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alternating phases of single support, where one foot is off the ground (swing foot) and the
other (stance foot) is assumed to remain at a fixed point without slipping. The impact
between the swing foot and the ground is modelled as a rigid impact and occurs when
(η, z) ∈ S, where S is a smooth switching manifold. Here, η+ ∈ T and z+ ∈ Z represent the
post-impact states while η− ∈ T and z− ∈ Z denote the pre-impact states.

Following the framework in [9], an input-output linearization based CLF is designed for
the actuated coordinates during the continuous portion of the evolution of the state. Namely,
we design a Lyapunov function V : Rnu → R and dissipation rate λ such that the following
condition holds for each (η, z) ∈ T × Z:

inf
u∈U
∇V (η)[f(η, z) + g(η, z)u] ≤ −λV (η). (3.18)

Thus, the control objective is to drive only the actuated states to zero. As shown in [9], when
the coordinates for the actuated and unactuated portions of the system are chosen correctly
the condition η → 0 corresponds to the robot converging to a periodic walking gait. The
CLF and dissipation rate are designed so that the actuated coordinates are driven to zero
fast enough to overcome shocks to the system introduced by the switching condition. We
refer the readers to [9] for more details on this procedure.

To accommodate this new objective, our goal is to learn a control law π̂ : T ×Z×Θ→ U
such that

∇V (η)[f(η, z) + g(η, z)π̂(η, z, θ)] + λV (η)︸ ︷︷ ︸
:=Ψ̂(η,z,θ)

≤ 0 (3.19)

for each (η, z) ∈ T × Z for our choice of learned parameters θ ∈ Θ. Here, f and g are
the terms in true dynamics of the plant, which may differ from the nominal dynamics. To
modify our approach to this new setting, for each ρ ∈ R+ we now define the loss

L̂ρ(θ) = E(η,z)∼X

[
∥π̂(η, z, θ)∥22 + ρ

[
Ψ̂(η, z, θ)

]+]
, (3.20)

where X is now the uniform distribution over T × Z. Despite the fact that the CLF is
defined only over the lower dimensional state η, the theoretical results from section 3.2.2
naturally extend to this case. Moreover, the techniques from section 3.2.3 can be used to
find local minimizers of L̂ρ.

In particular, the proposed method is validated on a model for RABBIT (Fig. 3.1,
[37]), an under-actuated five-link planar bipedal robot with seven degrees-of-freedom. Model
uncertainty is introduced by scaling the mass of each of RABBIT’s links by a factor of two,
i.e., the real plant’s masses are twice the nominal model’s masses. Our learned controlled is

π̂(η, z, θ) = πm(η, z) + δπ(η, z, θ), (3.21)

where πm is the min-norm CLF controller obtained using the nominal model dynamics. The
term δπ(η, z, θ) ∈ R4 takes the form of a Multi-Layer Perceptron (MLP) neural network
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Figure 3.6: Learning curve of our learning approach for the RABBIT walking simulation.

Figure 3.7: Tracking error (top) and norm of control inputs (bottom) of the learned min-
norm controller (blue), the nominal controller (green) and the actual CLF-based controller
of the plant computed using the true robot dynamics (red), each simulated for 4 seconds of
walking.



CHAPTER 3. LEARNING MIN-NORM STABILIZING CONTROLLERS 33

with 2 hidden layers of width 64 each, tanh activation functions and layer normalization.
We use the Soft Actor Critic algorithm [78], an off-policy method, for training the learned
policy δπ(η, z, θ). The training is done on episodes consisting of one walking step each.
The simulations are conducted on the open-source physics simulator PyBullet [46] using a
discrete time-step of one millisecond. As it can be seen in Figure 3.6, the training converges
in about 20,000 time steps, which corresponds to roughly 50 steps of the biped and about
20 seconds of data collection from the system. Altogether, the simulations and training took
about 10 minutes of computation using the six cores of an Intel(R) Core(TM) i7-8705G CPU
(3.10GHz), without using a GPU.

Figure 3.7 shows a comparison between the proposed learned controller, the nominal
controller πm and πCLF, which is the CLF-based controller of the plant computed using
the true (unknown) dynamics. This figure shows that while the nominal controller fails
after ten walking steps making the robot fall, the learned controller achieves stable walking
for an indefinite number of steps and gives good tracking error performance. It is also
important to notice that the learned controller achieves this while using similar magnitudes
of control inputs as the nominal and the true CLF-based controllers. However, the tracking
error performance is not as good as with the actual CLF-based controller of the plant, as
expected, and is likely due to the fact that the learner has converged to a local minima.
Additionally, we note that the walking speeds for the learned controller and the true min-
norm CLF controller for the plant are different. Underactuated robots such as RABBIT may
contain multiple periodic orbits on the surface {(η, z) ∈ T × Z : η = 0}. Thus, while both
controllers successfully drive the system to this set, the periodic orbits the two controllers
converge to are different.

3.4 Chapter Summary

This chapter presents a novel framework for learning minimum-norm stabilizing controllers
for systems with unknown dynamics using model-free reinforcement learning algorithms. By
incorporating significant structure into the learning problem, the proposed method enables
the learning of stabilizing controllers for complex systems with only minutes or seconds of
training data, showcasing its potential for real-world applications.

To demonstrate the effectiveness of the proposed framework, we validated the approach
through simulations of a double pendulum and extend it to learning stable walking controllers
for underactuated bipedal robots using the Hybrid Zero Dynamics framework.
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Chapter 4

Learning Min-norm Safe Stabilizing
Controllers

This chapter is based on the paper titled “Combining Model-Based Design and Model-Free
Policy Optimization to Learn Safe, Stabilizing Controllers” [208], co-authored by Tyler West-
enbroek, Ayush Agrawal, S. Shankar Sastry and Koushil Sreenath.

Compared to the previous chapter, we now consider the problem of learning from data a
policy that not only needs to stabilize the system but, most importantly, needs to restrict it
from entering unsafe regions of the state-space. We therefore want to synthesize controllers
that are both safe and stabilizing. To do this, we again formulate a model-free unconstrained
policy optimization problem. However, this time, we need to incorporate both the stability
and safety constraints into the objective function using penalty methods. We demonstrate
that when the penalty terms are scaled correctly, the optimization prioritizes the maintenance
of safety over stability, and stability over optimality.

Figure 4.1: We apply our framework to rapidly learn a stable walking policy for the robot
RABBIT [37] on a terrain on randomly-spaced stepping stones.
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4.1 Introduction

Following recent empirical successes from the reinforcement learning (RL) literature [119],
there has been a renewed interest in data-driven methods for controller design in the case
of model uncertainty [19, 3]. However, despite the flexibility of model-free approaches, these
methods are known to suffer from poor sample complexity since they do not take advantage
of known structural properties of the control system. Moreover, the literature currently lacks
constructive methods for designing learning problems which give the system designer fine-
grained control over potentially competing global objectives, such as the rate of convergence
to a desired operating point or the avoidance of an unsafe region of the state-space.

Fortunately, modern model-based control theory has developed many tools such as Con-
trol Lyapunov Functions (CLFs; [177]) and Control Barrier Functions (CBFs; [8]) which
allow the system designer to constrain the pointwise closed-loop behavior of a given control
system to ensure desired global properties (stability and safety, respectively) are achieved.
When an accurate dynamics model is available, online optimization can be used to satisfy
these pointwise constraints while minimizing a cost, such as control effort [8]. In effect, these
approaches reduce the satisfaction of challenging global objectives to simple local decisions
from the perspective of controller synthesis.

This chapter takes steps towards extending this design philosophy to the model-free set-
ting by introducing a framework for systematically designing policy optimization problems
over a parameterized learned controller which enforces a hierarchy of user-specified con-
straints on the closed-loop dynamics. To make the framework explicit, we focus on learning
safe, stabilizing controllers using CLFs and CBFs and choose to prioritize safety over sta-
bility. We focus on the regime where the system designer has access to a dynamics model
which may be highly inaccurate but is assumed to at least capture basic structural informa-
tion about the real world plant. The model is used to construct a candidate CLF and CBF
for the plant and a family of policy optimization problems are formulated which use penalty
terms to discourage violations of the pointwise constraints imposed by these functions. This
allows the system designer to carefully constrain the desired closed-loop behavior for the
learned controller while also allowing for additional performance terms, such as minimizing
control effort.

Our theoretical results demonstrate how to scale the penalty terms to control violations
of the constraints and appropriately prioritize safety over stability and stability over perfor-
mance. We first introduce the approach for classical control systems but then demonstrate
how to extend the approach to the hybrid case via an application to a class of hybrid mod-
els which are frequently used in the dynamic walking literature [72]. We discuss how to
synthesize numerical approximations to the family of learning problems which can be solved
using standard machine learning techniques, including state of the art reinforcement learning
algorithms. Simulation experiments are provided for both the continuous and hybrid cases,
which demonstrate that our method is able to effectively learn safe, stabilizing controllers
in the face of large amounts of dynamics uncertainty. We can reliably solve the policy opti-
mization problems formulated over these systems using only a few minutes or even seconds
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of simulated data, representing a sharp increase in the sample efficiency usually found in
the reinforcement learning literature [86, 119]. We conjecture that this is due to the large
amount of structure embedded in the learning problem through the incorporation of CLF
and CBF constraints, which reduce the search for an optimal safe, stabilizing controller to a
set of local criteria at each point in the state space.

4.1.1 Related Work

The unification of Control Barrier Functions and Control Lyapunov Functions to synthesize
safe, stabilizing controllers was first proposed in [8] using online quadratic programming.
In the case of model uncertainty, robust formulations have been proposed [147]. Learning
based methods using supervised learning [187] or reinforcement learning [38] to learn the
uncertain dynamics terms in the quadratic program have also been considered. These can
be thought of as indirect learning methods, since they still require solving an optimization
problem involving the learned components to calculate the desired controller. The primary
downside of each of these approaches is that if the optimization is infeasible at a particular
point then the control strategy will generally be undefined, which can be particularly difficult
to rule out when learning unknown dynamics.

Building on the approach presented in the last chapter of this thesis, we now introduce
a framework for directly learning a safe, stabilizing controller for the system using model-
free policy optimization algorithms. By directly learning the desired controller, our approach
removes the need for solving a real-time optimization problem involving a potentially complex
learned component, which may take a non-trivial amount of time to process during real-time
applications. At points where it is infeasible to satisfy the desired constraints, our method
provides a “best effort” control strategy which satisfies the constraints to the greatest degree
possible, bypassing issues of feasibility.

4.2 Learning Min-norm Safe Stabilizing Controllers

In this chapter, we consider a control-affine true plant of the form (2.2), without input
constraints, i.e., U = Rm. Furthermore, we assume that the dynamics vector fields f and g
are continuously differentiable.

As in the previous chapter, we take a nominal dynamics model (2.25) and design a CLF
V : X → R+ based on it. Furthermore, since we now need to consider the problem of
ensuring safety, we also use the nominal model to design a CBF B : X → R.

Assumption 4.1. We assume that the nominal dynamics model (2.25) has been used to
synthesize a candidate exponential CLF V (and rate λ) and CBF B (and rate γ) for the
unknown plant (2.2).

Even though the dynamics of the plant are unknown, it is often reasonable to assume
that the model captures enough basic structural information about the plant to guarantee
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that these functions are also a valid CLF and CBF for the real-world system. For example, in
our simulated applications we design the candidate CLF using feedback linearization, which
is guaranteed to be a CLF for the true system as long as the relative degree of the plant
matches that of the model, a relatively weak assumption.

As explained in Chapter 2, given a CLF and CBF, if the dynamics of the true system
were known, it would be natural to search for a Lipschitz continuous control law which
satisfies the pointwise constraints of the CLF (2.19) and CBF (2.21) simultaneously. One
candidate control law πCBF-CLF is given by solving the pointwise quadratic program CBF-
CLF-QP introduced in (2.24), which aims to minimize control effort while satisfying the two
pointwise constraints.

As a reminder, note that even if V and B are an actual CLF and CBF for the system, it
may be impossible to satisfy both constraints simultaneously leading to infeasibility issues.
A common heuristic is to add slack terms to one or both of the constraints of the CBF-
CLF-QP to ensure feasibility of the problem at the cost of some violation of the constraints
[8].

While control laws similar to the CBF-CLF-QP of (2.24) have been successfully applied
in a number of applications they have several practical limitations. Most importantly, these
approaches require that an exact dynamics model is available to ensure that the pointwise
constraints in (2.24) can be satisfied on the real-world system. Secondly, the infeasibility
issues mentioned above mean that the controller may be undefined at certain points in the
state-space, which can be highly problematic during real-time operation. This motivates
the method detailed below, which uses the candidate CLF and CBF to learn an optimal
safe, stabilizing controller for an uncertain system using data collected from the plant. The
method prioritizes satisfaction of the CBF constraint over the CLF constraint and removes
the need for real-time optimization.

As in the previous chapter, the learned controller π̂ : X ×Θ→ Rm is of the form

π̂(x, θ) = πm(x) + δπ(x, θ). (4.1)

Here, πm : X → Rm is a nominal controller supplied by the system designer which is derived
from the nominal dynamics model, and δπ : X × Θ → Rm is a learned augmentation. The
learned parameters (θ1, . . . , θp) ∈ Θ ⊂ Rp are to be trained so as to select the optimal safe,
stabilizing controller for the system.

Assumption 4.2. The learned controller π̂ : X × θ → Rm is continuously differentiable in
both of its arguments.

Assumption 4.3. The set of learned parameters Θ is a compact convex set.

Our primary goal is to find a controller which satisfies the following infinite dimensional
constraints, when possible:

−∇B(x)[f(x) + g(x)π̂(x, θ)]− γ(B(x))︸ ︷︷ ︸
Ψ1(x,θ)

≤ 0 ∀x ∈ Xsafe, (4.2)
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∇V (x)[f(x) + g(x)π̂(x, θ)] + λV (x)︸ ︷︷ ︸
Ψ2(x,θ)

≤ 0 ∀x ∈ Xsafe. (4.3)

Here, the set Xsafe ⊂ X ⊆ Rn is the safe-set defined by the 0-super-level set of B. In words,
we want to train a controller π̂(·, θ) : X → Rm which satisfies the safety and stabilization
constraints that the chosen CBF and CLF impose on the real-world system. We make the
following assumption:

Assumption 4.4. The safe set Xsafe is compact.

Since it may not be possible to learn a controller which satisfies both sets of constraints
simultaneously, our learning framework must be flexible enough to prioritize the safety ob-
jective over the stabilization objective when necessary. While we do not know the terms in
Ψ1(x, θ) and Ψ2(x, θ) since the dynamics of the plant are unknown, these terms can be cal-
culated for different values of x ∈ Xsafe and θ ∈ Θ if measurements of V̇ and Ḃ are available
when collecting data from the plant.

In order to enforce these constraints while minimizing control effort, we will solve opti-
mizations of the form

P(ρ1,ρ2) : min
θ∈Θ

Ex∼XL(ρ1,ρ2)(x, θ),

where
L(ρ1,ρ2)(x, θ) = ∥π̂(x, θ)∥22 + ρ1 [Ψ1(x, θ)]

+ + ρ2 [Ψ2(x, θ)]
+ ,

the hinge map [·]+ is defined by [y]+ = max {0, y} for each y ∈ R, and the probability
distribution X : Xsafe → [0, 1] is supported on Xsafe. Here, X is understood to be the distri-
bution of states visited when collecting samples from the real world plant during the learning
process, and ρ1, ρ2 ≥ 0 are penalty parameters to be chosen later.

Remark 4.1. The requirement that X is supported on all of Xsafe is analogous to the per-
sistency of excitation conditions found in the adaptive control literature [170], and ensures
that the data is “rich enough” so that the correct controller is learned. Note that under this
assumption the penalty terms Ex∼Xρ1 [Ψ1(x, θ)]

+ and Ex∼Xρ2 [Ψ2(x, θ)]
+ are positive if and

only if the safety and stability constraints are violated, respectively, at some point x ∈ Xsafe.
Thus this richness requirement guarantees that violations of the pointwise constraints are
appropriately penalized by the optimization. The theoretical guarantees we provide below are
algorithm agnostic, and seek to characterize the global optimizers of the problem.

4.3 Theoretical Analysis

We now demonstrate that violations of the safety and stability constraints can be decreased
to a pre-specified tolerance by scaling the penalty terms appropriately. For simplicity, we
assume there exists at least one set of parameters which satisfies the safety constraint:

Assumption 4.5. There exists θ∗ ∈ Θ such that for each x ∈ Xsafe we have Ψ1(x, θ
∗) ≤ 0.
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Next, we build up some additional notation to simplify the statement of our theoretical
results. First, define the maps Mu,M1,M2 : Θ→ R≥0 by

Mu(θ) = Ex∼X∥π̂(x, θ)∥22,

M1(θ) = Ex∼X [Ψ1(x, θ)]
+ ,

M2(θ) = Ex∼X [Ψ2(x, θ)]
+ .

For each chosen parameter θ ∈ Θ, Mu(θ) captures total energy exerted by the corresponding
controller across the safe set, M1(θ) is the extent to which the CBF constraint is violated,
andM2(θ) is the extent to which the CLF constraint is violated. Next, for each ϵ1 ≥ 0 define

Θϵ1 = {θ ∈ Θ: M1(θ) ≤ ϵ1} ,

which is the set of parameters for which the total violation of the CBF constraint is less than
ϵ1. We also define

M̃2 = min
θ∈Θ0

M2(θ), (4.4)

which is the smallest extent to which the CLF constraint can be violated, subject to exact
satisfaction of the CBF constraint, and is the ideal amount of violation of the CLF constraint
that can be returned by our optimization problem. We then define for each ϵ1, ϵ2 ≥ 0

Θϵ1,ϵ2 = {θ ∈ Θϵ1 : M2(θ) ≤ M̃2 + ϵ2},

which is the set of parameters corresponding to learned controllers which violate the CBF
and CLF constraints no more than ϵ1 ≥ 0 and ϵ2 ≥ 0 more than their ideal values.

We now present our first result, whose proof can be found in Appendix A.2:

Theorem 4.1. There exist constants, C1, C2, C3 ≥ 0 such that if ρ1 ≥ C1ρ2+C2

ϵ1
and ρ2 ≥ C3

ϵ2
then each global optimizer θ∗ of P(ρ1,ρ2) satisfies θ

∗ ∈ Θϵ1,ϵ2.

The result indicates that if we choose ρ2 ≫ 0 and ρ1 ≫ ρ2 our optimization correctly
enforces safety over stability, satisfying the two constraints to the desired tolerances. Within
the set of desired controllers specified by Θϵ1,ϵ2 , the optimization is then left to reduce
the amount of control effort required to achieve these objectives. However, driving both
tolerances to zero requires taking ρ1, ρ2 →∞.

One practical approach for ensuring exact satisfaction of the safety constraint for a finite
value of the multipliers is to add a small amount of extra conservativeness to the pointwise
CBF constraint. Specifically, letting Ψδ

1(θ, x) = Ψ1(x, θ)+ δ for some small parameter δ > 0,
one can replace Ψ1(x, θ) with Ψδ

1(x, θ) in the loss L(ρ1,ρ2)(x, θ). Due to the continuity of

the problem data, driving Ex∼X
[
Ψδ

1(θ, x)
]+

to be sufficiently small (which can be done with
finite values of ρ1) will ensure exact satisfaction of the original CBF constraint.

However, the attractive properties mentioned above only apply to the global minimizers
of P(ρ1,ρ2), which in general will be non-convex, meaning that in practice only local minimiz-
ers to the problem can be found using common incremental machine learning algorithms.
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Thus, we seek conditions on the structure of the learned controller which ensure that the
optimization problem is convex. Specifically, we analyze the case where the learned portion
of the controller is of the form

δπ(x, θ) =

p∑
k=1

θkπk(x), (4.5)

where {πk}pk=1 is a set of features.

Theorem 4.2. Suppose that the learned augmentation in (4.1) is of the form (4.5), and that
the set {uk}pk=1 is linearly independent. Then P(ρ1,ρ2) is strongly convex.

We omit the proof of Theorem 4.2, as it closely follows the steps in the proof of Lemma
3.2 that can be found in Appendix A.1.

Many well-known bases such as radial basis functions [168] or polynomials can be used to
recover any continuous function up to a desired degree of accuracy by including enough terms
in the expansion. It is an important matter for future work to include these methods in our
framework, as it would enable users to design networks for the learned controller which are
guaranteed to be able to satisfy the CLF and CBF constraints to a desired degree of accuracy.
However, function approximation schemes of the form (4.5) may require a prohibitive number
of bases elements to ensure that the desired function is accurately reconstructed in high
dimensions. Thus, in practice, more compact function approximators such as feed-forward
neural networks must be used in high dimensions. Unfortunately, such networks generally
lead to non-convexities in P(ρ1,ρ2).

4.4 Reinforcement Learning Implementation

In practice, our method uses finite difference approximations to Ḃ and V̇ to compute the
terms in Ψ1 and Ψ2, and then solves the resulting approximations to P(ρ1,ρ2) using standard
model-free reinforcement learning algorithms.

Specifically, we will assume that during the learning process the learned controller is
sampled every ∆t > 0 seconds, and will let tk = k∆t for k ∈ N denote the sampling
instances. When the control π̂(x(tk), θ) is applied over the interval [tk, tk+1] we have

Ψ1(x(tk)), θ) = −
B(x(tk+1))−B(x(tk))

∆t
− γ(B(x(tk)))︸ ︷︷ ︸

=:Ψ̃1(x,θ)

+O(∆t2),

Ψ2(x(tk)), θ) =
V (x(tk+1))− V (x(tk))

∆t
+ λV (x(tk))︸ ︷︷ ︸

=:Ψ̃2(x,θ)

+O(∆t2).

Thus, for small ∆t > 0 we approximate L(ρ1,ρ2) with

L̃(ρ1,ρ2)(x, θ) = ∥π̂(x, θ)∥
2
2 + ρ1

[
Ψ̃1(x, θ)

]+
+ ρ2

[
Ψ̃2(x, θ)

]+
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and define the following reinforcement learning problem:

P̃(ρ1,ρ2) : min
θ∈Θ

Ex0∼X

[
N∑
k=0

L̃(ρ1,ρ2)(xk, θ)

]
(4.6)

s.t. xk+1 = xk +
∫ tk+1

tk
[f(x(t)) + g(x(t))π̂(xk, θ)] dt

Here, N ∈ {1, 2, . . . } is the length of the rollout for each experiment on the plant. Note
that, as the equivalent problem formulated in Chapter 3, this problem is in standard form
for reinforcement learning, which can be solved using any off-the-shelf algorithm.

4.5 Examples

4.5.1 Double Pendulum With Safety Constraint

We first apply the learning framework to the double pendulum in Figure 4.2 with two degrees
of freedom q = (θ1, θ2) ∈ R2 and inputs u = (τ1, τ2) ∈ R2, where τi is a torque applied at the
joints. The Lagrangian dynamics obey

M(q)q̈ + Γ(q, q̇) = Bu,

where M(q) is the mass matrix and Γ(q, q̇) collects the gravity and Coriolis terms. The
overall state of the system is x = (θ1, θ2, θ̇1, θ̇2) ∈ R4.

The control objective is to stabilize the system to the origin, while ensuring that the
y-position of the end-effector does not dip below the constraint depicted in Figure 4.2. In
Figure 4.2 the origin corresponds to both arms pointing directly to the right. To guide
the system towards the origin, the method from [9] is used to design a CLF of the form
V (x) = xTPx. We then design a CBF which ensures satisfaction of the safety constraint
using the method of exponential control barrier functions (ECBFs) described in [144].

To set up the learning problem, we vary the dynamics parameters of the model (mass and
length of arms) by 50 percent between the ‘true’ system dynamics and the nominal model
used by the system designer. The learned controller is composed of a linear combination of
300 Gaussian radial basis functions distributed randomly throughout the state-space. We
solve the reinforcement learning problem (3.13) with a rollout length of N = 1, penalty
parameters ρ1 = 1000 and ρ2 = 100 and step-length of ∆t = 0.05s. The Soft Actor Critic
(SAC) algorithm from [78] is used to solve the problem. Figure 4.2 displays the performance
of the learned controller after only 800 samples are collected, which corresponds to 40 seconds
of data. The controller was tested from 20 initial conditions, maintaining safety and stability
in each scenario.
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Figure 4.2: A trace of a trajectory for the double pendulum under the influence of the learned
controller. The horizontal black line represents the safety constraint, while the blue curve
traces the end-effector.

4.5.2 Safe Bipedal Locomotion on Stepping Stones

We will now apply the presented method to the Hybrid Zero Dynamics (HZD) framework
in order to learn an efficient, stable and safe walking controller for a RABBIT bipedal robot
walking on a discrete terrain of randomly spaced stepping stones 4.1. The robot is modelled
as a hybrid system with impulse effects, as already presented in the previous chapter in
(3.17).

The method of Hybrid Zero Dynamics (HZD) aims to drive the actuated states to zero
thereby constraining the system to evolve on a lower dimensional zero dynamics manifold
Ψ = {(η, z) ∈ T × Z : η = 0}, which contains a stable walking gait for the model. As in
[9], the system can be stabilized to this surface using feedback linearization to construct a
CLF for the actuated coordinates. Following the method in [148], we also design a CBF
which takes in the relative distance between the current and subsequent stepping stones and
forces the robot to step down on the next stepping stone during each impact event. Both of
these functions are only used to constrain the evolution of the continuous dynamics, but are
constructed so as to maintain safe, stable walking for the full hybrid dynamics. Because of
this, we can directly apply our framework to overcome model uncertainty in the continuous
dynamics.

To set up the learning problem, model uncertainty is introduced by scaling the mass and
inertia of each of the robot’s links to be three times those of the nominal model. The learned
policy takes the form of a neural network with two hidden layers of size 400× 300, and tanh
activation functions. The training data consists of rollouts of 2 consecutive walking steps with
randomly perturbed initial conditions and desired step lengths ld sampled uniformly from
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Figure 4.3: Plot of the desired step length vs actual step length achieved by the learned
controller for the walking simulation. The black dashed lines indicate the necessary step
length constraint required to successfully walk over stepping stones.

L := [0.35, 0.45]m. We again use SAC to train the policy, with a time step of ∆t = 1/1000s
for numerical simulations. The training process converges in about 200,000 time steps,
corresponding to about 3 minutes and 20 seconds of data.

The trained policy is tested on 100 simulations of 10 walking steps each, with desired step
lengths uniformly sampled from L. The robot only has knowledge of the position of the next
stepping stone. A simulation is considered as a failure if the robot fails to land on any of the
desired stepping stones, or if it losses stability and falls. Out of the 100 simulations, 93 were
successful using the learned controller, while only 26 simulations were successful with the
nominal controller without the learning component. This ability of the learned controller to
adapt to different required step lengths is clearly reflected in Figure 4.3.

4.6 Chapter Summary

In this chapter, we have presented a framework for learning a safe, stabilizing controller for
a system with unknown dynamics using model-free policy optimization algorithms. This
method extends the one presented in Chapter 3 to design policies that keep the state of the
system within a set of safe states. Using a nominal dynamics model, the user specifies a can-
didate Control Lyapunov Function (CLF) around the desired operating point, and specifies
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the desired safe-set using a Control Barrier Function (CBF). Using penalty methods from
the optimization literature, we proposed a family of policy optimization problems which
attempt to minimize control effort while satisfying the pointwise constraints used to specify
the CLF and CBF. We showed that when the penalty coefficients are scaled correctly, the
optimization prioritizes safety over stability, and stability over optimality. We then intro-
duced how standard reinforcement learning algorithms can be applied to the problem, and
validated the approach through simulation. We finally illustrated how the approach can be
applied to a class of hybrid models commonly used in the dynamic walking literature, and
used it to learn safe, stable walking behavior over a randomly spaced sequence of stepping
stones.
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Chapter 5

Lyapunov-based Cost Design for
Robust and Efficient Robotic
Reinforcement Learning

This chapter is based on the paper titled “Lyapunov Design for Robust and Efficient Robotic
Reinforcement Learning” [211], co-authored by Tyler Westenbroek, Ayush Agrawal, S. Shankar
Sastry and Koushil Sreenath.

One of the main goals of this dissertation is to design approaches that use structural

Figure 5.1: We learn precise stabilizing policies on hardware for the Quanser cartpole [161]
(top) and the Unitree A1 quadruped [195] (bottom) using only seconds and a few minutes
of real-world data, respectively. A video of our experiments can be found here.

https://youtu.be/l7kBfitE5n8
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knowledge about the system to supervise data-driven methods. This should allow the user
to embed desirable behaviors into the resulting policies. In this chapter, we introduce an
approach to bias reinforcement learning policy optimization algorithms towards stabilizing
solutions.

While most reinforcement learning researchers and practitioners spend countless hours
finding a reward function that leads to the desired behavior, there is little research, to date,
studying how the choice of reward function influences the learning outcomes. In this chapter,
we propose a Lyapunov-theoretic principled method for reward shaping, which leads to more
sample efficient and robust policy optimization problems.

5.1 Introduction

A key challenge in robotics is reasoning about the long-horizon behavior induced by a control
policy. This is because important system properties such as stability are inherently long-
horizon phenomena. In reinforcement learning, the discount factor implicitly controls how far
into the future policy optimization algorithms plan when optimizing the objective specified
by the user. Standard approaches to designing objective functions for robotic RL, such as
penalizing the distance to a reference trajectory, inherently require a large discount factor
to learn control policies which stabilize the system [156, 64]. Unfortunately, problems with
large discount factors can be extremely difficult to solve, often requiring vast data sets
and careful tuning of hyper-parameters [61]. As a number of recent success stories have
demonstrated [117, 112, 152, 153, 122, 16], ever-increasing computational resources can be
used to solve these problems in simulation and deploy the resulting controllers directly on
the real-world system. However, because it is impractical to model every detail of complex
hardware platforms, achieving the best performance will require learning from real-world
data.

This chapter introduces a cost-shaping framework which enables users to reliably learn
stabilizing control policies with small amounts of real-world data by solving problems with
small discount factors. Our approach uses Control Lyapunov Functions (CLFs), a standard
design tool from the control theory literature [11, 177, 7, 9]. CLFs are ‘energy-like’ functions
for the system which reduce the search for a stabilizing controller to a myopic one-step
criterion. In particular, any controller which decreases the energy of the CLF at each instance
of time will stabilize the system. Thus, CLFs reduce the long-horizon objective of stabilizing
the system to a simple one-step condition. When a CLF is available and the dynamics
are known, constructive techniques from the control literature can be used to synthesize a
stabilizing controller. However, when there is uncertainty in the dynamics, it is difficult to
guarantee that a controller will always decrease the value of the CLF, or that we have even
designed a true CLF for the system.

Our approach is to 1) design an approximate CLF for the real-world system using an ap-
proximate dynamics model and 2) modify the ‘standard’ choice of cost functions mentioned
above by adding a term which incentivizes controllers which decrease the approximate CLF
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over time. This technique effectively uses the approximate CLF as supervision for reinforce-
ment learning, enabling the user to embed known system structures into the learning process
while retaining the flexibility of RL to overcome unknown dynamics. Indeed, as our analysis
demonstrates, when our approach is used reinforcement learning algorithms implicitly learn
to ‘correct’ the approximate CLF provided by the user. When the candidate CLF is close to
being a true CLF for the system (in a sense we make precise below), a stabilizing controller
can be efficiently learned by solving a problem with a small discount factor. Moreover, the
addition of the approximate CLF ‘robustifies’ the search for a stabilizing controller by ensur-
ing that even highly suboptimal policies will stabilize the system. Finally, in situations where
it is too difficult to design a nominal CLF by hand, we demonstrate how one can be learned
using a simulation model and the standard style of RL objective discussed above. Specifi-
cally, we use the value function learned by the RL algorithm as an approximate CLF for the
real-world system. Altogether, beyond accelerating and robustifying RL, our approach also
expands the applicability of CLF-based design techniques.

We apply this technique to develop data-efficient fine-tuning strategies, wherein a nominal
controller developed using a simulation model is refined with small amounts of real-world
data. For the A1 experiment, the nominal controller is a model-based control architecture
[50], and we hand-design a CLF using a highly simplified linearized reduced-order model for
the system. Even though this model is very crude, we are nonetheless able to learn a precise
tracking controller for this 18 DOF system with only 5 minutes of real-world data. For the
cart-pole swing-up task we used the value function from a simulation-based RL problem as
the candidate CLF for the real-world system, using the learning process described above.
Our fine-tuning approach then learned a robust swing-up controller after observing only one
10 second trajectory from the real-world system.

5.1.1 Related Work

In this section, we outline how our approach departs from related work.
Discount Factors, Sample Complexity and Reward Shaping: It is well-understood
that the discount factor has a significant effect on the size of the data set that RL algorithms
need to achieve a desired level of performance. Specifically, it has been shown in numerous
contexts [20, 173, 141, 157] that smaller discount factors lead to problems which can be
solved more efficiently. This has led to a number of works which explicitly treat the discount
factor as a parameter which can be used to control the complexity of the problem alongside
reward shaping techniques [94, 154, 61, 189, 35, 143]. Compared to these works, our primary
contribution is to demonstrate how CLFs can be combined with model-free algorithms to
rapidly learn stabilizing controllers for robotic systems.
Fine-tuning with Real World Data: Recently, there has been much interest in using
RL to fine-tune policies which have been pre-trained in simulation [176, 97, 96, 133]. These
methods typically optimize the same cost function with a large discount factor in both
simulation and on the real robot. In contrast, using our cost reshaping techniques, we
solve a different problem with a smaller discount factor on hardware which can be solved



CHAPTER 5. LYAPUNOV-BASED COST DESIGN FOR ROBUST AND EFFICIENT
ROBOTIC REINFORCEMENT LEARNING 48

more efficiently. In Section 5.6, we show that our method outperforms typical fine-tuning
approaches under moderate perturbations to the dynamics model.
Learning with Control Lyapunov Functions: A number of recent works have also tried
to overcome the reality gap using data-driven methods to improve CLF-based controllers
[186, 185, 210, 208, 27, 38]. While these methods work well when a true CLF for the
real-world system is available, our method is more general as we can still efficiently learn
stabilizing controllers when only an approximate CLF is available by modulating the discount
factor used to optimize our cost.

5.2 Problem Setting

Throughout this chapter, we consider deterministic discrete-time systems of the form intro-
duced in (2.3),

xk+1 = F (xk, uk),

where xk ∈ X ⊆ Rn is the state at time k, uk ∈ U ⊆ X is the input applied to the system
at that time, and F : X × U → Rn is the transition function for the system. We remind the
readers that in this dissertation Π denotes the space of all control polices π : X → U for the
system. To ease exposition, for the theoretical analysis of this chapter we will again focus
on the case where the goal is to stabilize the system to a single point, namely the origin.
Through our examples we will demonstrate how our cost-shaping technique can be leveraged
to achieve more complicated tasks.

5.2.1 Discrete-Time Control Lyapunov Functions

We introduce the discrete-time version of the definition of Control Lyapunov Function that
we presented in Chapter 2. To avoid confusion with other value functions introduced in this
chapter, we will denote the discrete-time CLF as W .

Definition 5.1. We say that a positive definite function W : Rn → R is a discrete-time
Control Lyapunov Function (CLF) for (2.3) if the following condition holds for each x ∈
X\{0}:

min
u∈U

W (F (x, u))−W (x) < 0. (5.1)

The condition (5.1) ensures that for each x ∈ X there exists a choice of input which de-
creases the ‘energy’W (x). Any policy which satisfies the one-step conditionW (F (x, π(x)))−
W (x) < 0 can be guaranteed to asymptotically stabilize the system [101]. Given a CLF for
the system, model-based methods constructively synthesize a controller which satisfies this
property using either closed-form equations [177] or by solving an online (convex) optimiza-
tion problem [62, 9] to satisfy (5.1). However, when the dynamics are unknown it is difficult
to ensure that we have synthesized a ‘true’ CLF for the system.
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Remark 5.1. (Designing Control Lyapunov Functions) While there is no general procedure
for designing CLFs by hand for general nonlinear systems, there do exist constructive proce-
dures for designing CLFs for many important classes of robotic systems, such as manipulator
arms [7] and robotic walkers [9] using structural properties of the system. Moreover, in our
examples we will investigate how a CLF can be learned from a simulation model and how
very coarse CLF candidates can be used to accelerate learning a stabilizing controller.

5.2.2 Stability of Dynamic Programming and Reinforcement
Learning

Here, we build on the background on optimal control presented in Section 2.2.1. We in-
vestigate the conditions that optimal control problems that use the common class of cost
functions introduced in (2.5) need to satisfy to lead to stabilizing solutions.

We recall from (2.8) that, given a discount factor γ ∈ [0, 1], an optimal policy π∗
γ will

satisfy
π∗
γ(x) ∈ argmin

u∈U

[
γV ∗

γ (F (x, u)) + ℓ(x, u)
]
, ∀x ∈ X .

We also remind the readers that in Section 2.2.1 we defined ℓ(x, u) = Q(x) +R(u) to be the
running cost incurred when applying control u ∈ U at state x ∈ X , and V ∗

γ (x) is the optimal
value function at x ∈ X (2.6). The running cost components Q and R are assumed to be
positive definite.

Unfortunately, it is impractical to directly search over Π to find a policy that minimizes
the above condition. This necessitates the use of function approximation schemes (e.g. feed-
forward neural networks) to instead represent a subset of policies Π̂ ⊂ Π to search over.
Indeed, modern RL approaches for robotics randomly sample the space of trajectories to
optimize problems of the form:

inf
π∈Π̂

Ex0∼X0

[
V π
γ (x0)

]
, (5.2)

where X0 is a distribution over initial conditions and V π
γ is the value function associated to

π. While this approach enables these methods to optimize high-dimensional policies, they
are data-hungry, can display high-variance and thus frequently return highly sub-optimal
policies when data is limited. To better understand the effect that this has on the stability
of learned policies, for each π ∈ Π̂ and γ ∈ [0, 1] define the optimality gap:

ϵπγ(x) = V π
γ (x)− V ∗

γ (x).

The temporal difference equation [20] dictates that for each x ∈ X the policy satisfies:

V π
γ (x) = γV π

γ (F (x, π(x))) + ℓ(x, π(x)). (5.3)
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From these equations we can obtain:

V π
γ (F (x, π(x)))− V π

γ (x) =
1

γ

(
− ℓ(x, π(x)) + (1− γ)V π

γ (x)
)

(5.4)

=
1

γ

(
− ℓ(x, π(x)) + (1− γ)[V ∗

γ (x) + ϵπγ(x)]
)

(5.5)

≤ 1

γ

(
−Q(x) + (1− γ)[V ∗

γ (x) + ϵπγ(x)]
)
, (5.6)

where we have first rearranged (5.3), then used V π
γ (x) = V ∗

γ (x) + ϵπγ(x), and finally we have
used ℓ(x, π(x)) ≥ Q(x). Inequalities of this sort are the building block for proving the
stability of suboptimal polices in the dynamic programming literature [64, 156].

Remark 5.2. (Value Functions as CLFs) By inspecting the cost (2.5) we see that V π
γ is

positive definite (since Q is positive definite). Thus, if the right-hand side of (5.6) is negative
for each x ∈ X \ {0}, this inequality shows that V π

γ is a CLF for (2.3), and that π is an
asymptotically stabilizing control policy. In other words, V π

γ is a CLF which is implicitly
learned during the training process. Indeed, many RL algorithms directly learn an estimate
of the value function, a fact which we later exploit to learn a CLF for the cart-pole swing
up-task in Section 5.5 using the nominal simulation environment.

Note that the right hand side of (5.6) will only be negative if V ∗
γ (x) + ϵπγ(x) <

1
1−γQ(x).

Since from (2.5) we know that V ∗
γ (x) > Q(x) for each x ∈ X , even the optimal policy (which

has no optimality gap) will only be stabilizing if γ is large enough. On the other hand,
for a fixed γ ∈ (0, 1], this inequality also quantifies how sub-optimal a policy can be while
maintaining stability. To make these observations more quantitative we make the following
assumption:

Assumption 5.1. For each γ ∈ [0, 1] there exists Cγ ≥ 1 such that V ∗
γ (x) ≤ CγQ(x) for

each x ∈ X .

Growth conditions of this form are standard in the literature on the stability of ap-
proximate dynamic programming [124, 156, 64]. Note that, because the running cost ℓ is
non-negative, we have Cγ′ ≤ Cγ′′ if γ

′ ≤ γ′′. In particular, the constant C1 upper-bounds
the ratio between the one-step cost and the optimal undiscounted value function. When C1

is smaller, the optimal undiscounted policy is more ‘contractive’ and approximate dynamic
programming methods converge more rapidly to an optimal solution [124]. Thus, intuitively
the constants Cγ ≥ 1 will be smaller when the system is easier to stabilize. The following
result is essentially a specialization of the main result from [64]:

Theorem 5.1. Let Assumption 5.1 hold and let γ ∈ [0, 1] and π ∈ Π̂ be fixed. Further
assume that there exists δ > 0 such that for each x ∈ X we have i) ϵπγ(x) ≤ δQ(x) and ii)
Cγ + δ < 1

1−γ . Then, π asymptotically stabilizes (2.3).
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Proof. Combining conditions i) and ii) with equation (5.6) yields:

V π
γ (F (x, π(x)))− V π

γ (x) ≤
1

γ

(
− 1 + (1− γ)[Cγ + δ]

)
Q(x).

Thus the RHS of the preceding equation will be negative-definite if Cγ + δ < 1
1−γ , which

demonstrates the desired result.

Remark 5.3. (Stability Properties of the Cost Function) In the following section we will
derive an analogous result to Proposition 5.1 for the novel reshaped cost function we propose
below. When comparing these results we will primarily focus on the effect of the constants
Cγ ≥ 1 (and the equivalent constants for the new setting). The Cγ constants can be used to
bound how large of a discount factor is need to stabilize the system. In particular, Proposition
5.1 implies that the optimal policy will stabilize the system for each γ which satisfies γ >
1− 1

Cγ
. The Cγ constants also characterizes how ‘robust’ the cost function is to suboptimal

policies. In particular, for a fixed discount factor, the policy will stabilize the system if
δ < 1

1−γ − Cγ. Thus smaller values of the Cγ constants permit more suboptimal policies.

5.3 Lyapunov Design for Infinite Horizon

Reinforcement Learning

Our method uses a positive definite candidate Control Lyapunov Function W : Rn → R for
the nonlinear dynamics (2.3), and reshapes (2.5) to our proposed new long horizon cost
Ṽ π
γ : X → R ∪ {∞}:

Ṽ π
γ (x0) =

∞∑
k=0

γk
(
[W
(
F (xk, π(xk))

)
−W (xk)] + ℓ(xk, π(xk))

)
(5.7)

s.t. xk+1 = F (xk, π(xk)).

As we shall see below, our method works best when W is in fact a discrete-time CLF for
the system, but still provides benefits when it is only an ‘approximate’ discrete-time CLF
for the system (in a sense we will make precise later). For each γ ∈ [0, 1] the new optimal
value function is given by:

Ṽ ∗
γ (x) = inf

π∈Π
Ṽ π
γ (x). (5.8)

The new cost (5.7) includes the amount that W changes at each time step, and thus
encourages choices of inputs which decreaseW over time. In this case, the Bellman equation
[20] dictates:

Ṽ ∗
γ (x) = inf

u∈U

[
γṼ ∗

γ (F (x, u)) + ∆W (x, u) + ℓ(x, u)
]
, ∀x ∈ X , (5.9)
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where ∆W (x, u) := W (F (x, u)) − W (x). To gain some intuition for the approach let us
consider the two extremes where γ = 0 and γ = 1. In the case where γ = 1, by inspection we
see that Ṽ ∗

1 = V ∗
1 −W solves the Bellman equation. Plugging in this solution demonstrates

that any optimal policy π̃∗
1 must satisfy π̃∗

1(x) ∈ argminu∈U [V
∗
1 (F (x, u)) + ℓ(x, u)]. This is

precisely the optimality condition for the original cost (2.5) when γ = 1, and thus the set
of optimal policies for the two problems coincide. Thus, in this case, by embedding the
CLF in the cost we are effectively using W as a warm-start initial guess for the optimal
value function. In the other extreme where γ = 0, from (5.9) we see that an optimal policy
must satisfy π̃∗

0(x) ∈ argminu∈U
[
∆W (x, u) + ℓ(x, u)

]
. Thus, when γ = 0 the optimal policy

attempts to greedily decrease the value of the candidate CLF and the one-step cost on the
input. As we shall see below, when intermediate discount factors are used, optimal policies
may instead decrease the value of W over the course of several steps.

Using the new cost function (5.7), each policy must satisfy the new difference equation:

Ṽ π
γ (x) = γṼ π

γ

(
F (x, π(x))

)
+W

(
F (x, π(x))

)
−W (x) + ℓ(x, π(x)). (5.10)

In our stability analysis, we will use the following composite function as a candidate CLF
for (2.3):

Ṽπ

γ(x) = W (x) + γṼ π
γ (x). (5.11)

We provide an interpretation of this curious candidate CLF in Remark 5.4 below, but first
perform an initial analysis similar to the one presented in the previous section. Defining for
each π ∈ Π̂, γ ∈ [0, 1] and x ∈ X the new optimality gap:

ϵ̃πγ(x) = Ṽ ∗
γ (x)− Ṽ π

γ (x), (5.12)

and following steps analogous to those taken in (5.4)-(5.6), we can obtain the following:

Ṽπ

γ

(
F (x, π(x))

)
− Ṽπ

γ(x) = −ℓ(x, π(x)) + (1− γ)Ṽ π
γ (x) (5.13)

= −ℓ(x, π(x)) + (1− γ)
[
Ṽ ∗
γ (x) + ϵ̃πγ(x)

]
(5.14)

≤ −Q(x) + (1− γ)
[
Ṽ ∗
γ (x) + ϵ̃πγ(x)]. (5.15)

Similar to the analysis in the previous section, we will aim to understand when the right-hand
side of (5.15) is negative, as this will characterize when π stabilizes the system. One key
difference between the inequalities (5.6) and (5.15) is that, while the original value function
V ∗
γ is necessarily positive definite, Ṽ ∗

γ can actually take on negative values since the addition
of the CLF term allows the new running cost in (5.7) to be negative. As we shall see, this
forms the basis for the stability and robustness properties our cost formulation enjoys when
W is designed properly.

Remark 5.4. (Learning Corrections to W) When the right hand side of (5.15) is negative
for each x ∈ X \ {0}, inequality (5.15) demonstrates that Ṽπ

γ is in fact a CLF for (2.3)
and that π stabilizes the system (see Theorem 5.2). We can think of W as an ‘initial guess’
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for a CLF for the system, while γṼ π
γ is a ‘correction’ to W that is implicitly made by a

learned policy π. Roughly speaking, the larger the discount factor, the larger this correction.
Thus, the user can trade-off how much the learned policy is able to correct the candidate
CLF W against the additional complexity of solving a problem with a higher discount factor,
depending on how ‘good’ they believe the CLF candidate to be.

We first state a general stability result for suboptimal policies associated to the new cost,
and then discuss how the choice of W affects the stability of suboptimal control policies:

Assumption 5.2. For each γ ∈ [0, 1] there exists C̃γ ∈ R such that Ṽ ∗
γ (x) ≤ C̃γQ(x) for

each x ∈ X .

Because the reshaped one-step cost W (F (x, u)) −W (x) + ℓ(x, u) can take on negative
values, so can the C̃γ constants. Moreover, in this case it is possibe to have C̃γ′ ≥ C̃γ′′
when γ′ ≤ γ′′. This is because when larger discount factors are used, the optimal policy can
benefit from decreasingW further into the future. The following stability result is analogous
to Proposition 5.1:

Theorem 5.2. Let Assumption 5.2 hold and let γ ∈ [0, 1] and π ∈ Π̂ be fixed. Further
assume that there exists δ̃ > 0 such that for each x ∈ X we have i) ϵ̃πγ(x) ≤ δQ(x) and ii)

C̃γ + δ̃ < 1
1−γ . Then, π asymptotically stabilizes (2.3).

The proof is conceptually similar to the proof of Proposition 1; we delegate the proof to
Appendix A.3 for brevity. Indeed, note that the conditions for stability under the new cost
are essentially identical to those for the previous cost in Proposition 5.1.

As alluded to in Remark 5.3, we will primarily focus on comparing how large the constants
Cγ ≥ 1 and C̃γ ∈ R are for the two problems, as they control the discount factor required to
learn a stabilizing policy and also the ‘robustness’ of the cost to suboptimal controllers. We
provide two characterizations which ensure that C̃γ < Cγ. The first condition is taken from
the model-predictive control literature [89, 70], where CLFs are used as terminal costs for
finite-horizon prediction problems. Proof of the following result can be found in Appendix
A.3:

Lemma 5.1. Suppose that for each x ∈ X the following condition holds:

inf
u∈U

W (F (x, u))−W (x) + ℓ(x, u) ≤ 0. (5.16)

Then Assumption 5.2 is satisfied with constant C̃γ ≤ 0.

The hypothesis of Lemma 5.1 implies that i) W is a true CLF for the system and ii)
W dominates the running cost ℓ, in the sense that W can be decreased more rapidly than
ℓ accumulates. Effectively, this condition implies that it is advantageous for polices to
myopically decrease W at each time step. Consequently, when this condition holds optimal
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polcies associated to the reshaped costs (5.7) will stabilize the system for any choice of
discount factor.

The following definition generalizes this condition to cases where W may not be a true
CLF for the system but can be decreased over several time-steps:

Definition 5.2. We say that the candidate CLF W γ̄-dominates the running cost ℓ if for
each discount factor γ such that γ̄ ≤ γ ≤ 1 and x ∈ X we have Ṽ ∗

γ (x) ≤ V ∗
γ (x).

The condition in (5.2) effectively provides a way of characterizing how ‘close’ W is to
being a true CLF for the real-world system. In particular, the larger γ̄ the further into
the future RL algorithms must look to see the benefits of decreasing W . Our previous
discussion, which showed that Ṽ ∗

1 = V ∗
1 −W , demonstrates that every candidate CLF 1-

dominates the cost. Moreover, clearly W can only 0-dominate the original cost if it is a CLF
for the system. While this condition is more difficult to verify for intermediate values of γ̄, it
provides qualitative insight into how even approximate CLFs for the system can still make
it easier to obtain stabilizing controllers.

Remark 5.5. (Robustness of reshaped cost) When the condition of Lemma 5.1 is satisfied
we will have C̃γ ≤ 0 < Cγ, implying the new cost enjoys the desirable robustness properties
discussed above. When W satisfies the ‘approximate CLF’ condition in Definition (5.2), it
will only enjoy these benefits when the discount factor is large enough. We leave it as a matter
for future work to provide quantitative estimates for the C̃γ constants in these regimes, and
to provide sufficient conditions which ensure W γ̄-dominates the running cost.

5.4 Connection to Stability of Model Predictive

Control

Here, we provide a relationship between the cost-shaping approach for reinforcement learning
problems that we proposed in the previous section and MPC terminal costs.

We briefly review stability results from the model predictive control literature, focusing
our discussion on the benefits of using a CLF as the terminal cost. In their simplest form,
MPC control schemes minimize a cost functional of the form

inf
û∈UN

JNMPC(xk, û) =
N−1∑
k=0

(
Q(x̂k) +R(ûk)

)
+ Ŵ (x̂N)

s.t. x̂k+1 = F (x̂k, ûk), x̂0 = xk,

where xk is the the current state of the real-world system, N ∈ N is the prediction horizon,
{x̂k}Nk=0 and û = {ûk}N−1

k=0 ∈ UN are a predictive state trajectory and control sequence, Q

and R are as in the previous section, and Ŵ : Rn → R≥0 is the terminal cost which is assumed
to be a proper function. The MPC controller then applies the first step of the resulting open



CHAPTER 5. LYAPUNOV-BASED COST DESIGN FOR ROBUST AND EFFICIENT
ROBOTIC REINFORCEMENT LEARNING 55

loop control and the process repeats, implicitly defining a control law uMPC(x). The MPC
cost JNMPC(xk, ·) can be thought of as a finite-horizon approximation of the original cost (2.5)
(except that it is defined over an open-loop sequence of control inputs instead of being a cost
over policies).

Stability results from the MPC literature focus primarily on the effects of the prediction
horizon N and the choice of terminal cost Ŵ . Under mild conditions, for any choice of
terminal cost (including Ŵ (·) ≡ 0), the user can guarantee that the MPC scheme stabilizes
the system on any desired operating region by making the prediction horizon N sufficiently
large [88, 70]. Thus, there is a clear connection between the explicit prediction horizon N in
MPC schemes and the discount factor γ, as both need to be sufficiently large if a stabilizing
controller is to be obtained (since trajectory optimization problems with longer time horizons
are generally more difficult to solve). Indeed, in [156] it was pointed out that the implicit
prediction horizon 1

1−γ , a factor which shows up in the stability conditions in Proposition
5.1, plays essentially the same role in stability analysis as N for an MPC scheme with no
terminal cost when the running cost is ℓ = Q + R. Thus, much like the ‘typical’ policy
optimization problems discussed in Section 5.2.2, MPC schemes with no terminal cost (or
one which is chosen poorly) may require an excessively long prediction horizon to stabilize
the system.

Fortunately, the MPC literature has a well-established technique for reducing the predic-
tion horizon needed to stabilize the system: use an (approximate) CLF for the terminal cost
Ŵ [90, 88, 70]. Indeed, roughly speaking, these results guarantee that for any prediction
horizon N ∈ N the MPC scheme will be stabilizing if Ŵ is a valid CLF for the system. Ex-
tensive empirical evidence [89] and formal analysis [90] has demonstrated that well-designed
CLF terminal costs reduce the prediction horizon needed to stabilize the system on a desired
set and increase the robustness of the overall MPC control scheme [69]. Thus, in many ways
our cost-reshaping approach can be seen as a way to obtain these benefits in the context of
infinite horizon model-free reinforcement learning.

5.5 Overview of Experimental Results

We summarize the main results for each of our examples, and explain each of them in detail
in Section 5.6. In every experiment we report, the soft actor-critic algorithm (SAC) [78] is
used as the learning algorithm to optimize the various reward structures we investigate.

5.5.1 Velocity Tracking for A1 Quadruped

We apply our approach to train a neural network controller which augments and improves
a nominal model-based controller [50] for a quadruped robot using real-world data. As
illustrated by the pink curve in Fig. 5.2 (left), the nominal controller fails to accurately
track desired velocities specified by the user. We design a CLF around the desired gait using
a linearized reduced-order model for the system. We then collect rollouts of 10s on the robot
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Figure 5.2: (Left) Plot illustrating improved velocity tracking of the learned policy (in dark
green) compared to the nominal locomotion controller (in pink) to track a desired velocity
profile (in dashed black line) using our proposed method on the Unitree A1 robot hardware.
(Right) Plot from the simulated benchmark study illustrating cumulative velocity tracking
error (lower is better) over 10s rollouts at different stages of the training. In orange, we
show the results of fine-tuning using SAC with a standard RL cost. In blue, we fine-tune
using SAC with our reward reshaping method, with a candidate CLF designed on a nominal
linearized model of the robot. In both cases, we plot the results using the discount factor
that achieved the best performance.

hardware with randomly chosen desired velocity profiles, and solve an RL problem using our
cost and a discount factor γ = 0. Our approach is able to learn a policy which significantly
improves the tracking performance of the nominal controller within 5 minutes (30 episodes)
of hardware data, as shown in Fig. 5.2 (left). A video of these results can be found in this
link. Furthermore, in Fig. 5.2 (right) we benchmark our approach in simulation against an
RL agent trained with a ‘standard’ cost which penalizes the squared error with respect to
the desired velocity. As this figure demonstrates, our method is able to rapidly decrease the
average tracking error in only around 2 thousand steps from the environment. In contrast,
the benchmark approach is only able to reach this level of performance for the first time
after around 24 thousand steps.

5.5.2 A1 Quadruped Walking with an Unknown Load

We attach an un-modeled load to the A1 quadruped, that is equivalent to one-third the mass
of the robot. Fine-tuning on hardware the same base controller from the previous set-up
where the CLF is designed to stabilize to the target gait, our approach is able to significantly
decrease the tracking error to about one-third its nominal value with only one minute of data
collected on the robot hardware as illustrated in Fig. 5.3. Additionally, in Section 5.6, we

https://youtu.be/l7kBfitE5n8
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run a simulated benchmark comparison and verify that our method clearly out-performs the
‘standard’ cost baseline for this task.

5.5.3 Fine-tuning a Learned Policy for cart-pole Swing-Up

We fine-tune a swing-up controller for the Quanser cart-pole system [161] using real-world
data and an initial policy which was pre-trained in simulation but that does not translate
well to the real system. Due to the underactuated nature of the system, synthesizing a
CLF by hand is challenging. Thus, as alluded to previously, we use a ‘typical’ cost function
of the form (2.5) and a discount factor of γ = 0.999 to learn a stabilizing neural network
policy πϕ for a simulation model of the system. Given the discussion in Remark 5.2, we
use the value function Vθ associated with the simulation-based policy as the candidate CLF
(W = Vθ) for our reward reshaping formulation (5.7). When improving the simulation-based
policy πϕ with real-world data, we keep the parameters of this network fixed and learn an
additional smaller policy πψ (so that the overall control action is produced by πϕ+πψ) using
our proposed CLF-based cost formulation. We solve the reshaped problem with a discount
factor γ = 0 and collect rollouts of 10s on hardware. Our CLF-based fine-tuning approach
is able to successfully complete the swing-up task after collecting data from just one rollout.
After collecting data from an additional rollout, the controller is reliable and robust enough
to recover from several pushes. A video of these experiments can be found here, and more
details and plots of the results are provided in Section 5.6. Furthermore, in that section
we provide a simulation study comparing a standard fine-tuning approach to our method,
showing that our approach is able to more rapidly learn a reliable swing-up policy than the
baseline and also achieves a higher reward.

5.5.4 Fine-tuning a Bipedal Walking Controller in Simulation

We also apply our design methodology to fine-tune a model-based walking controller [9] for a
bipedal robot with large amounts of dynamics uncertainty. Model uncertainty is introduced
by doubling the mass of each link of the robot. The nominal controller fails to stabilize
the gait and falls within a few steps. To apply our method, we design a CLF around the
target gait as in [9] to be used in our reward formulation. As a benchmark comparison, we
also train policies with a reward which penalizes the distance to the target motion (no CLF
term), as is most commonly done in RL approaches for bipedal locomotion which use target
gaits in the reward [122]. Our approach is able to significantly reduce the average tracking
error per episode after only 40000 steps of the environment (corresponding to 40 seconds of
data), while the baseline does not reach a similar level of performance even after 1.2 million
steps, as illustrated in Fig. 5.7.

https://youtu.be/l7kBfitE5n8
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5.5.5 Inverted Pendulum with Input Constraints

Our final example demonstrates the utility of our method even when W is a crude guess
for a CLF for the system, through the use of moderate discount factors. We illustrate this
for a simple inverted pendulum simulator by varying the magnitude of the input constraints
for the system. We use the procedure from [9] to design a candidate CLF for the system.
Like many CLF design techniques, this approach assumes there are no input constraints and
encourages the pendulum to swing directly up. As the input constraints are tightened, W
becomes a poorer candidate CLF, as there is not enough actuation authority to decrease W
at each time step. Even in this case, in line with the discussion of Remark 5.5, if a proper
discount factor is used, the addition of the candidate CLF in the reward enables our method
to rapidly learn a stabilizing controller for each setting of the input bound. These results
are presented in detail in the next section.

5.6 Examples and Comparison Studies

We now provide more details of the experimental results reported in Section 5.5 and also
additional evaluations. While we have chosen to minimize costs in the main portion of the
paper, as this is more consistent with the notation used in the literature on Lyapunov theory
and the stability of dynamic programming, most RL algorithms take in rewards that are
to be maximized. Thus, for the sake of consistency with practical implementations, in this
section we report the reward functions used in our code, which are simply the costs from
before with the sign flipped.

For training from hardware data, we used asynchronous off-policy updates, similar to the
framework presented in [73]. In particular, we have two separate threads, with one running
episodes on the hardware system with the latest available policy and adding the transition
data to the replay buffer, and the other one sampling from this buffer and performing the
actor and critic updates. We only synchronize the policy network weights at the beginning
of each episode.

5.6.1 A1 Quadruped Results

To illustrate the efficacy of our approach, we run two sets of experiments with the A1 robot:
1) accurately tracking a target velocity when the gains kp and kd are not well tuned (Section
5.5); and 2) accurately tracking the height of the robot with an unknown load attached
to it. Here we provide additional details of experiments related to these experiments. For
both settings, we use the locomotion controller presented in [50, Section 3.2] as our nom-
inal baseline controller. This controller uses a linearized rigid-body model to formulate a
quadratic-program (QP)-based controller to track a desired body pose of the robot. Specifi-
cally, the following QP is solved to obtain the ground reaction forces f for the feet in contact
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with the ground:

min
f
∥Mf − g̃ − q̈d∥Q + ∥f∥R (5.17)

s.t. fz ≥ 0,

− µfz ≤ fx ≤ µfz,

− µfz ≤ fy ≤ µfz,

where M is the inverse inertia matrix of the rigid body, g̃ := [0, 0, g, 0, 0, 0] denotes the
acceleration due to gravity and q̈d ∈ R6 are the desired pose accelerations of the robot’s
body. In particular, the desired accelerations are obtained using a PD controller,

q̈d = −kp(q − qd)− kd(q̇ − q̇d), (5.18)

with q ∈ R6 denoting the robot’s body pose.
Next, we provide further details for each set of experiments on the A1 robot.

Velocity Tracking for A1 Quadruped

When the feedback gains kp, kd ∈ R6 are not well tuned, large tracking errors in the forward
speed of the robot can persist as illustrated in Fig. 5.2 (left). To compensate for the
increased tracking error, we learn a policy πθ (MLP with two hidden layers of size 32× 32)
that outputs an additional acceleration term in (5.18), making the final desired acceleration
q̈d = −kp(q− qd)−kd(q̇− q̇d)+πθ. πθ can therefore be viewed as a learned fine-tuning policy
with respect to a model-based controller. The observations for the RL agent include the
forward and lateral velocity, the roll and pitch orientation and the desired forward velocity
of the robot. The actions include offsets to the desired forward and lateral accelerations.

The policy πθ is learned directly on the robot hardware using a CLF W designed for
the nominal rigid body dynamics of the robot following the procedure described in [9]. For

training, we use SAC [78] with the reward rk = (W (F (xk,uk))−W (xk))
∆tk

+ λ∥uk∥2. The CLF
term in the reward allows us to use a discount factor γ = 0, which considerably reduces the
complexity of the learning problem. Indeed, within only 5 minutes of data collected from the
robot hardware, our method is able to significantly reduce the tracking error in the forward
velocity compared to the nominal locomotion controller, as shown in Figure 5.2 (left).

Height Tracking with an Unknown Load

In this experiment, we use the same base controller and an equivalent offset policy πθ as in
the previous set-up and attempt to track a target gait. The CLF is designed to stabilize
to the target gait as in the previous experiment. Figure 5.3 plots the tracking error of the
learned controller versus the nominal controller after only 1 minute of training data. As
the figure demonstrates, our approach is able to significantly decrease the error to about
one-third its nominal value with only a small amount of data.



CHAPTER 5. LYAPUNOV-BASED COST DESIGN FOR ROBUST AND EFFICIENT
ROBOTIC REINFORCEMENT LEARNING 60

Figure 5.3: Comparison between nominal controller and learned policy after training on 60s
of real-world data on the A1 robot with an added 10lb weight. The learned policy is able to
significantly reduce the tracking error caused by the added weight.

Figure 5.4: Cumulative gait tracking error (lower is better) over 10s rollouts at different
stages of the simulated fine-tuning benchmark comparison of the A1 quadruped with an
unknown load. In orange, we show the results of fine-tuning using SAC with a standard
RL cost which penalizes the distance to the desired gait with a discount factor of γ = 0.99.
In blue, we plot the performance of our cost reshaping method with SAC and a discount
factor of γ = 0. For both cost formulations, we plot the discount factor that led to the best
performance.
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Figure 5.5: Experimental plots of the cart position and pendulum angle of the cart-pole
system. (left) The policy trained only in simulation fails to bring the real cart-pole system
to the upright position; (right) by fine-tuning the learned policy with 20s of real-world data
using our CLF-based reward function, we obtain a successful policy.

To verify that our method out-performs the baseline for this task, we run a simulated
benchmark comparison similar to the A1 simulation study for velocity tracking that was
presented in Section 5.5 of the thesis. For this case, we reproduce the unknown load hardware
experiment in simulation by adding a 10lb weight to the robot. When testing our method,
we again use SAC with the same reward formulation from the hardware experiments above.
For the baseline reward, we penalize the distance to the target that we want to track. Figure
5.4 depicts the best results that we have been able to obtain for each cost formulation across
different discount factors and training hyper-parameters. As Fig. 5.4 depicts, our approach
quickly converges to a stable walking controller which closely tracks the references after only
around 22 thousand steps of the environment. The baseline does not match this performance
until it has had access to around 48 thousand steps, and takes much longer to consistently
approach the performance of our method.

5.6.2 Cart-pole Results

We first provide plots and give additional details for the cart-pole experiments presented in
Section 5.5. Then, we present a comparison of the performance of our approach with respect
to a typical fine-tuning method on a simulator of the cart-pole system.
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Additional Details of the Cart-pole Hardware Fine-tuning Experiments

For the cart-pole experiments presented in Section 5.5, we used a Quanser Linear Servo
Base Unit with Inverted Pendulum [161], with a pendulum length of 60cm. The system has
4 states, x = [p, α, ṗ, α̇] ∈ R4, corresponding to the cart position p, the pendulum angle
α, and their respective velocities. The control input is the voltage applied to the motor that
actuates the cart u ∈ R.

We first train a SAC agent in simulation using a ‘conventional’ RL reward that penalizes
the distance to the equilibrium, control effort, and includes a penalty if the cart goes off-
bounds r(xk, uk) = −0.1 (5α2

k + p2k + 0.05u2k) − 5 · 103 · 1(|pk| ≥ 0.3). The observations of
the RL agent are state measurements, the actions are direct voltage commands with limits
set to |u| < 10V as specified by the manufacturer, and the simulation is run at 100Hz. In
order to obtain a stabilizing swing-up policy with this traditional reward, a high discount
factor is needed, so we use γ = 0.999. After around 15 thousand seconds of simulation data
with a learning rate of 5 ·10−4, the RL agent learns to consistently swing-up and balance the
pendulum at the upright position in simulation. However, when deployed on the cart-pole
hardware system, the policy from simulation fails to obtain successful swing-up behaviors
due to the sim-2-real gap, as shown in the attached video.

To tackle these issues, we exploit the fact that SAC uses a feedforward neural network
to approximate the discounted value function of the problem, and we use this approximate
value function (after 18,600 seconds of data) as a CLF candidate to fine-tune the learned
policy directly on hardware.

Thus, we learn on hardware a fine-tuning policy uψ (MLP with 2 hidden layers of 64×64)
whose actions are added to the ones of the policy trained on simulation uϕ (MLP with 2
hidden layers of 400×300). The episodes are 10 seconds long, and the policy is run at 500Hz,
with each episode consisting of 5000 data points. The action space limits for this new policy
are set to |uψ| < 4V but we still have a saturation of the total voltage |uϕ + uψ| < 10V. The
reward for this new policy is r̂(xk, uk) = ∆Vθ(xk, uk) − 0.1 · (5α2

k + p2k + 0.05u2k), where Vθ
is the value function network of the SAC agent that was trained in simulation. This allows
us to set the discount factor γ = 0 for the offset policy learned on hardware and therefore
greatly reduce the complexity of the learning problem. After only one episode of 10 seconds
of real-world data we obtain a policy that manages to swing-up the pendulum to the upright
position, and stabilizes it at the top. However, the behavior near the top is not smooth,
and it fails for some different initial conditions. After training with another episode of 10
seconds of data, we obtain a policy that consistently manages to swing-up and balance the
pendulum at the top, while the cart stays in-bounds. The plots in Fig. 5.5 (right) show
the cart position and the pendulum angle when deploying the fine-tuned policy in the real
Quanser cart-pole system. The plots in Fig. 5.5 (left) show the results when using the policy
that has been only trained in simulation, and how its performance is very different when
deployed in simulation vs in hardware. A video with the results of the cart-pole experiments
can be found in this link, and a sequence of snapshots of a successful experiment that uses
the fine-tuned policy can be found in Figure 5.1.

https://youtu.be/l7kBfitE5n8
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Figure 5.6: Comparison of the simulation results of fine-tuning a cart-pole swing-up policy
after adding model mismatch. A policy trained on a nominal dynamics model of the cart-
pole fails when deployed on the new dynamics. In blue, we show the results of continuing
to train the agent with the original costs and discount factor. In orange, we fine-tune using
our reshaping method with the pre-trained value function and a discount factor of γ = 0.
For each episode of training on the new dynamics model, we compare the performance
of both methods when running the cart-pole from 10 initial conditions: (on the left) the
average original reward without the CLF term, and (on the right) the cumulative number of
successful swing-ups. The plots show the mean and standard deviation of the results over
10 different training random seeds.

Cart-pole Simulation Baseline Comparison with a Typical Fine-tuning Method

As explained at the beginning of the paper, previous work has shown that using hardware
data to fine-tune a policy that has been pre-trained in simulation is a powerful approach to
tackle the sim-2-real gap problem (e.g. [176, 97, 96, 133]). These methods typically take
the RL agent trained in simulation and continue its learning process using hardware data,
the original cost function and discount factor (see e.g. [176]). In contrast, our proposed
approach stops the simulation training of uϕ and learns a smaller offset policy uψ from
hardware data using a separate learning process that has a different reward function r̂ (with
the CLF candidate being the learned value function in simulation) and a smaller discount
factor (in this case γ = 0).

In Figure 5.6, we compare in simulation the results of using this standard fine-tuning
approach with those obtained with our method. For both approaches, we first pre-train a
policy πϕ and value function Vθ on a nominal set of dynamics using SAC and the reward
r(xk, uk) = −0.1 (5α2

k+p
2
k+0.05u2k)−5 ·103 ·1(|pk| ≥ 0.3), and then perturb the parameters

of the simulator to introduce model mismatch for the fine-tuning phase. Specifically, we
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increase the weight and friction of the cart by 200%; and the mass, inertia and length of the
pendulum by a 25%. After doing this, we randomly sample 10 initial conditions around the
downright position (−0.05m ≤ p0 ≤ 0.05m, −π+0.05rad ≤ α0 ≤ π− 0.05rad, −0.05m/s ≤
ṗ0 ≤ 0.05m/s, −0.05rad/s ≤ α̇0 ≤ 0.05rad/s). We label a trial as success if within 10
seconds of simulation, the pendulum is stabilized in the set −0.12rad < α < 0.12rad,
−0.3rad/s < α̇ < 0.3rad/s and the cart never gets out of bounds (|p| < 0.3). The policy uϕ
trained with data from the nominal dynamics model does not succeed for any of the 10 initial
conditions due to the model mismatch. The baseline in Figure 5.6 is obtained by emptying
the replay buffer and using data from the new environment to continue the training process
of uϕ with the same reward r(xk, uk). On the other hand, as with the hardware experiments,
our method takes the learned value function Vθ from the nominal dynamics model and learns
an offset policy uψ using the modified reward r̂(xk, uk) = ∆Vθ(xk, uk)−0.1·(5α2

k+p
2
k+0.05u2k).

In Figure 5.6, we plot for 10 training random seeds the average original reward r(xk, uk) and
the cumulative number of successes of the validation episodes ran from the initial conditions
mentioned above. The x axis is the number of rollouts of fine-tuning data (each rollout
consists of 10 seconds of data). As this figure clearly demonstrates, our approach is able to
more rapidly learn a reliable swing-up controller than the baseline. Moreover, as the plot on
the left displays, even though we are no longer optimizing for the original reward, by rapidly
converging to a stabilizing controller our method still performs better on the original reward
than the benchmark.

The above results show that our approach effectively serves to fine-tune policies when the
dynamics of the system change. In fact, we have artificially added a severe model mismatch
and shown that we can adapt to the new dynamics with a discount factor of 0. This is because
the original value function is still a ‘good’ CLF candidate for the new system. However, if the
change in the dynamics is drastic, or if the overall shape of the motion required to complete
the task has to be greatly modified, then the value function from the original dynamics may
not be a good CLF candidate, and our method might fail. We have observed that for the
cart-pole example our method is very robust to variations in the parameters of the cart
dynamics (in fact, in the above example we are multiplying both friction and mass of the
cart by a factor of 3), but that if we drastically reduce the length and mass of the pendulum
by a 50%, our method fails. We hypothesize that this might be related to the underactuated
nature of the pendulum dynamics. An interesting direction for future work would therefore
be to study under which conditions the original value function retains the CLF properties
for a new set of dynamics.

5.6.3 Bipedal Walking Results

In this section, we provide further details on applying our design methodology to fine-tune
a model-based walking controller for a bipedal robot. As mentioned in Section 5.5, we first
design a CLF around the target gait using the nominal model as in [9] to be used in our reward
formulation. As a benchmark comparison, we also train policies with a typical reward which
penalizes the distance to the target motion. For both approaches we use the SAC algorithm
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Figure 5.7: (Left) Average tracking error (lower is better) per episode at different stages of the
training process when fine-tuning a model-based walking controller under model mismatch.
In blue, using our CLF-based reward formulation and SAC, the robot learns a stable walking
gait with only 40k steps (40 seconds) of training data. In orange, with a baseline that uses
a typical reward penalizing the tracking error to the target gait, the training takes longer to
converge and does not achieve the same performance. The results show the best performance
for both method across different discount factors and training hyper-parameters. (Right)
Comparison of the tracking error of roll-outs of different learned walking policies. In blue,
a policy learned with 40k steps of the environment using our CLF-based reward. In dashed
green, a policy learned using the baseline reward with 40k steps of the environment. In
orange, a policy learned using the baseline reward with 620k steps of the environment (best
baseline policy). The jumps in tracking error occur at the swing-leg impact times. The
policy learned with our reward formulation clearly outperforms the baseline, even when the
baseline has 15 times as much data.

to optimize the policy. We plot the best performance we have been able to obtain from
each method by sweeping across different discount factors and algorithm hyper-parameters
in Figure 5.7. In particular, the top of this Figure depicts snapshots of the stable walking
controller our method obtains after only 40k steps of the environment, which corresponds
to only 40 seconds of data given the 1kHz frequency of the controller. The bottom left
depicts the average tracking error during the training process for both methods. Finally,
the bottom-right plots the tracking error over a few representative rollouts. Note that the
tracking error for both methods ‘jumps’ each time one of the feet impacts the ground. These
jumps occur when the swing-foot impacts with the ground and are an unavoidable feature of
the environment. Thus, in this context a stable walking controller needs to rapidly converge
to the target motion over the course of the next step to maintain stability of the walking
motion. As the learning curve demonstrates, our approach is able to significantly reduce the
average tracking error per episode after only 40k steps of the environment, while the baseline
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Figure 5.8: Learning curves for an inverted pendulum system under different input con-
straints. The curves plotted correspond to the smallest discount factors that led to stabi-
lizing policies. On the left, the obtained learning curves use a CLF in the reward. On the
right, the reward does not include the CLF term. The black dots denote the first stabilizing
policy for each training. For each setting we plot the learning curve for the discount factor
that achieved the best performance.

does not reach a similar level of performance even after 1.2 million steps. As the rollouts
in the bottom-right demonstrate, our method learns a desirable tracking controller which
smoothly decreases the tracking error between each impact event after only 40 thousand
steps. In contrast, after 40 thousand steps the baseline controller diverges from the target
motion, corresponding to a fall after only a few steps. After 620 thousand steps, the baseline
controller is able to maintain the stability of the walking motion, yet the tracking performance
is notably worse than our method at 40 thousand steps, despite having access to around 15
times as many samples.

5.6.4 Inverted Pendulum Results

The states of the system are x = (θ, θ̇) ∈ R2, where θ is the angle of the arm from the
vertical position, and the input u ∈ R is the torque applied to the joint. In each of the
reinforcement learning experiments reported in Section 5.5 for this system we sample initial
conditions over the range −π ≤ θ ≤ π and −0.1 < θ̇ < 0.1.

We first train a stabilizing controller using a ‘typical’ cost function of the form rk =
−∥xk∥22 − 0.1∥uk∥22, and then train a controller using the reshaped cost

rk = − [W (F (xk, uk))−W (xk)]− ∥xk∥22 − 0.1∥uk∥22.

We use the soft actor critic (SAC) algorithm [77] and each training epoch consisted of
5 episodes with 100 simulation steps each, where each time step for the simulator is 0.1
seconds. For both forms of cost function, we sweep across different values of discount factors
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(from γ = 0 to γ = 0.95 in increments of 0.05 and also tried γ = 0.99) to 1) determine which
values of discount factors lead to stabilizing policies and 2) which discount factor allows the
agent to learn a stabilizing controller most rapidly. To determine whether a given controller
stabilizes the system we randomly sample 20 initial conditions and see if each trajectory
reaches the set {x ∈ Rn : ∥x∥2 < 0.05} within 20 seconds of simulation. For each scenario,
the smallest discount factor that lead to a stabilizing controller was also the discount factor
that cause the agent to learn a stabilizing controller with the least amount of data.

Training curves for each of the critical values of the discount factor are depicted in Figure
5.8 for each of the cost formulations and input constraints. Each curve indicates the average
reward per epoch across 10 different training runs and reports the best results for each
scenario after an extensive hyper-parameter sweep. We normalize each training curve so
that a reward of 0 indicates the average reward during the first epoch, while a reward of 1
is the largest average reward obtained across all epochs. On each of the training curves the
black dot denotes the first training epoch at which a stabilizing controller was obtained.

As illustrated by the plots in Figure 5.8 (a), the addition of the CLF enables our method
to more rapidly learn a stabilizing controller in each setting and consistently decreases the
amount of data that is needed to learn a stabilizing controller, even when W is not a global
CLF for the system. However, the effects are more pronounced when the input constraints
are less restrictive and W is a better candidate CLF. For example, when |u| < 20 our
approach is able to learn a stabilizing controller in 5 iterations, whereas it takes 92 iterations
with the original cost (our approach takes ∼ 5.4% as many samples). Meanwhile when
|u| < 4 our approach takes 198 iterations while the original cost takes 389 iterations (our
approach takes ∼ 51% as many samples).Moreover, we observe that larger discount factors
are required when |u| ≤ 7 and |u| ≤ 4, as W becomes a poorer candidate CLF for these
cases.

5.7 Chapter Summary

In this chapter, we have introduced a novel cost-shaping method to address the poor sample
complexity issue that reinforcement learning algorithms face for real-world robotic applica-
tions. By incorporating a Control Lyapunov Function term into conventional cost formula-
tions, our approach significantly reduces the number of samples required to learn a stabilizing
controller, and ensures the stability of even highly suboptimal policies.

Theoretical results validate the use of smaller discount factors in our method, which are
known to reduce sample complexity. Empirical evidence is provided through two hardware
examples: a cart-pole and an A1 quadruped robot. In both cases, stabilizing controllers are
learned with minimal fine-tuning data—–seconds for the cart-pole and few minutes for the
A1 quadruped. Furthermore, our simulation benchmark studies reveal that our proposed
cost-shaping method outperforms standard cost designs, requiring orders of magnitude less
data to obtain stabilizing policies.
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Chapter 6

Constraining Distributional Shift with
Nonlinear Control Self-Supervision

This chapter is based on the paper titled “In-Distribution Barrier Functions: Self-Supervised
Policy Filters that Avoid Out-of-Distribution States” [29], co-authored by Haruki Nishimura,
Rowan McAllister, Koushil Sreenath and Adrien Gaidon.

Previous chapters focused on incorporating structural knowledge about the system into
reinforcement learning problems through the reward function. In this chapter, we show
that even when we do not have any knowledge about the underlying dynamical structures
of the system, we can still impose control-theoretical guidance on pure deep-learning based
problems to achieve desired behaviors.

In particular, we show that CBFs—tools from the control theory literature whose goal
is to guarantee long-term constraint satisfaction—can be incorporated as inductive biases
in end-to-end visuomotor policy learning problems to make the resulting policies safe. We
tackle the important problem of distributional shift of data-driven control policies: these
policies can behave unexpectedly when far from the data distribution. This chapter builds
a self-supervised framework to constrain the state from a real system from entering out-of-
distribution regions.

6.1 Introduction

The modern advances in the representation learning literature have been an enabling factor
for the recent surge of a wide variety of methods for robotic control directly from images
or high-dimensional sensory observations [202, 57, 79, 118, 222, 197]. These approaches
for visuomotor planning and control have the potential to solve challenging tasks in which
the state of the system might not be directly observable, or even not possible to model
analytically. While promising, the high-dimensionality of the problem make these methods
susceptible to several open challenges. For example, the exploration requirements of rein-
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Figure 6.1: Our framework’s inference diagram. At each timestep, based on the current
observation Ik and the previous latent state and action, the encoder network Eψ outputs
a new latent state xk. Then, the in-Distribution Barrier Function (iDBF) and dynamics
networks give the values of Bϕ(xk), fθ(xk) and gθ(xk) which are passed to the iDBF-QP
policy filter. The iDBF-QP takes a reference control input for the current timestep πref(xk)
and returns the closest action that keeps the system in-distribution with respect to the
offline-collected dataset of safe demonstrations. For both of the examples of Section 6.5, the
total inference time (NN Inference + solving the iDBF-QP) of our framework is less than 5
milliseconds.

forcement learning (RL) algorithms are significantly exacerbated for these tasks, due to the
high-dimensionality of the observations. This means that trying to learn safe control poli-
cies using RL often requires us to accept that abundant failures will occur during training.
On the other hand, supervised learning approaches for control, such as behavioral cloning,
would in principle seem less prone to exhibit unsafe behaviors. However, it is well known
that simply because of their data-dependent nature, these methods are still susceptible to
a key challenge named distributional shift : if the trajectories of the system divert from the
training data distribution, the controller might take unexpected actions.

On the other hand, the control theory literature extensively covers the problem of long-
horizon constraint satisfaction. In particular, Control Barrier Functions (CBFs, [6]) are a
popular model-based tool used to restrict the trajectories of the system from entering unde-
sirable regions of the state-space. One of the properties of CBFs that explain their recent
popularity is that they decouple the problem of constraint-satisfaction from any performance
objective. Specifically, if a CBF is available, then [6] showed that we can construct a mini-
mally invasive safety filter that transforms into safety-preserving control actions any unsafe
commands that an arbitrary reference policy could output.

The main question we want to address in this work naturally emerges from the previous
discussion: can we take inspiration from CBFs to avoid out-of-distribution (OOD) states



CHAPTER 6. CONSTRAINING DISTRIBUTIONAL SHIFT WITH NONLINEAR
CONTROL SELF-SUPERVISION 70

when using data-driven controllers for visuomotor tasks? Even though CBFs are model-
based tools that, as such, require knowledge of the state-space and dynamics of the system,
the recent advances on learning latent state-space representations and associated dynamics
models clearly set a path for linking data-driven visuomotor policy learning with the use of
model-based control-theoretic tools such as CBFs.

Contributions: We present an end-to-end self-supervised approach for learning a task-
agnostic policy filter which prevents the system from entering OOD states. We do not assume
knowledge of the state-space or system dynamics. In addition, our framework only requires
an offline-collected dataset of safe demonstrations (where the concept of safety is only linked
to the demonstrator’s subjectivity, as it is their responsibility to provide the dataset). We
therefore do not require any unsafe demonstrations to learn a safe policy filter, in contrast
to most other works tackling constrained policy learning. Furthermore, to the best of our
knowledge, this is the first work that uses CBFs for constructing policy filters in learned latent
state-spaces. This endows our approach with the flexibility of being applicable to systems
with high-dimensional sensory observations, in contrast to most prior CBF-based methods.
We present simulation experiments on two different visuomotor control tasks, which suggest
that our framework, taking only raw RGB images as input, can learn to significantly reduce
the distributional shift from safe demonstrations and, consequently, critically improve the
safety of both systems.

6.1.1 Related Work

There exist some constructive procedures for synthesizing CBFs based on sum-of-squares
programming [93, 132, 51, 201] or Hamilton-Jacobi reachability [39]. However, these methods
require knowledge of the dynamics of the system and typically suffer from scalability issues
for high-dimensional systems. More in line with this work, some recent results show that
CBFs can be learned from data [95, 54, 160, 167, 125, 1, 91]. None of these works, however,
consider systems with high-dimensional observations. Furthermore, the works [95, 54, 160]
assume a priori knowledge of a control-invariant safe set, and focus on building a CBF for
that particular set. The line of research of [167, 125] has the most similar problem setup to
our work, as they also consider learning from safe demonstrations. Although, notably, the
authors provide formal verification arguments for the learned CBFs, their methods are not
applicable to high-dimensional observations, assume a nominal dynamics model is given, and
use an algorithmic approach for the detection of the boundary of the dataset that does not
scale to large datasets. Other recent approaches build signed distance functions from sensory
measurements that are obtained from a LiDAR or stereo cameras [129, 181, 45]. However,
these functions are not encouraged to satisfy any set invariance property.

Extensions of the CBF-based control filters to systems with dynamics or measurement-
model uncertainty have also been recently proposed [147, 30, 188, 56, 55]. These works
assume that a CBF is provided, and formulate uncertainty-robust optimization problems
for the controller design. They can be considered complementary to our deterministic but
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end-to-end approach. Future work should explore quantifying uncertainty estimates within
our framework to robustify the learned policy filters.

Several existing approaches for OOD prevention learn density models of training data
that can be then used to restrict the agent from taking low likelihood actions or moving
towards unvisited states [136, 166, 218, 113]. Although some of these methods have been
shown to be effective at offline RL settings that are specially susceptible to distributional
shift, the learned density models have no notion of control invariance and, therefore, do not
consider the problem of how to prevent distributional shift over a long time horizon. A
notable exception is the work of [99] to constrain long-term distributional shift, in which a
min-max Bellman backup operator is constructed so that Lyapunov-like functions arise as
value functions of an offline RL problem. This work however does not consider the extension
to visuomotor control tasks in learned latent spaces. Furthermore, for our approach we
choose not to rely on a min-max backup operator to learn the certificate function and,
instead, use the very suitable theory of CBFs to devise a self-supervised learning framework.

Finally, the work of [215] presents a framework to learn safe sets in a latent state-space
for iterative control tasks. Compared to this work, our framework has the advantage that it
is task-agnostic and does not require any interactions with the environment during training.

6.2 Problem Statement

We start by revising some basic concepts about Control Barrier Functions that were already
introduced in Chapter 2. CBFs are particularly well-suited for continuous-time nonlinear
control-affine systems of the form in (2.2)

ẋ = f(x) + g(x)u,

where x ∈ X ⊆ Rn is the state and u ∈ U ⊆ Rm the control input.
We now remind the readers of the definition of CBF (which was already introduced in

Definition 6.1), but phrase it in a convenient way for this chapter, putting each condition
that needs to be satisfied for a function to be a CBF as a separate entry in the definition.

Definition 6.1 (Control Barrier Function, [8]). We say that a continuously differentiable
function B : X → R is a Control Barrier Function (CBF) for system (2.2) with associated
safe-set Xsafe ⊂ X if the following three conditions are satisfied:

B(x) ≥ 0 ∀x ∈ Xsafe, (6.1)

B(x) < 0 ∀x ∈ X \ Xsafe, (6.2)

∃u ∈ U s.t. Ḃ(x, u) + γ(B(x)) ≥ 0 ∀x ∈ X , (6.3)

where γ : R→ R is an extended class K∞ function.
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In the CBF literature, safety is considered as a set invariance problem, as presented in
Definition 2.6. The existence of a CBF B guarantees that for system (2.2) any Lipschitz
continuous control policy π satisfying

π(x) ∈ {u ∈ U : ∇B(x)[f(x) + g(x)u]︸ ︷︷ ︸
=Ḃ(x,u)

+γ (B(x)) ≥ 0} (6.4)

will render the set Xsafe forward invariant [8, Corollary 2].
For a given task-specific reference controller πref : X → U that might be safety-agnostic,

the condition of (6.4) can be used to formulate an optimization problem that, when solved
at every time-step, yields a minimally-invasive policy safety filter [6]:

πCBF(x) = argmin
u∈U

∥u− πref(x)∥2 (CBF-QP)

s.t. ∇B(x)[f(x) + g(x)u] + γ(B(x)) ≥ 0.

Assuming that the actuation constraints that define U are linear in u, this problem is a
quadratic program (QP). This is a consequence of the dynamics of the system (2.2) being
control-affine, and it practically means that the problem can be solved to a high precision
very quickly (around 103Hz). This is critical since the CBF-QP needs to be solved at the
real-time control frequency.

The CBF-QP constitutes a very appealing approach for practitioners: it provides a task-
agnostic minimally invasive filter that can wrap safety around any given policy πref, and
therefore rewrite any unsafe control input that πref could output at any time. However,
designing a valid CBF is nontrivial. In fact, it is still an active research topic even when
assuming perfect knowledge of the dynamics of the system [51, 39, 201]. The two main
difficulties in the design of a CBF are the following: first, a control-invariant set Xsafe must
be obtained (which in general is different from the geometric constraint set that could be
obtained, for instance, from a signed-distance field) and, second, a function that satisfies
condition (6.3) must be found for that set. Furthermore, even after obtaining a CBF, solving
the CBF-QP requires perfect state and dynamics knowledge.

With our framework, we take initial steps towards building a safe policy filter from
high-dimensional observations. Specifically, we take inspiration from CBFs to design an
end-to-end learning framework to constrain deep learning models to remain in-distribution
of the training data. We take as input a dataset of high-dimensional observations of different
safe demonstrations, and build a neural CBF-like function that encourages the system to
always stay in-distribution with respect to the observations from the safe demonstrations.
This, in turn, significantly improves the safety of the system during deployment.

More concretely, for a given dataset of N safe trajectories D =
{
(I it , u

i
t)
t=Ti
t=0

}i=N
i=1

we tackle

the problem of designing a policy filter that can be applied to any reference controller πref
to detect and override actions from πref that lead to OOD states. We denote I it and u

i
t the

high-dimensional observation and control input, respectively, measured at time t for the ith
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trajectory. Furthermore, Ti is the final time-step of trajectory i. The demonstrations in
the dataset D might correspond to different tasks and they do not need to be optimal with
respect to any objective. In fact, our only assumption is that the dataset only contains
safe demonstrations (in the sense that these trajectories should not contain any states from
which the system is deemed to fail, even if it has not failed yet), so that we can encourage
long-term constraint satisfaction using CBFs.

6.3 In-Distribution Barrier Functions

In this section, we introduce a self-supervised approach for synthesizing neural CBF-like
functions whose aim is to constrain the system to remain in-distribution with respect to
an offline dataset of safe demonstrations. We call these functions in-Distribution Barrier
Functions (iDBFs). We will for now assume that we have a parametric continuous-time
control-affine model of the dynamics of the system in a state-space X ⊂ Rn

ẋ = fθ(x) + gθ(x)u, (6.5)

and present the iDBF learning procedure for this system. Furthermore, for this section
we assume that the dataset D of safe trajectories contains true state measurements, i.e.,

D =
{
(xit, u

i
t)
t=Ti
t=0

}i=N
i=1

, where xit and u
i
t are the state and control input, respectively, measured

at time t for the ith trajectory. In Section 6.4, we will provide details on how to learn a
dynamics model of this form in a latent state-space when we have a dataset containing
high-dimensional sensory observations.

We parameterize an iDBF Bϕ : X → R as a neural network with parameters ϕ, and
construct an empirical loss function that encourages it to satisfy the three CBF conditions
(6.1), (6.2) and (6.3) with respect to a set Xsafe that is also implicitly learned through self-
supervision. To design the loss function, we take inspiration from previous literature on
learning CBFs [54, 160, 32]. Nevertheless, instead of assuming that the safe-set Xsafe is given
and that we can sample from it and from its unsafe complement Xunsafe

.
= X \Xsafe, we build

our loss function in a self-supervised manner just from the dataset of safe demonstrations.
We accomplish this by leveraging ideas from contrastive learning [75, 151, 40, 206, 172]. In
particular, as we explain in detail later, we build a contrastive distribution from which to
sample candidate unsafe states, given that we do not have any unsafe demonstrations in our
dataset. The loss function we propose for learning an iDBF takes the following form:

LiDBF =
wsafe

Nsafe

∑
xsafe

[ϵsafe −Bϕ(xsafe)]
+ +

wunsafe

Nunsafe

∑
xunsafe

[ϵunsafe +Bϕ(xunsafe)]
++

wascent

Nsafe

∑
(xsafe,πsafe)

[
ϵascent −

(
∇Bϕ(xsafe)[fθ(xsafe) + gθ(xsafe)πsafe] + γ(Bϕ(xsafe))

)]+
, (6.6)
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where [·]+ := max(0, ·); (xsafe, πsafe) are samples from the empirical distribution of the dataset
D; xunsafe are samples from a contrastive distribution that we will define soon; wsafe, wunsafe

and wascent are the weights of the different loss terms; and ϵsafe, ϵunsafe and ϵascent are positive
constants that serve to enforce strictly the inequalities and generalize outside of the training
data.

The goal of the first two terms in the loss function is to learn an iDBF that has a positive
value in states that belong to the data distribution of safe demonstrations, and negative
everywhere else (meaning we are encouraging the satisfaction of conditions (6.1) and (6.2)
of the definition of CBF). Note that this classification objective is very related to the notion
of energy-based models (EBMs) —neural network density models that assign a low energy
value to points close to the training data distribution and a high value to points that are far
from it [83]. In fact, we took inspiration from the Noise Contrastive Estimation (NCE, [75])
training procedure of EBMs, in particular the InfoNCE loss [151], to design (6.6). Intuitively,
these methods use a noise contrastive distribution to generate candidate examples where to
increase the value of the energy of the EBM, while decreasing the energy at the training data
points. We precisely want the opposite result for our problem: a high value of Bϕ on the
training data distribution, and a low value everywhere else. However, we have one additional
requirement, which is that the iDBF should have a value of zero at the boundary, as set by
conditions (6.1) and (6.2). This is the reason why we design the two first terms of the loss
function using the [·]+ operator.

In the third term of the loss (6.6), note that we do not encourage the satisfaction of
condition (6.3) over the entire state-space, but only over the dataset of safe demonstrations.
However, in the definition of CBF, if condition (6.3) is only satisfied ∀x ∈ Xsafe instead of
∀x ∈ X , the CBF still guarantees the control-invariance of Xsafe. We are therefore using our
empirical data distribution of safe demonstrations as a sampling distribution covering the
set Xsafe, which we are also implicitly learning as the zero-superlevel set of Bϕ. Furthermore,
compared to prior approaches that encourage the satisfaction of condition (6.3) for a single
policy [54, 160], we instead use all pairs (xsafe, πsafe) present in the dataset D to compute this
term of the loss. This way, we force the set of admissible control inputs (6.4) to be as large
as our dataset allows, reducing the conservatism of the learned iDBF.

In order to generate the contrastive distribution from which to sample xunsafe, as we ulti-
mately want to learn the iDBF in a latent state-space in which it might not be intuitive how
to construct a noise distribution, we take the following steps. 1) Based on the dataset of safe
demonstrations D, we train a neural behavioral cloning (BC) model that outputs a multi-
modal Gaussian distribution over actions conditioned on the state, with density πBC(u|x).
2) Then, during the training process of the iDBF, for each xsafe state sampled from D we
randomly take Ncandidate control inputs ucandidate and evaluate their density value based on
the BC model πBC(ucandidate|xsafe). 3) If the value of the density falls below a threshold, then
that control input is forward-propagated for one timestep using the dynamics model (6.5) to
generate a sample xunsafe. This way, we generate a contrastive data distribution by propa-
gating actions that are unlikely present in the dataset of safe demonstrations. Furthermore,
by only propagating these actions for one timestep, the contrastive distribution is close to
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the training data, which is desirable for the learning process [76].

6.4 Learning iDBFs from High-Dimensional

Observations

After introducing the training procedure for an iDBF when the state representation and
dynamics model (6.5) are given, we now relax these assumptions and present an approach to
learn a latent state-space representation and a continuous-time dynamics model of the form
(6.5), suitable to be integrated in the same end-to-end learning framework. We therefore
now consider precisely the problem setting described in Section 6.2, in which we only assume
having access to a dataset containing observation-action pairs of safe demonstrations D ={
(I it , u

i
t)
t=Ti
t=0

}i=N
i=1

.

We use an autoencoder architecture to obtain the latent state-space representation, and
employ the training procedure of Neural Ordinary Differential Equations (Neural ODEs,
[34]) to learn a dynamics model of the form (6.5) in the latent state-space. Note that by
enforcing the continuous-time control-affine structure of the dynamics model, we ensure that
the iDBF-QP policy filter (equivalent to the CBF-QP, see Figure 6.1) obtained with the
learned iDBF and dynamics model will also be a quadratic program.

The inference procedure of our end-to-end learning framework is depicted in Figure 6.1.
We use a recursive encoder network Eψ that takes the current measurement Ik, as well as the
previous latent state xk−1 and action uk−1 to generate the new latent state xk at each time-
step k. The decoder networkDξ generates a reconstructed observation Îk for each latent state
xk. The proposed loss function for the latent state-space representation and dynamics model
penalizes both the prediction error of the dynamics model and the observation reconstruction
error:

Ldyn =
1

Ndyn(Tpred + 1)

Ndyn∑
j=1

Tpred∑
k=0

[
wstate

∥∥x̃tj+k|tj − xtj+k

∥∥2
+wrec1

∥∥∥Ĩtj+k|tj − Itj+k

∥∥∥2

+wrec2

∥∥∥Îtj+k − Itj+k

∥∥∥2
]
.

(6.7)

Here, xtj+k = Eψ(Itj+k, xtj+k−1, utj+k−1) is the latent state at timestep tj + k. x̃tj+k|tj de-
notes the latent state prediction obtained by forward-propagating the dynamics model (6.5)
to timestep tj+k starting from the state xtj and using zero-order hold on the sequence of con-

trol inputs (utj , utj+1, ..., utj+k−1). Additionally, Ĩtj+k|tj := Dξ(x̃tj+k|tj) is the reconstructed

observation from the dynamics prediction for timestep tj + k. Finally, Îtj+k := Dξ(xtj+k) is
the encoded-decoded observation at timestep tj + k.

Note that we use a multiple-shooting error for the loss (6.7), as the prediction horizon Tpred
does not need to coincide with the length of the trajectories in the dataset D. In particular,
the loss (6.7) is computed by sampling a batch of trajectories from D and then splitting
them into Ndyn portions of length Tpred. The initial timestep of each portion j = 1, ..., Ndyn
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is denoted as tj. The first two terms in the loss function are then penalizing the state and
reconstruction error of the multistep predictions of the dynamics model from each initial state
xtj . The last term in the loss function penalizes the reconstruction error of the autoencoder
directly, without using the dynamics model. The recent results of [15] show that multiple
shooting loss functions lead to more accurate predictions compared to single-step prediction
losses, and to better conditioned learning problems compared to single-shooting propagation
losses.

An iDBF can be learned together with the autoencoder and dynamics model by optimiz-
ing jointly the losses (6.6) and (6.7). For the iDBF loss, each xsafe is obtained by encoding
the observations sampled from the dataset D, and xunsafe is obtained by forward propagating
the actions that have a low probability according to the pretrained BC model, as explained
at the end of last section.

Once the iDBF Bϕ; dynamics model fθ and gθ; and encoder Eψ networks are trained,
we can construct a policy filter —which we call iDBF-QP in Figure 6.1— in an equivalent
manner to the CBF-QP that was introduced in Section 6.2.

Remark 6.1. It is important to note that our iDBF training procedure encourages the satis-
faction of the CBF conditions (6.1), (6.2) and (6.3) only at a discrete set of training points
(which has measure zero). Because of this, we do not have control invariance guarantees
for any particular set, and solving the iDBF-QP does not theoretically assure that the sys-
tem will remain in-distribution. Although obtaining rigorous theoretical guarantees should
be a priority for future work, the empirical results of Section 6.5 show that our framework
takes a promising first step towards building effective policy filters from raw high-dimensional
observations.

6.5 Examples

In this section, we present the empirical evaluation of our framework on two different simu-
lation environments: a toy example of a robot navigation task using top-down images of the
scene, and an autonomous driving scenario with egocentric image observations. For both
cases, given a safety-agnostic reference controller πref, we use our iDBF-QP at each timestep
with the latest image measurement to find the closest control input to πref among those that
prevent the system from entering OOD states (see Figure 6.1). For each environment, we
train the iDBF, autoencoder and dynamics model using a dataset containing 64× 64 RGB
images of offline-collected trajectories.

Robot Navigation with Top-Down View Images: In this example, a circular robot
with radius of 1 meter navigates inside of a 10×10 meter room that has a square-shaped 4×4
meter static obstacle in the middle, as shown in Figure 6.2 (left). The underlying dynamics
of the robot are those of a 2D single integrator, with two control inputs corresponding to the
x and y velocity commands, although we do not assume having access to that knowledge.
Instead, we only have a dataset of image-action pairs corresponding to 5000 trajectories of
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Table 6.1: Evaluation of the collision rate and cumulative filter intervention (a measure of
how intrusive the filter is with respect to the reference controller) for the top-down view
robotic navigation example (over 20 simulations of 5-seconds each with random initial and
goal states) and for the egocentric view autonomous driving example (over 20 simulations of
50-seconds each with random initial heading angles). For the BC and ensemble filters, we pro-
vide results for 3 different threshold values: (plow, pmid, phigh) = (0.32, 0.35, 0.38) for the nav-
igation example, and (0.2, 0.5, 0.8) for driving; and (δlow, δmid, δhigh) = (0.0005, 0.001, 0.002)
for both examples.

BC Filter Ensemble Filter
πref Ours

plow pmid phigh δlow δmid δhigh
Collision

Rate (%)
46.72± 8.36 0.28± 0.27 35.60± 7.20 13.86± 4.96 2.48± 1.57 43.92± 7.90 43.82± 7.41 42.88± 7.41

Top-Down

Navigation
Cumulative

Intervention
0.0± 0.0 109.2± 20.1 85.6± 6.8 146.4± 9.6 189.1± 11.6 150.2± 19.3 94.5± 16.3 52.7± 11.5

Collision

Rate (%)
81.00± 0.23 1.56± 1.20 21.94± 1.85 14.44± 2.69 8.78± 1.86 78.74± 0.20 78.60± 1.63 81.50± 0.27

Egocentric

Driving
Cumulative

Intervention
0.0± 0.0 278.1± 32.6 713.8± 1.4 726.7± 2.6 750.8± 6.9 28.7± 2.1 42.8± 3.6 208.9± 5.7

100 points each (corresponding to 2 seconds since the time-step is 0.02s). These trajectories
satisfy two requirements: 1) the robot should never collide against the obstacle, and 2) the
center of the robot should never leave the room limits. The trajectories are collected applying
random actions at each time-step, and we check both conditions before adding a trajectory
to the dataset. We use our framework to train an autoencoder with latent state-space of
dimension 3, a dynamics model, and an iDBF. The reference policy πref simply applies a
velocity in the direction of a goal-point, with magnitude proportional to the distance. In
Figure 6.2, we show the results of applying our iDBF-QP when the goal state (marked with
an ×) is outside of the room limits and at the other side of the obstacle. Even though the
reference controller is trying to take the shortest path, which would go through the obstacle,
the iDBF-QP prevents the robot from first, colliding with the obstacle, and second, from
having its center exit the room limits.

Autonomous Driving with Egocentric View Images: We use the environment
provided by [98], which is based on the Bullet physics simulator and the Panda3d graphics
engine [66] to obtain egocentric RGB image measurements. The car navigates in a corridor
which has four 90-degree turns to form a square-shaped center-line. One of such turns is
shown in the snapshots of Figure 6.3. The car has two control inputs: the desired forward
velocity and the steering angle. Given the high-order dynamics of the simulator, we collect
data manually to make sure no trajectories included in the dataset are deemed to collide
with any of the walls. We split the collected data into 450 trajectories of 100 points each (5
seconds since the timestep is 0.05s). This makes for a much sparser and less diverse (since it
is collected by a human) dataset compared to the previous example. During deployment, we
use a reference controller πref that simply drives the car forward at a constant speed of 3.5m/s.
Our iDBF-QP framework of Figure 6.1, taking the latest egocentric RGB measurement as
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Figure 6.2: Example result using our proposed policy filter for a robot top-down visual
navigation task. The reference controller simply tries to bring the robot (blue circle) to a
goal state (denoted with ×). Our proposed filter, by keeping the system in-distribution,
prevents the robot from colliding against the obstacle (orange square) and keeps its center-
point inside the limits of the image. A video with several demonstrations of our approach
for this task can be found in this link.

input, is very effective at preventing the car from colliding against the walls, as shown in
Table 6.1. Figure 6.3 contains snapshots of our iDBF-QP forcing the car to take a turn as
it approaches a corner, even though the reference command is to drive forward.

Using these simulation environments we also aim to compare our proposed approach with
other techniques for avoiding distributional shift. Other works that consider this problem
use data density models to constrain the learned policies [166, 136, 218], or use uncertainty
estimation schemes, such as ensemble models, to avoid taking actions that lead to highly
uncertain states [42]. We build our baselines upon a conditional BC density model of the
training data and an ensemble of latent state-space dynamics models:

BC Density Filter Baseline: As explained in Section 6.3, we train a BC multi-modal
Gaussian model that is used to generate the contrastive training distribution for the iDBF.
For any state, the BC model outputs a probability distribution over actions, with density
function πBC(u|x). We train this BC model using privileged true-state information of the
system, and use its density values to build a filter that serves as an apples-to-apples baseline
comparison to our approach. Specifically, the baseline also takes the reference controller πref
and, at every timestep, it finds the closest control action to πref(x) that satisfies πBC(u|x) ≥ p,
out of 200 randomly sampled actions. If no control action satisfying that condition is found,
the reference control input is applied without filtering. Given the clear dependence on the
threshold value p, we implement this baseline for several values of p and show the results in
Table 6.1 for three representative cases plow, pmid and phigh.

Ensemble Variance Filter Baseline: We also train an ensemble of independent latent
state-space dynamic models (fθ and gθ), keeping the rest of the framework introduced in
Section 6.4 unchanged. During deployment, at every timestep we look for the closest control

https://drive.google.com/drive/folders/1fxLfn5FFc6eY5MqNt8OzbM7UbnzTWeAY?usp=share_link
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Figure 6.3: Snapshots of egocentric view images of a driving simulation when the car is
approaching a corner. The reference controller just commands the car to drive straight, but
our iDBF-QP policy filter forces a left turn as the car approaches the corner. Therefore,
our filter prevents a collision as a result of staying in-distribution with respect to the safe
training data. A video with several demonstrations of our approach for this task can be
found in this link.

action to πref(x) that keeps the variance σ2
ens(x, u) of the predicted dynamics fθ(x) + gθ(x)u

under a threshold δ. As in the previous baseline, we also look over 200 randomly sampled
actions at each timestep, and different threshold levels δlow, δmid and δhigh. Again, if no
control action satisfying the threshold condition is found, the reference control input is
applied without filtering.

In Table 6.1, we provide a summary of the comparison results for both environments. We
use the collision rate as a proxy for distributional shift, since the training data only includes
collision-free trajectories. The collision rate for the robot navigation example is computed
as the fraction of time that the robot spends either in collision with the obstacle or having
its center-point outside of the room limits. For the driving scenario, the collision rate is
the fraction of time that the robot is in collision with any of the walls. For both examples,
our method drastically reduces the collision rate compared to using the reference (unfiltered)
controller. Furthermore, we achieve the lowest collision rates when compared to the baselines.
From the baselines, only the BC density filter (with a very restrictive threshold phigh) manages
to achieve small collision rates, at the cost of a very high cumulative filter intervention rate.
The filter intervention rate is computed for both examples as

∑
t ∥ut − πref(xt)∥

2, where each
control input dimension is normalized between −1 and 1.

6.6 Chapter Summary

In this chapter, we have taken first-steps towards merging control-theoretic CBFs with practi-
cal robotic tasks that involve high-dimensional perception modules. While existing methods
based on CBFs require a known low-dimensional state representation, our proposed approach
is directly applicable to systems that rely solely on high-dimensional visual observations by

https://drive.google.com/drive/folders/1fxLfn5FFc6eY5MqNt8OzbM7UbnzTWeAY?usp=share_link
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learning in a latent state-space. We considered a realistic problem setting in which no unsafe
demonstrations are available, and proposed a self-supervised learning approach to learn a
policy filter that effectively restricts the system from diverging towards OOD states.

By learning this filter in a latent state-space, our framework should be flexible-enough
to be applicable to a wide variety of visuomotor tasks, and should be compatible with
the use of large-scale pretrained representation learning models. In this chapter, we have
demonstrated that our method is effective for two different visuomotor control tasks in
simulation environments, including both top-down and egocentric view settings.
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Part II

Leveraging Data to Safely Bridge the
Reality Gap
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Chapter 7

Reinforcement Learning for Feedback
Linearization Controllers under
Model Uncertainty

This chapter is based on the paper titled “Improving Input-Output Linearizing Controllers for
Bipedal Robots via Reinforcement Learning” [28], co-authored by Mathias Wulfman, Ayush
Agrawal, Tyler Westenbroek, S. Shankar Sastry, Claire J. Tomlin and Koushil Sreenath.

In this second part of the thesis, we tackle the challenges that model-based controllers
face due to model uncertainty. In particular, we propose a set of methods that use data
to bridge the gap between an approximate mathematical model of the system and the real
world.

This chapter specifically focuses on using reinforcement learning to compensate the effects
of model mismatch when trying to feedback-linearize a nonlinear system. Since feedback
linearization controllers are very commonly used for bipedal walking robots through the
framework of Hybrid Zero Dynamics, we focus this chapter on this particular application.

7.1 Introduction

7.1.1 Motivation

Research on humanoid walking robots is gaining in popularity due to the robots’ medical
applications as exoskeletons for people with physical disabilities and their usage in dangerous
disaster and rescue missions. Model-based controllers have traditionally been applied to
obtain stable walking controllers but, in general, they heavily rely on having perfect model
knowledge and unlimited torque capacity. In this chapter we take a data-driven approach
to address these two topics of current research interest which still constitute challenges in
bipedal robot control: uncertainty in the dynamics and input saturation.
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7.1.2 Related work

Input-output linearization is a nonlinear control technique that can be used to get the out-
puts of a nonlinear system to track desired reference trajectories in a simple manner. By
introducing an appropriate state transformation, this control technique permits rendering
the input-output dynamics linear. Afterward, linear systems control theory can be used to
track the desired outputs. However, input-output linearization requires precise knowledge
of the system’s dynamics, which directly conflicts with the fact that actual systems’ dynam-
ics might have nonlinearities that can be extremely challenging to model precisely. Several
efforts have been made to address this issue, using different methods including robust and
adaptive control techniques [145, 171, 47, 170] or, more recently, data-driven learning meth-
ods [186, 209]. This chapter will take the later approach to address this challenge, specifically
combining reinforcement learning (RL) and the Hybrid Zero Dynamics (HZD) method for
getting bipedal robots to walk.

The high nonlinearity, underactuation and hybrid nature of bipedal robotic systems pose
additional problems that need to be addressed. The virtual constraints and HZD methods
[71, 214, 212, 140] provide a systematic approach to designing asymptotically stable walking
controllers if there is full model knowledge. These methods have been very successful in
dealing with the challenging dynamics of legged robots, being able to achieve fast enough
convergence to guarantee stability over several walking steps. By the HZD method, a set
of output functions is chosen such that, when they are driven to zero, a time-invariant
lower-dimensional zero dynamics manifold is created. Stable periodic orbits designed on
this lower-dimensional manifold are also stable orbits for the full system under application
of, for instance, input-output linearizing [179], or Control Lyapunov Function (CLF)-based
controllers [9]. The later is based on solving online quadratic programs, whereas the former
approach does not rely on running any kind of online optimization. The CLF-based method
has also been successful in taking into account torque saturation [65], but it assumes perfect
model knowledge too. In fact, taking input saturation into account is of major importance
and not doing it is one of the main disadvantages of input-output linearization controllers
that is often overlooked.

In this work, we build on the formulation proposed in [209] wherein policy optimization
algorithms from the RL literature are used to overcome large amounts of model uncertainty
and learn linearizing controllers for uncertain robotic systems. Specifically, we extend the
framework introduced in [209] to the class of hybrid dynamical systems typically used to
model bipedal robots using the HZD framework. Unlike the systems considered in [209], here
we must explicitly account for the effects of underactuation when designing the desired output
trajectories for the system to ensure that it remains stable. Additionally, we demonstrate
that a stable walking controller can be learned even when input constraints are added to the
system. By focusing on learning a stabilizing controller for a single task (walking), we are
able to train our controller using significantly less data than was used in [209], where it was
trained to track all possible desired output signals.
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7.1.3 Contributions

The contributions of this chapter thus are:

• We extend the work in [209] to the case of hybrid, underactuated bipedal robots with
input constraints.

• We directly address the challenge of dealing with a statically unstable underactuated
system, designing a new training strategy that uses a finite-time convergence feedback
controller to track desired walking trajectories.

• We perform Poincaré analysis to claim local exponential stability of our proposed RL-
enhanced input-output linearization controller in the presence of torque saturation.

7.2 Feedback Linearization

We now give a brief background on an important class of controllers for nonlinear systems:
those that use feedback control to linearize the dynamics. The advantage of using this method
is very clear as, after cancelling out the nonlinearities of the dynamics, linear systems theory
can be used to describe the behavior of the resulting linear system. In this chapter, we
consider nonlinear control-affine systems of the form in (2.2), but explicitely also define a
set of outputs:

ẋ = f(x) + g(x)u,

y = h(x),
(7.1)

with x ∈ X ⊂ Rn being the system state, u ∈ U ⊆ Rm the control input and y ∈ Rm the
outputs of the system, assuming there are the same number of outputs as inputs. We make
the standard assumption that the vector fields f , g and h are Lipschitz continuous. Then, if
the vector relative degree of the outputs is r, we have

y(r) = Lrfh(x) + LgL
r−1
f h(x)u, (7.2)

where the functions Lrfh and LgL
r−1
f h are known as rth order Lie derivatives. More infor-

mation about high-order Lie derivatives can be found in [169]. Here, y(r) is the vector of rth

derivatives of each output in y, and (7.2) indicates that the inputs u first appear at the rth

derivative of these outputs, and not for lower derivatives. If LgL
r−1
f h ̸= 0 and nonsingular

∀ x ∈ X , with X ⊂ Rn being a compact subset containing the origin, then we can use a
feedback control law πFL which renders the input-output dynamics of the system linear

πFL(x, µ) = πff (x) +
(
LgL

r−1
f h(x)

)−1
µ, (7.3)

where πff is the feedforward term

πff (x) = −
(
LgL

r−1
f h(x)

)−1
Lrfh(x) (7.4)
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and µ is the auxiliary input.
Using this control law yields the input-output linearized system y(r) = µ, and we can

define a state transformation Φ : x→ (η, z), with

η = [h(x)⊤, Lfh(x)
⊤, ..., Lr−1

f h(x)⊤]⊤ (7.5)

and z ∈ Z, where Z = {x ∈ X | η ≡ 0} is the zero-dynamics manifold. The closed-loop
dynamics of the system can then be represented as a linear time invariant system on η ∈ T
and the zero-dynamics on z ∈ Z: {

η̇ = Fη +Gµ,

ż = κ(η, z),
(7.6)

where

F =


0 Im . . 0
0 0 Im . 0
. . .
0 . . . Im
0 . . . 0

 and G =


0
.
.
0
Im

 , (7.7)

with F ∈ Rmr×mr and G ∈ Rmr×m.
So, independently of the choice of the additional input µ, the control law of (7.3) input-

output linearizes the dynamics of the system (7.1). The additional input µ is typically set
as a feedback of the transverse dynamics η.

7.3 Effects of Uncertainty on the Feedback

Linearization

In this section, we study the case in which there is a mismatch between the model and
the actual plant dynamics and derive the effects of this uncertainty on the input-output
linearization of the plant. Now, plant and model are represented by:

(Unknown) Plant Dynamics (Known) Model Dynamics

{
ẋ = f(x) + g(x)u,

y = h(x),
(7.8)

{
ẋ = f̃(x) + g̃(x)u,

y = h(x).
(7.9)

We assume: 1) the vector fields f , g, f̃ , g̃ are Lipschitz continuous and 2) the vector
relative degrees of the model and plant dynamics are the same (r). These are the standard
assumptions that have been made in most of the literature [146, 209, 186, 187] to tackle the
mismatch terms analytically.
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The feedback linearization control law (7.3) computed based on the nominal model (f̃ , g̃)
has the following form

π̃FL(x, µ) = π̃ff (x) +
(
Lg̃L

r−1

f̃
h(x)

)−1

µ, (7.10)

with a feedforward term

π̃ff (x) := −
(
Lg̃L

r−1

f̃
h(x)

)−1

Lr
f̃
h(x). (7.11)

Using the control law of (7.10) in (7.2) results in the input-output dynamics of the true plant

y(r) = µ+∆1 (x ) +∆2 (x )µ, (7.12)

with the uncertainty terms

∆1 (x ) : = Lrfh(x)− LgL
r−1
f h(x)

(
Lg̃L

r−1

f̃
h(x)

)−1
Lr
f̃
h(x),

∆2 (x ) : = LgL
r−1
f h(x)

(
Lg̃L

r−1

f̃
h(x)

)−1
− Im.

(7.13)

The dynamics of η from (7.6) now become:

η̇ = (Fη +G∆1 (η, z )) +G (Im +∆2 (η, z ))µ. (7.14)

Note that this equation is the same as (7.6) if the uncertainty terms are zero. Therefore,
(7.6) can be considered as a nominal model for the true input-output linearized dynamics
(7.14).

7.4 Reinforcement Learning for Uncertainty

Compensation

In this section we will use RL to define an additive additional input whose goal is to cancel out
the uncertainty terms present in the input-output linearized dynamics (7.14), and therefore
get the transverse dynamics to behave like (7.6), as done in [209].

If instead of (7.10) we now apply the input

π̂θ(x, µ) = π̃FL(x, µ) + πθ(x, µ), (7.15)

with π̃FL as defined in (7.10) and with

πθ(x, µ) := αθ(x)µ+ βθ(x), (7.16)

to (7.2), we obtain

y(r) = µ+
(
∆1 (x ) + LgL

r−1
f h(x)βθ(x)

)
+
(
∆2 (x ) + LgL

r−1
f h(x)αθ(x)

)
µ, (7.17)
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where θ ∈ Θ ⊂ RN are parameters of a neural network that are to be learned.
If we manage to obtain y(r) = µ then we will have input-output linearized the dynamics

of the true plant, so we can now clearly see the goal of the RL agent for this approach:
design policies αθ and βθ such that y(r) is as close as possible to µ. Thus, the time-wise loss
function can be defined as

lIO,θ := ||y(r) − µ||2 . (7.18)

7.5 Implementation for Bipedal Walking

Now, we will formulate our problem as a canonical RL problem [183] for the specific case of
bipedal walking. In this chapter, we model the bipedal walking robot as a hybrid dynamical
system of the form

H =

{
ẋ = f(x) + g(x)u, x /∈ S,
x+ = ∆(x−), x− ∈ S,

(7.19)

where S is the switching surface (when the swing foot impacts the ground).
For the specific case of walking and having outputs of relative degree r = 2, meaning

that η = [y, ẏ], a typical choice for the additional control input µ is the nonlinear feedback
law

µ(η) = 1
ϵ2
ψa(y, ϵẏ), with

ψa(y, ϵẏ) = −sign(ϵẏ)|ϵẏ|
a − sign(ϕa(y, ϵẏ))|ϕa(y, ϵẏ)|

a
2−a ,

ϕa(y, ϵẏ) = y +
1

2− a
sign(ϵẏ)|ϵẏ|2−a.

(7.20)

This µ ensures finite time convergence to the zero-dynamics manifold Z and ϵ controls the
rate of convergence [213]. Then, using outputs of relative degree r = 2, we can rewrite the
time-wise loss function in (7.18) as

lIO,θ(x) := ||ÿ − µ(x)||2 . (7.21)

For the term ÿ present in the loss function, we use a finite difference approximation of the
second derivative of the outputs of the plant.

Even though only αθ and βθ are learned, for the sake of simplicity let π̂θ : x 7→ π̂θ(x) be
our policy taking the current state x and returning the control action u as defined in (7.15),
and let the reward for a given state x be R(x, π̂θ) = −lIO,θ(x) + Re(x), where Re(x) is a
penalty value if the state x is associated with a fallen robot configuration or a bonus value
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otherwise. Then, we can define the learning problem as

max
θ

Ex0∼X0,w∼N (0,σ2)

∫ T

0

R(x(τ), π̂θ(τ))dτ,

s.t. ẋ = f(x) + g(x)(π̂θ(x) + wt),

umin ≤ πθ(x) ≤ umax,

(7.22)

where X0 is the initial state distribution, T > 0 is the duration of the episode, w is an
additive zero-mean noise term and umin and umax are the torque limits. An episode ends
when the robot completes an entire step or when it falls. Discrete-time approximations of this
problem can be solved using standard on-policy and off-policy RL algorithms. Note that our
proposed controller (7.15) with the chosen loss (7.18) and the inclusion of input constraints
in the optimization (7.22) addresses the classical challenges of input-output linearization:
model uncertainty and input constraints. For simplicity, we will call original IO controller
the one of (7.10) and RL-enhanced IO controller the one of (7.15).

7.6 Numerical Validation

7.6.1 System Description

For the simulations, we use a model of the five-link planar robot RABBIT [37], wherein the
stance phase is parametrized by a suitable set of coordinates (Fig. 3.1). RABBIT is a 7
Degrees-of-Freedom (DOF) underactuated system with 4 actuated DOF, with the actuators
being located at the four joints (the two hip joints and the two knee joints). The dynamics
of this 14-dimensional system are extremely coupled and nonlinear.

7.6.2 Reference Trajectory Generation

In order to generate a reference trajectory offline, we use the Fast Robot Optimization and
Simulation Toolkit (FROST) [81]. The four actuated DOF (q1, q2, q3 and q4) are virtually
constrained to be Bézier Polynomials of the stance leg angle θ = q5 + q1 + 0.5q3, which
is monotonically increasing during a walking step. This way, the trajectory that has been
generated is time-invariant, which makes the controlled system more robust to uncertainties
[213]. Taking the difference between the actual four actuated joint angles and the desired
ones (coming from the reference trajectory) as output functions y, the system is input-output
linearizable with vector relative degree two. Consequently, we can use the RL-enhanced IO
controller presented in the previous section.

We train our controller using a Deep Deterministic Policy Gradient Algorithm (DDPG)
[175]. DDPG is used to tune the parameters of the actor and critic feedforward neural
networks. They each have two hidden layers of widths 400 and 300 and ReLU activation
functions. The actor neural network maps 14 observations, which are the states of the robot
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(a) scale = 1.5 (b) scale = 3

Figure 7.1: Euclidean norm of the tracking error (for 10 and 200 steps) and joint torques (for
10 steps), for the original IO controller (yellow), the RL-enhanced IO controller (blue), and
the RL-enhanced IO controller with torque saturation (red). Torque saturation for the RL-
enhanced IO controller is set at 105 Nm when scale = 1.5, and at 155 Nm when scale = 3.
There is no torque saturation for the original IO controller.

—we are assuming a fully observable environment— to 20 outputs, corresponding to the
4× 4 αθ and the 4× 1 βθ.

7.6.3 Model-Plant Mismatch and Torque Saturation Simulation
Results

We introduce model uncertainty by scaling all the masses and inertia values of the plant’s
links by some factor (scale) with respect to the known model. After about twenty minutes
of training when the scale is 1.5 and about an hour when the scale is 3, we obtain the results
shown in Fig. 7.1, in which we compare the tracking error and the joint torques when using
(i) the original IO controller, (ii) the RL-enhanced IO controller without torque saturation
and (iii) the RL-enhanced IO controller when there is torque saturation. For these results
we did not need to include torque saturation in the training process, and Fig. 7.1 shows
that the RL-enhanced IO controller still performs well in the presence of input constraints
if they are not too severe. The beneficial effects of including torque saturation constraints
during training will be discussed later.

It can be observed that the RL-enhanced IO controller with and without saturation is able
to stabilize the system indefinitely each time, whereas the original IO controller accumulates
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Figure 7.2: RL-enhanced IO controller with torque saturation at 45 Nm and scale = 1.
Euclidean norm of the tracking error (left) and joint torques (right) for a simulation of 10
walking steps. The original IO controller fails after one step and is not shown in this figure.

error on the outputs and the robot falls after some steps. Moreover, the RL-enhanced IO
controller achieves this without increasing the magnitude of the torques when compared
with the original IO controller.

The stability of the periodic gait obtained using the RL-enhanced IO controller can
also be studied by the method of Poincaré. We consider the post-impact double stance
surface, SDS, as a Poincaré section, and define the Poincaré map P : SDS → SDS. We
can numerically calculate the eigenvalues of the linearization of the Poincaré map about
the obtained periodic gait, which results in a dominant eigenvalue of magnitude 0.67 for
scale = 1.5 and no torque saturation, 0.78 for scale = 1.5 with torque saturation, 0.76 for
scale = 3 and no torque saturation and 0.83 for scale = 3 with torque saturation. The
magnitude of the dominant eigenvalue being always less than one means that the designed
controllers achieve local exponential stability [213].

Next, we study the case of having no mismatch between the plant and the model dynamics
but, instead, having heavy input constraints in the torques, which make the original IO
controller fail. By training while taking into account the torque saturation, we obtain a
RL-enhanced IO controller that achieves stable walking under the presence of severe input
constraints, as shown in Fig. 7.2.

7.6.4 Tracking Untrained Trajectories

Depicted in Fig. 7.3 are the tracking errors and torques produced by the RL-enhanced
IO controller for a scale of 3 when it is trying to follow periodic orbits it was not trained on.
These trajectories differ from the one used for the training (trajectory 1 ) in the maximum
hip height during a step. As it can be seen in the left part of Fig. 7.3, trajectory 2 and
trajectory 1 are relatively similar, whereas trajectory 3 constitutes a noticeably different
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Figure 7.3: Left: Phase portrait of the periodic orbits. Right: Euclidean norm of the tracking
error and joint torques for a simulation of 10 steps on untrained trajectories.

walking gait. From the figures, we can see that the RL-enhanced IO controller performs
better when tested in trajectory 2 than in trajectory 3. Actually, it will be able to stably
track trajectory 2 for an indefinitely long horizon and not trajectory 3. This was expected,
since the more different the trajectory is, the farther the state of the robot will be from the
distribution of states the DDPG agent has been trained on. Also, the output functions we
have defined depend on the Bézier coefficients of the reference trajectory, and so the actual
input-output linearizing controller is different for each trajectory. Still, thanks to training
the DDPG agent on a stochastic distribution of initial states, we get enough exploration
to achieve good tracking performance on untrained trajectories as long as they are not too
different from the one the agent was trained on.

7.7 Chapter Summary

In this chapter, we presented a framework for improving an input-output linearizing con-
troller for a bipedal robot when uncertainty in the dynamics and input constraints are
present. We demonstrated the effectiveness of this approach by testing the learned con-
troller on the hybrid, nonlinear and underactuated five-link walker RABBIT.
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Chapter 8

Reinforcement Learning for CLF and
CBF-based Controllers under Model
Uncertainty

This chapter is based on the paper titled “Reinforcement Learning for Safety-Critical Control
under Model Uncertainty, using Control Lyapunov Functions and Control Barrier Functions”
[38], co-authored by Jason Choi, Claire J. Tomlin and Koushil Sreenath.

In this chapter, we address the challenges that another important class of nonlinear
controllers face due to model uncertainty: Control Barrier Function and Control Lyapunov
Function-based controllers. In particular, we again use data collected from the real system to
overcome the adverse effects of the reality gap through a reinforcement learning framework.
We proposed several methods to mitigate these effects, and validate them in numerical
simulations of a RABBIT 3.1 bipedal robot.

8.1 Introduction

In this chapter, we propose an approach that benefits from the recent successes of learning-
based control in highly uncertain dynamical systems, such as in [87, 119], yet is also able
to reason about safety in a formal way. We seek to combine the benefits of these data-
driven approaches with the benefits of classical model-based control methods which have
theoretical guarantees on stability and safety. Towards this end, we use Control Lyapunov
Function and Control Barrier Function-based controllers designed on nominal systems that
are then trained through reinforcement learning (RL) to work on systems with uncertainty.
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Figure 8.1: Our method (RL-CBF-CLF-QP): We propose a control barrier function (CBF)
and control Lyapunov function (CLF) based parametrized quadratic program, where the
parameter θ corresponds to weights of a neural network that estimates the uncertainty in
the CLF and CBF dynamics through reinforcement learning. An RL agent is used to learn
uncertainties in the CLF, CBF and other constraint dynamics. The quadratic program uses
learned uncertainties in combination with safety and stability constraints from a nominal
model to solve for the control input point-wise in time.

8.1.1 Related Work

In the field of controls, Control Lyapunov Function (CLF)-based and Control Barrier Func-
tion (CBF)-based control methods have been shown to be successful for safety-critical control.
The seminal works [65, 7] have shown that CLF-based quadratic programs (CLF-QP) with
constraints can be solved online in order to perform locomotion and manipulation tasks.
In [6], CBFs are incorporated with the CLF-QP, namely CBF-CLF-QP, to handle safety
constraints effectively in real time.

These CLF-based and CBF-based methods heavily rely on accurate knowledge of the
system model. When the model is uncertain, we must consider adaptive or robust versions.
In [145], an L1 adaptive controller is incorporated with the CLF-QP in order to adapt to
model uncertainty, and is shown to work effectively for bipedal walking. In [147], a robust
version of the CBF-CLF-QP is proposed, that solves the quadratic program for the worst
case effect of model uncertainty. While these methods can address the adverse effects of
model uncertainty to some degree, they may often fail to account for the correct magnitudes
of adaptation and uncertainty.

Recently, several methods addressing the issue of model uncertainty in the control prob-
lem using a data-driven approach have been proposed. The work [209] proposes an RL-based
method to learn the model uncertainty compensation for input-output linearization control.
In [28] the former method is extended to underactuated bipedal walking on a flat terrain.
Each of the methods presented in [186, 187] addresses how to learn the uncertainty in CLF
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and CBF constraints respectively, using empirical risk minimization. Our methodologies
most closely align with these works in that we are also using learning methods to reduce
model uncertainty explicitly in input-output linearization, CLF, and CBF-based control.
However, the main novelty in our approach is that we have devised a unified RL-based
framework for learning model uncertainty in CLF, CBF, and other dynamic control-affine
constraints altogether in a single learning process. In addition to the aforementioned papers,
there are also a few approaches [12, 19, 60] that learn model uncertainty through probabilis-
tic models such as Gaussian Processes. Although these approaches allow for an insightful
analysis of the learned model or policy, they can scale poorly with state dimension.

8.1.2 Contributions

In this chapter, we present a novel RL-based framework which combines two key compo-
nents: 1) an RL agent which learns model uncertainty in multiple general dynamic con-
straints including CLF and CBF constraints through training, and 2) a quadratic program
that solves for the control that satisfies the safety constraints under the learned model un-
certainty. We name this framework Reinforcement Learning-based Control Barrier Function
and Control Lyapunov Function Quadratic Program (RL-CBF-CLF-QP). After training, the
RL-CBF-CLF-QP can be executed online with fast computation. The overall diagram of our
framework is presented in Fig. 8.1. Here is the summary of the contribution of this chapter:

1. We present an RL framework that learns model uncertainty for CLF, CBF and other
control-affine dynamic constraints in a single learning process.

2. We generalize our method to high relative-degree outputs and Control Barrier Func-
tions.

3. Our method can learn the uncertainty in the dynamics of parameterized CBFs that
are not only state-dependent but also dependent on other parameters.

4. We numerically validate our method on an underactuated nonlinear hybrid system: a
bipedal robot walking on stepping stones with significant model uncertainty.

8.2 Control Lyapunov Functions and Control Barrier

Functions under Feedback Linearization

We now briefly present how Control Lyapunov Functions (Definition 2.5) and Control Bar-
rier Functions (Definition 2.7) can be incorporated in the feedback linearization framework
introduced in Section 7.2 to efficiently design control laws.
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As in the precious chapter, we consider control-affine nonlinear systems of the form in
(7.1)

ẋ = f(x) + g(x)u,

y = h(x),

where x ∈ Rn is the system state, u ∈ Rm the control input and y ∈ Rm the output of the
system. Then, if the vector relative degree of the outputs is r, we can apply a control input
which renders the input-output dynamics of the system linear:

πFL(x, µ) = πff (x) +
(
LgL

r−1
f h(x)

)−1
µ, (8.1)

where πff is the feedforward term

πff (x) = −
(
LgL

r−1
f h(x)

)−1
Lrfh(x) (8.2)

and µ is the auxiliary input.
As explained in Section 7.2, using this control law yields the input-output linearized

system y(r) = µ, and we can define a state transformation Φ : x→ (η, z), with

η = [h(x)⊤, Lfh(x)
⊤, ..., Lr−1

f h(x)⊤]⊤ (8.3)

and z ∈ Z, where Z = {x ∈ X | η ≡ 0} is the zero-dynamics manifold. The closed-loop
dynamics of the system can then be represented as a linear time invariant system on η ∈ T
and the zero-dynamics on z ∈ Z: {

η̇ = Fη +Gµ,

ż = κ(η, z),
(8.4)

where

F =


0 Im . . 0
0 0 Im . 0
. . .
0 . . . Im
0 . . . 0

 and G =


0
.
.
0
Im

 , (8.5)

with F ∈ Rmr×mr and G ∈ Rmr×m.

8.2.1 Control Lyapunov Function Based Quadratic Programs

We now introduce the use of Control Lyapunov Functions under feedback linearization con-
trol schemes.

In [9] a control method that guarantees exponential stability of the transverse dynamics
η with a rapid enough convergence rate is presented. It introduces the concept of a rapidly
exponentially stabilizing control Lyapunov function (RES-CLF). Specifically, a one-parameter
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family of continuously differentiable functions Vε : Rmr → R is said to be an RES-CLF for
system (7.1) if ∃ γ, c1, c2 > 0 such that ∀ 0 < ε < 1 and ∀ η ∈ Rmr, the following holds:

c1∥η∥2 ≤ Vε(η) ≤
c2
ε2
∥η∥2, (8.6)

V̇ε(η, µ) +
λ

ε
Vε(η) ≤ 0. (8.7)

If we define an auxiliary control input µ that makes η exponentially stable, of the form

µ =

[
− 1

εr
Kr, ..., −

1

ε2
K2, −

1

ε
K1

]
η = Kη, (8.8)

where K ∈ Rm×mr, then we can choose a quadratic CLF candidate Vε(η) = ηTPεη, where Pε
is the solution of the Lyapunov equation ATPε + PεA = −Q, with A being the closed-loop
dynamics matrix A = F + GK and Q any symmetric positive-definite matrix. Defining
f̄ = Fη, ḡ = G, we can write the derivative of the RES-CLF as:

V̇ε(η, µ) = Lf̄Vε(η) + LḡVε(η)µ, (8.9)

with
Lf̄Vε(η) = ηT

(
F TPε + PεF

)
η, LḡVε(η) = 2ηTPεG. (8.10)

We can then define for every time step an optimization problem in which condition (8.7)
becomes a linear constraint on the auxiliary input µ. The objective function can be set
to minimize the norm of the control inputs, in which case the optimization problem is a
quadratic program (QP):

FL-CLF-QP:

µCLF(x) = argmin
µ

∥µ∥22 (8.11)

s.t. V̇ε(η, µ) +
λ

ε
Vε(η) ≤ 0 (CLF)

This problem constitutes an alternative to the CLF-QP presented in (2.20), but based
on a feedback linearization control scheme.

8.2.2 Control Barrier Function and Control Lyapunov Function
Based Quadratic Programs

We next present the integration of Control Barrier Functions into feedback linearization
control schemes for systems with high relative degree. In [144] the concept of an Exponential
Control Barrier Function (ECBF) is defined. Specifically, a function B : Rm → R is an ECBF
of relative degree rb for the system (7.1) if there exists Kb ∈ R1×rb such that

sup
u

[
Lrbf B(x) + LgL

rb−1
f B(x)u+Kbηb(x)

]
≥ 0 (8.12)
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for ∀x ∈ {x ∈ Rn| B(x) ≥ 0} with

ηb(x) =


B(x)

Ḃ(x)

B̈(x)
...

B(rb−1)(x)

 =


B(x)

LfB(x)
L2
fB(x)
...

Lrb−1
f B(x)

 , (8.13)

that guarantees B(x0) ≥ 0 =⇒ B(x(t)) ≥ 0, ∀t ≥ 0.
We can then choose a virtual input µb that input-output linearizes the ECBF dynamics:

B(rb)(x, µ) = Lrbf B(x) + LgL
rb−1
f B(x)πFL(x, µ) =: µb, (8.14)

with πFL defined in (8.1). We refer readers to [144] for more details. The condition in (8.12)
then translates to choosing a µb such that

µb +Kbηb ≥ 0, (8.15)

which is added to the following QP, where safety is prioritized over stability by relaxing the
CLF constraint:

FL-CBF-CLF-QP:

µCBF-CLF(x) = argmin
µ, µb, d

∥µ∥22 + p d2 (8.16)

s.t. V̇ε(η, µ) +
λ

ε
Vε(η) ≤ d (CLF)

µb +Kb ηb ≥ 0 (CBF)

µb = B(rb)(x, µ)

Ac(x)µ+ bc(x) ≤ 0 (Constraints)

Formulating a QP allows us to incorporate additional control-affine constraints (last line
in (8.16)). These could be input saturation constraints or other state-dependent constraints
such as contact-force constraints.

8.3 Reinforcement Learning for CLF-QP Based

Controllers under Model Mismatch

In this section, we address the issue of having a mismatch between the model and the plant
dynamics when the true plant vector fields f, g are not precisely known. We instead have
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an approximate nominal dynamics model of the form (2.25). Specifically, between this and
the next sections we analytically examine the effects of model uncertainty on the dynamics
of the CLF, CBF and other control-affine dynamic constraints. For each of these cases we
will define the goal of the RL agent and the policy to be learned.

8.3.1 Reinforcement Learning for CLF-QP Based Controllers:
First Approach

The first approach to address model uncertainty in CLF-based controllers is a direct ap-
plication of the method presented in the Chapter 7. By correctly input-output linearizing
the unknown plant, there will be no uncertainty in the FL-CLF-QP of (8.11) since V̇ε only
depends on the matrices F and G of the input-output linearized dynamics of the system,
which do not contain any uncertainty terms.

Thus, after following the procedure described in Chapter 7, the FL-CLF-QP of (8.11)
can be solved point-wise in time to get µ and the final control input used is obtained by
plugging µ in (7.15).

8.3.2 Reinforcement Learning for CLF-QP Based Controllers:
Second Approach

In the second approach, we do not directly correct the uncertain terms of the transverse
dynamics (7.14) as we did in the first approach. Instead, we directly analyze the impact of
these mismatch terms on the dynamics of the CLF.

For this approach, we assume that the CLF designed for the nominal model’s transverse
dynamics is also a CLF for the true plant’s transverse dynamics (7.14).

In the presence of uncertainty, V̇ε becomes

V̇ε(η, z, µ) = Lf̄Vε(η, z) + LḡVε(η, z)µ, (8.17)

where
Lf̄Vε(η, z) = L ˜̄f

Vε(η) + 2η⊺PεG∆1 (η, z )︸ ︷︷ ︸
=: ∆v

1 (η, z )

,

LḡVε(η, z) = L˜̄gVε(η) + 2η⊺PεG∆2 (η, z )︸ ︷︷ ︸
=: ∆v

2 (η, z )

.
(8.18)

Here, ˜̄f and ˜̄g are the nominal model input-output linearized dynamics: namely, ˜̇V ε(η, µ) =
L ˜̄f
Vε(η) + L˜̄gVε(η)µ. Therefore, under uncertainty:

V̇ε(η, z, µ) =
˜̇V ε(η, µ) +∆v

1 (η, z ) +∆v
2 (η, z )µ. (8.19)

In this second approach we use RL to estimate the uncertainty terms in V̇ε: ∆
v
1 and ∆v

2 .
For this purpose, we construct an estimatê̇V ε,θ(η, z, µ) =

˜̇V ε(η, µ) + βVθ (η, z) + αVθ (η, z)µ, (8.20)
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where θ ∈ Θ ⊂ RN are neural network parameters to be learned. The goal of RL is then

obvious: learn a policy {αVθ , βVθ } such that ̂̇V ε,θ is as close as possible to V̇ε. Any reward
function that penalizes the absolute value of the difference between the two terms can be
used. More details on the specific RL implementation are discussed in Section 8.5.

Remark 8.1. For convenience, it is assumed here that αVθ , β
V
θ share the same network

parameters θ, but this does not need to be the case. In this chapter, we will assume that all
the policy functions to be learned are sharing the same parameters.

The estimate ˆ̇Vε,θ in (8.20) is then used as our best guess of V̇ε for the optimization
problem:

RL-CLF-QP:

µ∗
θ(x) = argmin

µ
∥µ∥22 (8.21)

s.t. ̂̇V ε,θ(η, z, µ) +
λ

ε
Vε(η) ≤ 0 (RL-CLF)

Remark 8.2. In this chapter, we have illustrated the case in which the CLF is applied to
the input-output linearized dynamics. The reason why we use a CLF on the input-output
linearized dynamics instead of the full dynamics is that in this way we have a systematic
way of computing a CLF candidate, whereas on the original nonlinear system this process
could be challenging. However, this approach is not confined to the input-output linearization
structure and is also applicable to any general nonlinear control-affine system.

8.4 Reinforcement Learning for CBF-CLF-QP Based

Controllers under Model Mismatch

Having studied how to compensate for the effects of model uncertainty on CLF-based min-
norm controllers, we will now extend our framework to the safety-critical FL-CBF-CLF-QP
by following a similar approach.

8.4.1 Reinforcement Learning for CBFs

In the presence of uncertainty, (8.14) becomes

B̃(rb)(x, µ) = Lrb
f̃
B(x) + Lg̃L

rb−1

f̃
B(x)π̃FL(x, µ), (8.22)
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and the actual CBF’s rthb derivative can be written as:

B(rb)(x, µ) = B̃(rb)(x, µ) +∆b
1 (x) +∆b

2 (x)µ, (8.23)

where ∆b
1 and ∆b

2 are the uncertain terms that arise from the model-plant mismatch. We
omit analytic expressions of ∆b

1 ,∆
b
2 for conciseness, but they can be derived similarly to

(7.13).

Remark 8.3. When the state of the system can be represented as x = [q, q̇]T , as in most
robotic systems, even for high relative degree CBFs model uncertainty only affects the rthb
time derivative of B, since B(rb) is the only term that depends on the plant dynamics through
the vector fields f and g.

Next, we present how to estimate the uncertainty terms for the CBF and for other
dynamic constraints using RL. The approach presented in Section 8.3.1 cannot be used here
since the CBF functions depend on the full dynamics of the system, and not the transverse
dynamics.

We build an estimator of B(rb):

B̂(rb)θ(x, µ) = B̃(rb)(x, µ) + βBθ (x) + αBθ (x)µ, (8.24)

and the goal of RL is to learn a policy αBθ , β
B
θ such that B̂(rb)θ is as close as possible to B

(rb).
In order to integrate everything in a new QP we define the new virtual input of the CBF

dynamics as

µb := B̂(rb)θ. (8.25)

In cases where the CBF also depends on a set of parameters ψ ∈ Rq , then we need to
define the CBF as B : Rn×q → R. The neural-network policy will now need to take ψ as
additional inputs αBθ : Rn×q → Rm, βBθ : Rn×q → R and the proposed estimate of the rthb
time derivative of B becomes:

B̂(rb)θ(x, µ, ψ) = B̃(rb)(x, µ, ψ) + βBθ (x, ψ) + αBθ (x, ψ)µ. (8.26)

8.4.2 Reinforcement Learning for Additional Control-Affine
Dynamic Constraints

Now we study the effects of uncertainty on other linear constraints that depend on the
dynamics of the system:

Ac(x, f, g)µ+ bc(x, f, g)︸ ︷︷ ︸
=: ζ(x, µ)

≤ 0. (8.27)

In the presence of model mismatch we have

bc(x, f, g) = bc(x, f̃ , g̃) +∆c
1 (x ),

Ac(x, f, g) = Ac(x, f̃ , g̃) +∆c
2 (x ),

(8.28)
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where∆c
1 and∆c

2 represent the uncertainty terms. We can then define the nominal constraint

ζ̃(x, µ) = bc(x, f̃ , g̃) + Ac(x, f̃ , g̃)µ. (8.29)

And the real value of the constraint can be expressed as

ζ(x, µ) = ζ̃(x, µ) +∆c
1 (x ) +∆c

2 (x )µ. (8.30)

We can build an estimator of the form

ζ̂θ(x, µ) = ζ̃(x, µ) + βCθ (x) + αCθ (x)µ, (8.31)

with a learned policy αCθ , β
C
θ . The goal of the RL agent is again in this case to make the

estimator ζ̂θ as close as possible to ζ. Expanding ζ̃ we can rewrite the estimator as

ζ̂θ(x, µ) =
(
bc(x, f̃ , g̃) + βCθ (x)

)
︸ ︷︷ ︸

=: bcθ(x)

+
(
Ac(x, f̃ , g̃) + αCθ (x)

)
︸ ︷︷ ︸

=: Ac
θ(x)

µ. (8.32)

So far, we have explained our method of constructing an estimator of a single B(rb) and
a single ζ(x, µ). This can be applied to nb multiple CBFs and nc multiple control-affine
constraints. The final optimization problem, which includes all the learned estimates of the
uncertain terms is:

RL-CBF-CLF-QP:

µ∗
θ(x) = argmin

µ, µb, d
∥µ∥22 + p d2 (8.33)

s.t. ̂̇V ε,θ(η, z, µ) +
λ

ε
Vε(η) ≤ d (RL-CLF)

for i = 1 · · ·nb µb,i +Kb,i ηb,i ≥ 0 (RL-CBF)

µb,i = B̂(rb)i,θ(x, µ)

for j = 1 · · ·nc Acj,θ(x)µ+ bcj,θ(x) ≤ 0 (RL-Constraints)

8.5 Reinforcement Learning-based Framework

In this section, we present a unified RL framework that can learn the uncertainty terms in
the CLF, CBF, and other dynamic constraints by building the terms specified in the earlier
sections as αVθ , α

B
θ , α

C
θ , β

V
θ , β

B
θ , β

C
θ .
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A diagram of this framework is illustrated in Fig. 8.1. The RL agent learns a policy,
which is a combination of uncertainty terms in CLF, CBF and other dynamic constraints.
These terms are then added to the QP constraints derived from the nominal model, resulting
in the estimates of the true plant constraints. Using these estimates, the RL-CBF-CLF-QP
optimization problem, in which model uncertainty is addressed, is solved point-wise in time
to obtain the control input.

The reward function of the learning problem is designed such that it minimizes each of
the estimation errors. Thus, the time-wise loss functions are defined as:

lV,θ : = ||V̇ε − ̂̇V ε,θ(x, µ)||2

lB,θ : = ||B(rb) − B̂(rb)θ(x, µ)||2

lC,θ : = ||ζ − ζ̂θ(x, µ)||2
(8.34)

It is important to note that the true plant’s dynamics information is not used for com-
puting the values of these loss functions. We use explicit expressions for Vε, B and ζ and
compute the time-derivatives V̇ε, B

(rb) using numerical differentiation. For the CBF, it is im-
portant to note that regardless of the value of rb we only need to do numerical differentiation
once, as follows from Remark 8.3.

A canonical RL problem can be formulated, with the reward for a given state x defined
as the weighted sum of the negative loss functions in (8.34), in addition to a user-specific
failure-case penalty −le : Rn → R:

R(x, θ) = −wvlV,θ −
nb∑
i=1

wb,ilBi,θ −
nc∑
j=1

wc,jlCj ,θ − le(x). (8.35)

The learning problem is then defined as:

max
θ

Ex0∼X0,w∼N (0,σ2)

∫ T

0

R (x(τ), θ) dτ,

s.t. ẋ = f(x) + g(x)π̃FL(x, µ
∗
θ(x) + ω),

(8.36)

where µ∗
θ(x) is the solution of (8.33), X0 is the initial state distribution, and w ∼ N (0, σ2)

is white noise added to encourage exploration. A discretized version of this problem can be
solved using conventional RL algorithms.

Remark 8.4. While running training experiments or simulations, it is assumed that the
robot operates under the true plant dynamics. We will later show in Section 8.7 that the
trained policy works well even when the true plant in the evaluation differs from the plant of
the training environment.
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8.6 Application to Bipedal Robots

The goal of this section is to validate that the RL-CBF-CLF-QP framework enables safety-
critical control when model uncertainty is present. We test our method on RABBIT [37], a
planar five-link bipedal robot, walking on a discrete terrain of stepping stones with one step
preview.

8.6.1 Simulation Settings

We run two simulation scenarios with our method and offer comparisons with the previous
methods. The first simulation consists of RABBIT simply walking on a flat terrain. We
evaluate the CLF based methods in Section 8.3 in this scenario. This is to verify only
the stabilizing capacity of our proposed method under model uncertainty. In the second
simulation, we put the robot on a discrete terrain of randomly spaced stepping stones (Fig.
8.4). The robot’s task here is to always place the foot on the next stepping stone, while
managing the stability and not violating the contact-force constraint. The full RL-CBF-
CLF-QP is tested in this simulation scenario.

The main model uncertainty in both demonstrations is introduced by scaling all mass
and inertia parameters of each link by a constant scale factor = 2, i.e. the nominal model’s
mass and inertia terms are half of those of the actual plant.

A single periodic walking gait trajectory is generated offline by the Fast Robot Opti-
mization and Simulation Toolkit (FROST) [81]. The output function h(x) is defined as the
difference between the actuated joint angles and the desired trajectory’s joint angles from
the obtained periodic orbit. The gait’s nominal step length is 0.35m. Finally, a torque sat-
uration of 200Nm is applied to the control inputs of all simulations, including training and
evaluation.

8.6.2 Reinforcement Learning Settings

We train our agent using a standard Deep Deterministic Policy Gradient Algorithm (DDPG)
[175]. The input for the actor neural network is 14 observations, which is RABBIT’s full
state x, in addition to the CBF parameter ψ = lmin,k corresponding to the minimum step
length of the kth stepping stone (Fig. 8.4) in the second simulation. We use two CBFs B1

and B2 to constrain the position of the swing foot so that it lands on the stepping stone,
as shown in Fig. 8.4. We use two dynamic constraints C1 and C2 which correspond to the
unilateral normal force and friction cone constraints respectively. The output dimension is
25, corresponding to the 4×1 αVθ , α

B1
θ , αB2

θ , αC1
θ , α

C2
θ and the 1×1 βVθ , β

B1
θ , βB2

θ , βC1
θ , βC2

θ .
Both actor and critic neural networks have two hidden layers of widths 400 and 300.

This agent is trained on the simulation of ten walking steps per episode, and a discrete time
step Ts = 0.01sec is used. The failure cases are determined by the robot’s pose. Training on
six multiple cores of Intel(R) Core(TM) i5-9400F CPU (2.90GHz) without the use of GPU
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took about 34 seconds per episode. The final agent in use is obtained after 110, 79 and 133
episodes for IO-RL + FL-CLF-QP, RL-CLF-QP and RL-CBF-CLF-QP respectively.

8.7 Numerical Validation

During the evaluation, the robot is tested not only on the uncertainty that is introduced
in the training, but in addition to it, two other kinds of uncertainty are also introduced.
First, the robot’s motor dynamics that restricts the rate of change of joint torques is applied
in every evaluation. The time constant of motors used in the simulation is 0.004 seconds.
Second, the robot is also tested on an alternative kind of uncertainty, which consists of an
added weight to the torso of the robot, instead of scaling the links masses and inertias.
This weight can represent the robot carrying a payload, and it is deliberately introduced to
evaluate the trained policy’s robustness to an unfamiliar kind of uncertainty that it was not
trained on.

8.7.1 Simulation 1: Bipedal Walking on Flat Ground

For the first simulation, we evaluate the two RL approaches for CLF explained in Section
8.3, and compare them with the standard L1 Adaptive CLF-QP method of [145], which
guarantees the CLF to be bounded to a small value under model uncertainty if using a
sufficiently large adaptation gain.

As illustrated in Fig. 8.2, both of the proposed methods manage to get RABBIT to
stably walk for multiple steps, while the L1 Adaptive CLF-QP controller leads to failure.
The original nominal FL-CLF-QP, although not shown in the figure, also fails under this
scaled model uncertainty. Note that all three methods do not have friction constraints in the
QP and could potentially violate them. In particular, the RL-CLF-QP method succeeds in
satisfying the friction constraint (|FT/FN | ≤ kf = 0.8) for all steps, the IO-RL + CLF-QP
exceeds the limit in the first two steps, and the L1-CLF-QP violates it for multiple steps.
Therefore, IO-RL + CLF-QP needs the inclusion of friction constraints in the QP.

Displayed in Fig. 8.3 is the plot of tracking error and contact force ratio of the three
controllers when, instead of the mass-inertia-scaling, an additional torso weight of 32kg
(100% of the robot mass) is introduced. It is notable that both the RL-CLF-QP and IO-RL
+ CLF-QPmanage to adapt to this uncertainty, which has not been faced during the training.
Furthermore, the RL-CLF-QP manages to stabilize the walking gait with an additional torso
weight of up to 72kg (225% of robot mass). On the other hand, IO-RL + CLF-QP manages
to adapt to additional weights up to 53kg (166% of robot mass).
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Figure 8.2: Tracking error (top), its derivative (middle), and tangential-normal contact force
ratio (bottom) of IO-RL + CLF-QP (Sec. 8.3.1), RL-CLF-QP (Sec. 8.3.2), and L1-CLF-
QP [145] controllers, simulated for ten walking steps, where the robot’s mass and inertia
values are scaled by a factor of 2. Both IO-RL + CLF-QP and RL-CLF-QP maintain the
stability while L1-CLF-QP fails. Only the RL-CLF-QP satisfies the friction cone constraint
|FT/FN | ≤ kf = 0.8.

8.7.2 Simulation 2: Bipedal Walking on Stepping Stones with
One Step Preview

We now evaluate the full RL-CBF-CLF-QP method with the safety-critical constraint of
walking on stepping stones and the inclusion of friction constraints, which are dependent on
the dynamics. In this simulation scenario, for each step the robot faces a random placement
of a stepping stone. Therefore, when the swing foot hits the ground at the end of the step,
we want the step length to be within a specific range:

lmin,k ≤ lk ≤ lmax,k, (8.37)

where k indicates the step index. Two position-constraints-based second order ECBFs pa-
rameterized by lmin,k, lmax,k that are a sufficient condition for (8.37) are devised by [147].
Basically these constraints imply that the swing foot position (F in Fig. 8.4) needs to stay
within the grey area. Note that lmin,k, lmax,k change for every step.

We also include contact force constraints in the RL-CBF-CLF-QP as control-affine dy-
namic constraints, following the procedure of Subsection 8.4.2. These are important since
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Figure 8.3: Tracking error (top), its derivative (middle), and contact force ratio (bottom) of
the three CLF-based controllers, simulated for ten walking steps with the additional torso
weight 32kg (this amounts to the weight of RABBIT, i.e. 100% additional weight).

Figure 8.4: Safety Constraint: In order to guarantee the swing foot lands on the stepping
stone, we use two CBFs to ensure the swing foot position F is within the grey area during
the entire walking step.



CHAPTER 8. REINFORCEMENT LEARNING FOR CLF AND CBF-BASED
CONTROLLERS UNDER MODEL UNCERTAINTY 107

Figure 8.5: Results of the simulation of 20 steps of walking on stepping stones, where the
robot’s mass and inertia values are scaled by a factor of 2. (Top) History of swing foot
position lf for each step, with the stepping stone constraints lmin, lmax. (Bottom) History
of tangential-normal contact force ratio that satisfies to stay below |FT/FN | ≤ kf = 0.8.

the original FL-CBF-CLF-QP violates the friction cone and the unilateral normal force con-
straints repeatedly.

The robot is trained to walk on randomly spaced stepping stones, of which lmin is sampled
from a normal distribution N (0.35m, 0.02m), truncated at 2.5σ. lmax is set as lmin + 0.05m.

Fig. 8.5 shows the result of the evaluation, where the robot walks on 20 randomly spaced
stepping stones. We can check that the foot placement is always on the stepping stones.
Also, it is verified that the contact force never exceeds the friction limit. Note that the
sample distribution of lmin here is same as during training.

Whereas our RL-CBF-CLF-QP method performs well, we have also tested the nominal
model-based FL-CBF-CLF-QP method on this simulation for comparison. The FL-CBF-
CLF-QP is also solved together with the friction constraints. However, it violates the step
length safety constraints after an average of 5.6±4.64 steps. This value is obtained from 10
random executions of 20 steps simulation.

Finally, for the case of having an additional torso weight applied to the original unscaled
plant, RL-CBF-CLF-QP still manages to stay within the safety and friction constraints when
the weight is in the range of [43kg, 72kg] (134-225% of robot mass).
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8.7.3 Discussion of Results

We have demonstrated that our method can compensate well for the trained model uncer-
tainty and that it shows some robustness to the introduction of additional uncertainty during
evaluation. It is important to note that our method is not restricted to mass and inertia
scaling uncertainties, rather they have been used as illustrative examples for this chapter.
We have additionally tested our framework for other uncertainties: a simplified model of
joint friction (assuming that joint friction reduces motor power by a 15%, value taken from
[37]), joint damping (up to 1 (rad/s2)/(rad/s)) and bending of links (up to 5% of their
length) obtaining successful results.

However, a primary drawback of our approach is that we need the designed nominal
controller to not rapidly fail on the uncertain system before RL can learn the uncertainty.
This may not always be possible depending on the level of uncertainty. Following this same
reasoning, for high levels of uncertainty the CLF designed for the nominal model may not
be a CLF for the true plant, in which case our assumption would not hold and the method
would fail. There is ongoing research on designing CLFs for systems with uncertain dynamics
[165, 191] that could be used to solve this issue, since our method is not restricted to any
specific CLF.

An illustration of the aforementioned limitation is that we have also tested our framework
for mass-inertia uncertainty scales of 0.7 and 0.5. For the case of scale=0.7, our framework
produces a stabilizing controller that respects safety and friction constraints for indefinitely
long periods of walking, whereas the nominal model-based controller fails after just one step.
In contrast, for the scale of 0.5, the nominal controller fails after just 0.06 seconds, which
makes the training a lot more challenging and our framework fails.

Another limitation is that the measurements of V̇ε and B(rb) obtained from numerical
differentiation could be noisy in experiments.

Finally, it must be noted that feasibility of a CBF-CLF-QP with additional constraints,
such as friction, is not guaranteed in general. However, using the trained RL-CBF-CLF-
QP model, we observe that the feasibility drastically improves compared to the nominal
FL-CBF-CLF-QP.

8.8 Chapter Summary

In this chapter, the issue of model uncertainty in safety-critical control was addressed with
a data-driven approach. For this purpose, we used the structure of a feedback linearization
controller based on a nominal model along with a Control Barrier Function and Control
Lyapunov Function based Quadratic Program (CBF-CLF-QP). Specifically, we have pro-
posed a novel reinforcement learning framework which learns the model uncertainty present
in the CBF and CLF constraints, as well as other control-affine dynamic constraints in the
quadratic program. The trained policy was combined with the nominal model-based CBF-
CLF-QP, resulting in the Reinforcement Learning-based CBF-CLF-QP (RL-CBF-CLF-QP),
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which addresses the problem of model uncertainty in the safety constraints. The performance
of the proposed method was validated by testing it on an underactuated nonlinear bipedal
robot walking on randomly spaced stepping stones with one step preview, obtaining stable
and safe walking under model uncertainty.
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Chapter 9

Probabilistic Stabilizing Control
under Uncertainty

This chapter is based on the paper titled “Gaussian Process-based Min-norm Stabilizing Con-
troller for Control-Affine Systems with Uncertain Input Effects and Dynamics” [27], co-
authored by Jason J. Choi, Bike Zhang, Claire J. Tomlin and Koushil Sreenath.

The previous two chapters presented approaches to bridge the reality gap using deep
learning models for different model-based controllers. However, the proposed models lack a
measure of the confidence of the prediction—there are no guarantees that the outputs of the
neural network policies will be anywhere close to the true desired outcomes. This motivates
the final three technical chapters of this dissertation, which use Bayesian nonparametric
models to infer the effects of model uncertainty from data. The main advantage of these
methods is that we can obtain an estimate of how confident the model is of its prediction,
which allows to obtain high-probability guarantees about the desired controller properties
(such as stability and safety) holding on the real system.

In particular, this chapter presents a method to design a min-norm Control Lyapunov
Function (CLF)-based stabilizing controller for a control-affine system with uncertain dy-
namics using Gaussian Process (GP) regression. In order to estimate both state and input-
dependent model uncertainty, we propose a novel compound kernel that captures the control-
affine nature of the problem. Furthermore, by the use of GP Upper Confidence Bound
analysis, we provide probabilistic bounds of the regression error, leading to the formulation
of a CLF-based stability chance constraint which can be incorporated in a min-norm op-
timization problem. We show that this resulting optimization problem is convex, and we
call it “Gaussian Process-based Control Lyapunov Function Second-Order Cone Program”
(GP-CLF-SOCP). The data-collection process and the training of the GP regression model
are carried out in an episodic learning fashion. We validate the proposed algorithm and
controller in numerical simulations of an inverted pendulum and a kinematic bicycle model,
resulting in stable trajectories which are very similar to the ones obtained if we actually
knew the true plant dynamics.
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9.1 Introduction

Model-based controllers have a problem inherent to their nature: model uncertainty. In this
chapter, we directly address this issue for the case of Lyapunov-based stabilizing controllers
for nonlinear control-affine systems by using Gaussian Process (GP) regression to estimate
the adverse effects of model uncertainty.

Control Lyapunov Functions (CLFs) [11, 177] have been widely used in recent years for
nonlinear model-based stabilizing control of robotic systems [65, 146, 164]. Typically, the
robot is stabilized by enforcing the CLF to decay to zero with a constraint in an optimization
problem [7]. However, CLF-based optimization methods heavily rely on the assumption that
the model used for the controller design accurately represents the true plant’s dynamics. If
there is model-plant mismatch, convergence guarantees are often lost. Past research has
directly addressed this issue by using both robust [146] and adaptive [145] control theory.
More recently, various kinds of data-driven methods that use neural networks have been
introduced [186, 38, 210]. Although these are demonstrated to be effective in practice, it is
often difficult to verify the reliability of the neural network predictions.

For this chapter, we are more interested in another class of data-driven approaches to
tackle this problem, which use GP regression to allow for the analysis of the confidence of
the prediction. The method of applying GPs to the CLF constraint was first introduced
for closed-loop systems in [18]. Then, similar approaches have also been proposed for the
construction of stability and safety constraints to be incorporated in min-norm controllers
[191, 58, 36, 223].

However, all of these papers make an important assumption that might restrict their
applicability, which is that the considered model uncertainty is unaffected by the control
input. In contrast, for many controlled systems, uncertain input effects1 are prevalent, e.g.,
in a mechanical system, uncertainty in the inertia matrix directly induces uncertain input
effects. In the work presented in [104], a similar problem is addressed for the case of Control
Barrier Function-based safety constraints [8] by the use of a Matrix-Variate GP regression.
However, it does not provide a regression confidence analysis and results in an optimization
problem that is not always convex. Finally, all the aforementioned GP-based approaches
apply GP regression directly to the dynamics vector fields, which scale poorly with the
system dimension.

In this chapter, we develop solutions to overcome the presented limitations of the previous
GP-based methods. First, we provide a formal way to deal with input-dependent model
uncertainty of control-affine systems by proposing a specific GP kernel structure suitable
for this problem. Since we apply GP regression to a scalar uncertainty term in the CLF
constraint directly, compared to learning the uncertainty terms in the dynamics, we can
reduce the computation of the regression significantly while still capturing many realistic
forms of uncertainty. A similar kernel structure was used in [192] to learn the uncertainty
terms in the autonomous and control vector fields separately for a single-input system.

1Uncertainty in the control vector field g(x) in (2.2).
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Here, we generalize the kernel to an arbitrary input dimension and derive expressions for the
posterior GP of a combined input-dependent uncertainty term whose mean and variance are
linear and quadratic in the input, respectively. By doing so, we can formulate a Second-Order
Cone Program (SOCP) which incorporates a chance constraint that takes into account the
confidence of the GP model and provides the exponential stabilizability of the system. We
call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-
CLF-SOCP). Formulation of the SOCP is crucial in that it can be solved quickly enough for
real-time applications due to its convexity. Finally, since the inference time of GP regression
is directly determined by the size of the training data, we maximize data efficiency by the
use of an algorithm that iteratively collects data and improves the GP regression model in
an episodic learning fashion.

9.2 Problem Setting

Throughout this chapter we consider nonlinear control-affine systems of the form in

ẋ = f(x) + g(x)u,

where x ∈ X ⊆ Rn is the state of the system and u ∈ U ⊆ Rm is the control input. The
vector fields f : X → Rn and g : X → Rn×m are assumed to be locally Lipschitz continuous
and f(0) = 0.

The main objective of this chapter is the construction of a locally stabilizing controller
for such a system even when its dynamics are uncertain. A system is called stabilizable when
it is asymptotically controllable to the origin with a feedback control law π : X → U that is
continuous except possibly at the origin.

For this purpose, we utilize the concept of Control Lyapunov Function that was intro-
duced in Chapter 2, in Definition 2.5. As we discussed in that chapter, if the dynamics of the
true system (2.2) were perfectly known, then we could obtain an exponentially stabilizing
control law by solving point-wise the CLF-QP of (2.20).

9.2.1 Effects of Model Uncertainty on CLF-based Controllers

The main problem concerned in this chapter is how to reformulate the min-norm stabilizing
controller CLF-QP defined in (2.20) in the presence of model uncertainty, using Gaussian
Process regression to estimate the uncertain terms.

First, we provide some necessary settings and assumptions for our problem formulation.
Let’s assume that we have a nominal model of the form in (2.25)

ẋ = f̃(x) + g̃(x)u,

where f̃ : X → Rn, g̃ : X → Rn×m are Lipschitz continuous vector fields and f̃(0) = 0. We
assume that we have a locally exponentially stabilizing CLF V for the nominal model, and
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that the plant is also locally exponentially stabilizable with the same V . Note that the region
of exponential stabilizablity around the origin can be sufficiently small (Ωcexp in (2.19)). Also,
the assumption can be relaxed to asymptotic stabilizability if the user is concerned with
enforcing condition (2.18) instead of (2.19). In general, f̃ and g̃ would be different from the
true plant vector fields f and g because the nominal model is imperfect. The assumption
implies, however, that they share some similarity through the stabilizing property of the
same function V . Finally, we also assume that we have access to measurements of state and
control input at every sampling time ∆t.

Our main objective is to construct the exponential CLF constraint (2.20b) for the true
plant when we only know the model dynamics f̃ and g̃. Since V̇ (x, u) = LfV (x) +LgV (x)u

depends on the dynamics of the plant, the estimate based on the nominal model ˜̇V (x, u) =
Lf̃V (x) + Lg̃V (x)u, will differ from its true value. We define ∆V : X × U → R as the
difference between these:

∆V (x, u) := V̇ (x, u)− ˜̇V (x, u). (9.1)

Then, the exponential CLF constraint for the true plant (2.20b) becomes

Lf̃V (x) + Lg̃V (x)u+∆V (x, u) + λV (x) ≤ 0. (9.2)

Therefore, verifying the exponential CLF constraint for the true plant amounts to a problem
of learning the mismatch term ∆V (x, u) correctly and then enforcing (9.2). We can learn
this function from the past data by formulating a supervised learning problem. Specifically,
we will use GP regression, a method that was introduced in Chapter 2. Note that learning
∆V is advantageous rather than learning the full dynamics of the system (as is typically done
in the model-based reinforcement learning literature) since ∆V is a scalar function. Indeed,
this function condenses the stability-relevant model uncertainty into a scalar.

Remark 9.1. In (9.1), if we express V̇ and ˜̇V with their respective Lie derivatives, we get

∆V (x, u) = (LfV (x)− Lf̃V (x))︸ ︷︷ ︸
=:L∆fV (x)

+(LgV (x)− Lg̃V (x))︸ ︷︷ ︸
=:L∆gV (x)

u. (9.3)

Note that we do not have access to L∆fV (x) and L∆gV (x) in this equation since we are
unaware of f and g. It is tempting to learn each of these terms separately with supervised
learning. However, we can only measure ∆V (x, u), which makes this approach intractable.
Nevertheless, we can exploit the fact that the mismatch term ∆V (x, u) is control-affine.

9.3 Gaussian Process Regression for Affine Target

Functions

9.3.1 High Probability Bounds of the GP Prediction

As explained in Chapter 2, a Gaussian Process is a powerful probabilistic model to fit an
unknown function h : X̄ → R from data. Assuming that the prior mean function q is selected
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to be zero, given a covariance or kernel function k : X̄ × X̄ → R, the prediciton of the value
of the unknown function at an unseen query point x∗ given a dataset of measurements DN

is given by (2.26) and (2.27):

µ(x∗|DN) = zT (K + σ2
nI)

−1KT
∗ ,

σ2(x∗|DN) = k (x∗, x∗)−K∗(K + σ2
nI)

−1KT
∗ ,

Any positive definite kernel function2 can be a valid covariance function k [207]. Such
a kernel k(x, x′) can be used to generate a set of functions that satisfy a specific property,
namely a “reproducing” property: the inner product between such a function h and the
kernel k(·, x) should reproduce h, i.e., ⟨h(·), k(·, x)⟩ = h(x), ∀x ∈ X̄ . Such a set of functions
is called a Reproducing Kernel Hilbert Space (RKHS, [207]), a specific class of function
space, and is denoted as Hk(X̄ ). The RKHS norm ∥h∥k :=

√
⟨h, h⟩, which will be used

in Lemma 9.1, is a measure of the smoothness of h with respect to the kernel function3.
Note that an appropriate inner product in the above expressions would be determined by
the specific choice of the associated reproducing kernel k.

Note that there exist various choices of kernel functions and many of them depend on
some hyperparameters which determine the kernel’s characteristics. Depending on the choice
of kernel and hyperparameters, the result of the regression varies, and the problem of choos-
ing the best kernel and its hyperparameters is known as the “training” process of the GP
regression [216]. In this chapter, we use marginal likelihood maximization, which is one of
the most common training methods.

After training, one would like to study how close the GP model approximates the target
function. In order to do this, we use the GP Upper Confidence Bound (UCB) analysis [180],
specifically, the following lemma.

Lemma 9.1. [180, Thm. 6] Assume that the noise sequence {ϵj}∞j=1 is zero-mean and uni-
formly bounded by σn. Let the target function h : X̄ → R, with bounded domain X̄ , be a
member of Hk(X̄ ) associated with a bounded kernel k, with its RKHS norm bounded by η.
Then, with probability of at least 1− δ, the following holds for all x ∈ X̄ and N ≥ 1

P
{
|µ(x|DN)− h(x)| ≤ βσ(x|DN),∀x ∈ X̄ , ∀N ≥ 1

}
≥ 1− δ,

where
β =

(
2η2 + 300γN+1 ln

3((N + 1)/δ)
)0.5

.

Here, γN+1 is the maximum information gain after getting N + 1 data points, and µ, σ2

are the mean and variance of the posterior GP given by (2.26) and (2.27).

Proof. See [180, Thm. 6].

2k is a positive definite kernel if its associated kernel matrix K(x1, x2), whose (i
th, jth) element is defined

as k(xi, xj), is positive semi-definite for any distinct points x1, x2 ∈ X .
3The measure of smoothness is defined as ∥h(x)− h(x′)∥2 ≤ ∥h∥k ∥k(x, ·)− k(x′, ·)∥k ∀x, x′ ∈ X̄
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In this lemma, the assumption about the boundedness of ∥h∥k implicitly requires a “low
complexity” of the target function [41]. The bound η is usually unknown a priori, but a trial-
and-error approach to find its value suffices in practice [180]. γN+1 quantifies the reduction
of uncertainty about h in terms of entropy. It has a sublinear dependency on N for many
commonly used kernels and it can be efficiently approximated up to a constant [180].

9.3.2 GP Regression for Affine Target Functions

In this section, we use GP regression to learn the mismatch term ∆V (x, u) (9.1) from data.
From (9.3), we know that ∆V (x, u) is affine in u. If we use an arbitrary kernel, we cannot
exploit this information in the GP regression. Therefore, our first objective is to construct an
appropriate kernel that captures the control-affine structure of ∆V in the regression. In order
to do this, we introduce the general formulation of this problem in this section. Consider p
functions, hi : X ⊂ Rn → R for i = 1, · · · , p, and define

hc(x, y) := [h1(x) h2(x) · · · hp(x)] · y, (9.4)

where y ∈ Y ⊂ Rp. Our objective is to estimate the function hc : X ×Y → R which is affine
in y by using GP regression, given its measurements zj = hc(xj, yj) + ϵj for j = 1, · · · , N .

The underlying structure of hc(x, y) tells us that it contains information about p random
functions {hi(x)}pi=1 condensed to a single scalar value by a dot product with y. Therefore,
it is natural to consider p underlying kernels and their composition. We propose to use the
following kernel structure.

For i = 1, . . . , p, consider covariance functions ki : X × X → R.

Definition 9.1 (Affine Dot Product Compound Kernel). Define k given by

k

([
x
y

]
,

[
x′

y′

])
:= yTDiag([k1(x, x

′), · · · , kp(x, x′)])y′, (9.5)

as the Affine Dot Product (ADP) compound kernel of p individual kernels k1(x, x
′), · · · ,

kp(x, x
′).

Note that for a fixed (x, x′), the ADP compound kernel resembles the well-known dot
product kernel, defined as k(y, y′) = yTy′ [216].

Lemma 9.2. If k1, · · · , kp are positive definite kernels, the ADP compound kernel k is also
positive definite. Furthermore, if k1, · · · , kp are bounded kernels, k is also bounded.

Proof. Consider the Gram matrix of k, Kc ∈ RN×N for {(xj, yj)}Nj=1. Let Ki be the Gram
matrix of ki for {xj}Nj=1. Define Y := [y1 y2 · · · yN ] ∈ Rp×N , and let yi

T be the i-th row of
Y . Then,

Kc =

p∑
i=1

(
yi yi

T
)
◦Ki,
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where ◦ indicates the Hadamard product [84]. By the Schur Product Theorem [84], if the
ki are positive definite kernels, then since each yiyi

T and Ki are positive semidefinite, Kc is
a positive semidefinite matrix. Therefore, k is a positive definite kernel by definition. Also,
if the ki are bounded kernels, each Ki is bounded so Kc is also bounded. Therefore, k is a
bounded kernel.

By Lemma 9.2, since k is positive definite, it is a valid covariance function. Consider a
set of functions Hk(X × Y) := {hc : X ×Y →R | ∃hi ∈Hki for i = 1, · · · , p, s.t. hc(x, y) =
[h1(x), · · · , hp(x)] · y} where each Hki is the RKHS whose reproducing kernel is ki. Then,
the following holds:

Theorem 9.1. Hk(X × Y) is an RKHS whose reproducing kernel is k in Definition 9.1.

Proof. Define the inner product of Hk to be

⟨hc, h′c⟩c :=
p∑
i=1

⟨hi, h′i⟩i,

for ∀hc, h′c ∈ Hk where {hi}pi=1 and {h′i}
p
i=1 are sets of functions whose i-th elements are

from Hki that satisfy hc(x, y) = [h1(x), · · · , hp(x)] · y and h′c(x, y) = [h′1(x), · · · , h′p(x)] · y,
respectively. Such sets of functions should exist by definition of Hk. ⟨hi, h′i⟩i is the inner
product of Hki . It is trivial that this definition satisfies the axioms of the inner product.
Then, 〈

hc(·, ),k
([
·
]
,

[
x
y

])〉
c

=

p∑
i=1

yi⟨hi(·), ki(·, x)⟩i

=

p∑
i=1

yihi(x) = hc(x, y).

The first equality holds because of Definition 9.1 and the definition of ⟨·, ·⟩c. The second
equality holds because of the reproducing property of each ki(·, ·).

Theorem 9.1 allows us to apply the UCB result from Lemma 9.1 to hc(x, y) with some
additional conditions which will be specified in Section 9.4. Fitting an affine function hc(x, y)
can now be treated in the same way as any other kind of general GP regression, but with a
specific choice of covariance function given by (9.5).

One caveat of this regression is that depending on the distribution of the inputs yj in
the data, this problem can be underdetermined. For instance, when every yj is a constant
vector, there are infinitely many choices of valid hi(x) that give the same estimation error.
Nevertheless, under our GP regression structure, this evidence of underdetermination is im-
plicitly captured by larger values of the variance of the posterior. In practice, it is preferable
to avoid such underdetermination since we want to reduce the uncertainty of the GP poste-
rior. Therefore, we need to carefully collect the training data to make sure we capture rich
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enough information about the target function. In Section 9.5 and, more in depth in Chapter
10 of this thesis, we propose several methods for this purpose. In the system identification
literature, this is related to the property of persistency of excitation [198].

Finally, the main benefit of exploiting the affine structure in the kernel is revealed in the
expressions for the posterior distribution’s mean and variance. This is the main difference
in how we use the ADP kernel compared to [192], where a similar kernel is proposed for a
special case p = 2. Let X ∈ Rn×N , Y ∈ Rp×N be matrices whose column vectors are the
inputs xj and yj of the collected data, respectively, and let z ∈ RN be the vector containing
the output measurements zj. Then, plugging them and the ADP compound kernel into
(2.26) and (2.27) gives the following expressions for the mean and variance of the posterior
query point (x∗, y∗):

µ(x∗, y∗|DN) = zT (Kc + σ2
nI)

−1KT
∗Y︸ ︷︷ ︸

=: m(x∗|DN )T

y∗, (9.6)

σ2(x∗, y∗|DN)=y
T
∗
(
K∗∗−K∗Y(Kc + σ2

nI)
−1KT

∗Y
)︸ ︷︷ ︸

=: Σ(x∗|DN )

y∗, (9.7)

where Kc ∈ RN×N is the Gram matrix of k for the training data inputs (X, Y ), K∗∗ =
Diag ([k1(x∗, x∗), . . . , km+1(x∗, x∗)]) ∈ Rp×p, and K∗Y ∈ Rp×N is given by

K∗Y =

K1∗
...

Kp∗

◦Y, Ki∗=[ki(x∗, x1), · · · , ki(x∗, xN)],

Here, ◦ denotes the element-wise product. Readers can observe that (9.6) and (9.7)
are affine and quadratic in y∗, respectively. These structures are critical when formulating
the uncertainty-aware CLF chance constraint as a second-order cone constraint in the next
section.

9.4 Uncertainty-Aware Min-norm Stabilizing

Controller

9.4.1 Probabilistic Bounds on the CLF Derivative

We have already presented all the necessary tools to verify the probabilistic bounds on the
mismatch term ∆V (x, u) in (9.3). Indeed, learning ∆V corresponds to the GP regression
problem defined by (9.6), (9.7), in which the target function hc is ∆V , x is the state, y =
[1, uT ]T , p = m+ 1, h1 is L∆fV , and hi+1 is L∆gV ’s i-th element for i = 1, · · · ,m.

Assumption 9.1. Consider bounded reproducing kernels ki for i = 1, · · · ,m+1. We assume
that L∆fV is a member of Hk1 and each i-th element of L∆gV is a member of Hki+1

for
i = 1, · · · ,m, respectively. We assume that their RKHS norms are bounded.
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Lemma 9.3. Under Assumption 9.1 and with a compact set of admissible control inputs
U , ∆V is a member of Hk, the RKHS created by the ADP compound kernel of {ki}i=m+1

i=1 .
Moreover, its RKHS norm is bounded, namely ∥∆V ∥k ≤ η.

Proof. The proof follows from Thm. 9.1 and the definition of the inner product for Hk in
the proof of Thm. 9.1.

Assumption 9.2. We have access to measurements zi = V̇ (xi, ui)−(Lf̃V (x)+Lg̃V (x)ui)+ϵi,
and the noise term ϵi is zero-mean and uniformly bounded by σn.

With Assumptions 9.1, 9.2 and Lemma 9.3, we can now apply Lemma 9.1 to our regression
problem.

Theorem 9.2. Let Assumptions 9.1 and 9.2 hold. Let β :=(
2η2 + 300γN+1 ln

3((N + 1)/δ)
)0.5

, with N the number of data points, and γN+1 as
defined in Lemma 9.1. Let µV (x, u|DN) and σ2

V (x, u|DN) be the mean and variance of the
posterior for ∆V using the ADP compound kernel, at a query point (x∗, u∗) as obtained from
(9.6) and (9.7), with y = [1, u]. Let X and U be bounded sets. Then, the following holds:

P
{
|µV (x, u|DN)−∆V (x∗, u∗)| ≤ βσV (x, u|DN),∀x ∈ X , ∀u ∈ U , ∀N ≥ 1

}
. (9.8)

Proof. Proof follows from Lemmas 9.1 and 9.3.

The error in the estimation of the mismatch term ∆V is now bounded for some confidence
level. From (9.8) we can easily derive the bounds on the true derivative of the CLF for a
probability of at least 1− δ:

˜̇V (x, u) + µV (x, u|DN )− βσV (x, u|DN ) ≤ V̇ (x, u) ≤ ˜̇V (x, u) + µV (x, u|DN ) + βσV (x, u|DN ). (9.9)

9.4.2 GP-Based CLF Second-Order Cone Program

Taking the upper bound of (9.9), we can enforce the exponential CLF constraint of (2.20b)
with a probability of at least 1 − δ, and incorporate the resulting chance constraint into
a min-norm optimization problem that defines a feedback control law πGP-CLF : X → U
pointwise:

GP-CLF-SOCP:

πGP-CLF(x) = argmin
u∈U , d∈R

∥u∥22 + p d2 (9.10)

s.t. ˜̇V (x, u) + µV (x, u|DN ) + βσV (x, u|DN ) + λV (x) ≤ d.
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Remark 9.2. The stability constraint is relaxed in order to guarantee the feasibility of the
problem. If the initial state x0 is outside the CLF maximum sublevel set for exponential
stability Ωcexp, we cannot guarantee exponential convergence and neither can the controller
which uses the true plant dynamics. However, even for this case, we still do guarantee that
the approximation error of the CLF derivative is bounded as given by (9.9) with probability
1− δ.

Note that this optimization problem does not require knowledge about the true plant
dynamics. The fact that µV (x, u|DN) and σ

2
V (x, u|DN) are affine and quadratic in u, respec-

tively, is crucial for the following main result of the chapter:

Theorem 9.3. Using the proposed ADP compound kernel from Definition 9.1, the uncertainty-
aware optimization problem (9.10) is convex, meaning that its global minimum can be reliably
recovered. Specifically, it is a Second-Order Cone Program (SOCP).

Proof. The standard form for an SOCP consists of a linear objective function subject to one
or more second-order cone inequality constraints and/or linear equality constraints.

Since we assume that the bounds on the control input u ∈ U are linear, these are directly
a special case of second-order cone constraints.

Let’s first transform the quadratic objective function into a second-order cone constraint
and a linear objective. Let the objective function be J(u, d) := ∥u∥22 + p d2. Note that by
taking ϕ = [uT , d]T we can express the objective as J(ϕ) = ϕTQϕ. Next, by setting z := Lϕ,
where L is the matrix square-root of Q, we can rewrite J(z) = ∥z∥22. Note that minimizing J
gives the same result as minimizing J̄(z) := ∥z∥2. Now we can move the objective function
J ′ into a second-order cone constraint by taking the epigraph form ∥z∥2 ≤ t and minimizing

the new linear objective function ¯̄J(t) := t.
The next step is to prove that the CLF chance constraint is a second-order cone constraint.

Note that ˜̇V (x, u) = Lf̃V (x) + Lg̃V (x)u, and µV (x, u|DN) = mV (x|DN)
T [1, uT ]T from (9.6)

are both control-affine. Note that σV (x, u|DN) =
√
[1, uT ]ΣV (x|DN)[1, uT ]T from (9.7) can

be rewritten as σV (x, u|DN) = ∥M(x)u+ n(x)∥2, although we omit the expressions ofM and
n for conciseness. Therefore, the CLF chance constraint is a second-order cone constraint,
and the resulting optimization problem is an SOCP with two second-order cone constraints
corresponding to the original objective function and the CLF chance constraint (plus the
input bounds). SOCPs are inherently convex.

9.5 Data Collection

In this section, we introduce an algorithm that efficiently collects measurements of ∆V for
the GP regression. This data should contain rich enough information about ∆V , especially
about its dependency on u as discussed in Section 9.3, and since our goal is to obtain a
locally stabilizing controller, it is preferable to exclude the data from outside the region of
attraction (RoA) of the origin for efficiency. To this end, we propose an algorithm that
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iteratively collects new data and trains a new GP model in an episodic learning fashion.
The algorithm uses the level sets of the CLF as “guides” for expanding the training region
by exploiting Lemma 2.1. In addition, we use the idea of greedy search in the Bayesian
Optimization literature [180] to actively explore the most uncertain area of the training
region. Our algorithm is based on the active learning algorithm of [19], although while [19]
focuses on guaranteeing safety online, our objective is to maximize the efficiency of the offline
data collection.

9.5.1 Discrete-Time Measurements

First consider how to obtain inputs (xj, uj) and labels (zj)—measurements of ∆V (xj, uj)—of
the training data. Let x(t) and u(t) be the state and control input measurements at time t
and x(t + ∆t) be the state measurement at the next timestep. We can use these values to
create input-label pairs with O(∆t2) approximation error:

xj =
x(t+∆t) + x(t)

2
, uj = u(t),

zj =
V (x(t+∆t))− V (x(t))

∆t
− ˜̇V (xj , uj).

Note that uj is the control input during the interval [t, t+∆t), and zj is the difference between
the value of V̇ (xj, uj) obtained from numerical differentiation and the nominal model-based
estimate.

9.5.2 Estimation of the Region of Attraction

Next, we introduce a new certificate with the learned uncertainty for a conservative estima-
tion of the RoA of the origin. Notice that the condition for inclusion in the RoA provided
by Lemma 2.1, is only valid when there is no model-plant mismatch. Thus, we have to
incorporate the learned uncertainty terms from Section 9.3 as we do when we formulate the
GP-CLF-SOCP in Section 9.4.

Theorem 9.4. Taking the GP posterior distribution from the training data DN =
{(xj, uj, zj)}Nj=1, and β from (9.8), if there exists a c > 0 such that for all x ∈ Ωc :=
{x ∈ X : V (x) ≤ c} it holds that

inf
u∈U

˜̇V (x, u) + µV (x, u|DN) + βσV (x, u|DN) < 0, (9.11)

then Ωc is in the RoA with probability at least (1− δ).

Proof. Proof follows from Lemma 2.1 and Theorem 9.2.

Notice that this certificate is “conservative” in the sense that it takes the worst-case
bound of the effect of the uncertainty term, based on the collected data. Therefore, if we
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Figure 9.1: (a–d): Visualization of the episodic learning data collection algorithm
running on the inverted pendulum example: Color map represents the maximum
variance of the posterior GP, maxu∈U σV (x, u). Orange curves: level curves of the CLF.
Green points: initial states for the rollouts, Blue points: trajectory points added to the
training data. Grey points: trajectory points excluded from the training data since they are
outside Ωci . (a) Initial GP Model: Trajectories sampled from the initial level set Ωc0 by
running the CLF-QP are collected to create an initial GP model. (b) Episode i-Step 1:
Ne initial states and initial control inputs in (Ω(ci−1+∆ci) \ Ωci−1

)× U are determined where
σV are maximal. (c) Episode i-Step 2: Simulations are run from such initial points and
the resulting trajectories are saved. At the same time, ci is determined by evaluating (9.11)
for the sampled trajectories. (d) Episode i-Step 3: Finally, the i-th GP model is updated.
Note the reduction in the variance. (Total episodes = 7, i = 3 for (b), (c), (d).) (e, f):
Distribution of the final training data plotted in the x–V (x) space (blue points) and
plotted in x–u space, respectively. (e) Level curve in color magenta is the Ωcmax (maximum
level set contained in the RoA) for the true plant. The value of CLF is plotted in grey and
the orange region is the region verified as RoA through the data collection algorithm. (f)
The color indicates the value of zi, the measurement of ∆V (xi, ui). The number of data
points is 425.

collect more data and improve our GP model to have less uncertainty, then the conservatism
will reduce and we will be able to obtain a bigger subset of the RoA. This is the central
principle of the algorithm.

9.5.3 Algorithm Overview

Finally, we give an overview of the proposed algorithm.

Initial GP Model

We start by considering a level set Ωc0 which is small-enough to be a subset of the RoA (Fig
9.1.a). Such c0 > 0 always exists due to our assumption that V is a locally valid CLF. We
collect an initial batch of training data DN0 from a set of trajectories whose initial states
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are randomly sampled from Ωc0 , and train an initial GP regression model. Here, we use the
nominal model-based CLF-QP from (2.20) as our stabilizing controller.

Episodic Learning

The main loop of our algorithm consists of a series of episodes, and each i-th episode is
mainly composed of three steps. 1) In the first step (Fig. 9.1.b), we obtain a set of Ne

points from (Ω(ci−1+∆ci) \ Ωci−1
) × U at which the variance of the posterior of the current

GP model is maximal. ∆ci is the parameter that determines the size of the new exploration
region. 2) Next (Fig 9.1.c), we run short rollouts by taking each point from Step 1 as our
initial state and initial control input. During the rollouts, we also evaluate the stabilizability
condition (9.11) at each timestep. Note that such evaluation is a feasibility problem which is
also an SOCP since (9.11) is a second-order cone constraint. After the rollouts, we expand
the level of V (we determine ci) up to a point for which (9.11) becomes infeasible. 3) Finally
(Fig 9.1.d), we add the data obtained from the trajectories within Ωci to our data set, and
train the next GP regression model.

Remark 9.3. In Step 2 of an episode, we check condition (9.11) only for finite sampled
states in Ωci \Ωci−1

, whereas Theorem 9.4 requires (9.11) to be satisfied at every state in Ωci.
Notice that brute-force verification for the whole region of Ωci will scale poorly with state
dimension. Even though we do not have the rigorous guarantee of Theorem 9.4 with this
algorithm, the error in the estimated cmax does not affect the probabilistic guarantee of the
resulting GP-CLF-SOCP controller. In practice, we observe that we can well approximate
cmax such that Ωcmax is contained in the true RoA (See Fig. 9.1(e)).

9.6 Examples

9.6.1 Two-dimensional System: Inverted Pendulum

Consider a control-affine two-dimensional inverted pendulum as the one in [19], with param-
eters of the plant mplant=2kg, l=1m and for the model, mmodel=1kg, l=1m, which results
in model uncertainty in both f and g in (2.2).

A CLF-QP controller (2.20) based on the nominal model is designed to stabilize the
pendulum to the upright position. In order to illustrate the effects of model uncertainty, we
compare it with the CLF-QP controller based on the true plant dynamics. The difference
between the two controllers (Fig. 9.2) is due to the effects of model uncertainty. Specifically,
in this case the model uncertainty makes the system converge more slowly.

Fig. 9.1 depicts the data collection algorithm and the resulting training data for the GP
model. The results of deploying the GP-CLF-SOCP controller, with a confidence level of
1−δ=0.95, are presented in Fig. 9.2 in blue lines. Note that the results are very similar to
those from the CLF-QP based on the true plant dynamics, which means that the GP-CLF-
SOCP successfully captures the correct effects of model uncertainty. Also, the computation
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Figure 9.2: Simulation results of applying the GP-CLF-SOCP to the inverted pendulum ex-
ample, with a model-plant mismatch of mplant=2kg, mmodel=1kg, compared to the nominal-
model-based CLF-QP, and to the GP-CLF-QP that does not consider the uncertainty af-
fected by u. Results of the CLF-QP based on the true plant are also provided to show that
the GP-CLF-SOCP learns the correct exponential CLF constraint.

time of the GP-CLF-SOCP, including the GP inference time, is 9.1± 2.2ms (max: 25.7ms)
on a laptop with a 10th-gen Intel Core i7 and 32GB RAM.

In order to benchmark the GP-CLF-SOCP, we compare its performance with the one
obtained if we only learn the uncertainty in f , as done in previous works [58, 223]. For this,
we design a GP-based Control Lyapunov Function Quadratic Program (GP-CLF-QP) that
only learns the uncertainty L∆fV in (9.3). The results of this controller are also shown in
Fig. 9.2.

9.6.2 System with Multiple Control Inputs: Kinematic Bicycle

Next, in order to show that our method can be successfully applied to systems with higher
state dimension and multiple control inputs, we apply it to track a reference trajectory using
a kinematic bicycle model. The state is defined as x = [px, py, v, θ, γ]

T (px, py: position
coordinates, v: speed, θ: heading angle, γ: tangent of the steering angle). The dynamics of
the system are given as
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Figure 9.3: Trajectories in x − y plane (Top) and histories of V (x(t)) (Bottom) of the
kinematic vehicle under artificial drift and friction to illustrate the applicability of the GP-
CLF-SOCP to multi-input systems. Comparison between GP-CLF-SOCP, CLF-QP(Model),
and CLF-QP(Plant). The sampling time is set as 20ms, and the comptutation time of the
GP-CLF-SOCP per timestep is 10.3±1.9ms (max: 20.4ms). Number of training data points
for GP-CLF-SOCP: 961.

ẋ = f(x) + g(x)u, f(x)=


v cos θ
v sin θ
−fµ
vγ
0

 , g(x)=


0 0
0 0
bv 0
0 0
0 bγ

 , (9.12)

where u ∈ R2, and fµ, bv, bγ are constants that emulate friction and skid effects. For the
nominal model, we assume no such effects (fµ=0, bv=bγ=1) and for the plant, we use fµ=1,
bv =1.5, bγ =0.75. The objective is to stabilize to a constant-velocity trajectory along the
x-axis; v(t)=5, py(t)=θ(t)=γ(t)=0. The initial state is set as x0 = [0, 0.25, 2, 0.25, 0.25]T .

Fig. 9.3 shows the simulation results of the GP-CLF-SOCP and those of the CLF-QP
based on the nominal model and the true plant. Here, we use a polynomial CLF [163],
which is verified to be locally stabilizing for the nominal model. While the nominal model-
based CLF-QP oscillates around the reference trajectory, the GP-CLF-SOCP successfully
converges to the reference trajectory.

9.7 Chapter Summary

In this chapter, we introduced a method to design a stabilizing controller for control-affine
systems with both state and input-dependent model uncertainty using GP regression. For
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this purpose, we have proposed the novel ADP compound kernel, which captures the control-
affine nature of the problem. This permits the formulation of the so-called GP-CLF-SOCP,
which is solved online to obtain an exponentially stabilizing controller with probabilistic
guarantees. After testing it on the numerical simulation of two different systems, we obtain
a clear improvement with respect to the nominal model-based CLF-QP and we are able to
closely match the performance of the true plant-based controller.
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Chapter 10

Recursively Feasible Probabilistic Safe
Control under Uncertainty

This chapter is based on the article titled “Recursively Feasible Probabilistic Safe Online
Learning with Control Barrier Functions” [31]1, co-authored by Jason J. Choi, Wonsuhk
Jung, Bike Zhang, Claire J. Tomlin and Koushil Sreenath.

In this chapter, we first introduce a reality-gap-aware reformulation of CBF-based safety-
critical controllers using Gaussian Process (GP) regression to bridge the gap between an
approximate mathematical model and the real system. Our proposed robust controller takes
into account the GP prediction uncertainty and outputs control actions that guarantee safety
with high-probability when feasible.

Compared to previous work, we study the conditions under which the resulting robust
safety-critical controller is feasible. This feasibility analysis results in a set of richness condi-
tions that the available information about the system should satisfy to guarantee that a safe
control action can be found at all times. Then, we use these conditions to devise an event-
triggered online data collection strategy that ensures the recursive feasibility of the learned
safety-critical controller. Our proposed methodology endows the system with the ability to
reason at all times about whether the current information at its disposal is enough to ensure
safety or if new measurements are required. This, in turn, allows us to provide formal results
of forward invariance of a safe set with high probability, even in a priori unexplored regions.

1This article is the journal version of the conference paper “Pointwise Feasibility of Gaussian Process-
based Safety-Critical Control under Model Uncertainty” [30].
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10.1 Introduction

10.1.1 Motivation

In many real-world control systems, such as aircrafts, industrial robots or autonomous vehi-
cles, in order to prevent system failure and catastrophic events, it is crucial to ensure that
the system always stays within a set of safe states. Mathematical models of the system’s
dynamics can often be useful to design controllers that can enforce such safety constraints.
However, since designing accurate models for complex real systems is not easy, imperfect
models are typically used in practice, and the guarantees of the designed controllers can be
lost when these model imperfections are not addressed appropriately.

On the other hand, modern data-driven control techniques have emerged as promising
tools for solving complex control tasks. Nevertheless, in the absence of interpretable model-
based knowledge, such methods usually fall short of theoretical guarantees. Moreover, data-
driven approaches typically require collecting enough real-world data to accurately charac-
terize the system. This presents a dilemma for safety-critical systems: in order to collect
data, we need to deploy the system, but without having previously secured sufficient data
to confidently deploy the system in a safe manner, we cannot dare to do so.

In this chapter, we present an approach to address this dilemma and guarantee the safety
of systems with uncertain dynamics. Our methodology lies at the intersection of model-based
and data-driven control techniques. An imperfect dynamics model is complemented by the
information gathered from data collected safely online from the real system, which allows us
to ensure safety without having a perfect model of the system nor offline data.

To intuitively illustrate the working principle of our approach, consider an adaptive cruise
control problem where an ego vehicle must maintain a safe distance from the car in front.
The key idea behind our method is to make sure that at all times the ego car has enough
information about its dynamics reacting to a safe control action (e.g., braking), derived from
prior knowledge or data. If the braking effect is well understood and safety is not compro-
mised, the ego vehicle is allowed to follow the driver’s commands. However, if the braking
uncertainty reaches a critical level, our method commands the ego vehicle to brake, allowing
it to measure the braking effect and improve confidence. This critical level constitutes the
maximum tolerable uncertainty before it becomes impossible to assure with high confidence
that the car will be safe after pressing the brake. This way, if the front car gets closer, the
effect of braking is always sufficiently well characterized so that the ego vehicle is ready to
prevent a collision. Thus, our method fundamentally focuses on determining if the combi-
nation of prior model knowledge and collected data can maintain low uncertainty in a safe
control direction or if new information is needed instead.

10.1.2 Related Work

In the model-based control literature, various approaches exist for the design of controllers
satisfying safety constraints, including Control Barrier Functions (CBFs, [8]), Hamilton-
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Jacobi Reachability [13], and Model Predictive Control [200] to name a few. In this chap-
ter, we focus on the CBF-based implementations of safe controllers for nonlinear systems.
The main advantages of using CBFs for safety-critical control are twofold. First, the zero-
superlevel set of a CBF, which is control invariant, explicitly verifies the state domain where
safety is guaranteed. Second, while guaranteeing set invariance requires long horizon rea-
soning, CBFs condense this problem into a simple single time-step condition that should be
satisfied at each time, similar to Lyapunov-based methods for stability. This single time-step
constraint on the control input derived from a CBF guarantees that the system does not exit
the boundary of the zero-superlevel set and thus, remains safe.

Importantly, such safety constraints based on CBFs depend on the dynamics of the
system. This means that when the dynamics are uncertain, the usage of an incorrect model
in the CBF-based controller might lead to violation of safety. By applying the techniques of
adaptive control, this issue can be tackled with an online adaptation of the control law to
capture the effects of the uncertainty [145, 184, 130, 21]. However, these approaches usually
assume the uncertainties have some restrictive structure, which is hard to verify a priori.
Robust control approaches instead consider the worst-case effects of model uncertainty [147,
39], or use the notion of input(disturbance)-to-state safety [107, 4, 111]. Nonetheless, with
these methods, an inaccurate characterization of the disturbance bounds used for the robust
design can lead to the violation of safety when the estimated bounds are too optimistic, or
can lead to impractical conservative behaviors when the bounds are unnecessarily large.

These limitations allude to the core motivation of using modern data-driven techniques
to address the effects of model mismatch: learn and adapt to the uncertainties with minimal
structural assumptions, and learn the correct magnitude of the robustness bounds. Extensive
recent research has in fact empirically proved the validity of data-driven control methods for
this purpose. Many of these works use neural networks to learn the mismatch terms [186,
187, 210, 38]. Although these approaches are demonstrated to be practical and effective, it
is often difficult to verify the accuracy of the neural network predictions.

Other works, like this work, use non-parametric regression methods, most notably Gaus-
sian Process (GP) regression, that provide a probabilistic guarantee of the prediction quality
under mild assumptions. However, many of these works make the important simplifying
assumption that the uncertainty in the system dynamics is not affected by actuation [18,
19, 60, 191, 58, 36, 43]. In contrast, for many controlled systems, uncertain input effects, or
actuation uncertainty, is very common. For instance, uncertainty in the inertia matrix of a
mechanical system directly induces uncertain input effects.

Recent work in [27, 188, 68, 56, 24] has sought to overcome this limitation. However,
most of these methods require access to high-coverage data that completely characterize the
dynamics of the system. Usually, collecting these data would require exciting the system in
many control directions, which might compromise safety in real-world experiments. From
our perspective, guaranteeing safety for uncertain systems by using only data that can be
safely collected remains an open problem.
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10.1.3 Contributions

Our work uses Gaussian Process regression to learn the effects of an uncertain dynamics
model on the CBF-based safety constraint. Then, a second-order cone program (SOCP)-
based controller is proposed that gives a probabilistic safety guarantee when the program is
feasible.

The data quality of the GP model significantly impacts the GP prediction accuracy and
feasibility of the SOCP controller, consequently affecting the probabilistic safety guarantee.
In this chapter, we first establish necessary and sufficient conditions for the feasibility of
the SOCP controller, for a given fixed GP model and dataset. This analysis provides a
one-directional linkage between data quality and safety, that is, a theoretical check of safety
given the dataset. However, if the SOCP controller navigates to state-space regions with
insufficient data, feasibility can be lost, leading to safety violations. Existing frameworks in
[56, 24] face precisely this issue.

In contrast to these works, in this chapter we also include an event-triggered online
data collection mechanism that ensures the recursive feasibility of the SOCP controller. By
achieving this, we also fill in the linkage between data quality and safety in the opposite
direction: we now use the safety check to inform the data collection. Thus, the two links
acting together—evaluating safety to judge whether and how to improve the data, and
using the data to make predictions with the GP model and guarantee safety—constitute a
systematic online learning-based safety framework for uncertain systems.

Our event-triggered online data collection algorithm ensures at all times the availability
of a control input direction that can render the system safe with high probability. If the
available prior knowledge from the model and past data is sufficient to characterize such a
backup direction, our proposed method simply acts as a safety filter applied to a performance-
driven control law. However, whenever the uncertainty in the safe control direction reaches
a critical level, our algorithm takes a safe exploration action that improves the knowledge
of the system’s response to such control inputs. Unlike the strategy in [193], which aims to
improve overall accuracy of the GP prediction for a feedback linearization-based controller,
our event-triggered data collection focuses on exciting safe control directions and reducing
uncertainty specifically in such directions.

Finally, we prove local Lipschitz continuity of the probabilistic safety-critical controller
and give formal arguments about the existence and uniqueness of closed-loop executions of
the system under our proposed safe online learning algorithm. In turn, this allows us to
provide the main theoretical result of this chapter (Theorem 10.5), establishing safety in
terms of set invariance with high probability, even in regions where there is no prior data and
the model knowledge is limited. To our knowledge, this is the first work in the area of CBFs
applied to systems with uncertain dynamics that collects data online and provides recursive
feasibility guarantees of the CBF-based safe controller.
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10.2 Problem Statement

Throughout the chapter we again consider control-affine nonlinear systems of the form in
(2.2):

ẋ = f(x) + g(x)u,

where x ∈ X ⊂ Rn is the state and u ∈ Rm is the control input. In this chapter we assume
that there are no control limits. As noted in Chapter 2, many important classes of real-
world systems, such as those with Lagrangian dynamics, can be represented in this form.
We assume that f : X → Rn and g : X → Rn×m are locally Lipschitz continuous. We will
call system (2.2) the true plant. The problem addressed in this chapter is how to guarantee
the safety of the true plant (2.2) when its dynamics f and g are unknown, while trying to
accomplish a desired task. Our proposed method will tackle this problem using real-time
data and an approximate nominal model of the system’s dynamics, with f̃ : X → Rn and
g̃ : X → Rn×m, as in (2.25):

ẋ = f̃(x) + g̃(x)u.

To achieve this safety objective, we use the model-based tool of Control Barrier Functions
(from Definition 2.7), through the safety with result introduced in Lemma 2.2.

As we showed in Chapter 2, given a safety-agnostic reference controller πref : X → Rm,
the condition in (2.22) can be used to formulate a minimally-invasive safety-filter [8]:

CBF-QP:

πCBF(x) = argmin
u∈Rm

∥u− πref(x)∥22 (10.1a)

s.t. LfB(x) + LgB(x)u+ γ(B(x)) ≥ 0, (10.1b)

which is a quadratic program (QP) if the input bounds are linear. This problem is solved
pointwise in time to obtain a safety-critical control law πCBF : X → U that only deviates
from the reference controller πref when safety is compromised. However, note that this
optimization problem requires perfect knowledge of the dynamics of the system, since the
Lie derivatives of B appear in the constraint. Note that this constraint is affine in the control
input.

In [219, Thm. 8], it is shown that if πref and γ are Lipschitz continuous functions, B has
a Lipschitz continuous gradient and if it satisfies the relative degree one condition in X , i.e.,
LgB(x) ̸= 0 ∀x ∈ X ; then the CBF-QP of (2.23) yields a locally Lipschitz control policy,
therefore guaranteeing the forward invariance of Xsafe by Lemma 2.2.

10.2.1 Safety under Model Uncertainty

The problem that we want to address in this chapter of the dissertation is how to guarantee
that a system with uncertain dynamics (2.2) remains safe with respect to a set Xsafe while
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trying to accomplish a safety-agnostic task (as defined by a reference control policy πref :
X → Rm). The dynamics of (2.2) are uncertain and only a nominal model (2.25) is available.
Moreover, we do not assume having access to any dataset containing previous trajectories
of the true plant. Instead, the system must autonomously reason about what data it needs
to collect online in order to stay safe with a high probability.

Problem 10.1. For a given safe set Xsafe = {x ∈ X : B(x) ≥ 0} and nominal dynamics
model (2.25), design a data collection strategy and a data-driven control law π̄ : X → Rm

that together render the set Xsafe forward invariant for system (2.2) with a high probability,
i.e.,

P{ ∀x0 ∈ C, x(0) = x0 =⇒ x(t) ∈ C, ∀t ∈ [0, τmax) } ≥ 1− δ,

where δ is a user-defined risk tolerance and τmax is the maximum time of existence and
uniqueness of the solution x(t) of (2.2) under the control law π̄.

Assumption 10.1. We assume we have access to a function B : X → R that is a valid
CBF for the true plant (2.2), with zero-superlevel set Xsafe = {x ∈ X : B(x) ≥ 0}.

Designing good CBFs (in the sense of not overly conservative) for uncertain systems is
however non-trivial, and in fact it is an active research topic [54, 160, 91, 125, 95]. Note
that our contribution is tangential to such line of research, since even when a valid CBF
is available, obtaining a control policy that can guarantee safety of an uncertain system is
still an open problem. In fact, Assumption 10.1 is also present in the prior works that most
closely align with our research [187, 188, 38, 27, 56, 68]. For our simulations, we use the
nominal model to design the CBF. This is known to be a reasonable procedure for feedback
linearizable systems whose relative degree is known, due to the inherent robustness properties
of CBFs [219, 107].

In practice, Assumption 10.1 guarantees that there exists a control policy that keeps
the true plant (2.2) safe. However, since the true dynamics of the system are unknown,
without further knowledge it is impossible to verify whether a control input u satisfies the
CBF constraint (10.1b).

Note that the CBF constraint (10.1b) for the true plant can be expressed as

Lf̃B(x) + Lg̃B(x)u+∆B(x, u) + γ(B(x)) ≥ 0, (10.2)

where Lf̃B and Lg̃B are the Lie derivatives of B computed using the nominal dynamics
model (2.25), and the uncertain term ∆B is defined for each x ∈ X , u ∈ Rm as

∆B(x, u) := (LfB−Lf̃B)(x) + (LgB−Lg̃B)(x)u. (10.3)

We now present a method to estimate the function ∆B using data from the true plant and
Gaussian Process (GP) regression. This follows closely the approach presented in Chapter
9 of this thesis. By doing so, it is possible to formulate a probabilistic version of the opti-
mization problem (10.1) that takes into account the current best estimate of the term ∆B



CHAPTER 10. RECURSIVELY FEASIBLE PROBABILISTIC SAFE CONTROL
UNDER UNCERTAINTY 132

and the estimation uncertainty. Note that learning ∆B is advantageous rather than learn-
ing the full dynamics of the system (as is typically done in the model-based reinforcement
learning literature) since ∆B is a scalar function. Indeed, this function condenses all the
safety-relevant model uncertainty into a scalar. Moreover, in order to retain the convexity
of the CBF constraint we exploit the control-affine structure of ∆B during learning, as in
Section 9.3. We now briefly revisit this learning procedure.

10.3 Gaussian Process Regression to Estimate the

Safety-Critical Uncertainty

We now use Gaussian Process Regression with the ADP compound kernel introduced in
Definition 9.1 to estimate the uncertainty ∆B taking into account its control-affine structure.

We first introduce some useful notation. We can rewrite (10.3) as

∆B(x, u) = ΦB(x) ·
[
1
u

]
, (10.4)

where
ΦB(x) :=

[
LfB(x)−Lf̃B(x), LgB(x)−Lg̃B(x)

]
. (10.5)

We can then define a GP prediction model for ∆B, with domain X̄ := X ×Rm+1, where
Rm+1 is the space of y := [1, uT ]T .

Looking at Definition 9.1 and letting the target function h(x, y) be ∆B(x, u) with y =
[1, uT ]T , we can clearly see that by using the ADP compound kernel the prediction of
∆B(x∗, u∗) at a query point (x∗, u∗) has a mean function (9.6) that is affine in the con-
trol input u∗ and a variance (9.7) that is quadratic in u∗. This is crucial for the construction
of the convex optimization-based safety filter that will be introduced in the next section.
We will denote the mean and variance of the prediction of ∆B at a query point (x∗, u∗) as
µB(x∗, u∗|DN) and σ

2
B(x∗, u∗|DN), respectively. Here, DN is the dataset containing N noisy

measurements of ∆B, as explained in Lemma 10.1.

10.3.1 Probability Bounds of the GP Prediction

We now revisit [180, Thm. 6] to give a probabilistic bound on the deviation of the true
value of ∆B from its mean prediction function µB. In order to provide guarantees about the
behavior of an unknown function at any arbitrary point in its domain that may not belong
to the discrete set of available data points, [180, Thm. 6] requires some assumptions. In
particular, equivalently to the theoretical result in Lemma 9.1 of the previous chapter, the
target function ∆B is required to belong to the Reproducing Kernel Hilbert Space (RKHS,
[207]) Hk(X̄ ) of the chosen kernel, and have a bounded RKHS norm ∥·∥k.

Lemma 10.1. [180, Thm. 6] Consider m+1 bounded kernels ki, for i = 1, . . . , (m + 1).
Assume that the ith element of ΦB is a member of Hki with bounded RKHS norm, for i=
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1, . . . , (m+1). Moreover, assume that we have access to a dataset DN = {(xj, uj), ∆B(xj, uj)+
ϵj}Nj=1 of N noisy measurements, and that ϵj is zero-mean and uniformly bounded by σn > 0.

Let β :=
(
2η2 + 300κN+1 ln

3((N + 1)/δ)
)0.5

, with η the bound of ∥∆B∥k, κN+1 the maximum
information gain after getting N +1 data points, and δ ∈ (0, 1). Let µB and σ2

B be the mean
(9.6) and variance (9.7) of the GP regression for ∆B, using the ADP compound kernel k of
k1, . . . , km+1, at a query point (x∗, u∗), where x∗ and u∗ are elements of bounded sets X ⊂ Rn

and U ⊂ Rm, respectively. Then, the following holds:

P
{ ∣∣∣∣µB(x∗, u∗|DN)−∆B(x∗, u∗)

∣∣∣∣ ≤ βσB(x∗, u∗|DN),

∀N ≥ 1, ∀x∗ ∈ X , ∀u∗ ∈ U
}
≥ 1− δ. (10.6)

10.4 Probabilistic Safety Filter

We now make use of the probability bound given by Lemma 10.1 to build an uncertainty-
aware CBF chance constraint that can be incorporated in a minimally invasive probabilistic

safety filter. Let us take the lower bound of (10.6) and note that Ḃ(x, u) = ˜̇B(x, u)+∆B(x, u).
Then, as a result of Lemma 10.1, the following inequality holds with a compound probability
(for all x∈X , u ∈ U and N ≥ 1) of at least 1− δ:

Ḃ(x, u) ≥ ˜̇B(x, u) + µB(x, u|DN)− βσB(x, u|DN), (10.7)

where ˜̇B(x, u) = Lf̃B(x) + Lg̃B(x)u is the CBF derivative computed using the nominal
dynamics model of (2.25).

Inequality (10.7) gives a worst-case high-probability bound for the CBF derivative of
the true plant (2.2). An important observation is that the right-hand side of (10.7) can be
evaluated without having explicit knowledge of the dynamics of the true plant. For each
state and control input, the standard deviation σB of the GP prediction determines the
tightness (and, therefore, the conservativeness) of the bound.

We use this lower bound of the CBF derivative to construct a probabilistically robust
CBF chance constraint that can be evaluated without explicit knowledge of the dynamics of
the true plant, and we incorporate it in a chance-constrained reformulation of the CBF-QP
(10.1) safety filter:

GP-CBF-SOCP:

πGP-CBF(x) = argmin
u∈Rm

∥u− πref(x)∥22 (10.8a)

s.t. ˜̇B(x, u)+µB(x, u|DN )−βσB(x, u|DN )+γ(B(x)) ≥ 0. (10.8b)
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This problem is solved at each timestep in real-time to obtain a safety-filtered control law
πGP-CBF : X → Rm that only deviates from the reference πref when safety is compromised
for the desired probability bound of 1− δ.

The linear and quadratic structures of the expressions for the mean (9.6) and variance
(9.7), respectively, of the GP prediction of ∆B when using the ADP compound kernel, lead
to this problem being a Second Order Cone Program (SOCP). This is equivalent to what was
shown for CLFs in Theorem 9.3 of the previous chapter. Therefore, by exploiting the control-
affine structure of the system during the GP regression, we obtain a convex optimization
problem that can be solved at high frequency rates when using modern solvers.

Theorem 10.1. For an unknown control-affine system (2.2) with associated CBF B, let
µB and σ2

B be the mean and variance functions of the GP prediction of ∆B using the ADP
compound kernel from Definition 9.1. Then, the probabilistic safety filter of (10.8) is convex.
Specifically, it is a Second-Order Cone Program (SOCP).

Proof. In this proof, we rewrite the GP-CBF-SOCP in the standard form for SOCPs. The
resulting form will be useful for the analysis in the following sections of the chapter.

The proof follows the steps of Theorem 9.3 replacing the Control Lyapunov Function
chance constraint with the probabilistic CBF constraint of (10.8b), and with the different
objective of minimizing the distance to the reference controller πref.

The standard form for an SOCP consists of a linear objective function subject to one or
more second-order cone inequality constraints and/or linear equality constraints. We first
transform the quadratic objective function into a second-order cone constraint and a linear
objective. Let the objective be J(u) := ∥u− πref(x)∥22. Note that for a particular state
x ∈ X , minimizing J over u gives the same result as minimizing J̄(u) := ∥u− πref(x)∥2
over u. Now we can move the objective function J̄ into a second-order cone constraint by
taking the epigraph form ∥u− πref(x)∥2 ≤ t and minimizing the new linear objective function
¯̄J(t) := t.

Next, we prove that the CBF chance constraint (10.8b) is a second-order cone constraint.

Note that ˜̇B(x, u) = Lf̃B(x)+Lg̃B(x)u is control-affine. Furthermore, since we use the ADP
compound kernel, we can exploit the structure of the posterior in (9.6) and (9.7) to express

µB(x, u|DN) = mB(x|DN)
T [1 uT ]T, (10.9)

σ2
B(x, u|DN) = [1 uT ]ΣB(x|DN)[1 u

T ]T . (10.10)

Since k is a valid kernel and we assume the measurement noise variance is strictly positive
(σ2

n > 0), ΣB(x|DN) is positive definite for any state x ∈ X and dataset DN . We can therefore
write

σB(x, u|DN) =

∥∥∥∥Σ1/2
B (x|DN)

[
1
u

]∥∥∥∥
2

, (10.11)

where Σ
1/2
B (·) ∈ R(m+1)×(m+1) is the matrix square root of ΣB(·).
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We now define the following quantities, where numerical subscripts denote elements of
vectors or matrices:

L̂fB(x|DN) := Lf̃B(x) +mB(x|DN)[1] ∈ R, (10.12)

L̂gB(x|DN) := Lg̃B(x) +mB(x|DN)
T
[2:(m+1)] ∈ R1×m, (10.13)

Σ
1/2
LfB

(x|DN) := Σ
1/2
B (x|DN)[1:(m+1)],[1] ∈ Rm+1, (10.14)

Σ
1/2
LgB

(x|DN) := Σ
1/2
B (x|DN)[1:(m+1)],[2:(m+1)] ∈ R(m+1)×m. (10.15)

Note that L̂fB(x|DN) and L̂gB(x|DN) are the mean predictions of the true plant’s LfB(x)

and LgB(x), respectively, at a point x ∈ X . Furthermore, Σ
1/2
LfB

(x|DN) and Σ
1/2
LgB

(x|DN)

correspond to the components of the uncertainty matrix Σ
1/2
B (x|DN) appearing in expression

(10.11) depending on whether they multiply the control input or not.
After introducing these quantities, we can now express (10.8b) in the standard form for

second-order cone constraints:

β
∥∥∥Σ1/2

LgB
(x|DN)u+ Σ

1/2
LfB

(x|DN)
∥∥∥
2
≤ L̂gB(x|DN)u+

(
L̂fB(x|DN) + γ(B(x))

)
.

The GP-CBF-SOCP can therefore be rewritten in the standard form for SOCPs as:

GP-CBF-SOCP (Standard Form):

πGP-CBF(x) = argmin
(u,t)∈Rm+1

t s.t. (10.16a)

∥u− πref(x)∥2 ≤ t, (10.16b)

β
∥∥∥Σ1/2

LgB
(x|DN )u+Σ

1/2
LfB

(x|DN )
∥∥∥
2
≤ L̂gB(x|DN )u+ L̂fB(x|DN ) + γ(B(x)). (10.16c)

10.5 Analysis of Pointwise Feasibility

The GP-CBF-SOCP, if feasible, is guaranteed to provide a control input that satisfies the
true CBF constraint (10.1b) with high probability. However, since the GP-CBF-SOCP of
(10.8) needs to be robust to the prediction uncertainty (through the term involving σB), and
the CBF chance constraint is not relaxed, the problem will be infeasible when the uncertainty
(σB) is dominant in the CBF chance constraint (10.8b).

Remark 10.1. Note that unlike QPs, SOCPs with even only a single hard constraint can
be infeasible. In fact, the GP-CBF-SOCP becomes infeasible when the prediction uncertainty
eclipses the discovery of a control input that can guarantee the system’s safety, as follows
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from (10.8b). This is in contrast to the uncertainty-free case, where the CBF-QP (10.1) is
guaranteed to always be feasible by the definition of CBF. It is therefore essential to study un-
der which conditions the GP-CBF-SOCP becomes infeasible, as safety could be compromised
in those cases.

10.5.1 Necessary Condition for Pointwise Feasibility

The first feasibility result we present is a necessary condition for pointwise feasibility of the
GP-CBF-SOCP.

Lemma 10.2 (Necessary condition for pointwise feasibility of the GP-CBF-SOCP). If for a
given dataset DN , the GP-CBF-SOCP (10.8) is feasible at a point x ∈ X , then it must hold
that [

L̂fB(x|DN ) + γ(B(x))

L̂gB(x|DN )T

]T
ΣB(x|DN )−1

[
L̂fB(x|DN ) + γ(B(x))

L̂gB(x|DN )T

]
≥ β2. (10.17)

Proof. See Appendix A.4.

To provide insight into this condition, for a given dataset DN and at a particular point x ∈
X , note that the left-hand side of (10.17) encodes a trade-off between the uncertainty matrix
ΣB(x|DN) and the mean prediction of the terms of the CBF constraint (as in the vector

[L̂fB(x|DN)+γ(B(x)), L̂gB(x|DN)]). In fact, the left-hand side of (10.17) can be expressed
as a sum of products, including the control-independent components (the mean prediction

L̂fB(x|DN) + γ(B(x)) and the upper left block of ΣB(x|DN)), and the control-dependent

components (the mean prediction L̂gB(x|DN) and the lower right block of ΣB(x|DN)).

The term L̂gB(x|DN) reflects the mean prediction of how a control input u can influence
the change of the value of the CBF B(x). Speaking informally, the dynamics of the CBF B(x)

are controllable at a particular point x when LgB(x) is a non-zero vector, and L̂gB(x|DN) is
our mean prediction of LgB(x). In this case, the control-dependent components of (10.17)
reveal that the necessary condition for pointwise feasibility is more easily satisfied if the
value of L̂gB(x|DN) is dominant over the lower-right block of ΣB(x|DN) (which represents
the growth of the prediction uncertainty with respect to u). In fact, this tradeoff between

L̂gB(x|DN) and the lower-right block of ΣB(x|DN) constitutes by itself a sufficient condition
for pointwise feasibility, as will be explained next.

10.5.2 Sufficient Condition for Pointwise Feasibility

Connecting the previous discussion with the term Σ
1/2
LgB

from (10.15) note that the lower-right
block of the uncertainty matrix ΣB(x|DN), can be expressed as

ΣLgB(x|DN) := ΣB(x|DN)[2:(m+1)],[2:(m+1)] = Σ
1/2
LgB

(x|DN)
T Σ

1/2
LgB

(x|DN) ∈ Rm×m.
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We now state the sufficient condition for pointwise feasibility of the GP-CBF-SOCP,
which will be the foundation for the algorithm we present in the next section. As explained
earlier, at a particular point x ∈ X , this condition encodes a tradeoff between two terms:
the mean prediction, L̂gB(x|DN), of the true plant’s safest control direction LgB(x), and
the matrix ΣLgB(x|DN) which informs about the uncertainty growth in each control input
direction. This tradeoff is embodied in a symmetric matrix F(x|DN) ∈ Rm×m, which we call
the feasibility tradeoff matrix :

F(x|DN) := β2ΣLgB(x|DN)− L̂gB(x|DN)
T L̂gB(x|DN). (10.18)

Lemma 10.3 (Sufficient condition for pointwise feasibility of the GP-CBF-SOCP). Given
a dataset DN , for a point x ∈ X let λ†(x|DN) be the minimum eigenvalue of the feasibility
tradeoff matrix F(x|DN) defined in (10.18), and e†(x|DN) be its associated unit eigenvector.
If λ†(x|DN) < 0, the GP-CBF-SOCP (10.8) is feasible at x, and there exists a constant
αmin ≥ 0 such that for any α > αmin,

πsafe(x) = α sgn
(
L̂gB(x|DN)e†(x|DN)

)
e†(x|DN) (10.19)

is a feasible solution of (10.8) at x.

Proof. See Appendix A.4.

Intuitively, Lemma 10.3 states that if at the current state x, there exists a control direc-
tion along which the controllability of the CBF is dominant over the rate of growth of the
prediction uncertainty, then the problem is feasible. Furthermore, it provides an expression
for such control input direction πsafe(x) (10.19) in closed from.

Note that, with this condition, a single scalar value (λ†) being negative guarantees the fea-
sibility of the GP-CBF-SOCP. This can be easily checked online before solving the problem.
Furthermore, for a particular state x ∈ X , the value of λ†(x|DN) can be clearly associated
with a notion of richness of the dataset DN for safety purposes—if it is negative, then there
exists at least one control input direction which we are certain that keeps the system safe
with high probability. This condition serves as the foundation for the safe online learning
methodology that we present in Section 10.6.

10.5.3 Necessary and Sufficient Condition for Pointwise
Feasibility

Lastly, we state the necessary and sufficient condition for pointwise feasibility of the GP-
CBF-SOCP. This condition combines and generalizes Lemmas 10.2 and 10.3.

Theorem 10.2 (Necessary and sufficient condition for pointwise feasibility of the GP-CBF–
SOCP). Given a dataset DN , for a point x ∈ X let λ†(x|DN) be the minimum eigenvalue of
the feasibility tradeoff matrix F(x|DN) defined in (10.18). Then, the GP-CBF-SOCP (10.8)
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Figure 10.1: Visualization of the feasibility conditions of Theorem 10.2. The green surface is

the hyperboloid β
∥∥∥Σ1/2

LgB
(x|DN)u+ Σ

1/2
LfB

(x|DN)
∥∥∥
2
= t, the blue hyperplane is L̂gB(x|DN)u+

L̂fB(x|DN)+ γ(B(x))= t, and the pink region indicates the feasible set. Case 1 corresponds
to a hyperbolic intersection, Case 2 to an elliptical intersection and Case 3 to a parabolic
intersection. Note that for Cases 2 and 3, if (10.20) and (10.21) are not satisfied, respectively,
the feasible set is empty.

is feasible at x if and only if condition (10.17) is satisfied and one of the following cases
holds:
1: λ†(x|DN) < 0;
2: λ†(x|DN) > 0, and

L̂fB(x|DN ) + γ(B(x))− L̂gB(x|DN )F(x|DN )−1
[
β2Σ

1/2
LgB

(x|DN )TΣ1/2
LfB

(x|DN )−

L̂gB(x|DN )T
(
L̂fB(x|DN ) + γ(B(x))

)]
≥0; (10.20)

3: λ†(x|DN) = 0, and

L̂fB(x|DN ) + γ(B(x))− L̂gB(x|DN )ΣLgB(x|DN )−1Σ
1/2
LgB

(x|DN )TΣ1/2
LfB

(x|DN ) > 0. (10.21)

Case 1 matches the sufficient condition of Lemma 10.3, and it corresponds to the feasible
set being hyperbolic. Cases 2) and 3) correspond to elliptic and parabolic feasible sets,
respectively. This geometric interpretation of the feasibility analysis is further explained in
Figure 10.1.

Proof. See Appendix A.4.

Under our hypotheses, Theorem 10.2 provides tight conditions that the available data DN

should satisfy in order to obtain probabilistic safety guarantees for systems with actuation
uncertainty.
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10.6 Probabilistic Safe Online Learning

10.6.1 Proposed Safe Online Learning Strategy

In this section, we present a safe online learning algorithm that guarantees safety of the
true plant (2.2) with high probability even when no prior data is available, using only the
nominal dynamics model of (2.25) and the online stream of data collected by the system
as its state trajectory evolves with time, constructing a dataset DN online. Our proposed
safe learning strategy is designed with the goal of ensuring the recursive feasibility of the
GP-CBF-SOCP. This will be accomplished by guaranteeing that the sufficient condition
for pointwise feasibility of Lemma 10.3 always holds. By doing so, we ensure that there
always exists a backup control direction πsafe (10.19) that can guarantee safety with a high
probability.

Remark 10.2. Note that Lemma 10.3 is only a sufficient condition for feasibility of the
SOCP (10.8), and that the problem could be feasible at x ∈ X even when the condition
λ†(x|DN) < 0 of Lemma 10.3 does not hold. The necessary and sufficient feasibility condition
is given in Theorem 10.2. However, if λ†(x|DN) < 0 does not hold, it means that there does
not exist any control input direction at the current state that can serve as a backup safety
direction, and the problem (10.8) is only feasible at x in this case if the CBF condition can
be guaranteed with u → 0. We believe that this situation is not desirable since the system
might later on move towards states where the true CBF constraint cannot be satisfied unless
a control input is applied, in which case the problem would become infeasible.

Note that the matrix ΣLgB(x|DN) appearing in Lemma 10.3 characterizes the growth
of the uncertainty σ2

B in each control direction. If in the neighborhood of a state x ∈ X ,
all of the data points (xj, uj) in the dataset DN have control inputs uj coming from a
performance-driven control law like πref, then the uncertainty growth in the unknown safe
control direction LgB(x) can be potentially high, for instance if it is significantly different
from the performance control direction, because of the resulting structure of ΣLgB(x|DN). In
this case, the condition λ†(x|DN) < 0 of Lemma 10.3 may not be satisfied and infeasibility
would occur if the probabilistic CBF constraint of (10.8b) cannot be met when u → 0 (see
Remark 10.2). This situation could happen in our case if the system is directly controlled
by the GP-CBF-SOCP (10.8) in regions where the CBF constraint is not active, since in
that case the collected data points would have control inputs along the direction of the
reference control policy πref. The problem is that later on, if the system approaches the safe
set boundary and the CBF constraint becomes active (meaning that a safety control action
is needed), λ†(x|DN) < 0 may not hold and the SOCP controller may become infeasible, as
it would not be able to find any control input direction along which the controllability of the
CBF is dominant over the growth of the uncertainty. As will be explained in the following,
the crux of our safe learning algorithm is to make sure we never end up in this situation.
We accomplish this by applying control inputs (and adding those points to the dataset) in
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Algorithm 10.1: Safe Online Learning

1 Initialize t = 0, x(0) = x0. Get N(0), DN(0).
2 while t < Tmax do
3 x← x(t)

4 λ† ← getLambdaDagger
(
x,DN(t)

)
5 if λ† < −ε then
6 u← πGP-CBF(x) from the SOCP (10.8)
7 else
8 u← πsafe(x) from (10.19)
9 end

10 if (λ† ≥ −ε) or (t mod τ = 0) then
11 Measure zB = ∆B(x, u) + ϵN(t)

12 DN(t) ← DN(t) ∪ {(x, u), zB}
13 N(t)← N(t) + 1

14 end

15 end

the safety backup direction in a precautious event-triggered fashion before the uncertainty
growth in that direction becomes dominant.

Algorithm 10.1 shows a concrete implementation of our safe online learning framework.
We propose using the GP-CBF-SOCP of (10.8) as the control law for system (2.2) whenever
the value of λ† lies under a threshold−ε < 0, which is a negative constant close to 0. However,
if the value of λ† reaches −ε, we propose taking a control input along πsafe and adding
the resulting measurement to the GP dataset, in order to reduce the uncertainty along the
direction of πsafe and consequently decrease the value of λ† to below −ε for the following time
steps. Nonetheless, since apart from guaranteeing safety we also want the reference controller
πref to accomplish its objective without being too conservative, in addition to the event-
triggered updates when λ† reaches −ε we propose collecting time-triggered measurements to
update the dataset, with triggering period τ . Thus, Algorithm 10.1 constructs a time-varying
dataset DN(t) and implicitly defines a closed-loop control law.

Remark 10.3. Using Algorithm 10.1, the number of data points N grows with time. Since
each data point is added individually, rank-one updates to the kernel matrix inverse can
be computed in O(N2). However, N can still quickly become large-enough to compromise
real-time computation. A practical and effective strategy to only select the most useful data
points and therefore reduce this computational complexity is presented in Chapter 11 of this
dissertation.
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10.6.2 Theoretical Analysis

In this section, we provide theoretical results about the effectiveness of Algorithm 10.1 in
guaranteeing safety of the unknown system (2.2) with respect to the safe set Xsafe. We start
by showing that with Algorithm 10.1 we can keep λ† < 0 for the full trajectory under some
assumptions.

Assumption 10.2. We assume that we have an initial dataset DN(0) (which can be an empty
set) such that at the initial state x0 ∈ X and initial time t = 0, we have λ†(x0|DN(0)) < 0.

Assumption 10.3. We assume that the CBF B satisfies the relative degree one condition
in X , i.e., LgB(x) ̸= 0 ∀x ∈ X . Furthermore, we assume that for any x0 ∈ X , for the
trajectory x(t) generated by running Algorithm 10.1, with DN(t) being the dataset at time t,

we have L̂gB(x(t)|DN(t)) ̸= 0 ∀t.

Assumption 10.4. Running Algorithm 10.1 from any x0 ∈ X , let {tκ}κ∈N be the se-
quence of times at which λ†(x(t)|DN(t)) ≥ −ε. We assume that for every κ we have

e†
(
x(tκ)|DN(tκ)

)T
L̂gB

(
x(tκ)|DN(tκ)+1

)
̸= 0.

Assumption 10.2 requires that at the initial state we have a backup safety direction πsafe
available. This can be achieved through a good nominal model (2.25) or an initial small set
of points DN(0) in the neighborhood of x0. In the first part of Assumption 10.3, we require a
relative degree 1 of the CBF B. This was already required to guarantee Lipschitz continuity
of the solutions of the original CBF-QP (10.1), as explained in Section 10.2. The second
part of Assumption 10.3 is needed to make sure that we do not lose the relative degree of
the mean predicition of the CBF condition, and Assumption 10.4 makes sure that during an
event-triggered update of the dataset, the new safety direction does not completely cancel
the previous one. Both of these assumptions are in accordance with the high probability
statement of Lemma 10.1.

Lemma 10.4. Under Assumptions 10.2, 10.3 and 10.4, for all x0 ∈ X , let x(t) be the
trajectory generated by running Algorithm 10.1 for system (2.2). Let DN(t) be the time-
varying dataset generated during the execution of Algorithm 10.1. If the trajectory x(t) exists
and is unique during some time interval t ∈ [0, τmax), then it holds that λ†

(
x(t)|DN(t)

)
< 0

for all t ∈ [0, τmax).

Proof. See Appendix A.4.

Lemma 10.3 previously demonstrated that λ†(x|DN) < 0 is a sufficient condition for
pointwise feasibility of the GP-CBF-SOCP at a point x ∈ X using a dataset DN . Now,
Lemma 10.4 ensures that λ†(x(t)|DN(t)) < 0 always holds along each trajectory x(t) and
dataset DN(t) obtained by running the safe learning algorithm. Therefore, we have established
recursive feasibility of the GP-CBF-SOCP when using the proposed safe learning strategy,
as formalized in the following statement.
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Theorem 10.3 (Recursive feasibility of the GP-CBF-SOCP). Under Assumptions 10.2,
10.3 and 10.4, for all x0 ∈ X let x(t) be the trajectory generated by running Algorithm 10.1
for system (2.2). Let DN(t) be the time-varying dataset generated during the execution of
Algorithm 10.1. If the trajectory x(t) exists and is unique during some time interval t ∈
[0, τmax), then the probabilistic safety constraint (10.8b) is feasible at all times t ∈ [0, τmax)
for the trajectory x(t) and dataset DN(t).

Proof. This is a direct consequence of Lemmas 10.3 and 10.4.

Next, we prove that the trajectory x(t) generated by running Algorithm 10.1 locally
exists and is unique. Note that the policy that Algorithm 10.1 defines is a switched control
law, since new data points are added at discrete time instances. We start by showing that
for a fixed dataset DN , the solution of the GP-CBF-SOCP is locally Lipschitz continuous
under some assumptions:

Assumption 10.5. We assume that the Lie derivatives of B computed using the nominal
model Lf̃B(x), Lg̃B(x), as well as the function γ(B(x)), the reference policy πref(x) and
the GP prediction functions for any fixed dataset µB(x, u), σB(x, u) are twice continuously
differentiable in x, for all x ∈ X .

Note that the GP prediction functions are twice continuously differentiable in x when
the components k1, . . . , km+1 of the ADP compound kernel (9.5) use many typical kernels,
for instance the squared exponential kernel.

Lemma 10.5 (Lipschitz continuity of solutions of the GP-CBF-SOCP). Under Assumption
10.5, for a point x ∈ X and dataset DN such that λ†(x|DN) < 0 holds, the solution of the
GP-CBF-SOCP (10.8) is locally Lipschitz continuous around x.

Proof. See Appendix A.4.

Remark 10.4. To the best of our knowledge, Lemma 10.5 is the first result concerning Lip-
schitz continuity of SOCP-based controllers using CBFs or, equivalently, Control Lyapunov
Functions (CLFs) for a general control input dimension. Very recently, several SOCP-based
frameworks have been developed for robust data-driven safety-critical control using CBFs and
CLFs [56, 188, 55, 25, 68], and verifying the local Lipschitz continuity of the SOCP solution
serves to guarantee local existence and uniqueness of trajectories of the closed-loop dynamics.

Using Lemmas 10.4 and 10.5, we now establish local existence and uniqueness of the
closed-loop solutions of system (2.2) under the switched control law defined by Algorithm
10.1.

Theorem 10.4 (Local existence and uniqueness of executions of the safe learning algorithm).
Under Assumptions 10.2, 10.3, 10.4 and 10.5, there exists a τmax > 0 such that for any
x0 ∈ X a unique solution x(t) of (2.2) under the control law defined by Algorithm 10.1 exists
for all t ∈ [0, τmax).
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Proof. See Appendix A.4.

Previously, Theorem 10.3 gave conditions under which the probabilistic constraint (10.8b)
is recursively feasible when using the control law defined by Algorithm 10.1. This means that,
with high probability, the true CBF constraint (10.1b) can be satisfied at every timestep,
as follows from Lemma 10.1. This fact can now be combined with the local existence and
uniqueness result of Theorem 10.4 to establish forward-invariance of a safe-set Xsafe with
high probability, as was originally formulated in Problem 10.1.

Theorem 10.5. Under Assumptions 10.1, 10.2, 10.3, 10.4 and 10.5, the control law defined
by Algorithm 10.1 applied to the true plant (2.2) renders the set Xsafe = {x ∈ X : B(x) ≥ 0}
forward invariant with a probability of at least 1− δ.

Proof. Let the control law defined by Algorithm 10.1 be denoted as π̄(x). For all x0 ∈ X ,
the solution x(t) of (2.2) under π̄(x) satisfies λ†

(
x(t)|DN(t)

)
< 0, ∀t ∈ [0, τmax) with τmax > 0

from Theorem 10.4 and Lemma 10.4. Here, DN(t) is the time-varying dataset generated by
Algorithm 10.1. Moreover, from Lemma 10.3 and Theorem 10.3, this means that the GP-
CBF-SOCP is feasible ∀t ∈ [0, τmax). Furthermore, note that π̄ is the solution of (10.8),
except at times when λ†

(
x(t)|DN(t)

)
≥ −ε in which case it takes the value of πsafe(x(t)).

However, since even at those times λ†
(
x(t)|DN(t)

)
< 0, πsafe(x(t)) is also a feasible solution

of (10.8). Therefore, under π̄, the constraint (10.8b) is satisfied for all t ∈ [0, τmax). This
fact, together with the probabilistic bound on the true plant CBF derivative Ḃ (10.7) that
arises from Lemma 10.1, leads to:

P
{
Ḃ
(
x(t), π̄(x(t))

)
+ γ
(
B(x(t))

)
≥ 0,∀x0 ∈ X , ∀t ∈ [0, τmax)

}
≥ 1− δ. (10.22)

Noting that the trajectory x(t) is a continuous function of time that exists and is unique for
all t ∈ [0, τmax) (from Theorem 10.4), we can now use Assumption 10.1 and the bound of
(10.22) to obtain

P{ ∀x0 ∈ C, x(0) = x0 =⇒ x(t) ∈ C,∀t ∈ [0, τmax) } ≥ 1− δ. (10.23)

This is precisely the expression that appears in Problem 10.1, and it means that the tra-
jectories x(t) will not leave the set Xsafe = {x ∈ X : B(x) ≥ 0} for all x0 ∈ Xsafe with a
probability of at least 1− δ, completing the proof.

Theorem 10.5 establishes the forward invariance of Xsafe with a probability of at least
1− δ. This is possible because of the fact that Lemma 10.1 is not a pointwise result on the
deviation of the GP prediction at a particular point, but instead a probability bound on the
combination of all of the possible deviations (for all N , x and u). The note [120] provides
an insightful discussion of this topic.

Remark 10.5. Note that the proposed framework can be easily extended to the problem of
safe stabilization by adding a relaxed probabilistic CLF constraint to the SOCP (10.8), as
done in [30]. The entire theoretical analysis about feasibility and safety would directly follow
as long as Assumption 10.5 is adapted to include the CLF-related terms.
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Figure 10.2: Color map of λ† in the state-space of the adaptive cruise control system x=
[v, z]T when running Algorithm 10.1 with no prior data. The region in which λ† < 0 is
expanded online as Algorithm 10.1 collects new measurements. Top: snapshot when λ†
hits the threshold −ε, Algorithm 10.1 collects a measurement along πsafe which expands the
region where λ† < 0 (in blue). Bottom: result at the end of the trajectory.

10.7 Examples

In this section, we test our framework on the following two examples in numerical simulation.
The first example of an adaptive cruise control system highlights how the feasibility of the
controller improves from the data collected online through Algorithm 10.1. The second
example of a kinematic vehicle system demonstrates the applicability of our framework to
multi-input systems.

10.7.1 Adaptive Cruise Control

We apply our proposed framework to a numerical model of an adaptive cruise control system

ẋ = f(x) + g(x)u, f(x)=

[
−Fr(v)/m
v0 − v

]
, g(x)=

[
0

1/m

]
, (10.24)

where x = [v, z]T ∈ R2 is the system state, with v being the ego car’s velocity and z the
distance between the ego car and the car in front of it; u ∈ R is the ego car’s wheel force;
v0 is the constant velocity of the front car (14 m/s); m is the mass of the ego car; and
Fr(v)=f0+f1v+f2v

2 is the rolling resistance force on the ego car. We introduce uncertainty
in the mass and the rolling resistance.

A CLF is designed with the objective of stabilizing a desired speed of vd = 24 m/s, and
a CBF enforces a safe distance of z ≥ 1.8v with respect to the front vehicle. We specifically
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Figure 10.3: Simulation results of an adaptive cruise control system under model uncer-
tainty, when controlled using different strategies: Algorithm 10.1 with no prior data (green);
Algorithm 10.1 with an informative prior dataset (yellow); the GP-CBF-SOCP with no prior
data using time-triggered updates online (orange); the CBF-QP using the uncertain dynam-
ics (pink); and the oracle true-plant-based CBF-QP (black). Even when no prior data is
available, Algorithm 10.1 keeps the system safe (B > 0) by collecting measurements in the
safety direction (negative u) when λ† approaches 0. Using the GP-CBF-SOCP with time-
triggered data collection or the uncertain CBF-QP the system becomes unsafe, as shown in
the B plot.

use V (x) = (v − vd)2 and B(x)=z − 1.8v. Following Remark 10.5, the CLF-based stability
constraint is added as a soft constraint to the SOCP controller, replacing the reference control
input πref. Therefore, the CBF acts as a hard safety constraint which filters a performance-
driven control policy based on the CLF (whose objective is to stabilize the car to the desired
speed vd).

Figure 10.2 shows a state-space color map of the value of λ† at two different stages
of the trajectory generated running Algorithm 10.1 for the adaptive cruise control system
with no prior data from x0 = [20, 100]T . The top plot represents an intermediate state,
in which the system is still trying to reach the desired speed of 24 m/s since the safety
constraint (10.8b) is not active yet (the car in front is still far). Even though Algorithm 10.1
is collecting measurements in a time-triggered fashion using the SOCP (10.8) controller, the
state gets close to the boundary of λ† = 0 frequently since the performance-driven control
input obtained from the SOCP (10.8) when the safety constraint is not active is very different
from πsafe. One such case is visualized in the top figure. However, Algorithm 10.1 detects
that λ† is getting close to zero and an event-triggered measurement in the direction of πsafe is
taken, which expands the region where λ† < 0. The bottom plot shows the color map of λ†
at the end of the process, with the final dataset. We can see that the safety constraint was
active for a portion of the trajectory (when the ego vehicle approached the front one), but
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Figure 10.4: Illustration of the zero-level set of the CBF for the kinematic vehicle example.
Dm is the safety distance, which is computed by adding the minimum distance for the vehicle
to steer with a maximal yaw rate without colliding with the obstacle dsteer and a velocity-
dependent distance margin τ(v − v).

the system stayed safe by virtue of using Algorithm 10.1 to keep a direction πsafe available.
Figure 10.3 shows that while a nominal CBF-QP (in pink) fails to keep the system safe

under model uncertainty, Algorithm 10.1 with no prior data (in green) always manages to
keep B > 0 and λ† < 0. The same algorithm without the measurements along πsafe, triggered
by the event λ† ≥ −ε, fails (orange), since when the safety constraint (10.8b) becomes active,
λ† soon gets positive and the SOCP (10.8) becomes infeasible.

From another perspective, Figure 10.3 shows the importance of having a good nominal
model or a prior database that properly characterizes a safe control direction. As shown in
yellow, with such prior information Algorithm 10.1 keeps the system safe without having to
take any measurements along πsafe. If no prior data is given, the control law is purely learned
online, which leads to λ† getting close to zero several times in the trajectory, and steps in
the direction of πsafe (negative u) are needed in order to prevent λ† from actually reaching
zero. This clearly damages the desired performance, as the car would be braking from time
to time, nevertheless, this is required in order to be certain about how the system reacts to
pressing the brake. Therefore, the proposed event-triggered design allows Algorithm 10.1 to
automatically reason about whether the available information is enough to preserve safety or
the collection of a new data point along πsafe is required instead. Note that our algorithm is
also useful for cases in which a large dataset is available a priori since safety is secured even
when the system is brought to out-of-distribution regions by collecting new measurements.
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Figure 10.5: Snapshots that show the evolution over time of a 4-dimensional kinematic vehicle
system under model uncertainty, when controlled using different methods: Algorithm 10.1
with no prior data (top row, blue); the CBF-QP based on the nominal model (bottom row,
pink). Starting at the initial state x0 (orange diamond), the vehicle pursues the target
(yellow star), while trying to avoid a collision with the obstacle (grey circle). Each curved
line indicates the trajectory of the vehicle’s position up until the time when each snapshot is
taken (the position at the snapshot time is represented by a green or red circle). Note that
the circle is colored red when the vehicle violates the safety constraint (i.e., B(x) < 0). The
large color-filled circle with a dashed border represents the set of unsafe states (zero-sublevel
set of the CBF). To watch the full video of the vehicle running under each control algorithm,
please visit this link.

10.7.2 Kinematic Vehicle

Next, in order to gauge our framework’s applicability to systems with higher state dimensions
and multiple control inputs, we apply our method to a four-dimensional kinematic vehicle
system.

In this system, the state vector is denoted as x = [px, py, θ, v]
T ∈ R4 which consists of

the vehicle’s position (px, py), heading angle θ, and longitudinal velocity v; the control input
is denoted as u= [w, a]T ∈ R2 which includes the vehicle’s yaw rate w ∈ [−w̄, w̄] and the

https://drive.google.com/drive/folders/1Iv32p37OMe21wKmqHfADr5qq6_AjtCw1?usp=share_link
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Figure 10.6: Simulation results of 4-dimensional kinematic vehicle system under model uncer-
tainty, when using two strategies introduced in Figure 10.5 with the identical color notation.
The four plots illustrate the yaw rate, the acceleration control inputs, the CBF values, and
λ† in time respectively. The dotted lines denote the input bounds, the zero-level of the CBF
B(x) = 0; and the threshold −ϵ in Algorithm 10.1. The red bars in the third plot represent
the time stamps when the nominal CBF-QP violates safety. In contrast, Algorithm 10.1
ensures B(x) > 0 at all times. The red cross points in the last plot indicate the time stamps
when λ† hits −ϵ and the safe exploration is executed according to Algorithm 10.1.

longitudinal acceleration a ∈ [−ā, ā]. We use the values ā = 1 and w̄ = 2. The dynamics of
the system are modeled as

f(x)=


kvv cos θ
kvv sin θ

0
−µv + seh(px, py)

 , g(x)=

0 0
0 0
kw 0
0 ka

 , (10.25)

where kv, kw, ka are coefficients that capture the skid, the term µv represents the drag, and
seh(px, py) accounts for the effect of the slope of the terrain. We assume that the nominal
model does not address such effects (i.e., kv = kw = ka = 1, µ = se = 0), while the
uncertainty imposed on the true system is induced by kv = 2, kw = 1.5, ka = 1, µ = 0.5,
se = 0.5, h(px, py) = (p2x + p2y)

0.1. Note that unstructured uncertainties are imposed through
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terms like h(px, py), which can be arbitrary functions, unlike the previous example that only
imposes parametric uncertainties.

As illustrated in Figure 10.5, the objective of the control is to reach the target points
alternating in time while not colliding into a static circular obstacle of radius Ro = 3 centered
at the origin. The reference controller πref has two objectives: 1) it pursues a target point
that alternates among a given set of points ST = {(5, 5), (5,−5), (−5,−5), (−5, 5)} every
p = 2.5 seconds, and 2) it stabilizes the vehicle’s velocity to vd while assuring that it is
always bounded in [v, v̄]. We use the values v = 1, v̄ = 5, and vd = 3. All units are in the
metric system.

The CBF we use is

B(x)=

√(
px+

Dm

2
cos θ

)2

+

(
py+

Dm

2
sin θ

)2

−
(
Ro+

Dm

2

)
, (10.26)

where

Dm = τ(v − v) + dsteer; dsteer = Ro

√
1 +

2v̄

Row̄
−Ro. (10.27)

This CBF adds a safety margin Dm to the obstacle in the direction of the vehicle’s heading
angle, based on its minimum velocity and maximum steering rate as shown in Figure 10.4.
We can analytically check that the zero-superlevel set of the CBF is control invariant and
that the CBF constraint is always feasible under the input bounds.

Figures 10.5 and 10.6 illustrate that while the CBF-QP based on the nominal model (in
pink) escapes the zero-superlevel set of the CBF, Algorithm 10.1 (in blue) without any prior
data always keeps the vehicle inside. This result not only demonstrates the validity of the
proposed strategy when applied to a multi-input system but also alludes to the intuition be-
hind our strategy: when λ† hits −ϵ, the vehicle steers away from the obstacle and decelerates
more in order to improve the certainty of its safe control direction.

10.8 Chapter Summary

In this chapter, we have introduced a Control Barrier Function-based approach for the safe
control of uncertain systems. Our results show that it is possible to guarantee the invariance
of a safe set for an unknown system with high probability, by combining any available
approximate model knowledge with sufficient data collected from the real system. We achieve
this by first introducing a safety-critical optimization-based controller that, by formulation,
is probabilistically robust to the prediction uncertainty of the unknown system’s dynamics.
However, this optimization problem only produces a safe control action when the available
information about the system (prior model knowledge and data) is sufficiently rich, as our
feasibility analysis shows. As a means to fulfill this feasibility requirement, we later presented
a formal method that, by collecting data online when required, is able to guarantee the
recursive feasibility of the controller and therefore preserve the unknown system’s safety
with high probability. Algorithm 10.1 presents a simple embodiment of this idea; however,
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we believe that future work should not be restricted to this particular implementation, since
the most important contribution of this chapter is a principled reasoning procedure for
conducting safe exploration when using data-driven control schemes.
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Chapter 11

Online Data Selection for Scalable
Probabilistic Safe Control under
Uncertainty

This chapter is based on the preprint titled “Scalable Stability and Safety Filters for Uncertain
Robotic Systems through Constraint-Guided Online Data Selection”, writen in collaboration
with Jason J. Choi, Wonsuhk Jung, Bike Zhang, Claire J. Tomlin and Koushil Sreenath.

In the final technical chapter of this dissertation, we showcase how Control Lyapunov
Functions and Control Barrier Functions can be used to inform which data points are most
instrumental to certify stability and safety of a control system, respectively. This analysis
constitutes an example of how model-based certificate functions can serve to add meaning
to individual data points and, thus, inform data-driven control approaches.

Note that the Gaussian Process-based safety filters introduced in the previous two chap-
ters suffer from scalability issues, as the GP inference time scales poorly with the number
of data points. This hinders their applicability to real robotic systems, which require large
datasets. Building on the feasibility results presented in the previous chapter, we now intro-
duce a scalable data selection strategy that can be run online and significantly reduces the
computation time of these filters. This data selection strategy consciously selects at each
state those data points that best characterize how to stay safe or stable.

11.1 Introduction

11.1.1 Motivation

Learning-based control methods have experienced a surge in popularity, enabling sophisti-
cated control policies to be derived from large amounts of data. However, to ensure their
successful implementation in real-world systems, it is crucial to verify that these policies
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satisfy certain desired properties, such as stability and safety. This challenge has led to
significant research effort aimed at understanding the theoretical foundations of data-driven
control methods.

The prevailing method to certify the properties of learning-based control policies is a
posteriori verification, i.e., analyzing the properties of these policies after they have been
synthesized. A significant body of recent work on neural network verification follows this
approach [127]. If the neural policy of interest does not pass the certification test, the
designer typically modifies the learning setup and re-iterates this process until a satisfying
policy is found. While promising, these approaches are in general not able to point towards
the underlying cause of failure, which could be, for instance, linked to the inadequacy of the
training dataset.

An alternative to a posteriori certification is the use of model-based safety filters, which
impose constraints on policy outputs to ensure reliable control of the system. These filters
leverage certificate functions, such as Control Barrier Functions [8], to separate the problem
of safety certification from performance objectives. Although these filters are dependent on
the underlying model, recent approaches have demonstrated the feasibility of designing them
using data gathered from real systems [187, 38]. By combining these techniques with non-
parametric learning methods, such as Gaussian Process regression, it is possible to obtain
provable guarantees on the behavior of the actual system [30, 56, 188].

Nevertheless, the success of data-driven safety filters, like any learning-based control
approach, is heavily reliant on the quality of the available training data [30]. Deploying these
filters without sufficient data for certification may lead to failure, much like attempting to
verify a posteriori policies that were trained on unsuitable datasets.

We, however, hypothesize that by decoupling verification from performance, certificate
functions should be able to offer a powerful means to identify the most valuable data points
for achieving certification objectives. Moreover, the non-parametric learning methods often
employed by these filters can analytically capture the impact of each data point on the
resulting filter. This raises the motivating question of this chapter: can we harness these
strengths to select the most appropriate data for certification purposes?

This is especially relevant for real-world robotic systems, as large datasets are typically
needed to fully characterize their high-dimensional dynamics, and the computational com-
plexity of non-parametric learning methods scales poorly with the number of data points.
Investigating which data points are most critical for certifying the desired properties of a
control policy is crucial to properly address this scalability challenge.

11.1.2 Contributions

In this chapter, we present an approach to efficiently determine the most relevant data
points for designing data-driven safety filters for real-world systems. Specifically, we provide
a tractable method for identifying the data that is most instrumental in achieving robust
certification, thereby enhancing the effectiveness and reliability of learning-based control
policies in practice.
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Utilizing the proposed approach, we showcase the applicability of Gaussian Process-
based safety filters to high-dimensional and real robotic systems handling large datasets,
overcoming the scalability constraints that previously limited the use of such filters to simple
toy systems.

11.1.3 Related Work

Control Barrier Functions (CBFs, [8]) and Control Lyapunov Functions (CLFs, [11]) are
model-based certificate functions that can be used to design policy filters to enforce safety
and stability, respectively, of a controlled system. While initially conceived for systems with
perfectly known dynamics, early results showed how to extend these filters to robust [149,
92, 147, 39] and adaptive [145, 184, 130] control settings.

Moreover, the integration of these certificate filters with data-driven methods has be-
come increasingly popular for systems with uncertain or unknown dynamics. Several studies
employ neural networks to learn the model mismatch terms [186, 187, 38]. Despite their
practicality and effectiveness, verifying the accuracy of the neural network predictions can
be challenging.

Alternative approaches, upon which our work builds, use non-parametric regression tech-
niques for this purpose [27, 30, 188, 56, 24, 68]. Most notably, Gaussian Process (GP)
regression models provide a probabilistic assurance of prediction quality under mild assump-
tions [180, 114]. This fact can be exploited to formulate robust data-driven safety filters
able to keep uncertain systems safe with high probability [56, 30, 31]. However, these filters
can suffer from infeasibilities when the available data does not fully capture the information
needed for certification purposes [30]. Furthermore, the inference time complexity of exact
GP regression scales poorly with the number of data points.

The GP research community has a rich history in developing methods to improve the
computational complexity of GP inference, commonly referred to as Sparse GP regression
[128, 162]. The work in [100] uses one of this methods (random features approximation)
to speed up GP inference for data-driven safety filters. Additionally, existing approaches
that quantify the importance of data for system identification mostly focus on optimizing
information-theoretic metrics, such as the information gain, when developing exploration
strategies [110, 159, 105, 5, 159, 44, 108]. However these general purpose methods lack
awareness of any control objective.

Instead of aiming to obtain an approximate global GP regression model, the method we
introduce in this chapter utilizes certificate functions to select a small set of data points that
are useful for certification online at each state. This way, we aim to overcome the computa-
tional challenges of GP regression by exploiting the most relevant available information.

However, obtaining the best subset of data constitutes a combinatorial optimization prob-
lem that would be more computationally demanding than performing exact GP inference.
For this reason, we instead present a control-informed efficient approximate data selection
method that effectively serves to reduce the inference time of data-driven safety filters. This
enables the deployment of these filters on real robotic systems.
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The authors of [115, 116] propose a method to evaluate the importance of data for main-
taining the stability of data-driven closed-loop systems. As such, they study the connection
between data and the performance of a particular given policy. Additionally, they introduce
a greedy data selection strategy for GP inference based on an importance measure they pro-
pose. However, these selection strategies are still too computationally expensive to be run
online. Our work instead tackles the problem of robust control design, studying online which
data is most relevant to achieve a desired certification property in the resulting data-driven
control policy. Furthermore, our approach characterizes the relationship between data and
safety in the control input space, emphasizing the richness of each data point for the spe-
cific certification objective, rather than relying on data density measures. This is a similar
objective to the one of [26], where an algorithm to select the most useful data points for suc-
cessfully performing multiple control tasks is presented. However, this method also suffers
from scalability issues that prevent it from being applicable to real robotic systems.

11.2 Certifying Filters for Uncertain Systems

11.2.1 Uncertain Dynamics and Certifying Filter

In this chapter, we again study a control-affine system of the form in (2.2):

ẋ = f(x) + g(x)u,

where x ∈ X ⊂ Rn represents the state, and u ∈ Rm denotes the control input. As
explained throughout this dissertation, this form is suitable for representing various robotic
systems, including those with Lagrangian dynamics. We assume that both f and g are
locally Lipschitz continuous, and without loss of generality, we consider f(0) = 0 so that
x = 0 is an equilibrium point. Throughout the chapter, we will refer to the system described
in equation (2.2) as the true plant.

We address the challenge of ensuring critical system constraints for the true plant (2.2),
such as safety and stability, when its dynamics f and g are unknown, while trying to accom-
plish a desired task. As in the previous chapter, we assume that a controller for the desired
task has already been designed and is provided as a reference controller πref : X → Rm. In
the absence of the reference controller, we can consider πref(x) ≡ 0. This controller is often
unaware of the system’s constraints that are vital for preventing catastrophic failure, which
we refer to as system-critical constraints. Common examples of these constraints include
safety constraints, which can be expressed as constraints in the system’s state space, and
stability constraints that maintain the system’s stability around a desired equilibrium point.

We aim to design a certifying filter that operates between the reference controller πref and
the true plant, ensuring the control applied to the true plant is filtered to satisfy the relevant
system-critical constraint. When the reference controller πref adheres to the constraint, the
certifying filter simply passes πref(x) to the true plant. However, if πref violates the constraint,
the filter overrides it with a safe control signal to prevent system failure. This filtering
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structure is known by various names, most notably as a safety filter [199], and generalizes
the CBF-QP and CLF-QP control structures introduced in Chapter 2.

As in most of this dissertation, we assume access to an approximate nominal model of
the true plant’s dynamics, represented by f̃ : X → Rn and g̃ : X → Rn×m (2.25):

ẋ = f̃(x) + g̃(x)u.

This nominal model typically represents the designer’s best estimate of the true plant.

11.2.2 Certificate Function-based Control Design

In this chapter, we introduce the concept of certificate functions [53], which are also known by
various names, such as safety indexes in [126] or energy functions in [204]. These functions
generalize the notions of CBFs and CLFs that were presented in Definitions 2.7 and 2.5,
respectively. Indeed, CBFs and CLFs are certificate functions ensuring the satisfaction of
safety and stability constraints in a system. Using the concept of a certificate function
allows us to present our results in a unified manner, independently of whether the desired
system-critical constraint to be enforced is derived from a CBF or a CLF.

Informally, a certificate function is a scalar function of the state, and its value and gradient
can be used to establish a sufficient condition for a control input u to satisfy the desired
system-critical constraint. This condition can then be employed as a certifying constraint
in the certifying filter for the control input. If πref(x) fails to meet the constraint, it is
overridden with an appropriate control input u that satisfies the constraint.

Definition 11.1. A function C : X → R is a certificate function for the true plant (2.2)
with an extended class K∞ function γ : R→ R (called comparison function) if

1. for all x ∈ X , there exists a u ∈ Rm such that

Ċ(x, u) + γ(C(x)) ≥ 0, (11.1)

where Ċ(x, u) is the Lie derivative of C for the true plant (2.2), that is,

Ċ(x, u) = ∇C(x) · f(x)︸ ︷︷ ︸
LfC(x)

+∇C(x) · g(x)︸ ︷︷ ︸
LgC(x)

u, (11.2)

2. and if u(t) satisfying (11.1) for all t ≥ 0 is a sufficient condition for x(t) satisfying the
desired system-critical constraint for all t ≥ 0.

Both Control Barrier Functions (CBFs, Defintion 2.7) and Control Lyapunov Functions
(CLFs, Definition 2.5) satisfy the aforementioned definition of certificate functions. Note
that in order to align with the inequality form in (11.1), we need to negate the CLF. This
adjustment ensures that both CBFs and CLFs can be used within the same framework to
satisfy the desired system-critical constraints. The system-critical constraint for the CBF is
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that the trajectory stays inside the zero-superlevel set of C indefinitely, i.e., x(t) ∈ Xsafe :=
{x ∈ X | C(x) ≥ 0} for all t ≥ 0 [8]. The system-critical constraint for the CLF is that the
trajectory is asymptotically stable to the equilibrium x = 0 [9].

Given a reference controller πref : X → Rm, the condition in (11.1) can be used to
formulate a minimally-invasive certifying filter[8]:

Certificate Function-based Quadratic Program (CF-QP):

πCF(x) = argmin
u∈Rm

∥u− πref(x)∥22 (11.3a)

s.t. LfC(x) + LgC(x)u+ γ(C(x)) ≥ 0. (11.3b)

It is important to note that the constraint (11.3b) is affine in u, which means that the
optimization problem is a quadratic program (QP). This problem is solved pointwise in time
to obtain a filtered control law πCF : X → Rm that only deviates from the reference controller
πref when the condition (11.3b) is violated. We will refer to (11.3b) as the true certifying
constraint and (11.3) as the oracle CF-QP. When specifically using CBFs or CLFs in place
of C, we may refer to (11.3) as the oracle CBF-QP and CLF-QP, respectively.

This optimization requires perfect knowledge of the system dynamics, which is not avail-
able since the Lie derivatives of C appear in the constraint. Instead, we can use the nominal
model and replace LfC(x) and LgC(x) with Lf̃C(x) and Lg̃C(x) respectively, the Lie deriva-
tives of C with respect to the nominal model. We call this a nominal model-based CF-QP.

The primary assumption we make in this chapter is that we have access to the certificate
function C that is valid for the true plant. This assumption ensures that a control policy
exists to keep the true plant (2.2) in compliance with the system-critical constraint. However,
even when a valid certificate function is available, obtaining such a control policy is not
straightforward due to the lack of direct access to f and g in the true certifying constraint
(11.3b). Due to the mismatch between the true plant dynamics and the nominal model, the
nominal model-based CF-QP also does not provide any guarantee that the system-critical
constraint will be met under the filtered control input. To examine this, the true certifying
constraint in (11.3b) is expressed using the nominal model as follows:

Lf̃C(x) + Lg̃C(x)u︸ ︷︷ ︸˜̇C(x,u)

+∆C(x, u) + γ(C(x)) ≥ 0, (11.4)

which reveals themodel uncertainty term ∆C affecting the constraint, defined for each x ∈ X ,
u ∈ Rm as

∆C(x, u) := (LfC−Lf̃C)(x) + (LgC−Lg̃C)(x)u = [L∆fC(x) L∆gC(x)]

[
1
u

]
. (11.5)

Note that like the original constraint (11.3b), ∆C is also affine in the control input u. When
the certificate function is a CLF, we use the term ∆V (9.3), as in Chapter 9. When it is a
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CBF, we use ∆B (10.3) as in Chapter 10. It is clear now that we can use exactly the same
Gaussian Process regression procedure to estimate ∆C as was presented in Chapters 9 and
10 for ∆V and ∆B, respectively.

Remark 11.1. Discovering valid certificate functions for uncertain systems is far from trivial
and is, in fact, an active area of research [54, 160, 91, 125, 95, 205]. Our contribution
runs parallel to this line of research, and in fact, our work complements these efforts, as
only when the design of the certificate function and the design of the certifying filter are
combined, can the certifying filter for uncertain systems be effectively implemented. In our
work, we employ the nominal model to find CBFs and CLFs to be used as certificate functions.
Thus, this procedure implicitly assumes that the nominal model is sufficiently accurate in its
approximation of the true plant to enable the identification of a valid CBF or CLF. The
assumption made in this chapter is also present in prior works that most closely align with
our research [187, 188, 38, 56, 68]. This approach is considered reasonable for feedback
linearizable systems with known relative degree, owing to the inherent robustness properties
of CBFs and CLFs [219, 107]. Indeed, the practice of using first-principle nominal models
for designing CBFs is widely adopted for numerous complex robotics systems [217, 103, 139].

11.2.3 Gaussian Process Regression for the Certifying
Constraint Model Mismatch

In order to perform Gaussian Process regression on the model mismatch function ∆C (11.5),
we use the Affine Dot Product compound kernel introduced in Definition 9.1 to exploit its
control-affine structure:

k((x, u), (x′, u′)) := [1 u⊤]Diag(kf (x, x
′), kg1(x, x

′), · · ·, kgm(x, x′))
[
1
u′

]
. (11.6)

A dataset of noisy measurements of ∆C is given as DN := {(xj, uj), ∆C(xj, uj) + ϵj}Nj=1,
where ϵj ∼ N (0, σ2

n) is white measurement noise, with σn > 0. Using the ADP compound
kernel, the mean and variance of the GP posterior of ∆C at a query point (x∗, u∗) can be
written as

µC(x∗, u∗|DN) = z⊤(KDN
+ σ2

nI)
−1K⊤

∗U︸ ︷︷ ︸
=: mC(x∗|DN )

[
1
u∗

]
, (11.7)

σ2
C(x∗, u∗|DN)=

[
1 u⊤∗

](
K∗∗−K∗U(KDN

+ σ2
nI)

−1KT
∗U
)︸ ︷︷ ︸

=: ΣC(x∗|DN )

[
1
u∗

]
, (11.8)

where KDN
∈ RN×N is the Gram matrix of k for the training data inputs (X,U), K∗∗ =

Diag (kf (x∗, x∗), · · · , kgm(x∗, x∗))∈R(m+1)×(m+1), and K∗U ∈ R(m+1)×N is given by
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K∗U =


kf (x∗, x1) · · · kf (x∗, xN )
kg1(x∗, x1) · · · kg1(x∗, xN )

...
kgm(x∗, x1) · · · kgm(x∗, xN )

◦
[
11×N

UN

]
,

where ◦ indicates the element-wise product, and UN := [u1 · · · uN ] ∈ Rm×N .
One of the most significant advantages of using GP regression is that it generates pre-

dictions of the target function value in the form of a probability distribution, rather than
deterministically, based on (11.7) and (11.8). This allows for the computation of a proba-
bilistic bound on the true value of ∆C(x∗, u∗) using µC(x∗, u∗|DN) and σC(x∗, u∗|DN):

Assumption 11.1. For a given δ ∈ (0, 1), there exists a constant β > 0 such that

P
{ ∣∣∣∣µC(x∗, u∗|DN)−∆C(x∗, u∗)

∣∣∣∣ ≤ βσC(x∗, u∗|DN)

}
≥ 1− δ, (11.9)

for all x∗ ∈ X , u∗ ∈ Rm.

Numerous existing works, such as Lemmas 10.1 and 9.1 of the previous chapters have
conducted theoretical analyses to determine the conditions under which Assumption 11.1
holds and to identify the values of β. The term µC(x∗, u∗|DN) + βσC(x∗, u∗|DN) is referred
to as the GP upper confidence bound (GP-UCB). Similarly, µC(x∗, u∗|DN)−βσC(x∗, u∗|DN)
is the lower confidence bound of ∆C(x∗, u∗). Identifying β is not within the focus of this
dissertation, and we direct interested readers to the relevant literature for further details
[180, 41, 60, 114, 59]. In some cases, additional or different assumptions on ∆C , X̄ , and DN

might be required, such as in Lemmas 10.1 and 9.1.

11.2.4 Second-order Cone Program-based Certifying Filters

With the bound provided in (11.9), we can now present a data-driven certifying filter that
offers a high probability guarantee of satisfying (11.3b) based on the learned GP model of
∆C . By employing the lower bound of ∆C(x, u), we construct a certifying chance constraint
that can be evaluated without explicit knowledge of the true plant’s dynamics:

Lf̃C(x) + Lg̃C(x)u+µC(x, u|DN)−βσC(x, u|DN)+γ(C(x)) ≥ 0. (11.10)

If the constraint (11.10) is satisfied, from Assumption 11.1, we have a guarantee that the
true certifying constraint in (11.3b) is satisfied with a probability of at least 1− δ.

Note that from the affine structure of the mean expression in (11.7), we get

µC(x, u|DN) = mc(x|DN)

[
1
u

]
=
[
L̂∆fC(x) L̂∆gC(x)

] [1
u

]
,
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where

L̂∆fC(x) := mc(x|DN)[1], L̂∆gC(x) := mc(x|DN)[2:(m+1)].

We define

L̂fC(x|DN) := Lf̃C(x) + L̂∆fC(x) ∈ R,

L̂gC(x|DN) := Lg̃C(x) + L̂∆gC(x) ∈ R1×m.

Using these expressions, (11.10) can be represented as

βσC(x, u|DN) ≤
[
L̂fC(x|DN)+γ(C(x)) L̂gC(x|DN)

][1
u

]
. (11.11)

From the quadratic structure of the variance expression in (11.8) and ΣC(x|DN) being posi-
tive definite (due to the noise measurement variance being strictly positive), we can conclude
that (11.11) is a second-order cone constraint.

This constraint is then incorporated into a chance-constrained reformulation of the CF-
QP certifying filter:

GP-CF-SOCP:

πGP-CF(x) = argmin
u∈Rm

∥u− πref(x)∥22 s.t. (11.12)

Lf̃C(x) + Lg̃C(x)u+µC(x, u|DN )−βσC(x, u|DN )+γ(C(x)) ≥ 0,

wherein by leveraging the control-affine structure of the system during the GP regression,
we obtain a convex optimization problem, which is a second-order cone program (SOCP)
that can be solved efficiently at high-frequency rates using modern solvers. This was proved
in Theorems 9.3 and 10.1 of the last two chapters. Indeed, when specifically using a CBF or
a CLF in place of C, we refer to (11.12) as GP-CBF-SOCP or GP-CLF-SOCP, respectively,
as it would correspond to the data-driven stability and safety filters presented in Chapters
9 and 10.

Note that the feasibility analysis of Chapter 10 is directly applicable to this optimization
program. If the dataset utilized to conduct the GP regression is not informative-enough,
the problem might become infeasible. Furthermore, the guarantee that the true certifying
constraint will be satisfied with high probability exists only when the SOCP filter in (11.12)
is feasible.

During the deployment of the SOCP filter on real-world systems, a practical strategy to
address cases when infeasibility occurs is to use a backup control input computed by the
following second-order cone program:

πGP-CF(x) = argmin
u∈U

(
βσC(x, u|DN)− L̂gC(x|DN)u

)
. (11.13)
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This selects a control input within the input bound that minimizes the violation of the
constraint (11.11).

The main challenge in executing (11.12) online lies not in solving the optimization prob-
lem, but rather in the computationally demanding evaluation of σC when the size of the
dataset is large. The time complexity of the matrix inverse in (11.8), (KDN

+ σ2
nI)

−1, is
O(N3), while the remaining matrix multiplication involved in evaluating ΣC(x∗|DN) has a
time complexity of O(N2). Although the matrix inversion can be performed offline, when
the dataset is large, the O(N2) complexity still remains challenging. This issue primarily
motivates the development of Sparse GP literature [128] and the online smart data selection
algorithm proposed in this chapter, which can reduce the computational complexity to a
linear dependence on N .

11.2.5 Running Example: 2D Polynomial System (Polysys)

We now introduce a simple running example system, referred to as Polysys, which is utilized
throughout the chapter. It is important to note that this low-dimensional toy example is not
intended to showcase the computational advantage of our method which will be presented
in Section 11.4. Instead, its purpose is to provide a walk-through of the inner workings of
our approach for the readers. To achieve this, we have access to the true plant dynamics,
allowing us to compare our method with the ideal oracle certifying filter. Moreover, the
dataset constructed for the data-driven certifying filters is not meant to represent a realistic
dataset. Instead, it is a simplistic dataset designed for easy comprehension by the readers.

The dynamics of the system, whose vector fields are polynomial functions of the state x,
are given by:

ẋ =

[
fT1 v
fT2 v

]
+

[
1 + gT11v gT12v
gT21v 1 + gT22v

]
u, (11.14)

where x = [x1 x2]
T is the state, u = [u1 u2]

T is the control input, v =
[x1 x2 x21 x1x2 x22 x31 x21x2 x1x

2
2 x32] ∈ R9 is a vector that aggregates the monomials of

the state, and {f1, f2, g11, g12, g21, g22} ∈ R9 are randomly generated coefficient vectors. We
introduce the parametric model uncertainty on the true plant by perturbing the coefficient
vectors from the nominal model.

In this example, we aim to design a control policy that stabilizes the system to the
zero equilibrium point. To achieve this by using the certifying filter, we design the CLF
V (x) = xTPx as the certificate function, where P is the solution of the Algebraic Riccati
Equation for the linearized system of the nominal model (11.14) around x = 0. In this
example, we set πref(x) ≡ 0 since we do not have any other explicit tasks to achieve. As
shown in Figure 11.1, we can see that the oracle CLF-QP (orange) is able to stabilize the
state to the equilibrium, confirming that the CLF is a valid certificate function for the true
plant. However, due to the model uncertainty we introduce to the true plant, the nominal
model-based CLF-QP (green) fails to stabilize the system.
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We next show the application of the GP-CLF-SOCP in (11.12) to this example. We first
construct the dataset DN in order to apply GP regression to ∆C . We partition the subspace
of the state space [−2, 2]× [−2, 2] into the coarse state grid of size (10, 10). At every vertex
xj of the state grid, we apply the randomly sampled control input uj to simulate the system
(11.14) for a sampling time ∆t and collect a single data point (x̄j = (xj, uj), z̄j). We account
for the numerical differentiation error in obtaining z̄j as measurement noise. In addition
to the data from the coarse grid, we also incorporate some densely populated data points
centered at a few selected state and action pairs, (xa, ua). Around each of these points, a
dense state-control grid is created by gridding up [xa,1−δ, xa,1+δ]×[xa,2−δ, xa,2+δ]×[ua,1−
δ, ua,1+δ]×[ua,2−δ, ua,2+δ] in (2, 2, 2, 2) grid, where we set δ = 0.1. This results in a total of
81 data points collected at each (xa, ua). In the subsequent sections describing the Polysys
example, we refer to the data points generated from a single dense grid as a data cluster.
Combined together, we get in total N = 361 data points, visualized in Figure 11.2.

We use GP regression to fit ∆C from the dataset presented above, using the ADP com-
pound kernel with isotropic squared exponential kernels as components. Then, we apply the
GP-CLF-SOCP of (11.12) to control the system. As shown in Figure 11.1, the GP-CLF-
SOCP using the full dataset (black dashed line) is able to stabilize the system to the origin
despite the uncertainty in the true plant dynamics.

11.3 Constraint-Guided Online Data Selection

In this section, we present the core contribution of our chapter: a smart online data selection
algorithm that improves the time complexity of GP inference for the GP-CF-SOCP from
O(N2) to O(N).

Using the entire dataset to evaluate σ2
C(x∗, u∗|DN) would yield minimal uncertainty for

any query point x∗, u∗, as we would utilize all available information, but at the cost of high
computational demands. One way to alleviate this computational burden is to construct a
model that approximates the exact GP inference offline, which targets learning the function
itself to generalize to every possible unseen query point at runtime. However, our approach,
similar to many existing Sparse GP methods, is based on the idea that it is not necessary
to reduce the uncertainty globally [190, 196, 67]. Instead, we aim to reduce the uncertainty
for specific input classes relevant to our problem. The former approach, known as induction,
aims to regress the function with high quality across the entire input space. In contrast,
our approach, which is called transduction, focuses on learning only for specific test points
that we care about [162]. Revisiting the learning objective in our problem, we seek to find
πGP-CF(x) such that the certifying chance constraint (10.8b) is feasible. Therefore, our data
selection algorithm is designed to efficiently achieve this goal.

To facilitate the presentation of our algorithm, we first introduce some simplified nota-
tions and preliminaries that will be used in this section. We also present a sufficient condition
for the feasibility of GP-CF-SOCP, from which we derive the main control input direction
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Figure 11.1: The simulation result of the Polysys example under various controllers: the
nominal model-based CLF-QP (yellow dotted line), the oracle CLF-QP (orange dotted line),
the GP-CLF-SOCP using full data (black dotted line), the GP-CLF-SOCP using naive
data selection (magenta) discussed in Sec. 11.3.3, the GP-CLF-SOCP using our main data
selection algorithm (blue) discussed in Sec. 11.3.4, both using the same number of online
data, M = 40. The left plot illustrates the trajectory’s progression in the state space for
2.6 seconds, with an initial state of x0 = [1.5 1.5]T . The four subplots on the right show the
state x1, x2, the CLF values, and the feasibility of the QP and SOCP in time, respectively.
While the naive approach often faces infeasibility and fails to stabilize the system close to
the origin, our approach effectively selects an online dataset that secures the feasibility of
the SOCP throughout the simulation.
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we want to characterize. This control input direction is the foundation upon which we apply
the concept of transduction in our data selection algorithm.

11.3.1 Preliminaries for the Data Selection Algorithm

Simplified Notations for Kernels

We introduce simplified notations as below:

kij := k ((xi, ui), (xj, uj)) ,

k∗∗(x, u) := k ((x, u), (x, u)) ,

k∗i(x, u) := k ((x, u), (xi, ui)) ,

and ki := kii, where (xi, ui) is an input point in DN . We also consider the compound kernel
that captures only the control vector field-relevant part:

ku((x, u), (x′, u′)) := u⊤Diag(kg1(x, x
′) · · ·, kgm(x, x′)])u′. (11.15)

Note that, from (11.6) and (11.15), k((x, u), (x′, u′)) = kf (x, x
′) + ku ((x, u), (x′, u′)) . Simi-

larly, we define
ku∗∗(x, u) := ku ((x, u), (x, u)) ,

ku∗i(x, u) := ku ((x, u), (xi, ui)) .

Using simplified notations, we can express for any target point (x∗, u∗)[
1 u⊤∗

]
K∗U = [k∗1(x∗, u∗) · · · k∗N(x∗, u∗)] ,

and (11.8) becomes

σ2
C(x∗, u∗|DN) = k∗∗(x∗, u∗)− [k∗1 · · · k∗N ] (KDN

+ σ2
nI)

−1

 k∗1
...

k∗N ,


with (x∗, u∗) dropped in k∗i for simplicity. Note that the first term on the right-hand side is
contributed from the GP prior, and the choice of the data only affects the second term.

Sufficient Condition for Pointwise Feasibility of GP-CF-SOCP

The expression of the certifying chance constraint in (11.11) highlights the tradeoff required
to evaluate its feasibility, which lies between the prediction uncertainty of the GP regression
on the left-hand side and the mean-estimate of the true certifying constraint on the right-
hand side. This structure is useful for verifying the following sufficient condition for the
feasibility of (11.11).
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Lemma 11.1. Given a dataset DN , for a point x ∈ X , If there exists a constant α > 0 such
that the following inequality holds, then the GP-CF-SOCP in (11.12) is feasible:

β σC

(
x, αL̂gC(x|DN)

∣∣DN

)
< α

∥∥∥L̂gC(x|DN)
∥∥∥2 . (11.16)

The feasible control input can be found by taking u = α′L̂gC(x|DN)
⊤ with sufficiently large

α′ > 0.

Proof. See Appendix A.5.1.

The main implication of the above lemma is that the feasibility of (11.12) can be assessed
by examining the size of the prediction uncertainty, σC , in just one control input direction,
specifically the direction of the mean-based estimate of LgC(x), denoted as L̂gC(x|DN). This
direction is particularly important because according to what the mean prediction of the GP
tells, it is the control input direction in which we can most effectively regulate the value
of C(x). If the prediction uncertainty is sufficiently small in this direction, by taking the
control input in this direction with large enough magnitude, we can ensure (11.12) to be
feasible.

11.3.2 Data Selection Objective

We seek to design an online data selection algorithm, that selects a subset of data from the
entire dataset, DM(x)⊂DN , with M ≪ N , at every sampling time at the current state x.
Once M online data points are determined, the GP-CF-SOCP in (11.12) is solved with the
online dataset DM(x) in place of DN , to determine the filtered control input πGP-CF(x) which
will be applied to the system next. Among the data points in the full dataset, we want to
select a limited number of points that are most helpful in characterizing the control direction
that secures the feasibility of the certifying chance constraint in (11.10).

We attempt to achieve this by utilizing the result of Lemma 11.1, trying to make sure
that condition (11.16) is met with the limitedM data points we are allowed to use. Adopting
the approach of transduction, the goal of the data selection is set to reduce the uncertainty in

the direction of L̂gC(x|DM), i.e., select DM(x) which best reduces σC

(
x, αL̂gC(x|DM)|DM

)
for sufficiently large α. However, we do not know how large α is sufficient to render (11.16)
feasible prior to selecting DM(x) and actually solving the SOCP. Therefore, we eliminate the
dependency on the magnitude of α by considering the following problem:

arg min
DM (x)

[
lim
α→∞

1

α
σC

(
x, αL̂gC(x|DM)|DM

)]
. (11.17)

Note that we drop the dependency of DM on x whenever it is obvious, for notational
simplicity. From the expression of the variance in (11.16), we can derive the following
lemma that transforms the objective function above into a form without the appearance of
α:
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Lemma 11.2. The optimization problem (11.17) can be equivalently expressed as

arg max
DM⊂DN

JDM
(x, L̂gC(x|DM)), (11.18)

where

JDM
(x, u) := [ku∗1(x, u) · · · ku∗N(x, u)] (KDM

+ σ2
nI)

−1

 ku∗1(x, u)
...

ku∗M(x, u)

 , (11.19)

which is the second order term in the control input u of the posterior variance σ2
C(x, u|DM).

Proof. See Appendix A.5.2.

Thus, we will consider JDM
(x, L̂gC(x|DM)) as the objective function of the data selection

algorithm.

Remark 11.2. Since we do not have access to L̂gC(x|DM) prior to determining DM , we

can replace L̂gC(x|DM) in JDM
with L̂gC(x|DN), where DN is the entire dataset. Note

that L̂gC(x|DN) only requires the computation of µC(x, u|DN) but not σC(x, u|DN). Since
z⊤(KDN

+ σ2
nI)

−1 in (11.7) can be precomputed offline, the time complexity of evaluating

L̂gC(x|DM) online is O(N). When N is very large, it may be impractical or computationally
infeasible to evaluate z⊤(KDN

+ σ2
nI)

−1 offline since it requires to compute the inverse of the

matrix. In such cases, an effective approximation for L̂gC(x|DM) can still be achieved by

using L̂gC(x|D′
M), where D′

M represents the dataset selected online at the previous time step.

11.3.3 Naive Data Selection Approach

Before we proceed to present the main algorithm of the chapter, let’s take a moment to build
a better understanding of the data points we wish to include in DM(x). To facilitate this
discussion and simplify our thought process, consider a scenario where all data points in DN

are not correlated with one another, meaning that kij = k ((xi, ui), (xj, uj)) = 0 for all i ̸= j.
Additionally, let’s for now consider that there is no noise in the data, so σn = 0. In this
simplified case, KDN

+ σ2
nI = Diag(k1, · · · ,kN), and from (11.19) it holds that

JDM
(x, u) = [ku∗1(x, u) · · · ku∗N(x, u)]Diag

(
1

k1

, · · · , 1

kM

) ku∗1(x, u)
...

ku∗M(x, u)



=

[
ku∗1(x, u)√

k1

· · · k
u
∗M(x, u)√

kM

]
ku
∗1(x,u)√

k1
...

ku
∗1(x,u)√

k1

= M∑
i=1

(
ku∗i(x, u)√

ki

)2

.
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Thus, if we define

ni(x, u) :=
|ku∗i(x, u)|√

ki
=
|ku ((x, u), (xi, ui)) |√
k ((xi, ui), (xi, ui))

, (11.20)

we get

JDM

(
x, L̂gC(x|DM)

)
=

M∑
i=1

n2
i

(
x, L̂gC(x|DM)

)
. (11.21)

Therefore, we can optimize JDM

(
x, L̂gC(x|DM)

)
simply by selectingM points from DN that

exhibit maximum values of ni

(
x, L̂gC(x|DM)

)
. The time complexity of finding such points

is O(N), which can be achieved using efficient algorithms, such as a quick selection.

Equation (11.21) highlights that ni

(
x, L̂gC(x|DM)

)
is the measure of the relevance of

the data point (xi, ui) to the feasible direction of the certifying chance constraint. Here, we
offer a concise explanation of the geometric interpretation of this measure.

For kernels used in GP regression, note that the kernel value of two inputs, k(x, x′) can
be interpreted as an inner product between the feature vectors of x and x′, i.e. k(x, x′) =
ϕ(x) · ϕ(x′) [216]. For the ADP kernel in Definition 9.1, denoting the feature vectors for
individual kernels as ϕf , ϕg1 , · · · , ϕgm , we can express the ADP kernel’s feature vector as

ϕ(x, u) := [ϕf (x) ϕg1(x) · · · ϕgm(x)]
[
1
u

]
. Consequently, we get

ni

(
x, L̂gC(x|DM)

)
= lim

α→∞

ϕ(x, αL̂gC(x|DM)) · ϕ(xi, ui)
α
√
ϕ(xi, ui) · ϕ(xi, ui)

,

from (11.20), where we get rid of the autonomous vector field relevant part from the nu-

merator in (11.20) by taking the limit of α→∞. Thus, ni

(
x, L̂gC(x|DM)

)
captures how

well the data point is aligned in the feature space of the ADP kernel with the feasible input
direction.

In summary, the naive approach, which selects M points with maximum values of

ni

(
x, L̂gC(x|DM)

)
from the dataset DN , optimally achieves the objective in (11.17) under

the ideal conditions of an uncorrelated dataset and absence of measurement noise. However,
these assumptions do not accurately represent the characteristics of real-world datasets. In
practice, data from actual systems often have a high correlation because sampled data points
from trajectories are sequential and share similar properties due to their close proximity in
time and space.

We use the Polysys example to highlight the failure of the naive approach in handling
datasets that deviate from ideal conditions, particularly those containing self-correlated data
points. Our demonstration reveals that the naive approach may choose an unsuitable DM ,
rendering the SOCP filter infeasible, for realistic settings. This limitation motivates the
development of a more advanced data selection algorithm, which we present in the next
section.



CHAPTER 11. ONLINE DATA SELECTION FOR SCALABLE PROBABILISTIC
SAFE CONTROL UNDER UNCERTAINTY 167

Running Example–Polysys (Cont’d): As described in Section 11.2.5, the dataset
created for the Polysys example contains highly correlated data points, including data clus-
ters. Figure 11.2 (a) illustrates a failure case of the naive algorithm. In the first row of Figure
11.2 (a), we visualize the selected data points DM(x) at a query state x under various values
ofM . The second row represents the prediction uncertainty βσC(x, u) in control-input space

as an ellipse, and L̂gC(x|DM) as a dashed magenta line, thereby illustrating the competitive
relationship between the left-hand side (ellipse) and the right-hand side (magenta line) of
the certifying chance constraint (11.11).

Since the naive approach greedily selects the points that maximize ni

(
x, L̂gC(x|DM)

)
without considering the correlation between them, the selected data points are sourced from
the data cluster that is close to the query state. The effect of using such highly self-correlated
data points as DM is shown in the second row of the figure. It demonstrates that even after
increasing the size ofM from 40 to 60, the uncertainty ellipse barely reduces its size, leading
to the infeasibility of the SOCP. Clearly, selecting such concentrated data points does not
provide additional information, which intuitively illustrates why the naive approach can fail.

11.3.4 Proposed Online Data Selection Algorithm

Selecting the data points in the dataset DN that maximize our objective function
JDM

(x, L̂gC(x|DM)) when the dataset is self-correlated is in fact a combinatorial optimiza-
tion problem which is NP-hard [109]. This is because finding the optimal subset selection
requires choosing those points that maximize the correlation with respect to the target point,
but minimize the self-correlation between them, as (11.19) suggests. Therefore, directly op-
timizing for the objective function online is intractable. The result presented next, which
is the main assertion of our chapter, allows us to indirectly find a good candidate DM by
maximizing a lower bound of the objective function.

Theorem 11.1. For a given dataset DN with N ≥ 2, assume that there exists a constant
ϵ ∈ [0, 1) that satisfies

k2
ij < ϵ2kikj, (11.22)

for all i, j = 1, · · · , N and i ̸= j, and

σ2
n ≤

ϵ2(N − 1)mini ki
1− ϵ

. (11.23)

Then, JDM
(x, u) is lower bounded by the inequality below

JDM
(x, u) ≥ 1− ϵ

1 + ϵ(N − 2)

N∑
i=1

n2
i (x, u). (11.24)

Note that the equality is satisfied when ϵ = 0.

Proof. See Appendix A.5.3.
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The condition (11.22) requires the dataset to exhibit no more than a weak correlation,
while condition (11.23) necessitates that the noise variance remains comparatively small with
respect to the correlation threshold ϵ. It is worth noting that the latter condition becomes
less stringent as the value of N increases. Under these conditions, Theorem 11.1 concludes
that the lower bound of the objective function can be maximized by, again, selecting M

points with maximum values of ni

(
x, L̂gC(x|DM)

)
.

Choosing the value of the correlation threshold ϵ allows users to strike a balance between
the contribution of the term

∑M
i=1 n

2
i (x, u) and the adverse impact of self-correlation on

the objective function JDM
(x, u). With a value of ϵ = 1, the data selection is identical to

the naive approach. However, the right-hand side of (11.24) being zero indicates that the
information gained from the selected data points can be significantly compromised by their
self-correlations, potentially resulting in no contribution to the objective function at all.
Conversely, ϵ=0 prohibits users from using data points with even the slightest correlation,
which is impractical in real-world scenarios.

Ideally, we should find the optimal value of ϵ that offers the best trade-off. However,
determining the optimal ϵ is an NP-hard problem, as it shares the same problem complexity
as maximizing the data selection objective JDM

directly. A practical and effective strategy is
to leverage prior knowledge of the full dataset to identify an acceptable ϵ value, for instance,

by evaluating the histogram of
k2
ij

kikj
for the dataset and selecting an ϵ that corresponds to a

reasonable quantile of data satisfying (11.22).
Leveraging the result of Theorem 11.1, we aim to maximize the lower bound as a proxy for

the original objective function, thereby rendering the problem more tractable. The essence
of our main algorithm is to condition the dataset to satisfy the assumption in (11.22),
ensuring that Theorem 11.1 holds, and then identify the data points for which

∑M
i=1 n

2
i (x, u)

is maximized.
We achieve this through a two-fold algorithm. First, during the offline phase, we compute

a ready-to-use binary matrix B ∈ RN×N , with elements defined as follows:

Bij =

{
1 if k2

ij < ϵ2kikj

0 otherwise
(11.25)

The matrix B can be efficiently constructed by applying an ϵ-threshold to the matrix

Diag

(
1√
k1

, · · · , 1√
kM

)T
KDN

Diag

(
1√
k1

, · · · , 1√
kM

)
. (11.26)

This operation has a time complexity of O(N2) but occurs during the offline stage, so it does
not impact the online time complexity.

Next, in the online phase described in Algorithm 11.1, first, we initialize a candidate
dataset as the entire dataset (Line 4). We then sequentially add to the online dataset

DM the data point that has the maximum value of ni

(
x, L̂gC(x|DM)

)
among those in the
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Figure 11.2: Comparison between the two data selection strategies–(a) naive approach de-
scribed in Section 11.3.3 and (b) our main algorithm described in Section 11.3.4, on the
Polysys running example system, with a varying number of online selected data points
(M = 20, 40, 60). In each case, the first row visualizes the entire dataset DN (grey dots)
projected on the state space and the data points selected online DM (magenta dots) ac-
cording to the data selection algorithm at the query state x = [0.011 − 0.0756]T (orange
diamond). The second row visualizes the selected points projected on the control input space
(magenta dots), and the prediction uncertainty βσC(x, u)’s growth in the control space as

an ellipse. We also visualize L̂gC(x|DN) and L̂gC(x|DM) as the dashed green and magenta
lines, respectively. The ellipse and magenta line represent the growth of the right-hand side
and left-hand side of (11.11), respectively. The feasibility of the chance certifying constraint
can be deduced by comparing the length of the magenta line to the ellipse’s radial distance
in the magenta line’s direction. A smaller relative ratio suggests that a larger control input
in the L̂gC(x|DM) direction is required to satisfy the chance constraint.

candidate dataset (Line 6-7). As we select each data point, we remove from the candidate
dataset the data points that have a correlation greater than ϵ relative to the selected point,
by directly referring to the matrix B (Line 8).

Algorithm 11.1 has a time complexity of O(MN), as each operation in Line 6 and Line
8 inside the for loop is O(N). At each time step, after obtaining DM from the proposed
algorithm, we use this online dataset for the GP-CF-SOCP filter in (11.12) instead of using
the entire dataset. This requires evaluating the matrix inverse in (11.7) and (11.8) online,
which has a time complexity of O(M3). Thus, with our proposed approach, obtaining the
optimal filtered control input πGP-CF(x) has a total time complexity of O(NM +M3), in
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Algorithm 11.1: Online Data Selection for GP-CF-SOCP

1 Input: Current state x, entire dataset DN , B defined in (11.25)
2 Output: Online dataset DM

3 DM ← ∅
4 Icandidate ← {1, 2, · · · , N}
5 for k = 0; k < M ; k = k + 1 do

6 i∗ ← argmaxi∈Icandidate ni(x, L̂gC(x|DN))
7 DM ← DM ∪ (xi∗ , ui∗ , zi∗)
8 Icandidate ← Icandidate \ {j ∈ Icandidate | Bij == 0}
9 end

terms of N andM . We are neglecting the time complexity of solving the SOCP since it does
not depend on the number of data points. Given that we choose M << N in practice, the
time complexity of the GP-CF-SOCP safety filter combined with our online data selection
algorithm is linear in N .

Running Example–Polysys (Cont’d): We investigate how Algorithm 11.1 selects
data online and improves the downstream objective of enhancing the feasibility of the GP-
CLF-SOCP through its self-correlation remedy in the Polysys example. We use ϵ = 0.95 in
the example, which is the minimum correlation between data points within a data cluster.
Using this value prevents our main algorithm from selecting more than one point per data
cluster. The first row of Figure 11.2 (b) displays that our proposed algorithm selects at most
one data from each data cluster even asM increases. This correlation-aware behavior result-
ing from upper-bounding the maximum self-correlation of the selected data points induces
the algorithm to select diverse data. Consequently, the prediction uncertainty, illustrated
as the ellipse in the second row of the image, is reduced as M increases in all directions of
u but, more importantly, it is primarily reduced in the direction of L̂gC(x|DN). Moreover,
in the case of M = 20, it is notable that the algorithm prioritizes selecting data points
whose control input values are well aligned in the direction of L̂gC(x|DM). This shows that

ni

(
x, L̂gC(x|DM)

)
, the metric we use to select the data points, actually captures well the

relevance of the data with respect to L̂gC(x|DM), the feasible direction of the certifying
chance constraint. As a result, the GP-CLF-SOCP controller utilizing the online dataset
constructed by our main algorithm is feasible for all M in the figure.

11.3.5 Related Data Selection Methods

The point at issue of this chapter is very related to the information-theoretic data subset
selection [52, 203] and sensor placement [48, 109] problems, which are known to be NP-hard
for many different objective functions, such as mutual information and conditional entropy
[106, 110]. While our focus is on optimizing a particular certification-oriented measure
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(11.19) that differs from the information-theoretic objective functions typically used for these
problems, our optimization problem still suffers from the same combinatorial challenges, and
solving (11.18) to optimality would be intractable for large datasets.

A reasonable alternative to our proposed data selection algorithm, would be to form
the online dataset DM by greedily selecting, one at a time, the data points that maximize
(11.18). This idea was applied to the sensor placement problem in [110] and has been used
for data-driven control problems in [194, 116]. To approximately solve (11.18), this greedy
selection method can be implemented with an asymptotic time complexity of O(NM3).
While this asymptotic complexity is only slightly worse than the O(NM) complexity of
Algorithm 11.1, in practice we observe that the greedy method is too slow to perform the
data selection online, even when using the locality and lazy evaluation speedups proposed
in [109].

A simpler selection method would be to choose the k-nearest neighbors (k-NN) at each
query state-action pair. However, given the control-affine structure of the target function
∆C , it is not immediately clear which distance metric should be used for the k-NN in order
to capture the most relevant information. The authors in [220] propose to use the kernel
distance [80, 155], which is the euclidean distance in the kernel feature space. Although
simple, these k-NN selection approaches suffer from similar problems as our naive selection
algorithm, as they do not consider the self-correlation of the dataset.

11.4 Examples

In this section, we apply our method to three specific examples, consisting of two numerical
simulations and one hardware experiment. We refer to the GP-CF-SOCP filter using the full
dataset as GP-CF-SOCP (Full), to the GP-CF-SOCP using the online data constructed
by the naive approach in Section 11.3.3 as GP-CF-SOCP (Naive), and to the GP-CF-
SOCP using the online data constructed by our main data selection algorithm as GP-CF-
SOCP (Ours).

11.4.1 Running Example: Polynomial System (Cont’d)

The simulation results of Polysys under the GP-CLF-SOCP (Naive) and GP-CLF-SOCP
(Ours) are evaluated in this study, extending the analysis in Section 11.2.5. To ensure a
fair comparison, both controllers select M = 40 data points from the full dataset, which
has a total of N = 361 data points, as constructed in Section 11.2.5. The results are
presented in Figure 11.1, which shows that GP-CLF-SOCP (Ours) is feasible throughout
the simulation period, imposing the probabilistic guarantee of stability to the closed-loop
system. In contrast, the GP-CLF-SOCP (Naive) fails to do so, and the SOCP is infeasible
very frequently with this approach. Note that when the SOCP is infeasible, the backup
controller in (11.13) is deployed, and the stability property that the certifying constraint is
trying to impose is not guaranteed anymore.
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Figure 11.3: (a) The configuration of the planar five-link bipedal robot RABBIT [37] (b)
Cart-pole experiment setup based on Quanser Linear Servo Base Unit with Inverted Pendu-
lum [161].

Further analysis of the trajectory of the two controllers in the left plot of Figure 11.1
reveals two important behaviors. First, the GP-CLF-SOCP (Ours) (blue) exhibits a similar
trajectory to that of GP-CLF-SOCP (Full) (black). This implies that the effect of the
information loss due to using only the online-selected data points is negligible when employing
our algorithm.

Second, the GP-CLF-SOCP (Naive) controller (magenta) exhibits a more aggressive tra-
jectory compared to GP-CLF-SOCP (Ours), as evidenced by the rapid decay of V (x) and
a swift change in state history starting at around t = 1s. This corresponds to the moment
when the naive algorithm begins selecting most of the data points in the densely populated
data cluster near the origin. These observations demonstrate that the naive data selection
leads to a large prediction uncertainty in the direction of L̂gC(x|DN), resulting in a consid-
erably more conservative control policy than necessary. This also makes the controller more
susceptible to infeasibility.

Note that the Polysys example is devised to provide a detailed walk-through of our
method; thus, we do not benchmark the computation time of each method in this example.
Given the relatively small number of data points used in this example, the computational
efficiency gained from our method would not be easily noticeable.
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Figure 11.4: Simulation results of RABBIT achieving stable walking under various con-
trollers: the nominal model-based CLF-QP (magenta), the oracle CLF-QP (blue), GP-CLF-
SOCP (Full) (black), and GP-CLF-SOCP (Ours) (green). The left column depicts histories
of the Euclidean norm of the tracking error with respect to the reference gait, y, and the
value of the Control Lyapunov Function V . The right column shows the evolution of the
hip’s vertical position from the ground and the ratio between the tangential and normal
contact forces, which should not surpass kf = 0.8 for the robot to avoid slipping.

11.4.2 High-dimensional System in Simulation: Five-link Walker

In this section, we explore the performance of our algorithm in a high-dimensional system,
RABBIT [37], a planar five-link bipedal robot consisting of ten state variables. We demon-
strate the effectiveness of our algorithm in achieving the robot’s stable walking, which is
set as the desired system-critical constraint for the robot. The significance of our algorithm
in reducing the computational demands of executing the GP-CF-SOCP certifying filter is
highlighted.

RABBIT is a testbed system developed to study bipedal robot locomotion [37]. As
depicted in Figure 11.3a, when one foot is in contact with the ground its configuration can
be represented by the generalized coordinate vector q = [q1 q2 q3 q4 q5]

T consisting of the
robot’s joint angle variables. We adopt the mathematical model for RABBIT locomotion
presented in [37] to design the simulation model of this system, where the state of the robot
is defined as x = [q q̇] ∈ R10, and the control input is defined as u ∈ R4, consisting of the
hip and knee motor torques for both legs. The torque saturation is set at 150Nm. The
hybrid system description of the robot’s walking process consists of a single-support swing
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Figure 11.5: Visualization of a series of snapshots of the online data selected by our algorithm
in the RABBIT simulation. Each snapshot illustrates the robot with its stance leg highlighted
in magenta and the velocity of the torso indicated by the magenta arrow. Each row depicts
a single walking cycle, while the same phase is aligned in the same column. The start and
end of the swing phase are denoted by post-reset and pre-reset, respectively, and the middle
phase represents the point at which θ(q) = 0.5. The robot’s state at each phase is displayed
without transparency, while the selected data points are shown as the corresponding robot’s
configuration and torso velocity, drawn with transparency in the background.
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Table 11.1: Total execution time (data selection, GP inference, numerical optimization)
of the GP-CF-SOCP controller with different datasets in the RABBIT simulation and the
cart-pole experiment. The table presents mean and standard deviations in milliseconds.

GP-CF-SOCP (Ours) GP-CF-SOCP (Full)
System mean stdev M mean stdev N
RABBIT 33.2 3.2 130 226.2 19.9 12569
Cart-Pole 11.8 0.75 40 60.4 4.1 6957

phase under a control-affine Lagrangian dynamics and a reset map defined by the rigid
impact model, which switches the robot’s state to the post-impact state upon the swing
foot’s impact with the ground.

The objective of the certifying filter is to achieve an exponentially stabilizing periodic gait
for the RABBIT, despite the effect of the impacts. To accomplish this, we employ a Rapidly
Exponentially Stabilizing Control Lyapunov Function (RES-CLF) [9] as our certificate func-
tion. We also set πref(x) ≡ 0 since this naturally captures the objective of minimizing the
energy spent to produce the motor torques. In order to construct RES-CLFs, we first input-
output linearize the continuous dynamics of the system by defining the output functions:

y(q) = ya(q)− yd(θ(q)), (11.27)

where θ(q) is a variable that defines the phase along the gait, which monotonically increases
within each walking step, ya are the hip and knee coordinates of both legs, and yd(·) is
a desired trajectory of the hip and leg joints represented by a Bezier polynomial. This
reference trajectory is generated offline using the Fast Robot Optimization and Simulation
Toolkit (FROST) [81]. We can then decompose the state of the system into the transverse
coordinates η = [y ẏ]T ∈ T ⊆ R8 and the zero coordinates z = [θ(q) θ̇(q)] ∈ Z ⊆ R2. After
applying the input-output linearizing controller, we can represent the transverse dynamics
as:

η̇ = f(η, z) + g(η, z)µ, (11.28)

where µ is the virtual input. By stabilizing η to zero, we enforce the joint trajectory to
converge to the desired stable walking gait defined by yd(θ(q)).

Model uncertainty is introduced in the simulation by scaling the mass and inertia values
of the robot by a factor of 2, which poses a challenge for the controller to maintain stability
during walking. Note that a payload is one of the most common sources of model uncertainty
for legged robots in their practical applications. As illustrated in Figure 11.4, while the oracle
CLF-QP (blue), which assumes access to the true plant dynamics, successfully completes ten
steps, the nominal model-based CLF-QP (magenta), which is unaware of the change in mass
and inertia, fails to stabilize the robot and it eventually falls down during the sixth step.
This observation motivates using the GP-CLF-SOCP controller.
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We collect the data points represented as x̄j=([ηj, zj], µj) since we aim to learn the effect
of model uncertainty in the transverse dynamics (11.28). The dataset is collected in an
episodic learning fashion, similar to our previous work [30]. The nominal model-based CLF-
QP is run in the first episode to create an initial dataset for the GP regression. Following
this, the GP-CLF-SOCP is executed, and the data collected from the new trajectory is
iteratively added to the dataset. For the GP-CLF-SOCP, we initially use the full dataset;
however, when the execution time of the SOCP controller approaches the limit of the target
sampling time, we activate the data selection algorithm. It is essential to acknowledge that
high-dimensional systems are more susceptible to the out-of-distribution problem, as data
is inherently more scarce. To address this challenge, we introduce perturbations to the
reset map at every impact event and create variations in the control policies executed in
each episode, for example, by altering the number of M , in order to enhance the dataset’s
coverage. As a result, we obtain a comprehensive dataset comprising N = 12, 569 data
points.

When assuming the ability to deploy the GP-CLF-SOCP controller using the full dataset
at a sampling rate of 20Hz (50ms), it can achieve ten successful steps without falling, as
shown in Figure 11.4 (black). However, this would not be achievable in reality, as the
average execution time of the controller using the full dataset is 226.2ms (4.4Hz), which
significantly exceeds the target sampling time.

Instead, we employed our main data selection algorithm to choose M = 130 data points
from the full dataset. As demonstrated in Table 11.1, this algorithm significantly reduced the
execution time to an average of 33.2ms. Figure 11.5 displays the snapshots of selected online
data points using our main algorithm along the walking gaits. We observe that throughout
different walking cycles, the data selection follows a periodic pattern by consistently choosing
similar data points at each walking phase.

As shown in Figure 11.4, the GP-CLF-SOCP (Ours) (green) is able to keep the RABBIT
model’s hip position at around a constant height without violating the implicit constraint
on the contact force, which is imposed by a friction coefficient of 0.8. In other words,
the controller enables the robot to successfully complete ten steps without a slip. This is
further evidenced by the Control Lyapunov Function and tracking error plot, where the
controller consistently and exponentially stabilizes the tracking error close to zero after the
repeated state resets. It is worth noting that the resulting walking gait of the GP-CLF-
SOCP controller differs from the oracle controller, as the SOCP controller chooses control
inputs that are robust to the prediction uncertainty. Consequently, the controller behaves
more conservatively; in this case, it leads to a slightly faster walking gait than the ideal
scenario of using the oracle CLF-QP controller.

11.4.3 Hardware Experiment: Cart-pole System

The importance of the method presented in this work is most notable for real hardware
systems, as we can use the data collected from the real system to account for the inevitable
inaccuracies that even our best possible mathematical description of its dynamics might
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Figure 11.6: Training data for the cart-pole experiment collected from running 18 rollouts of
the trajectories under the nominal CBF-QP and GP-CBF-SOCP from various initial states.

suffer from. This is precisely what is observed in the experiment we conducted on a Quanser
Linear Servo Base Unit with Inverted Pendulum [161] hardware (Figure 11.3b). This cart-
pole system consists of a linearly-actuated cart and an un-actuated pendulum. The state of
the system can be described as x = [s, ṡ, θ, θ̇] ∈ R4, where s and ṡ are the cart’s position
and velocity, and θ and θ̇ correspond to the pole’s relative angle with respect to the upright
position and its angular velocity. The control input u ∈ R is the voltage applied to the linear
actuator of the cart.

The control objective of this experiment is to swing-up the pole to the upright position
and balance it at the top, while respecting a safety constraint on the cart’s position, given
as |s| ≤ slim=0.35m. In particular, this constraint is placed to avoid the cart from colliding
against the limits of the linear guide. The CBF we designed, which is then used as the
certificate function, is based on the exponential CBF design methods for high relative-degree
constraints [144]; in our case, the original cart position constraint has a relative degree of
two. This results in a CBF expressed as

C(x) = −2sṡ+ k(s2lim − s2). (11.29)

The zero-levelset of the CBF is depicted in red in the left plot of Figure 11.7.
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Figure 11.7: 10 episodes of the cart-pole experiment under GP-CBF-SOCP (Ours). We high-
light one of the ten trajectories in magenta with thick curves and the rest in thin transparent
curves. On the left is the phase plot of the trajectories in the cart position and velocity space
(s− ṡ), where the region between the red curves indicates the zero-super level set of the CBF.
The diamond markers indicate the initial states of the trajectories. No trajectory exits the
zero-super level set of the CBF. On the right are the plots of cart position(s), pole angle (θ),
and CBF value of the trajectories in time. The highlighted trajectory successfully swings up
the pole while maintaining the safety constraint. A video with the experimental results can
be found in this link.

https://drive.google.com/drive/folders/1oNsTEJenVxObk4TlLS0wlsh_J1Wbj-9D?usp=share_link
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For the swing-up task, we design a reference policy πref, which is a hybrid controller that
switches between an energy-based feedback controller that increases the total energy of the
system until it matches the level of the potential energy of the unstable equilbrium, and a
stabilizing controller to which the system switches when the pole is at the vicinity of the
equilibrium.

We then apply the reference policy filtered by the nominal model-based CBF-QP certi-
fying filter. For the nominal model, we use the high-fidelity dynamics model provided by
the manufacturer [161]. We apply the computed filtered control input to the actual system
every 25ms, which is the target sampling time for the real-time execution of the controller.
Even though the provided dynamics model tries to capture many of the complex nonlinear-
ities present in the system, we observe that, when deployed on the real system, the nominal
model-based CBF-QP still fails to satisfy the safety constraints at several trials and the CBF
values become negative.

This motivates us to employ the GP-CBF-SOCP certifying filter to achieve the swing-up
task while adhering to the cart position limit, after learning the model uncertainty effect
from the data. In order to maintain feasibility of the GP-CBF-SOCP filter, the dataset
must sufficiently cover the state and control input space where the system operates. We
collect these data points in an episodic fashion following the procedure described below.
Initially, we run the first episode with the nominal CBF-QP and create an initial dataset for
the GP regression. Subsequently, in the following episodes, we utilize the GP-CBF-SOCP,
which uses the data collected in previous episodes, and aggregate the dataset with the data
collected during the current episode. The GP-CBF-SOCP deployed during this process does
not provide a robust safety guarantee since we do not yet have adequate data coverage.
Consequently, the SOCP is often infeasible, resulting in a negative CBF value.

Furthermore, as more data points are aggregated, the GP inference takes longer, eventu-
ally exceeding the 25ms limit of our sampling time. Thus, we conduct this episodic procedure
twice, each time collecting nine trajectories, and then combine the two datasets into the full
dataset. With the full dataset comprising N = 6957 data points visualized in Figure 11.6, we
observe that the GP-CBF-SOCP controller takes too long to perform the inference, causing
an average 60.4ms execution time (Table 11.1), which does not meet the target sampling
rate requirement. This effect is evident in the experiment, as the cart-pole fails to swing up
properly due to the delay.

On the contrary, using our data selection algorithm with M = 40 points selected online,
the total execution time becomes much smaller, resulting in an average of 11.8ms. Over 10
experiments using our main algorithm and the GP-CBF-SOCP, we achieve 100% constraint
satisfaction. These trajectories are shown in Figure 11.7. Although not all of these experi-
ments result in a successful balance at the upright position within the allocated 20 seconds
(achieved in 6 out of 10 experiments), the GP-CBF-SOCP successfully prioritizes safety over
performance, ensuring the cart never exits the defined limits imposed by the CBF-based cer-
tifying constraint. In the video showcasing the results, it is clear that the learned certifying
constraint forces the cart to drop the pole when it approaches the position limit. Moreover,
we demonstrate that even when an external user introduces disturbances by pushing the

https://drive.google.com/drive/folders/1oNsTEJenVxObk4TlLS0wlsh_J1Wbj-9D?usp=share_link
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pole, the system remains safe.

11.5 Chapter Summary

The primary innovation introduced in this chapter is a data selection algorithm, which op-
erates online every time the SOCP safety filter is executed, to select the most relevant data
points for ensuring the feasibility of the SOCP. These data points carry valuable informa-
tion for determining the control input direction which guarantees system-critical constraint
satisfaction, while avoiding redundancy among the chosen data points.

Most importantly, our proposed algorithm allows data-driven certifying filters to be ap-
plied to high-dimensional real robotic systems handling vast datasets. Previously proposed
methods for implementing data-driven filters faced scalability limitations of non-parametric
regression, restricting their usage to low-dimensional toy examples not requiring extensive
datasets. Notably, the inference time complexity of GP regression increases quadratically
with the dataset size. Our devised algorithm significantly enhances GP inference efficiency,
reducing time complexity to linear in relation to the dataset size. We successfully demon-
strate our method in a real cart-pole experiment, ensuring the cart position stays within
the safety limits, and a 10-dimensional bipedal robot simulation attempting stable walking
while subjected to parametric model errors.
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Chapter 12

Conclusions and Future Vision

In conclusion, this dissertation presents a fundamental perspective on the development of
reliable and intelligible controllers for real-world autonomous systems. Our research effec-
tively explores the integration of model-based and data-driven approaches, taking advantage
of approximate model knowledge when available and leveraging data to adapt to the in-
tricacies of real-world systems. Through the introduction of several novel ideas, including
principled reward shaping methods, distributional shift prevention mechanisms, uncertainty-
aware model-based controllers, and safe active learning strategies, we address the challenges
associated with uncertainty, safety, and adaptability in these systems.

The key contributions of this research not only enhance our understanding of autonomous
systems but also provide practical, real-world applications in areas such as robotic locomotion
and autonomous driving. Furthermore, the principles and methods presented herein can
serve as building blocks for tackling more complex, uncertain, and dynamically changing
environments, bringing us closer to realizing the full potential of robotic systems in real-
world applications. Additionally, as advances in artificial intelligence span across numerous
disciplines beyond robotics, the need to invest time and resources to minimize costly failures
becomes increasingly important. We believe that the insights and techniques presented in
this dissertation serve as valuable stepping stones for the much-needed continued research
and advancement in this field.

Finally, we elaborate on some of the key technical challenges concerning safe autonomy
that will require future research efforts.

Scalable Data-Driven Safe Control Methods for Complex Multi-Agent Systems

While our research provides a foundation for future development and deployment of safer and
more efficient autonomous systems, it is essential to recognize the limitations and complexi-
ties that arise in increasingly uncertain and dynamic settings. In multi-agent environments,
it is crucial for autonomous systems to be able to reason online and react to changes in the
behavior of other agents in order to stay safe.

Using online observations to constantly adapt to the changes in the environment seems
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like the only way to effectively tackle this problem. However, highly expressive and scal-
able data-driven models are still not well-understood and providing meaningful uncertainty
quantification techniques for these models should be a priority for future work.

Uncertainty Propagation through Different Modules of the Software Stack

The prevalent approach to controlling autonomous systems involves modular pipelines that
break down the control problem into several distinct modules, spanning from perception to
decision making. This dissertation primarily focuses on developing principled methods for
decision making. Nonetheless, it is evident that control and planning modules should take
into account the uncertainties of the models employed in earlier layers of the stack to make
robust decisions. As such, effective uncertainty quantification and propagation across all
individual modules of the stack are essential for the safe deployment of these systems.

Considering that deep learning models offer state-of-the-art results in perception and pre-
diction, quantifying uncertainty in these complex, overparameterized models and effectively
propagating it to subsequent modules remains a significant research challenge.

Safety of other Machine Learning Systems

As artificial intelligence systems continue to advance, they are unlocking a wider range of
automation applications beyond just robotics. At the same time, concerns about privacy
violations, algorithmic biases, and the unchecked spread of fake news have become more
prevalent, especially with the recent rise of large language models. These concerns emphasize
the importance of making machine learning systems reliable and transparent. Adapting
research on physical safety to address broader constraint satisfaction problems could help
these systems proactively evaluate the potential impact of their decisions when interacting
with humans.

However, identifying appropriate constraints for these problems is challenging, which
makes it difficult to even think about safety when considering these systems. Control-
theoretic ideas should serve as a source of self-supervision for these models, helping to embed
mathematical principles that guide the optimization process towards desired, but hard to
analytically express, behaviors. Increased efforts should be devoted to the development of
machine learning models that incorporate these principles and operate more securely and
responsibly when employed for real-life interactions with humans.
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[141] R. Munos and C. Szepesvári. “Finite-Time Bounds for Fitted Value Iteration.” In:
Journal of Machine Learning Research 9.5 (2008).

[142] A. Nagabandi et al. “Deep dynamics models for learning dexterous manipulation”.
In: Conference on Robot Learning. PMLR. 2020, pp. 1101–1112.

[143] A. Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations:
Theory and application to reward shaping”. In: International conference on machine
learning. Vol. 99. 1999, pp. 278–287.

[144] Q. Nguyen and K. Sreenath. “Exponential control barrier functions for enforcing high
relative-degree safety-critical constraints”. In: American Control Conference. 2016,
pp. 322–328.

[145] Q. Nguyen and K. Sreenath. “L1 Adaptive Control for Bipedal Robots with Control
Lyapunov Function based Quadratic Programs”. In: American Control Conference.
Chicago, IL, July 2015, pp. 862–867.

[146] Q. Nguyen and K. Sreenath. “Optimal Robust Control for Bipedal Robots through
Control Lyapunov Function based Quadratic Programs.” In: Robotics: Science and
Systems. Rome, Italy. 2015.

[147] Q. Nguyen and K. Sreenath. “Robust Safety-Critical Control for Dynamic Robotics”.
In: IEEE Transactions on Automatic Control 67.3 (2022), pp. 1073–1088.



BIBLIOGRAPHY 193

[148] Q. Nguyen and K. Sreenath. “Safety-Critical Control for Dynamical Bipedal Walking
with Precise Footstep Placement”. In: IFAC Analysis and Design of Hybrid Systems.
Atlanta, GA, Oct. 2015.

[149] Q. T. Nguyen. “Robust and Adaptive Dynamic Walking of Bipedal Robots”. PhD
thesis. Carnegie Mellon University, 2017.

[150] P. Ogren, M. Egerstedt, and X. Hu. “A control Lyapunov function approach to multi-
agent coordination”. In: Proceedings of the 40th IEEE Conference on Decision and
Control (Cat. No.01CH37228). Vol. 2. 2001, 1150–1155 vol.2.

[151] A. v. d. Oord, Y. Li, and O. Vinyals. “Representation learning with contrastive pre-
dictive coding”. In: arXiv preprint arXiv:1807.03748 (2018).

[152] X. B. Peng et al. “Learning agile robotic locomotion skills by imitating animals”. In:
arXiv preprint arXiv:2004.00784 (2020).

[153] X. B. Peng et al. “Sim-to-real transfer of robotic control with dynamics randomiza-
tion”. In: 2018 IEEE international conference on robotics and automation (ICRA).
IEEE. 2018, pp. 3803–3810.

[154] M. Petrik and B. Scherrer. “Biasing approximate dynamic programming with a lower
discount factor”. In: Advances in neural information processing systems 21 (2008),
pp. 1265–1272.

[155] J. M. Phillips and S. Venkatasubramanian. “A gentle introduction to the kernel dis-
tance”. In: arXiv preprint arXiv:1103.1625 (2011).

[156] R. Postoyan et al. “Stability analysis of discrete-time infinite-horizon optimal control
with discounted cost”. In: IEEE Transactions on Automatic Control 62.6 (2016),
pp. 2736–2749.

[157] R. Postoyan et al. “Stability guarantees for nonlinear discrete-time systems controlled
by approximate value iteration”. In: 2019 IEEE 58th Conference on Decision and
Control (CDC). IEEE. 2019, pp. 487–492.

[158] Public Utilities Commision of the State of California. Resolution Approving Cruise
Llc’s Application For Phase I Driverless Autonomous Vehicle Passenger Service De-
ployment Program. 2022.

[159] F. Pukelsheim. Optimal design of experiments. SIAM, 2006.

[160] Z. Qin, D. Sun, and C. Fan. “SABLAS: Learning Safe Control for Black-box Dy-
namical Systems”. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 1928–
1935.

[161] Quanser. Linear servo base unit with inverted pendulum. Apr. 2021. url: https:
//www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/.

[162] J. Quinonero-Candela and C. E. Rasmussen. “A unifying view of sparse approximate
Gaussian process regression”. In: The Journal of Machine Learning Research 6 (2005),
pp. 1939–1959.

https://www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/
https://www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/


BIBLIOGRAPHY 194

[163] H. Ravanbakhsh and S. Sankaranarayanan. “Learning Control Lyapunov Functions
from Counterexamples and Demonstrations”. In: Autonomous Robots 43.2 (Feb.
2019), pp. 275–307.

[164] J. Reher, C. Kann, and A. D. Ames. “An Inverse Dynamics Approach to Control
Lyapunov Functions”. In: American Control Conference. 2020.

[165] S. M. Richards, F. Berkenkamp, and A. Krause. “The Lyapunov Neural Network:
Adaptive Stability Certification for Safe Learning of Dynamical Systems”. In: Pro-
ceedings of The 2nd Conference on Robot Learning. Vol. 87. Proceedings of Machine
Learning Research. Oct. 2018, pp. 466–476.

[166] C. Richter and N. Roy. “Safe visual navigation via deep learning and novelty detec-
tion”. In: Robotics: Science and Systems. Cambridge, MA. 2017.

[167] A. Robey et al. “Learning control barrier functions from expert demonstrations”. In:
2020 59th IEEE Conference on Decision and Control (CDC). IEEE. 2020, pp. 3717–
3724.

[168] R. M. Sanner and J.-J. Slotine. “Gaussian networks for direct adaptive control”. In:
IEEE Transactions on Neural Networks 3.6 (1992), pp. 837–863.

[169] S. Sastry. Nonlinear systems: analysis, stability, and control. Vol. 10. Springer Science
& Business Media, 1999.

[170] S. Sastry and M. Bodson. Adaptive control: stability, convergence and robustness.
Courier Corporation, 1989.

[171] S. S. Sastry and A. Isidori. “Adaptive control of linearizable systems”. In: IEEE
Transactions on Auto. Control 34.11 (1989), pp. 1123–1131.

[172] F. Schroff, D. Kalenichenko, and J. Philbin. “Facenet: A unified embedding for face
recognition and clustering”. In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. 2015, pp. 815–823.

[173] J. Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[174] J. Siekmann et al. “Sim-to-real learning of all common bipedal gaits via periodic
reward composition”. In: 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2021, pp. 7309–7315.

[175] D. Silver et al. “Deterministic Policy Gradient Algorithms”. In: Proceedings of the
31st International Conference on Machine Learning. Proceedings of Machine Learning
Research. 2014, pp. 387–395.

[176] L. Smith et al. “Legged Robots that Keep on Learning: Fine-Tuning Locomotion
Policies in the Real World”. In: arXiv preprint arXiv:2110.05457 (2021).

[177] E. D. Sontag. “A ‘universal’ construction of Artstein’s theorem on nonlinear stabi-
lization”. In: Systems and Control Letters 13.2 (1989), pp. 117–123.



BIBLIOGRAPHY 195

[178] E. D. Sontag. “On the Input-to-State Stability Property”. In: European Journal of
Control 1.1 (1995), pp. 24–36.

[179] K. Sreenath et al. “A compliant hybrid zero dynamics controller for stable, efficient
and fast bipedal walking on MABEL”. In: The International Journal of Robotics
Research 30.9 (2011), pp. 1170–1193.

[180] N. Srinivas et al. “Gaussian Process Optimization in the Bandit Setting: No Regret
and Experimental Design”. In: International Conference on Machine Learning. Haifa,
Israel, 2010.

[181] M. Srinivasan et al. “Synthesis of control barrier functions using a supervised ma-
chine learning approach”. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2020, pp. 7139–7145.

[182] G. Still. “Lectures on parametric optimization: An introduction”. In: Optimization
Online (2018).

[183] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. Cambridge,
MA, USA: MIT Press, 2018.

[184] A. J. Taylor and A. D. Ames. “Adaptive safety with control barrier functions”. In:
American Control Conference. 2020, pp. 1399–1405.

[185] A. J. Taylor et al. “A control lyapunov perspective on episodic learning via projection
to state stability”. In: 2019 IEEE 58th Conference on Decision and Control (CDC).
IEEE. 2019, pp. 1448–1455.

[186] A. J. Taylor et al. “Episodic learning with control lyapunov functions for uncertain
robotic systems”. In: 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2019, pp. 6878–6884.

[187] A. J. Taylor et al. “Learning for safety-critical control with control barrier functions”.
In: Learning for Dynamics and Control. 2020, pp. 708–717.

[188] A. J. Taylor et al. “Towards Robust Data-Driven Control Synthesis for Nonlinear
Systems with Actuation Uncertainty”. In: 2021 60th IEEE Conference on Decision
and Control (CDC). 2021, pp. 6469–6476.

[189] C. Tessler and S. Mannor. “Reward Tweaking: Maximizing the Total Reward While
Planning for Short Horizons”. In: arXiv preprint arXiv:2002.03327 (2020).

[190] V. Tresp. “A Bayesian committee machine”. In: Neural computation 12.11 (2000),
pp. 2719–2741.
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Appendix A

Proofs and Intermediate Results

A.1 Chapter 3 Proofs

A.1.1 Proof of Lemma 3.1

To prove the desired result, we demonstrate that for each θ∗ ∈ Θ \Ξ there exists a finite ρ̄ ∈
R+ such that θ∗ ̸∈ Sρ for each ρ > ρ̄. For a fixed θ∗ ∈ Θ \Ξ, define M θ∗

1 = Ex∼X [∥π̂(x, θ∗)∥22]
and M θ∗

2 = Ex∼X [[Ψ(x, θ∗)]+] so that for each ρ > 0 we have Lρ(θ
∗) = M θ∗

1 + ρM θ∗
2 . Since

θ∗ ̸∈ Ξ, there must exist x∗ ∈ Ωc such that [Ψ(x∗, θ∗)]+ > 0. Under our standing assumptions,
the map [Ψ(·, θ∗)]+ can be seen to be continuous, since the space of continuous functions
is closed under addition, multiplication and composition. Putting these two facts together,
there must exist a δ > 0 such that for each x ∈ Bδ(x∗) ∩ Ωc we have [Ψ(x, θ∗)]+ > 0. This
in turn implies that M θ∗

2 > 0. Thus, we see that Lρ(θ
∗)→∞ as ρ→∞.

Next, letting θ̄ be defined as in the statement of the lemma, for each ρ ∈ R+ we have
Lρ(θ̄) = M θ̄

1 where M θ̄
1 = Ex∼X [∥π̂(x, θ̄)∥22] and we note that the term Ex∼X [[Ψ(x, θ∗)]+]

contributes nothing to Lρ(θ̄) since θ̄ ∈ Ξ. Thus, if we set ρ̄ = max
{
0,

M θ̄
1−Mθ∗

1

Mθ∗
2

}
we see that

Lρ(θ
∗) > Lρ(θ̄) for each ρ > ρ̄, proving the desired statement for our fixed θ∗.

A.1.2 Proof of Theorem 3.1

Let ρ̄ be defined as in the statement of Lemma 3.1. Then for each ρ > ρ̄ we have Sρ ⊂
Ξ, where Ξ is defined as in (3.9). This implies that for each θ ∈ Sρ we have L(θ) =
Ex∼X [∥π̂(x, θ)∥22]. Let θ̄ be defined as in the statement of the theorem, and let θ ∈ Sρ be
arbitrary. By the definition of the min-norm control law we have ∥π̂(x, θ̄)∥2 ≤ ∥π̂(x, θ)∥2 for
each x ∈ Ωc, which in turn implies that L(θ̄) ≤ L(θ). Next, suppose that π̂(x∗, θ) ̸= πCLF(x

∗)
for some x∗ ∈ Ωc. Again, using the definition of u∗p we have ∥π̂(x∗, θ̄)∥2 < ∥π̂(x∗, θ)∥2. By
the continuity of π̂(·, θ), we know that there exists δ > 0 such that for each x ∈ Bδ(x∗)∩Ωc

we have ∥π̂(x, θ̄)∥22 < ∥π̂(x, θ)∥22. This implies that L(θ̄) < L(θ), demonstrating the desired
result.
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A.1.3 Proof of Lemma 3.2

To prove the claim, we will first consider the two maps θ → Ex∼X
[
∥π̂(x, θ)∥22

]
and θ →

Ex∼X
[
ρ [Ψ(x, θ)]+

]
separately. In particular, we will show that the first term is strongly

convex in θ while the second term is simply convex. The result of the theorem then follows
from the fact that the addition of a strongly convex function and a convex function yields a
strongly convex function.

First, we rewrite ∥π̂(x, θ)∥22 as θTW (x)TW (x)θ where W (x) = [u1(x), u2(x), . . . , uK(x)]
T

collects the basis of control functions. Note that the positive semi-definite matrix W̄ =
Ex∼X

[
W (x)TW (x)

]
is the Grammian for {πk}Kk=1 on C(Ωc,Rm), and thus will be full-rank

and positive definite iff {πk}Kk is linearly independent on this space. Based on these facts, we
see that Ex∼X

[
∥π̂(x, θ)∥22

]
= θT W̄θ is a strongly convex quadratic function of the parameters.

Next, we turn to the term Ex∼X
[
ρ [Ψ(x, θ)]+

]
. We demonstrate that for a fixed x∗ ∈ Ωc

and each ρ ∈ R+ the mapping θ → ∥π̂(x∗, θ)∥22 + ρ [Ψ(x∗, θ)]+ is strongly convex using basic
properties of convex functions [23]. We begin by examining the term [Ψ(x, θ)]+. Examining
equations (3.10) and (3.6) we see that the map θ → Ψ(x∗, θ) is affine in θ for each fixed
x∗ ∈ Ωc. Furthermore, we may rewrite the term ρ [y]+ = max {0, ρy}. Since the pointwise
maximum of two affine functions defines a convex function, we see that θ → ρ [Ψ(x∗, θ)]+ is
convex, implying that

ρ [Ψ(x, αθ3)]
+ ≤ αρ [Ψ(x, θ1)]

+ + (1− α)ρ [Ψ(x, θ2)]
+

for each x ∈ Ωc, θ1, θ2 ∈ RK and θ3 = αθ1 + (1 − α)θ2 for some α ∈ [0, 1]. This pointwise
fact implies that

Ex∼X
[
ρ [Ψ(x, θ3)]

+] ≤ αEx∼X
[
ρ [Ψ(x, θ1)]

+]
+ (1− α)Ex∼X

[
ρ [Ψ(x, θ2)]

+] .
Thus, θ → Ex∼X

[
ρ [Ψ(x, θ)]+

]
is convex, as desired.

A.2 Chapter 4 Proofs

A.2.1 Proof of Theorem 4.1

The overall loss can be written as

Ex∼XL(ρ1,ρ2)(x, θ) =Mu(θ) + ρ1M1(θ) + ρ2M2(θ).

For convenience we write

Mu = max
θ∈Θ

Mu(θ) Mu = min
θ∈Θ

Mu(θ)

M1 = max
θ∈Θ

M1(θ) M1 = min
θ∈Θ

M1(θ)

M2 = max
θ∈Θ

M2(θ) M2 = min
θ∈Θ

M2(θ)
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We first demonstrate that there exists C1, C2 ≥ 0 such that if ρ1 ≥ 1
ϵ1
C1ρ2 +

1
ϵ1
C2 then

for each global optimizer θ∗ ∈ Θ of P(ρ1,ρ2) we must have θ∗ ∈ Θϵ1 . To show this consider
two points θ1 ∈ Θ0 and θ2 ̸∈ Θϵ1 . Let Lk = Ex∼XL(ρ1,ρ2)(x, θk) for k ∈ {1, 2}. We have that:

L1 ≤Mu + ρ2M2 and Mu + ρ1ϵ1 + ρ2M2 ≤ L2.

Here, the first inequality follows from the fact that M1(θ1) = 0 and the second inequality
follows from the fact that M1(θ2) ≥ ϵ1. Combining the inequalities yields:

L1 ≤
(
Mu −Mu

)
− ρ1ϵ1 + ρ2

(
M2 −M2

)
+ L2

Thus, we see that if we set ρ1 >
1
ϵ1
C1ρ2 +

1
ϵ1
C2 with C1 = M2 −M2 and C2 = Mu −Mu,

then we must have that L1 < L2. Thus, any θ2 ̸∈ Θϵ1 cannot be a global minimizer if we
choose the constants C1, C2 ≥ 0 as above.

Next, we demonstrate that when we fix ρ1 ≥ 1
ϵ1
C1ρ2 +

1
ϵ1
C2 as we vary ρ2, then there

exists C3 ≥ 0 such that if we choose ρ2 ≥ 1
ϵ2
C3 then any global optimizer θ∗ of P(ρ1,ρ2)

must lie in Θϵ1,ϵ2 . As established above, we already know that all optimizers of P(ρ1,ρ2)

must lie in Θϵ1 in this case. Thus, we will now consider the two points θ3 ∈ Θ0,0 and

θ4 ∈
{
θ ∈ Θϵ1 : M2(θ) > M̃2 + ϵ2

}
, with M̃2 defined as in (4.4), so that θ4 satisfies the desired

tolerance for the CBF constraint but not the desired tolerance for the CLF constraint. Again
let Lk = Ex∼XL(ρ1,ρ2)(x, θk) for k ∈ {3, 4}. We then have that

L3 ≤Mu + ρ2M̃2 and Mu + ρ2(M̃2 + ϵ2) ≤ L4

where we have used the fact that M1(θ3) = 0, M2(θ3) = M̃2 and M2(θ4) ≥ M̃2 + ϵ2. Again
combining the inequalities and rearranging terms we see that

L3 ≤
(
Mu −Mu

)
− ρ2ϵ2 + L4.

Thus, we see that if we select C3 = Mu −Mu and put ρ2 ≥ 1
ϵ2
C3 then it must be the case

that L3 < L4 so that θ4 is not a minimizer. Thus, we see that if we choose ρ1 ≥ 1
ϵ1
C1ρ2+

1
ϵ1
C2

and ρ2 ≥ 1
ϵ2
C3 with all of the constants chosen as above then all minimizers of P(ρ1,ρ2) must

lie in Θϵ1,ϵ2 , as desired.

A.3 Chapter 5 Proofs and Intermediate Results

A.3.1 Intermediate Results

Lemma A.1. The composite function Ṽπ

γ = W + γṼ π
γ : X → R ∪ {∞} is positive definite.

Proof. Note that we can re-write the reshaped cost (5.7) as

Ṽ π
γ (x0) =

∞∑
k=0

γk
(
[W (xk+1)−W (xk) + ℓ(xk, π(xk))]

)
, (A.1)
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where {xk}∞k=0 is the state trajectory generated by the policy π from the initial condition
x0 ∈ X . By rearranging terms we can rewrite this expression as:

Ṽ π
γ (x0) = −W (x0) + (1− γ)

∞∑
k=0

γkW (xk+1) +
∞∑
k=0

γkℓ(xk, π(xk)) > −W (x0) +Q(x0) (A.2)

where we have used the fact that W and ℓ are both non-negative, and that ℓ(x0, π(x0)) >
Q(x0). Thus, using this expression we see that

Ṽπ

γ(x0) = W (x0) + γṼ π
γ (x0) > (1− γ)W (x0) + γQ(x0), (A.3)

Since Q and W are assumed to be positive definite functions this demonstrates that Vπ
γ is

in fact positive definite, since a convex combination of positive definite functions is positive
definite. The proof is concluded by noting that the choice of γ and π is arbitrary, and thus
the conclusion that Vπ

γ is positive definite holds for all policies and discount factors.

A.3.2 Proof of Theorem 5.2

Lemma A.1 demonstrates that Ṽπ

γ = W +γṼ π
γ : X → R∪{∞} is a positive definite function.

Using the hypotheses of the results with the inequality (5.15) we obtain

Ṽπ

γ

(
F (x, π(x))

)
− Ṽπ

γ(x) ≤ (−1 + (1− γ)[C̃ + δ̃])Q(x). (A.4)

Note that if C̃ + δ̃ < 1
1−γ then the right hand side of (5.2.2) will be negative definite, which

establishes that π asymptotically stabilizes the system.

A.3.3 Proof of Lemma 5.1

Consider a policy π̄ ∈ Π defined for each x ∈ X by:

π̄(x) ∈ arg inf
u∈U

W (F (x, u))−W (x) + ℓ(x, u) ≤ 0, (A.5)

where the preceding inequality follows directly from the assumptions made in the Lemma.
Next, for a given initial condition x0 ∈ X let {xk}∞k=0 be the state trajectory generated by
π̄. The corresponding reshaped cost is given by

Ṽ π̄
γ (x0) =

∞∑
k=0

γk
(
[W
(
F (xk, π̄(xk))

)
−W (xk)] + ℓ(xk, π̄(xk))

)
(A.6)

≤
∞∑
k=0

γk(0) (A.7)

≤ 0, (A.8)

which demonstrates the desired result, since the initial condition and discount factor were
chosen arbitrarily.
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A.4 Chapter 10 Proofs and Intermediate Results

A.4.1 An Intermediate Result of an Equivalent Formulation of
the CBF Chance Constraint

We first provide an additional reformulation of the CBF chance constraint, equivalent to
those of (10.8b) and (10.16c), which will be useful for the proofs of the feasibility results.

Lemma A.2. The CBF chance constraint (10.8b) is feasible at a point x ∈ X if and only
if there exists a control input u ∈ Rm that satisfies both of the following conditions:[1 uT ]H(x|DN)

[
1
u

]
≤ 0, (A.9a)

L̂gB(x|DN)u+ L̂fB(x|DN) + γ(B(x)) ≥ 0, (A.9b)

where

H(x|DN) :=

[
H11 H1u

HT
1u Huu

]
, with (A.10)

H11 =β
2ΣLfB(x|DN)− (L̂fB(x|DN) + γ(B(x)))2,

H1u =β
2Σ

1/2
LfB

(x|DN)
TΣ

1/2
LgB

(x|DN)−
(
L̂fB(x|DN) + γ(B(x))

)
L̂gB(x|DN),

Huu =β
2ΣLgB(x|DN)− L̂gB(x|DN)

T L̂gB(x|DN).

In (A.10), we have used the following relations:

ΣLfB(x|DN) = Σ
1/2
LfB

(x|DN)
TΣ

1/2
LfB

(x|DN) ∈ R, (A.11)

ΣLgB(x|DN) = Σ
1/2
LgB

(x|DN)
TΣ

1/2
LgB

(x|DN) ∈ Rm×m. (A.12)

Proof. The first inequality (A.9a) is directly obtained by squaring both sides of (10.16c).
The second inequality (A.9b) is required to check that the right-hand side of (10.16c) is
non-negative, as the left-hand side is trivially non-negative.

A.4.2 An Intermediate Reusult of a Necessary Condition for
Pointwise Feasibility

Lemma A.3. If for a given dataset DN , the GP-CBF-SOCP (10.8) is feasible at a point
x ∈ Rn, then it must hold that the symmetric matrix H(x|DN) defined in (A.10) cannot be
positive definite.

Proof. Positive definiteness of H(x|DN) would mean that there does not exist any control

input u ∈ Rm such that [1 uT ]H(x|DN)

[
1
u

]
≤ 0. However, this is a contradiction to Equation

(A.9a) in Lemma A.2. Therefore, H(x|DN) cannot be positive definite if the GP-CBF-SCOP
is feasible.
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A.4.3 Proof of Lemma 10.2

In this proof, we show that the condition (10.17) of Lemma 10.2 is equivalent to H(x|DN)
of (A.10) not being positive definite for the same state x ∈ X and dataset DN . By Lemma
A.3, this would mean that (10.17) is a necessary condition for pointwise feasibility of the
GP-CBF-SOCP, which is the desired result.

Let ψ(x|DN) := [L̂fB(x|DN) + γ(B(x)), L̂gB(x|DN)]. Then, condition (10.17) does not
hold if and only if

1− ψ(x|DN)
1

β2
ΣB(x|DN)

−1ψ(x|DN)
T > 0. (A.13)

Note that (A.13) is equivalent to

M(x|DN)/(β
2ΣB(x|DN)) > 0, (A.14)

where we use the operator / for the Schur complement, and M(x|DN) :=[
1 ψ(x|DN)

ψ(x|DN)
T β2ΣB(x|DN)

]
. From [221, Thm. 1.12], since ΣB(x|DN) is positive def-

inite, (A.14) holds if and only if M(x|DN) is also positive definite. We now ap-
ply again [221, Thm. 1.12], but this time to M(x|DN)/1. Then, (A.14) is equiva-
lent to the positive definiteness of M(x|DN)/1 = β2ΣB(x|DN) − ψ(x|DN)

Tψ(x|DN) =

β2[Σ
1/2
LfB

(x|DN) Σ
1/2
LgB

(x|DN)]
T [Σ

1/2
LfB

(x|DN) Σ
1/2
LgB

(x|DN)] − ψ(x|DN)
Tψ(x|DN) = H(x|DN).

Therefore, (10.17) does not hold if and only if H(x|DN) is positive definite, and the inverse
statement completes the proof.

A.4.4 Proof of Lemma 10.3

For a point x ∈ X and dataset DN , let e†(x|DN) ∈ Rm×1 be the unit eigenvector of F(x|DN) ∈
Rm×m associated with the minimum eigenvalue λ†(x|DN) ∈ R. Then, clearly,

λ†(x|DN)<0 =⇒ e†(x|DN)
TF(x|DN)e†(x|DN)<0. (A.15)

Using (A.15) and taking into account the definition of F(x|DN) in (10.18), the fact that

ΣLgB(x|DN) is positive definite indicates that λ†(x|DN)<0 =⇒ L̂gB(x|DN)e†(x|DN) ̸= 0.
Next, take a control input πsafe(x) in the direction of e†(x|DN), as defined in (10.19).

Plugging πsafe(x) into (A.9a), the left-hand side of (A.9a) becomes a polynomial in α, of the
form α2e†(x|DN)

TF(x|DN)e†(x|DN) + O(α), where O(α) denotes terms with degree lower
than or equal to 1. Note that the value of the polynomial can be made negative by choosing
a large-enough constant α, since from (A.15) we know that e†(x|DN)

TF(x|DN)e†(x|DN) <

0. Lastly, also plugging πsafe(x) into (A.9b) yields α|L̂gB(x|DN)e†(x|DN)| + L̂fB(x|DN) +
γ(B(x)) ≥ 0, which again holds for a sufficiently large α. Therefore, by Lemma A.2 the
GP-CBF-SOCP (10.8) is feasible when λ†(x|DN) < 0 and πsafe(x) is a feasible control input
for large-enough α.
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A.4.5 Proof of Theorem 10.2

We first provide a geometric interpretation of the probabilistic CBF second-order cone con-

straint (10.16c). For a point x ∈ X and dataset DN , β
∥∥∥Σ1/2

LgB
(x|DN)u+ Σ

1/2
LfB

(x|DN)
∥∥∥
2
= t

is the positive sheet of an m-dimensional hyperboloid in Rm+1 (illustrated in Fig. 10.1).

This surface asymptotically converges to the conical surface β
∥∥∥Σ1/2

LgB
(x|DN)(u− u0)

∥∥∥
2
= t as

∥u∥2 −→∞, where

u0 = −ΣLgB(x|DN)
−1Σ

1/2
LgB

(x|DN)
TΣ

1/2
LfB

(x|DN) (A.16)

is the least-squares control input that minimizes
∥∥∥Σ1/2

LgB
(x|DN)u+ Σ

1/2
LfB

(x|DN)
∥∥∥
2
. We

will refer to the conical surface β
∥∥∥Σ1/2

LgB
(x|DN)(u−u0)

∥∥∥
2

= t as the asymptote of

β
∥∥∥Σ1/2

LgB
(x|DN)u+Σ

1/2
LfB

(x|DN)
∥∥∥
2
= t.

Since Σ
1/2
LgB

(x|DN) ≻ 0, the GP-CBF-SOCP (10.8) is feasible if and only if an inter-

section between the hyperboloid β
∥∥∥Σ1/2

LgB
(x|DN)u+Σ

1/2
LfB

(x|DN)
∥∥∥
2
= t and the hyperplane

L̂gB(x|DN)u+L̂fB(x|DN) + γ(B(x))= t exists. We now analyze each of the individual cases
of Theorem 10.2.

Case 1 (Fig. 10.1-Hyperbolic): This case matches the sufficient condition of Lemma 10.3.
Note that this condition implies that the necessary condition (10.17) is trivially satisfied. In

this case, the slope of the hyperplane L̂gB(x|DN)u + L̂fB(x|DN) + γ(B(x)) = t is greater
than the slope of the asymptote of the hyperboloid for the direction of u corresponding to
πsafe.

Case 2 (Fig. 10.1-Elliptic): Given that the smallest eigenvalue of F(x|DN) is positive,
then F(x|DN) ≻ 0. Note that F(x|DN) is the lower-right block of the matrix H(x|DN) in
(A.10). Therefore, F(x|DN) ≻ 0 implies that the left-hand side of Equation (A.9a) must
be strictly convex, with a unique global minimum at some u = u1 ∈ Rm. The first-order
optimality condition gives

u1 =−F(x|DN)
−1h, with

h :=β2Σ
1/2
LgB

(x|DN)
TΣ

1/2
LfB

(x|DN)− L̂gB(x|DN)
T
(
L̂fB(x|DN) + γ(B(x))

)
.

Since at u1 the minimum is attained, Equation (A.9a) holds if and only if

[1 uT1 ]H(x|DN)

[
1
u1

]
≤ 0. (A.17)

Plugging (A.10) and u1 = −F(x|DN)
−1h into (A.17), we get

β2ΣLfB(x|DN)−
(
L̂fB(x|DN) + γ(B(x))

)2−
hTF(x|DN)

−1h = H(x|DN)/F(x|DN) ≤ 0. (A.18)
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Since for this case F(x|DN) is positive definite, and H(x|DN) cannot be positive def-
inite by the necessary condition (10.17), then from [221, Thm. 1.12] the inequality
(A.18) must be satisfied. Consequently, (A.9a) holds for u = u1. Now, plugging u1
into (A.9b) we have: L̂gB(x|DN)u1 + L̂fB(x|DN) + γ(B(x)) = L̂fB(x|DN) + γ(B(x)) −
L̂gB(x|DN) F(x|DN)

−1
[
β2Σ

1/2
LgB

(x|DN)
TΣ

1/2
LfB

(x|DN)−L̂gB(x|DN)
T (L̂fB(x|DN)+γ(B(x)))

]
,

which matches exactly the left-hand side of (10.20). Thus, from Lemma A.2 the feasible set is
non-empty if and only if (10.20) is non-negative (see Fig. 10.1-Elliptic). On the other hand,

(10.20) being negative would mean that the hyperplane L̂gB(x|DN)u+L̂fB(x|DN)+γ(B(x))=

t intersects the hyperboloid’s negative sheet, −β
∥∥∥Σ1/2

LgB
(x|DN)u+Σ

1/2
LfB

(x|DN)
∥∥∥
2
= t, form-

ing an ellipse, and therefore cannot intersect the positive sheet. Consequently, when
λ†(x|DN) > 0, the GP-CBF-SOCP (10.8) is feasible if and only if (10.20) holds.

Case 3 (Fig. 10.1-Parabolic): For this case, note that λ†(x|DN)=0 means that there exists

some control input direction for which the hyperplane L̂gB(x|DN)u+L̂fB(x|DN)+γ(B(x))= t

and the asymptote of β
∥∥∥Σ1/2

LgB
(x|DN)u+ Σ

1/2
LfB

(x|DN)
∥∥∥
2
= t have the same slope (see Fig.

10.1-Parabolic). Let us define

p := L̂fB(x|DN) + γ(B(x))− L̂gB(x|DN)ΣLgB(x|DN)
−1Σ

1/2
LgB

(x|DN)
TΣ

1/2
LfB

(x|DN).

Then, condition (10.21) is satisfied if and only if p > 0. Consider the control input u = u0

from (A.16) that minimizes
∥∥∥Σ1/2

LgB
(x|DN)u+ Σ

1/2
LfB

(x|DN)
∥∥∥
2
. Then, we can rewrite p =

L̂fB(x|DN) + γ(B(x)) + L̂gB(x|DN)u0.
Furthermore, let e†(x|DN) denote the unit eigenvector of F(x|DN) associated with

the eigenvalue λ†(x|DN) = 0. Then, clearly, e†(x|DN)
TF(x|DN)e†(x|DN) = 0. Based

on the definition of F(x|DN) (10.18), since ΣLgB(x|DN) ≻ 0 then it must hold that

L̂gB(x|DN)e†(x|DN) ̸= 0. Next, plugging a control input of the form

u = u0 + αsgn(L̂gB(x|DN)e†(x|DN))e†(x|DN), α > 0, (A.19)

into the left-hand side of (A.9a), we have

β2ΣLfB(x|DN)−(L̂fB(x|DN) + γ(B(x)))2+2hTu0+

uT0F(x|DN)u0 − 2αp|L̂gB(x|DN)e†(x|DN)|.
(A.20)

And plugging (A.19) into the left-hand side of (A.9b), we obtain

p+ α · |L̂gB(x|DN)e†|. (A.21)

If p is positive, then there exists a large-enough positive constant α such that (A.20) is
non-positive and (A.21) positive. Therefore, from Lemma A.2, the GP-CBF-SOCP (10.8) is
feasible in this case.
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Note that the geometric interpretation of the condition p > 0 is that the hy-
perplane L̂gB(x|DN)u+ L̂fB(x|DN) + γ(B(x)) = t, which has the same slope as the

asymptote of β
∥∥∥Σ1/2

LgB
(x|DN)u+Σ

1/2
LfB

(x|DN)
∥∥∥
2

= t along the direction of e†(x|DN),

should be placed over the asymptote in order for it to intersect the positive sheet

of β
∥∥∥Σ1/2

LgB
(x|DN)u+Σ

1/2
LfB

(x|DN)
∥∥∥
2

= t. Furthermore, at u = u0, the asymptote

β
∥∥∥Σ1/2

LgB
(x|DN)(u− u0)

∥∥∥
2
= t takes value t = 0, and p is the value of the hyperplane

L̂gB(x|DN)u+L̂fB(x|DN) + γ(B(x))= t at u=u0. Therefore, when p ≤ 0, the hyperplane
is always under the positive sheet of the hyperboloid, and never intersects it. Consequently,
both the constraint (10.16c) and the GP-CBF-SOCP (10.8) are not feasible when p ≤ 0.

A.4.6 Proof of Lemma 10.4

Let us consider the trajectory generated by running Algorithm 10.1 from any x0 ∈ X , which
we assume locally exists and is unique (as stated in the hypothesis of the Lemma). For a fixed
dataset DN , λ†

(
x|DN) is a continuous function of the state x by basic continuity arguments.

For the event-triggered updates of the dataset, if at time t we have λ†
(
x(t)|DN(t)) ≥ −ε, then

Algorithm 10.1 applies a control input πsafe(x(t)) from (10.19), collects the resulting measure-
ment, and adds it to DN(t), forming DN(t)+1. Note that from the posterior variance expression
(9.7), after adding the new data point we have e†(x|DN(t))

TΣLgB(x|DN(t)+1)e†(x|DN(t))→ 0
for large α. Therefore, using Assumptions 10.3 and 10.4, we can choose α > 0 such that
e†(x|DN(t))

T
(
β2ΣLgB(x|DN(t)+1) − L̂gB(x|DN(t)+1)L̂gB(x|DN(t)+1)

T
)
e†(x|DN(t)) < 0, leading

to λ†
(
x(t)|DN(t)+1) < 0. An equivalent argument proves that with the time-triggered updates

λ† stays negative after the new data point is added.

A.4.7 Proof of Lemma 10.5

We use [182, Thm. 6.4] which provides a sufficient condition for local Lipschitz continuity
of solutions of parametric optimization problems. Twice differentiability of the objective
and constraints with respect to both state and input trivially follows from Assumption 10.5
and the structure of (10.8). For a given state x ∈ X and dataset DN , λ†(x|DN) < 0 means
that there exists a control input πsafe from (10.19) that strictly satisfies constraint (10.8b),
meaning that in this case (10.8) satisfies Slater’s Condition (SC), since the problem is convex.
[182, Thm. 6.4] requires satisfaction of the Mangasarian Fromovitz Constraint Qualification
(MFCQ) and the Second Order Condition (SOC2) of [182, Def. 6.1] at the solution of (10.8).
In [10, Prop. 5.39], it is shown that SC implies MFCQ. Furthermore, since we have a strongly
convex objective function in the decision variables (u, d), and the constraints are convex in
(u, d), the Lagrangian of (10.8) is strongly convex in (u, d), implying SOC2 satisfaction.
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A.4.8 Proof of Theorem 10.4

The proof trivially follows from [131, Thm. III.1] using local Lipschitz continuity of the
continuous dynamics (from Lemma 10.5 and the expression of πsafe in (10.19)) instead of
global Lipschitz continuity, therefore establishing local existence and uniqueness of executions
of the closed-loop switched system.

A.5 Chapter 11 Proofs

For notational convenience, we will drop (·|DN) or (·|DM) when the dependency is obvious.

A.5.1 Proof of Lemma 11.1

From (11.11), GP-CF-SOCP is feasible under u=α′L̂gC(x) if

cα
∥∥∥L̂gC(x)∥∥∥2 − βσC(x, cαL̂gC(x)) ≥ −(L̂fC(x) + γ(C(x))

)
,

where c := α′/α > 1. First, we compare σC

(
x, cαL̂gC(x)

)
and σC

(
x, αL̂gC(x)

)
as below:

1

c2
σ2
C

(
x, cαL̂gC(x)

)
=

1

c2
[1 cαL̂gC(x)]ΣC(x)

[
1

cαL̂gC(x)
⊤

]
= [1/c αL̂gC(x)]ΣC(x)

[
1/c

αL̂gC(x)
⊤

]
= [1 αL̂gC(x)]ΣC(x)

[
1

αL̂gC(x)
⊤

]
−
[
1− 1

c2
0

]
ΣC(x)

[
1− 1

c2

0

]
= σ2

C

(
x, αL̂gC(x)

)
−
(
1− 1

c2

)2

ΣC(x)[1,1].

Thus, it holds that

σ2
C

(
x, cαL̂gC(x)

)
=c2

(
σ2
C

(
x, αL̂gC(x)

)
−
(
1− 1

c2

)2

ΣC(x)[1,1]

)
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Using this expression, we can check that

cα
∥∥∥L̂gC(x)∥∥∥2 − βσC(x, cαL̂gC(x))

c

(
α
∥∥∥L̂gC(x)∥∥∥2 − βσC(x, αL̂gC(x)))

=

α
∥∥∥L̂gC(x)∥∥∥2−β√σ2

C

(
x, αL̂gC(x)

)
−
(
1− 1

c2

)2
ΣC(x)[1,1]

α
∥∥∥L̂gC(x)∥∥∥2 − βσC(x, αL̂gC(x)) > 1.

Finally, since α
∥∥∥L̂gC(x)∥∥∥2−βσC(x, αL̂gC(x)) is strictly positive from (11.16), by taking c

satisfying

c ≥
−
(
L̂fC(x|DN) + γ(C(x))

)
α
∥∥∥L̂gC(x)∥∥∥2 − βσC(x, αL̂gC(x)) ,

we get

cα
∥∥∥L̂gC(x)∥∥∥2 − βσC(x, cαL̂gC(x))

> c

(
α
∥∥∥L̂gC(x)∥∥∥2 − βσC(x, αL̂gC(x)))

≥ −
(
L̂fC(x|DN) + γ(C(x))

)
,

which completes the proof.

A.5.2 Proof of Lemma 11.2

We begin the proof by noting that

lim
α→∞

1

α

 k∗1(x, αL̂gC(x))
...

k∗M(x, αL̂gC(x))

 = lim
α→∞

1

α

 kf (x1, x1) + ku∗1(x, αL̂gC(x))
...

kf (xM , xM) + ku∗M(x, αL̂gC(x))

 =

 ku∗1(x, L̂gC(x))
...

ku∗M(x, L̂gC(x))

 .



APPENDIX A. PROOFS AND INTERMEDIATE RESULTS 210

Thus, we obtain

argmin
DM

lim
α→∞

1

α
σC

(
x, αL̂gC(x)

)
=argmin

DM

1

α2
σ2
C

(
x, αL̂gC(x)

)
=argmax

DM

lim
α→∞

1

α2

[
k∗1(x, αL̂gC(x)) · · · k∗M(x, αL̂gC(x))

]

(KDM
+ σ2

nI)
−1

 k∗1(x, αL̂gC(x))
...

k∗M(x, αL̂gC(x))

 (from (11.16))

= argmax
DM

[
ku∗1(x, L̂gC(x)) · · · ku∗N(x, L̂gC(x))

]

(KDM
+ σ2

nI)
−1

 ku∗1(x, L̂gC(x))
...

ku∗M(x, L̂gC(x))

 ,
which is precisely the objective function appearing in the Lemma.

A.5.3 Proof of Theorem 11.1

For notational convenience, we use the subscript ij to indicate the (i, j)-th off-diagonal term
of a matrix. We first present a few lemmas that will be used in the proof.

Lemma A.4. Let C = (cij) ∈ Rn×n be a non-negative matrix. Then, the maximal eigenvalue
of C is upper bounded by its maximal row sum, that is,

λmax(C) ≤ max
i

n∑
j=1

cij. (A.22)

Proof. This is a corollary of Perron-Frobenius Theorem for nonnegative matrices [138, Ch.8].

Lemma A.5 (Weyl’s Inequality). Let A,B ∈ Rn×n be symmetric matrices. Then,

λmin(A+B) ≥ λmin(A) + λmin(B).

Lemma A.6. Let B = (bij) ∈ Rn×n be a square matrix whose diagonal entities satisfy bii = 1,
and whose off-diagonal entities satisfy −1 ≤ bij ≤ 0 for all i ̸= j. Let B̄ = (b̄ij) ∈ Rn×n be
a matrix whose diagonal entities are all one, and whose off-diagonal entities are b̄ij = ±bij,
where the signs can be arbitrary. Then, if B is positive definite, B̄ is also positive definite.
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Proof. This can be proved by induction. The case when n = 1 is trivial since there is no
off-diagonal term.

Assume the lemma holds for n = k, that is, if Bk and B̄k are constructed to satisfy the
statement in the lemma, Bk ≻ 0⇒ B̄k ≻ 0 holds.

Next, consider

Bk+1 =

[
Bk pk
pTk 1

]
≻ 0,

where pk = [b1(k+1) · · · bk(k+1)]
T , and −1 ≤ bi(k+1) ≤ 0 for i = 1, · · · , k. Let B̄k+1 constructed

according to the statement in the lemma as

B̄k+1 =

[
B̄k p̄k
p̄Tk 1

]
.

Since Bk+1 is positive definite, by Schur complement lemma, the following holds.

Bk ≻ 0, pTkB
−1
k pk < 1.

Note that B̄k ≻ 0 holds due to the assumption of the induction. Define

Ck = I −Bk =

 0 bij
. . .

bji 0

 , C̄k = I − B̄k =

 0 b̄ij
. . .

b̄ji 0

 .

Then

p̄Tk B̄
−1
k p̄k = p̄Tk (I − C̄k)−1p̄k =

∞∑
t=0

p̄Tk C̄
t
k p̄k ≤

∞∑
t=0

pTkC
t
k pk

=pTk (I − Ck)−1pk = pTkB
−1
k pk < 1.

Since B̄k ≻ 0 and p̄Tk B̄
−1
k p̄k < 1 holds, by Schur complement lemma, B̄k+1 is positive definite.

This shows that the lemma holds for n = k + 1. The lemma is proved by induction.

Presented next is the main Proof of Theorem 11.1. We will drop (x, u) from ku∗i and ni
for notational convenience. We want to prove that

[ku∗1 · · · ku∗N ] (KDM
+ σ2

nI)
−1

 ku∗1
...

ku∗M

 ≥ 1− ϵ
1 + ϵ(N − 2)

N∑
i=1

n2
i (A.23)

is equivalent to

[ku∗1 · · · ku∗N ] (KDN
+σ2

nI)
−1

 ku∗1
...

ku∗M

 ≥ 1− ϵ
1 + ϵ(N − 2)

×[ku∗1 · · · ku∗N ] Diag
([

1

k1

· · · 1

kN

]) ku∗1
...

ku∗M

 .
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It is sufficient to prove that

(KDN
+ σ2

nI)
−1 ⪰ 1− ϵ

1 + ϵ(N − 2)
Diag

([
1

k1

· · · 1

kN

])
,

and this is equivalent to

1 + ϵ(N − 2)

1− ϵ
Diag ([k1 · · · kN ])− (KDN

+ σ2
nI) ⪰ 0. (A.24)

We have

1 + ϵ(N − 2)

1− ϵ
Diag ([k1 · · · kN ])− (KDN

+ σ2
nI)

=


ϵ(N−1)
1−ϵ k1 − σ2

n −kij
. . .

−kji ϵ(N−1)
1−ϵ kN − σ2

n


=Diag

(√
k1, · · · ,

√
kN

)
A Diag

(√
k1 · · ·

√
kN

)
, (A.25)

where

A :=


ϵ(N−1)
1−ϵ −

σ2
n

k1
− kij√

kikj

. . .

− kji√
kjki

ϵ(N−1)
1−ϵ −

σ2
n

kN

 .
Thus, we just have to prove that A is positive semidefinite. By Lemma A.5,

λmin(A) ≥ λmin(ϵ(N − 1)B̄) + λmin

(
A− ϵ(N − 1)B̄

)
,

where

B̄ :=


1 − 1

ϵ(N−1)

kij√
kikj

. . .

− 1
ϵ(N−1)

kji√
kjki

1

 .
Note that

A− ϵ(N − 1)B̄ = Diag

(
ϵ2(N − 1)

1− ϵ
− σ2

n

k1

, · · · , ϵ
2(N − 1)

1− ϵ
− σ2

n

kN

)
,

and from (11.23),
ϵ2(N − 1)

1− ϵ
− σ2

n

ki
≥ 0

for all i = 1, · · · , N , thus, A − ϵ(N − 1)B̄ is positive semidefinite. Therefore, it is now
sufficient to prove that B̄ is positive semidefinite to prove (A.24).



APPENDIX A. PROOFS AND INTERMEDIATE RESULTS 213

We define

C :=


0 1

ϵ(N−1)

|kij |√
kik̄j

. . .
1

ϵ(N−1)

|kji|√
kj k̄i

0

 . (A.26)

By applying Lemma A.4 to C which is non-negative, and by using condition (11.22):

λmax(C) ≤ max
i

N∑
j=1,j ̸=i

1

ϵ(N − 1)

|kij |√
kikj

<
1

ϵ(N − 1)
ϵ(n− 1) = 1.

Thus, we have λmax(C) < 1. By applying Lemma A.5, we have

λmin(I − C) ≥ λmin(I) + λmin(−C) = 1− λmax(C) > 0.

Thus, B := I − C is positive definite. Note that B̄ and B satisfy the conditions in Lemma
A.6 since 0 ≤ 1

ϵ(N−1)

|kij |√
kikj

< 1
N−1

≤ 1 from (11.22). Thus, by Lemma A.6, B̄ is positive

definite.
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