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Abstract

Challenges of Control Barrier Functions: Optimization, Control, Planning, and Navigation

by

Jun Zeng

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Associate Professor Koushil Sreenath, Chair

Control barrier functions (CBFs) are one of the many used approaches for achieving safety
in robot autonomy. This thesis tackles several challenges present in control barrier functions
in different aspects, including optimization, control, planning and navigation.

This thesis is composed of three parts. In Part I, we point out the optimization infeasibility
between CBF constraint and input constraint, and address the feasibility problem in optimal
control for quadratic programming using control barrier functions under input constraints.
We also notice that the potential conflict between input constraints and safety constraints
also exists in the discrete-time domain together with model predictive control. This conflict
is formally identified in reachability analysis and reachability is later enhanced in proposed
formulations.

In the Part II, we focus on obstacle avoidance for control and trajectory generation in a
tight environment, which requires polytopic obstacle avoidance. We analyze the optimiza-
tion problem for obstacle avoidance between polytopes. The novel optimizations for obstacle
avoidance in continuous domain and discrete-time domain are proposed to solve this chal-
lenge.

In Part III of the thesis, we discuss several applications of motion planning and navigation
using control barrier functions. We firstly address the motion planning problem within a
finite state machine which unifies a mid-level planner and a low-level safety-critical controller
with application to autonomous driving. Next, we propose parallelism for motion planning
with control barrier functions with application to autonomous racing. Finally, we explore
the possibility of safety-critical motion planning for high dimensional systems such as Cassie,
a life-size bipedal robot.
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Chapter 1

Introduction

Control barrier functions (CBFs) have recently emerged as one of the common approaches
for safety-critical control. Although the theory of control barrier functions has been well
established, there exist several limitations. Some of these arise due to the mathematical
challenges in optimization (e.g., infeasibility due to input constraints and multiple control
barrier functions). Other challenges arise for the applications such as the following: lim-
ited performance and deadlock issues for trajectory generation with finite state machines;
real-time obstacle avoidance in tight environments; and computationally-fast trajectory gen-
eration for high-dimensional nonlinear systems.

The remainder of this chapter seeks to (1) provide clarifications of existing challenges
of control barrier functions in different domains, including optimization, control, planning
and navigation (2) present the thesis contributions in each domain. Finally, an outline of
this dissertation is presented at the end of this chapter, highlighting how the challenges are
addressed.

1.1 Stability & Safety

The theory and applications of safety-critical control and planning are emerging topics for
autonomous systems. “Safety” requires that “bad” things do not happen while liveness re-
quires that “good” things eventually happen. For example, asymptotic stability can be seen
as an example of a liveness property in the sense that an asymptotically stable equilibrium
point is eventually reached. Similarly, invariance can be seen as an example of a safety
property in the sense that any trajectory starting inside an invariant set will never reach the
complement of the set. For example, the robot is required to staying outside the obstacle
invariantly for safety, i.e., without any physical contact with the obstacle. These asymp-
totic stability and invariance are later formalized as control Lyapunov functions (CLFs) and
control barrier functions (CBFs), respectively.
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1.2 Control Barrier Functions

Designing controllers to ensure provable safety guarantees for autonomous systems is vital.
The choice of the term “barrier” was motivated by optimization literature where barrier
functions are added to the cost functions to avoid undesirable regions through repelling term
in the cost function [102]. This collision avoidance behavior, i.e., staying collision-free, is
denoted as system safety. In recent years, researchers have formalized this obstacle avoid-
ance in an optimization-based manner with obstacle avoidance constraints. These barrier
constraints are required to enforce the system trajectory to stay outside the obstacle region.
For systems with a control input, the notion of a barrier was extended to a ”control” version
to yield a ”control barrier function” [205]. A control barrier function is positive within the
safe set, zero on the boundary of the safe set, and negative outside the safe set. Moreover,
at each point inside the safe set, there always exists a choice of control that can keep the
closed-loop system trajectory within the safe set. Furthermore, this control input satisfies a
particular inequality on the time-derivative of the control barrier function.

The studies of control barrier functions have been a variety of approaches that can be
best described as “Lyapunov-like”. In other words, these functions yield invariant level sets
such that one can guarantee safety if these level sets are contained in the safe set [12].. A
type of quadratic programming, named as CBF-QP in [13], permits us to find the minimum
perturbation for a given feedback controller to guarantee safety. Control Lyapunonv func-
tions (CLFs) [58, 158] can be applied to stabilize the closed-loop dynamics of both linear
and nonlinear dynamical systems [61]. Together with CBFs, the framework CLF-CBF-QP
[11] incorporates control Lyapunov function based quadratic programs, which enables han-
dling safety-critical constraints effectively in real-time with low complexity of solving QPs.
These methods are generally applicable for different continuous nonlinear systems such as
autonomous cars [129, 40], legged robots [135, 81], and aerial systems [209]. CBFs could also
be generalized for high-order dynamics [133, 214] and discrete-time systems [2, 224]. Re-
cently, CBF constraints were also applied in control problems using a data-driven approach
[40, 41, 184, 116]. In this thesis, we focus on resolving the following challenges about control
barrier functions.

1.3 Challenges

1.3.1 Optimization Feasibility & Safety

For real robot applications, besides the performance (CLF) and safety criteria (CBF) con-
straints, an input constraint is also usually applied to ensure the optimized input from QP is
admissible. The input constraint was not considered in the optimization in some of the pre-
vious work, such as [12], which means the optimized control input might not be executable
due to the physical limitations of the system. Other work, such as [209, 217, 138, 137, 2,
41], did consider the input constraint, but the potential conflict between input constraint
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and CBF constraint was not addressed, potentially resulting in an unsolvable optimization
problem. In [11], a valid CBF is specifically designed for an adaptive cruise control scenario,
where the valid CBF is calculated with explicit integration of partial differential equations
with the system dynamics under input constraint to ensure the feasibility in the optimiza-
tion. Sufficient conditions about feasibility in CLF-CBF based methods are also discussed
in [215]. It has been pointed that there is a potential conflict between safety constraints and
CBF constraints within the CLF-CBF-QP formulation.

In this dissertation, we address the feasibility problem in optimal control for CLF-CBF-
QP under input constraints in Chapter 3. We also notice that the potential conflict between
input constraints and safety constraints also exists in discrete-time domain together with
model predictive control, presented in Chapter 4. This conflict is later formally identified in
reachability analysis and enhanced in proposed formulations discussed in Chapter 5.

1.3.2 Obstacle Avoidance for Control and Trajectory Generation

CBFs are also widely used for obstacle avoidance [222, 179, 83, 126, 74, 127]. The shapes
of robots and obstacles are usually approximated as points [38], paraboloids [52] or hyper-
spheres [224], where the distance function can be calculated explicitly as an analytic ex-
pression from their geometric configuration. The distance functions for these shapes are
differentiable and can be used as control barrier functions to construct a safety-critical opti-
mal control problem. However, these approximations usually over-estimate the dimensions of
the robot and obstacles, e.g., a rectangle is approximated as the smallest circle that contains
it. When a tight-fitting obstacle avoidance motion is expected, robots and obstacles are usu-
ally approximated as polytopes. While this makes maneuvers less conservative for obstacle
avoidance, computing the distance between two polytopes requires additional effort [63].

In this thesis, the polytopic obstacle avoidance with control barrier functions is discussed.
The optimization for obstacle avoidance in continuous domain and discrete-time domain are
discussed in Chapter 6 and Chapter 7, respectively.

1.3.3 Applications about Motion planning & Navigation

We are interested in applications about motion planning and navigation by using control
barrier functions. Many existing applications that use control barrier functions [66, 2, 12]
are within the control domain, e.g. one-step optimization which is relatively too greedy to
be applied for motion planning and navigation, which might result in deadlock.

Toward resolving deadlock and local greediness, we firstly address this challenge within a
finite state machine which unifies mid-level planner and a low-level safety-critical controller,
shown in Chapter 8. Another approach to reduce the formation of a deadlock would be the
introduction of parallelism, presented in Chapter 9. We also remark again that theoretical
analysis for navigation between polytopic obstacles is shown in Chapter 6 and Chapter 7.
Finally, we explore the possibility of safety-critical motion planning in high dimensional
systems, e.g., a life-like bipedal robot Cassie, presented in Chapter 10. This highly nonlinear
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hybrid system is able to be decoupled as a linear model within a RL (reinforcement learning)
controller which is shown to be able to achieve model-based nonlinear model predictive
control with CBFs as the local planner in a 3D navigation task.

1.4 Thesis Outline

The contributions of this thesis can be summarized as follows,

• Address feasibility problems between control barrier functions and input constraints in
both continuous-time and discrete-time domains and propose formulations to resolve
them.

• Propose model predictive control with control barrier functions and apply it to different
robotic systems.

• Propose obstacle avoidance algorithms with control barrier functions for both continuous-
time and discrete-time domains and apply them for control and trajectory generation
problems.

• Discuss various applications on agile, nonlinear and high-dimensional systems for mo-
tion planning and navigation using control barrier functions.

We will first revisit an introductory chapter about control barrier functions in Chapter 2.
After that, the thesis is divided into three parts, including theory and applications for the
above challenges. The first part including Chapter 3, 4, 5 is about the optimization feasibility
and the safety using control barrier functions. The second part including Chapter 6, 5 is
about the obstacle avoidance for control and trajectory generation using control barrier
functions. The third part including Chapter 8, 9, 10 focus on the applications about motion
planning and navigation using control barrier functions.

The overall organization of the next eight chapters as well as their logical dependency is
illustrated in Figure 1.1.

Chapter 3

Safety is one of the fundamental problems in robotics. Recently, a quadratic program based
control barrier functions (CBFs) method has emerged as a way to enforce safety-critical
constraints. Together with control Lyapunov functions (CLFs), it forms a safety-critical
control strategy, named CLF-CBF-QP, which can mediate between achieving the control
objective and ensuring safety, while being executable in real-time. However, once additional
constraints such as input constraints are introduced, the CLF-CBF-QP may encounter infea-
sibility. In order to address the challenge that arises due to the infeasibility, we propose an
optimal-decay form for safety-critical control wherein the decay rate of the CBF is optimized
point-wise in time so as to guarantee point-wise feasibility when the state lies inside the safe
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Figure 1.1: Thesis organization of chapters and their logic dependency.

set. The proposed control design is numerically validated using an adaptive cruise control
example.

Chapter 4

The optimal performance of robotic systems is usually achieved near the limit of state and
input bounds. Model predictive control (MPC) is a prevalent strategy to handle these op-
erational constraints, however, safety still remains an open challenge for MPC as it needs
to guarantee that the system stays within an invariant set. In order to obtain safe optimal
performance in the context of set invariance, we present a safety-critical model predictive
control strategy utilizing discrete-time control barrier functions (CBFs), which guarantees
system safety and accomplishes optimal performance via model predictive control. We ana-
lyze the feasibility and the stability properties of our control design. We verify the properties
of our method on a 2D double integrator model for obstacle avoidance. We also validate the
algorithm numerically using a competitive car racing example, where the ego car is able to
overtake other racing cars.

Chapter 5

Safety is one of the fundamental problems in robotics. Recently, one-step or multi-step
optimal control problems for discrete-time nonlinear dynamical system were formulated to
offer tracking stability using control Lyapunov functions (CLFs) while subject to input con-
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straints as well as safety-critical constraints using control barrier functions (CBFs). The
limitations of these existing approaches are mainly about feasibility and safety. In the exist-
ing approaches, the feasibility of the optimization and the system safety cannot be enhanced
at the same time theoretically. In this chapter, we propose two formulations that unify CLFs
and CBFs under the framework of nonlinear model predictive control (NMPC). In the pro-
posed formulations, safety criteria is commonly formulated as CBF constraints and stability
performance is ensured with either a terminal cost function or CLF constraints. Slack vari-
ables with relaxing technique are introduced on the CBF constraints to resolve the tradeoff
between feasibility and safety so that they can be enhanced at the same. The advantages
about feasibility and safety of proposed formulations compared with existing methods are
analyzed theoretically and validated with numerical results.

Chapter 6

Developing controllers for obstacle avoidance between polytopes is a challenging and neces-
sary problem for navigation in tight spaces. Traditional approaches can only formulate the
obstacle avoidance problem as an offline optimization problem. To address these challenges,
we propose a duality-based safety-critical optimal control using nonsmooth control barrier
functions for obstacle avoidance between polytopes, which can be solved in real-time with
a QP-based optimization problem. A dual optimization problem is introduced to represent
the minimum distance between polytopes and the Lagrangian function for the dual form is
applied to construct a control barrier function. We validate the obstacle avoidance with the
proposed dual formulation for L-shaped (sofa-shaped) controlled robot in a corridor environ-
ment. We demonstrate real-time tight obstacle avoidance with non-conservative maneuvers
on a moving sofa (piano) problem with nonlinear dynamics.

Chapter 7

Obstacle avoidance between polytopes is a challenging topic for optimal control and optimization-
based trajectory planning problems. Existing work either solves this problem through mixed-
integer optimization, relying on simplification of system dynamics, or through model pre-
dictive control with dual variables using distance constraints, requiring long horizons for
obstacle avoidance. In either case, the solution can only be applied as an offline planning
algorithm. In this chapter, we exploit the property that a smaller horizon is sufficient for
obstacle avoidance by using discrete-time control barrier function (DCBF) constraints and
we propose a novel optimization formulation with dual variables based on DCBFs to gener-
ate a collision-free dynamically-feasible trajectory. The proposed optimization formulation
has lower computational complexity compared to existing work and can be used as a fast
online algorithm for control and planning for general nonlinear dynamical systems. We val-
idate our algorithm on different robot shapes using numerical simulations with a kinematic
bicycle model, resulting in successful navigation through maze environments with polytopic
obstacles.
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Chapter 8

A new control design is developed for guaranteeing a vehicle’s safety during lane change ma-
neuvers in a complex traffic environment. The proposed method uses a finite state machine
(FSM), where a quadratic program based optimization problem using control Lyapunov func-
tions and control barrier functions (CLF-CBF-QP) is used to calculate the system’s optimal
inputs via rule-based control strategies. The FSM can make switches between different states
automatically according to the command of driver and traffic environment, which makes the
ego vehicle find a safe opportunity to do a collision-free lane change maneuver. By using a
convex quadratic program, the controller can guarantee the system’s safety at a high update
frequency. A set of pre-designed typical lane change scenarios as well as randomly generated
driving scenarios are simulated to show the performance of our controller.

Chapter 9

This chapter presents a novel planning and control strategy for competing with multiple
vehicles in a car racing scenario. The proposed racing strategy switches between two modes.
When there are no surrounding vehicles, a learning-based model predictive control (MPC)
trajectory planner is used to guarantee that the ego vehicle achieves better lap timing per-
formance. When the ego vehicle is competing with other surrounding vehicles to overtake,
an optimization-based planner generates multiple dynamically-feasible trajectories through
parallel computation. Each trajectory is optimized under a MPC formulation with different
homotopic Bezier-curve reference paths lying laterally between surrounding vehicles. The
time-optimal trajectory among these different homotopic trajectories is selected and a low-
level MPC controller with control barrier function constraints for obstacle avoidance is used
to guarantee system’s safety-critical performance. The proposed algorithm has the capa-
bility to generate collision-free trajectories and track them while enhancing the lap timing
performance with steady low computational complexity, outperforming existing approaches
in both timing and performance for a autonomous racing environment. To demonstrate the
performance of our racing strategy, we simulate with multiple randomly generated moving
vehicles on the track and test the ego vehicle’s overtake maneuvers.

Chapter 10

Bridging model-based safety and model-free reinforcement learning (RL) for dynamic robots
is appealing, since model-based methods are able to provide formal safety guarantees while
RL-based methods are able to exploit the robot agility by learning from the full-order system
dynamics. However, current model-based and RL approaches to tackle this problem are
mostly restricted to simple systems. In this chapter, we propose a new method to combine
model-based safety with reinforcement learning by finding a low-dimensional representation
of the system controlled by a RL policy and applying formal stability and safety guarantees
on that simple model. We use an underactuated bipedal robot Cassie, which is a high
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dimensional nonlinear system with hybrid dynamics, and its RL-based walking controller
as an example. We show that a low-dimensional dynamical model is sufficient to capture
the dynamics of the closed-loop system. We demonstrate that this model is linear and
asymptotically stable, and is decoupled across control input in all dimensions. We further
exemplify that such linearity exists even when using different RL control policies. Such results
point out an interesting direction to understand the relationship between RL and optimal
control: whether RL tends to linearize the nonlinear system during training. Furthermore,
we illustrate that the found linear model is able to provide formal guarantees by safety-
critical optimal control framework with an example of autonomous navigation using Cassie
while taking advantage of the agility provided by the RL-based controller.

1.5 Chapter Summary

In this chapter, we presented the background of control barrier functions and point out some
existing challenges in this field. The challenges can be found in three domains 1) optimization
feasibility and safety, 2) obstacle avoidance and trajectory generation 3) applications on
motion planning and navigation. After that, we presented the core contributions of the
thesis together with the thesis outline. In the following chapters, we will go through all the
mentioned challenges and present our solutions with respect to them.
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Chapter 2

Background on Control Barrier
Functions

In this brief chapter, we will describe existing work on using control barrier functions for
continuous-time and discrete-time systems.

2.1 Continuous-time System & Safety

We firstly consider a nonlinear affine control system in this form

ẋ = f(x) + g(x)u, (2.1)

where x ∈ Rn, f : Rn → Rn and g : Rn → Rn×m are locally Lipchitz. The system is also
subject to input constraints

u(t) ∈ Uadm(x(t)), ∀t ≥ 0, (2.2)

where Uadm(x(t)) ⊂ Rm denotes the set of admissible inputs, which could be state-dependent.

Definition 2.1 (Safe Set and Safe State). We consider a set C ⊂ Rn defined as the superlevel
set of a continuously differentiable function h : Rn → R, yielding:

C = {x ∈ Rn : h(x) ≥ 0},
∂C = {x ∈ Rn : h(x) = 0},

Int(C) = {x ∈ Rn : h(x) > 0}.
(2.3)

We call the set C as the safe set and h as the safety function.

This function h(.) is usually denoted as a distance function between the robot and the
obstacle, for example, the robot is currently in the safe set (staying outside the obstacle)
shown in Figure 2.1.

A feedback controller could be denoted as π : (x, t) → u : u(x(t)) ∈ Uadm, the closed
loop system under this controller could be expressed as follow:

ẋ = fπcl(x) := f(x) + g(x)π(x, t). (2.4)
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Figure 2.1: Safe Set and Distance function

Definition 2.2 (Forward Invariant). A set Cπ is forward invariant with controller π if for
every x0 ∈ Cπ, ξπx0,t0

∈ Cπ for x(t0) = x0 and t ∈ I(x0) = [t0, t0 + τ), where I(x0) represents
a maximum interval of existence. When the system is forward complete, τ = ∞. Note that
ξπx0,t0

(t) denotes the solution of the system (2.4) at time t by starting at initial state x0 and
initial time t0, and applying controller π(x, t) ∈ Uadm over [t0, t].

The definition of forward invariance allows us to define the safety of the closed loop
system under the controller π as follows,

Definition 2.3 (Safety). The system (2.4) is safe with respect to a set C if the set C is
forward invariant.

2.2 CLFs & CBFs for Continuous-time System

Here are definitions of class K and K∞ functions which will be used for describing CLFs and
CBFs in this section.

Definition 2.4 (Class K and K∞ Functions). A continuous function α : [0, a) → [0,∞) is
said to belong to class K if 1) it is strictly increasing 2) it is satisfied α(0) = 0.

Moreover, this function is said to be long to class K∞ if 1) it belongs to class K 2) it is
satisfied a = ∞ 3) it is satisfied limr→∞ α(r) = ∞.

Based on the definition of the safety function h and the nonlinear affine control system
in (2.1), we define a control barrier function as follows,

Definition 2.5 (CBF). Let C ⊂ D ⊂ Rn be the superlevel set of a continuously differentiable
function h : D → R, then h is a control barrier function (CBF) if there exists an extended
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Figure 2.2: Intuitions of control Lyapunov and barrier functions.

class K∞ function α such that for the control system (2.1):

sup
u∈Uadm

ḣ(x,u) ≥ −α(h(x)), (2.5)

for all x ∈ D.

A control input satisfying (2.5) ensures invariance of the set C and thus safety [9]. In
practice, unless a CBF is handcrafted with consideration with set calculation or some other
approximations, it’s usually not a valid one. In other words, (2.5) is not valid for all x ∈ D
while only for a subset of D [226].

Definition 2.6 (Valid CBF). We denote the h represents a valid CBF when the set C is
forward invariant under CBF constraints.

Besides the system safety, we are also interested in stabilizing the system (2.1) with a
feedback control law u to a given state. In a nonlinear context, this can be achieved by
equivalently finding a feedback control law that drives a positive definite function V to zero,
see [177]. Concretely, the control Lyapunov function is defined as follows,

Definition 2.7 (CLF). V is a control Lyapunov Function (CLF) if it is positive definite
and satisfies:

inf
u∈Uadm

V̇ (x,u) ≤ −γ(V (x)), (2.6)

for all x ∈ D.

To understand the CLF and CBF constraints, if we regard the α(.) and γ(.) functions as
positive scalars instead of class K, then the CBF constraint provides an exponential-decay
lower bound which is always positive and the CLF constraint provides an exponential-decay
upper bound which will converge to zero, illustrated in Figure 2.2. These two constraints
enforce the system safety and stability together.
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2.3 Continuous-time CBF-based Controllers

Having established control barrier functions and control Lyapunov functions, we will present
how to synthesize controllers to guarantee safety and stability for them.

Suppose the control barrier function is of relative-degree one, where the first time-
derivative of the CBF has to depend on the control input, i.e., Lgh(x) ̸= 0, where Lg
represents the lie derivative with respect to g. Hence in this case, we have

ḣ(x,u) = Lfh(x) + Lgh(x)u. (2.7)

This allows us to define safety-critical optimal control for a nonlinear affine system (2.1).
Suppose we are given a feedback controller u = k(x) for the control system (2.1) and we wish
to guarantee safety. we can consider the following Quadratic Program (QP) based controller
that finds the minimum perturbation on u:

CBF-QP [12]:

u(x) = argmin
u∈Rm

1

2
||u− k(x)||2 (2.8a)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)), (2.8b)

u ∈ Uadm(x). (2.8c)

The above QP based formulation of safety-critical controllers suggests a means in which to
unify safety and stability. Concretely, we consider the following QP based controller:

CLF-CBF-QP [12]:

u(x) = argmin
(u,δ)∈Rm+1

1

2
uTH(x)u+ ϕ(δ) (2.9a)

s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ, (2.9b)

Lfh(x) + Lgh(x)u ≥ −α(h(x)), (2.9c)

u ∈ Uadm(x), (2.9d)

where H(x) is any positive definite matrix (pointwise in x) and ϕ(δ) is chosen to be quadratic
and positive.

2.4 Generalization of CBFs for Discrete-time Systems

Similarly, we can describe stability and safety in the discrete-time system. In this chapter,
we consider a discrete-time control system as follows,

xt+1 = f(xt,ut), (2.10)
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with x ∈ X representing the system state with the control input u confined by admissible
input set U .

Based on the safety set defined in (2.3), it’s usually regarded as the ensemble of states
satisfying the distance constraints

h(x) ≥ 0. (2.11)

In a stricter manner, the function h becomes a control barrier function in the discrete-time
domain if it satisfies the following relation,

∆h(xk,uk) ≥ −αkh(xk), 0 < αk ≤ 1, (2.12)

where ∆h(xk,uk) := h(xk+1) − h(xk). Satisfying constraint (2.12), we have h(xk+1) ≥
(1−αk)h(xk), i.e, the lower bound of the control barrier function h(x) decreases exponentially
at time k with the rate 1− αk.

Besides the system safety, we are also interested in stabilizing the system with a feedback
control law u under a control Lyapunov function V in the discrete-time domain,

∆V (xk,uk) ≤ −γkV (xk), 0 < γk ≤ 1, (2.13)

where ∆V (xk,uk) := V (xk+1) − V (xk). Similarly as above, the upper bound of control
Lyapunov function decreases exponentially at time k with the rate 1− γk.

The discrete-time control Lyapunov function and control barrier function can be unified
into one optimization program, which achieves the control objective and guarantees system
safety. This formulation was introduced in [2] and is presented as follows,

DCLF-DCBF:

u∗
k = argmin

(uk,s)∈Rm+1

uTkH(x)uk + ϕ(s) (2.14a)

∆V (xk,uk) + γkV (xk) ≤ s (2.14b)

∆h(xk,uk) + αkh(xk) ≥ 0 (2.14c)

uk ∈ U , (2.14d)

where H(x) is any positive definite matrix and s ≥ 0 is a slack variable together with an
additional cost term ϕ(s) ≥ 0 that allows the Lyapunov function to grow when the CLF and
CBF constraints are conflicting. The safe set C in (4.4) is invariant along the trajectories of
the discrete-time system with controller (2.14) if h(x0) ≥ 0 and 0 < αk ≤ 1.

2.5 Chapter Summary

In this chapter, we provided a brief introduction about mathematical background of control
Lyapunov and barrier functions for both continuous-time and discrete-time systems. We will
discuss the thesis research in following chapters.
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Part I

Optimization Feasibility and Safety
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Chapter 3

Guaranteed Point-wise Feasibility
with Input Constraints 1

3.1 Introduction

3.1.1 Motivation

Safety-critical optimal control and planning is one of the fundamental problems in robotics,
e.g., robots need to be able to safely avoid obstacles while using minimal energy. In order to
ensure the safety of robotic systems while achieving optimal performance, the tight coupling
between potentially conflicting control objectives and safety criteria is usually formulated as
an optimization problem. Recent work [9, 11] formulates this problem using control barrier
functions as an optimization problem, where the safety criteria is formulated as constraints.
Additionally, a robotic system usually has a constrained set for the admissible inputs due
to physical limitations, which can be taken as additional constraints in the optimization
problem [137, 2, 41]. However, the input constraint and control barrier function constraint
might be in conflict in the optimization and make the optimization infeasible. In this chapter,
we study this feasibility problem and illustrate a form of safety-critical control with control
barrier functions which satisfies the input constraint and guarantees point-wise feasibility
along the trajectory.

3.1.2 Related Work

CBFs have recently been introduced as a promising way to ensure set invariance by consid-
ering the system dynamics. Furthermore, a safety-critical control design for continuous-time
systems was proposed by unifying a control Lyapunov function (CLF) and a control barrier
function (CBF) through a quadratic program (CLF-CBF-QP) [11, 12]. This method could be

1The material of this chapter is from “Safety-critical control using optimal-decay control barrier function
with guaranteed point-wise feasibility” published in 2021 American Control Conference (ACC) [226].
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deployed as a real-time optimization-based controller with safety-critical constraints, shown
in [9, 209]. The adaptive, robust, and stochastic cases of safety-critical control with CBF
have been considered in [138, 217, 185]. CBFs have also been used for high relative degree
safety constraints for nonlinear systems [133, 214]. Besides the continuous-time domain, the
formulation of CBF was generalized into discrete-time systems in [2], and systems evolving
on manifolds in [209]. Recently, CBF constraints were also applied in control problems using
a data-driven approach [40, 184, 156, 116, 157] and optimal control design [224, 44].

However, the input constraint was not considered in the optimization in some of the
previous work, such as [12], which means the optimized control input might not be executable
due to the physical limitations of the system. Other work, such as [209, 217, 138, 137, 2,
41], did consider the input constraint, but the potential conflict between input constraint
and CBF constraint was not addressed, potentially resulting in an unsolvable optimization
problem. In [11], a valid CBF is specifically designed for adaptive cruise control scenario
with explicit integration problem over the system dynamics under input constraint, which
could ensure the feasibility of the optimization. However, the feasibility problem for general
nonlinear systems remains an unsolved topic for the safety-critical optimal control.

3.1.3 Contribution

The contributions of this chapter are as follows.

• We present the reasons of potential infeasibility in the CBF-QP and CLF-CBF-QP.

• With analysis in both input-space and state-space, we reveal quantitatively and qual-
itatively that the infeasibility appears potentially due to a small decay rate of the
control barrier function constraint.

• We propose an optimal-decay form of CBF-QP and CLF-CBF-QP where the decay
rate of the control barrier function is optimized.

• We prove that our optimal-decay formulation is point-wise feasible for any state lying
strictly inside the safe set. An adaptive cruise control example is used to numerically
verify this.

3.2 Background

We consider a nonlinear affine system of the form

ẋ(t) = f(x(t)) + g(x(t))u, (3.1)

where x ∈ Rn, u ∈ Rm, with f : Rn → Rn and g : Rn → Rn×m being locally Lipschitz. The
system is subject to input constraints

u(t) ∈ Uadm(x(t)), ∀t ≥ 0, (3.2)
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where Uadm(x(t)) ⊂ Rm denotes the set of admissible inputs, which could be state dependent.
We consider a set C ⊂ Rn defined as the zero-superlevel set of a continuously differentiable

function h : Rn → R, yielding:

C = {x ∈ Rn : h(x) ≥ 0},
∂C = {x ∈ Rn : h(x) = 0},

Int(C) = {x ∈ Rn : h(x) > 0}.
(3.3)

Throughout this chapter, we refer to C as a safe set.
The definitions of control barrier functions and control Lyapunov functions are summa-

rized as follow, see [12] for detailed explanations. The function h becomes a control barrier

function if
∂h

∂x
̸= 0 for all x ∈ ∂C, and there exists an extended class K∞ function α such

that for the control system (3.1), h satisfies

∃ u s.t. ḣ(x,u) ≥ −α(h(x)), α ∈ K∞. (3.4)

Besides the system safety, we are also interested in stabilizing the system with a feedback
control law u under a control Lyapunov function V with a class K function γ, i.e.,

∃ u s.t. V̇ (x,u) ≤ −γ(V (x)), γ ∈ K. (3.5)

Note that we can write down

ḣ(x,u) = Lfh(x) + Lgh(x)u, (3.6)

where Lfh(x) and Lgh(x) are Lie-derivatives of h(x) along f(x) and g(x), respectively. We
can also write down

V̇ (x,u) = LfV (x) + LgV (x)u, (3.7)

where LfV (x) and LgV (x) are Lie-derivatives of V (x). The above construction of the CLF
and CBF allows us to define safety-critical control for a nonlinear affine system (3.1).

Given a feedback controller u = k(x) for the control system (3.1), we wish to guarantee
safety. We consider the following Quadratic Program (QP) based controller that finds the
optimal u in the optimization as follows:

CBF-QP:

u(x) = argmin
u∈Rm

1

2
||u− k(x)||2 (3.8a)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)), (3.8b)

u ∈ Uadm(x). (3.8c)
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When the input constraint (3.8c) is excluded, we have a single inequality constraint, thus
the CBF-QP has a closed-form solution per the KKT conditions, and this method was used
in [58, 13]. However, when the input constraint is considered, there might not exist any u
satisfying both input constraint and CBF constraint simultaneously. This could lead to a
potential infeasible optimization problem.

We could also use a QP based formulation of safety-critical control which unifies safety
and stability. Concretely, we consider the following QP based controller:

CLF-CBF-QP:

u(x) = argmin
(u,δ)∈Rm+1

1

2
uTH(x)u+ pδ2 (3.9a)

s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ, (3.9b)

Lfh(x) + Lgh(x)u ≥ −α(h(x)), (3.9c)

u ∈ Uadm(x). (3.9d)

whereH(x) is any positive definite matrix (point-wise in x), and we have a relaxation variable
δ on the CLF constraint (3.9b) with additional quadratic cost in (3.9a). When we exclude
the input constraint (3.9d) out of the optimization, the solvability can be guaranteed since
the CLF constraint is relaxed and the CBF constraint (3.9c) is the only hard constraint.
This method was applied in [10, 61]. However, when the input constraint (3.9d) is also
considered, we might again encounter an infeasible optimization problem.

3.3 Point-wise Feasibility in Input-Space

Having presented the background of safety-critical control, we will now show how to pick
an appropriate α in the CLF-CBF-QP/CBF-QP to guarantee point-wise feasibility from the
perspective of input-space, i.e., how to guarantee feasibility of the optimization problem at
a given state x(t) = xt.

For the state xt at time t, we define the feasible superlevel set Ucbf (xt) as the region
satisfying the CBF constraint in input-space, i.e.,

Ucbf (xt) := {u ∈ Rm : Lfh(xt) + Lgh(xt)u ≥ −α(h(xt))}. (3.10)

Note that Ucbf (xt) is a half-space in the input-space Rm since the CBF constraint is affine
in u. The level set of the CBF constraint in input-space is defined as ∂Ucbf (xt),

∂Ucbf (xt) = {u ∈ Rm : Lfh(xt) + Lgh(xt)u = −α(h(xt))}. (3.11)

Then the feasibility problem becomes whether the intersection between Ucbf (xt) and Uadm(xt)
as defined in (3.2) is empty or not. If the intersection is not empty, the optimization in CBF-
QP or CLF-CBF-QP is feasible at xt.
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Figure 3.1: Feasibility analysis from intersection between CBF constraints and Input Con-
straints.

In order to provide a quantitative way of explaining point-wise feasibility from the per-
spective of input-space, we suppose that the set of admissible inputs Uadm(xt) could be
described as a convex polytope defined with r vertices, presented in Figure 3.1, where each
vertex is noted as vi(xt) ∈ Rm and i ∈ {1, 2, ..., r(xt)}.

Then we have Uadm(xt) could be written as

Uadm(xt) = {u ∈ Rm : u =

r(xt)∑
i=1

λi(xt)vi(xt),

r(xt)∑
i=1

λi(xt) = 1, λi(xt) ≥ 0}. (3.12)

Then the necessary and sufficient condition of having the intersection between Ucbf (xt)
defined in (3.10) and Uadm(xt) defined in (3.12) being not empty is that, at least one vertex
of polytope Uadm(xt) lies inside or on the surface of the set Ucbf (x), shown as follows,

Uadm(xt) ∩ Ucbf (xt) ̸= ∅ ⇔ ∃i, vi ∈ Ucbf (xt). (3.13)

Hence, the set of candidate α functions in the CBF constraint (3.4), denoted as Kα
fea(xt),

that guarantees the feasibility of the optimization, becomes the union of the set of functions
that guarantees any vertex in Uadm(xt) lies inside or on the surface of the set Ucbf (xt), which
could be written as follows

Kα
fea(xt) =

r(xt)⋃
i=1

{α ∈ K∞ : α(h(xt)) ≥ −Lfh(xt)− Lgh(xt)vi(xt)},

and it could be reformulated with a minimum operator

Kα
fea(xt) = {α ∈ K∞ : α(h(xt)) ≥ min

i
(−Lfh(xt)− Lgh(xt)vi(xt))}. (3.14)

Therefore, given a function α, the CBF-QP/CLF-CBF-QP in (3.8) and (3.9) are point-wise
feasible if ∃α ∈ K∞ s.t.,

α(h(xt)) ≥ min
i
(−Lfh(xt)− Lgh(xt)vi(xt))



CHAPTER 3. GUARANTEED POINT-WISE FEASIBILITY WITH INPUT
CONSTRAINTS 20

is satisfied at state xt.
Moreover, given a state xt, from (3.14), we can see when

min
i
(−Lfh(xt)− Lgh(xt)vi(xt)) ≤ 0. (3.15)

We have Kα
fea(xt) = K∞, i.e., we have the point-wise feasibility, for any α ∈ K∞. However,

when (3.15) is not satisfied, Kα
fea(xt) becomes a proper subset of K∞ and the function α has

a lower bound at state xt to guarantee the point-wise feasibility.
From above, we could pick an appropriate α function to guarantee point-wise feasibility

at a given state xt. Beside feasibility, we are also interested in whether the CBF constraint
is activated during the optimization.

Remark 3.1. We have ∀i, vi(xt) ∈ Ucbf (xt) when

α(h(xt)) ≥ max
i

(−Lfh(xt)− Lgh(xt)vi(xt)), (3.16)

which means Uadm(xt) ⊂ Ucbf (xt), therefore in this case, the CBF constraint does not confine
the input constraint during the optimization. This case is illustrated by the green Ucbf (xt) in
Figure 3.1. When (3.16) is not satisfied, we have the CBF constraint confine the input con-
straint, i.e., the intersection between Uadm(xt) and Ucbf (xt) becomes a proper set of Uadm(xt),
indicated by the blue Ucbf (xt) in Figure 3.1. When the intersection is empty, illustrated by
the red Ucbf (xt) in Figure 3.1, the optimization problem is infeasible.

Remark 3.2. We say a constraint is active in the optimization when the optimal solution lies
on the constraint line [27]. When the CBF constraint does not confine the input constraint,
the CBF constraint becomes inactive during the optimization. However, when the CBF con-
straint confines the input constraint, it does not necessarily guarantee the CBF constraint
activation, as the value of optimal solution also depends on the design of cost function in the
optimization. Therefore, the choice of α function together with the design of cost function
determine the activation of CBF constraint in the safety-critical optimal control, shown in
Figure 3.1.

Remark 3.3. In this section, the admissible set is assumed as a bounded convex polytope.
In fact, these discussions could be easily generalized for an unbounded convex set, as any
unbounded set could be regarded as a limit of a sequence of bounded sets [19, Chap. 11].
Moreover, our proposed optimal-decay approach in this chapter that guarantees point-wise
feasibility will only rely on the admissible set being convex while not strictly assuming it as
a bounded convex polytope, see Theorem 3.1.

We have seen point-wise feasibility in input-space in this section. Next, we will look at
point-wise feasibility in the state-space in Sec. 3.4. After that, we provide a formulation
which allows us to guarantee the point-wise feasibility without parameter tuning in Sec. 3.5.
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(a) (b)
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Figure 3.2: Point-wise feasibility problem in different scenarios.

3.4 Point-wise Feasibility in State-Space

The point-wise feasibility problem could also be understood through qualitative illustration
in the state-space. Given a state xt at time t, we will define R(xt,Uadm, δt) to represent the
set of reachable states after infinitesimal time δt while satisfying system dynamics (3.1) and
input constraint Uadm(xt) starting from state x(t) = xt, i.e.,

R(xt,Uadm, δt) = {x(t+ δt) ∈ Rn : ∀t̄ ∈ [t, t+ δ], ẋ(t̄) = f(x(t̄)) + g(x(t̄))u(t̄),

u(t̄) ∈ Uadm(x(t̄)),x(t) = xt}.
(3.17)

The evolution of the system dynamics also needs to be safe and thus satisfy the definition
of control barrier function (3.4) during time segment [t, t+ δt], thus we have

h(x(t+ δt)) ≥ h(x(t))−
∫ t+δt

t

α(h(x(t̄)))dt̄. (3.18)

This allows us to define the superlevel set in state-space for x(t + δt) satisfying the CBF
constraints,

Scbf (xt, δt) = {x ∈ Rn : h(x) ≥ h(xt)−
∫ t+δt

t

α(h(x(t̄)))dt̄,x(t) = xt}. (3.19)
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We also define
Scbf (xt, 0) = {x ∈ Rn : h(x) ≥ h(xt)}, (3.20)

motivated by
∫ t+δt
t

α(h(x(t̄)))dt̄ = 0 when δt = 0. The set Scbf (xt, 0) corresponds to the set
of all possible x for which h(x) ≥ h(xt).

Since the state x(t + δt) should satisfy the system dynamics and control barrier func-
tion constraint, the optimization problem is then point-wise feasible at state xt when the
intersection between R(xt,Uadm, δt) and Scbf (xt, δt) is not empty. We are interested in
whether the intersection between R(xt,Uadm, δt) and Scbf (xt, δt) is empty or not under dif-
ferent circumstances. However, it is numerically complicated or even impossible to calculate
R(xt,Uadm, δt) for a general nonlinear affine system. Thus, we provide an intuition of un-
derstanding point-wise feasibility problem through geometry in state-space.

Remark 3.4. Notice that we always have Scbf (xt, 0) ⊂ Scbf (xt, δt) as α is class K∞ function
and h(.) is positive.

In practice, we usually define the safety set C in (3.3) corresponding to the free space out-
side the obstacle, illustrated in Figure 3.2. ∂Scbf (xt, 0) and ∂Scbf (xt, δt) are illustrated with
black solid and colorful dashed curves respectively, and Scbf (xt, δt), Scbf (xt, 0) are illustrated
as the regions on the top-right side of them. Since we always have Scbf (xt, 0) ⊂ Scbf (xt, δt),
∂Scbf (xt, δt) is always closer to the obstacle, lying on the bottom-left side of ∂Scbf (xt, 0) for
any choice of α function. We classify the point-wise feasibility problem into three scenarios
as follows.

Moving away from obstacles: when R(xt,Uadm, δt) ⊂ Scbf (xt, 0), i.e., the system is mov-
ing away from obstacles. The scenario is illustrated in Figure 3.2a. In this scenario, we have
R(xt,Uadm, δt) ⊂ Scbf (xt, 0) ⊂ Scbf (xt, δt). This means that for any class K∞ function α,
the optimization will always be point-wise feasible at state xt.

Moving around obstacles: when R(xt,Uadm, δt) intersects with ∂Scbf (xt, 0), we have
the reachable state-space lies partly on the top-right side of ∂Scbf (xt, 0), shown in Figure
3.2b. In this scenario, the optimization is always feasible for any class K∞ function α, as
R(xt,Uadm, δt) ∩ Scbf (xt, 0) is not empty and is always a subset of Scbf (xt, δt).

Moving close to obstacles: when R(xt,Uadm, δt) ∩ Scbf (xt, 0) = ∅, this usually happens
when the system is moving close to obstacles, shown in Figure 3.2c and 3.2d. In this scenario,
when α becomes too small (CBF level set in red), the intersection between R(xt,Uadm, δt)
and Scbf (xt, δt) is empty and the optimization problem becomes infeasible at state xt. This
indicates that α(h(xt)) needs to be greater than a lower bound to make the optimization
point-wise feasible at state xt.

Remark 3.5. When R(xt,Uadm, δt) ⊂ Scbf (xt, δt), the CBF constraint does not confine the
reachable set which means the CBF constraint is inactive in the optimization, shown with
green level sets Scbf (xt, δt) in Figure 3.2. When the intersection between R(xt,Uadm, δt) and
Scbf (xt, δt) is non-empty and becomes as a proper subset of R(xt,Uadm, δt) shown with blue
level sets Scbf (xt, 0) in Figure 3.2, the CBF constraint does confine the reachable set. This
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does not necessarily guarantee CBF constraint activation, as the constraint activation also
depends on the design of cost function, which is similar to what we discussed in Remark 3.2.
For the red level sets Scbf (xt, 0) in Figure 3.2c and 3.2d, the optimization is infeasible.

3.5 Point-wise Feasible Formulation

3.5.1 Formulation and Point-wise Feasibility

In Sec. 3.3 and 3.4, we have seen that the optimization in safety-critical control might become
point-wise infeasible at a given state xt, if either Ucbf (xt)∩Uadm(xt) = ∅ or R(xt,Uadm, δt)∩
Scbf (xt, δt) = ∅ which means the convergence rate of control barrier function is less than
a lower bound. In other words, when the decay rate of the lower bound of h(x) is not
large enough, we might encounter infeasibility in the optimization problem. To solve this
problem, we could manually tune the form of α function to make the optimization feasible,
however, this tuning process becomes relatively difficult when the system dynamics becomes
complicated. This motivates us to introduce an optimal-decay form of CBF constraint to
guarantee the point-wise feasibility for any x with h(x) > 0.

With the same notation as CBF-QP in (3.8) and CLF-CBF-QP in (3.9), we introduce
an optimal-decay form of CBF-QP and CLF-CBF-QP in this section. The optimal decay
CBF-QP is formulated as follows

Optimal-decay CBF-QP:

u(x) = argmin
(u,ω)∈Rm+1

1

2
||u− k(x)||2 + pω(ω − ω0)

2 (3.21a)

s.t. Lfh(x) + Lgh(x)u ≥ −ωα(h(x)), (3.21b)

u ∈ Uadm(x). (3.21c)

Compared with CBF-QP, we optimize the decay rate of the CBF constraint with a new
variable ω in (3.21b) and add a quadratic cost in (3.21a). pω is a positive scalar and a scalar
ω0 could usually be chosen to tune the performance of the controller. Similarly, we develop
the optimal form of CLF-CBF-QP as follows

Optimal-decay CLF-CBF-QP:

u(x) = argmin
(u,δ,ω)∈Rm+2

1

2
uTH(x)u+ pδ2 + pω(ω − ω0)

2 (3.22a)

s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ, (3.22b)

Lfh(x) + Lgh(x)u ≥ −ωα(h(x)), (3.22c)

u ∈ Uadm(x). (3.22d)
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We call (3.21) and (3.22) as optimal-decay form of CBF-QP and CLF-CBF-QP, since it
actually optimizes the decay rate of lower bound of the control barrier function with variable
ω in the optimization. The point-wise feasibility of optimization for any x ∈ Int(C) in (3.21),
(3.22) is illustrated with the following theorem.

Theorem 3.1. When Uadm(x) is convex, the optimizations in optimal-decay CBF-QP and
CLF-CBF-QP are point-wise feasible for any x lying inside C, i.e., the optimizations are
solvable with a unique solution for any x when h(x) > 0.

Proof. For optimal-decay CBF-QP, since ω ∈ R is a variable to optimize and h(x) > 0,
−ωα(h(x)) could vary between −∞ and +∞ for any x. Then, for any x, there always exists
a value ω such that the feasible region between (3.21b) and (3.21c) is non-empty.

Moreover, we notice that the CBF constraints and input constraints are convex with
respect to optimization variables u and ω. Hence, the feasible region in the optimal-decay
CBF-QP is convex and not empty. Additionally, our cost function (3.21a) is a quadratic
form and positive-definite, which is strictly convex. Therefore, the minimization in (3.21) is
convex (convex cost and constraints) with non-empty feasible region, which is solvable and
holds a unique solution [27, Chap. 5].

Compared to optimal-decay CBF-QP, the optimal-decay CLF-CBF-QP is nothing dif-
ferent except there is a CLF constraint in (3.22b), which is also convex with respect to
optimization variables and is optimized with the relaxation variable δ. Therefore, the opti-
mization in optimal CLF-CBF-QP is also convex with a non-empty feasible region, which is
feasible with an unique solution.

In fact, we could generalize the point-wise feasibility in Theorem 3.1 for any x when
h(x) ̸= 0, as ωα(h(x)) could vary between −∞ and ∞ when h(x) ̸= 0 with ω ∈ R. However,
this is not interesting since the system is already unsafe when h(x) < 0.

Remark 3.6. The optimization variable ω is not required to be positive. In fact, when the
optimized value of ω is negative, this implies that the control barrier function is increasing
with the optimized control input, correpsonding to the safety with set invariance. In the
scenario of ω as negative, the system is keeping further away from the obstacles.

3.5.2 Convergence of CBF constraint

The variable ω optimizes the convergence rate of the CBF constraint, with ωα(.) still be-
ing a class K∞ function. Therefore, with optimal-decay CBF-QP and CLF-CBF-QP, we
equivalently use a state-dependent rate for the convergence of the CBF constraint, since the
optimized value of ω will be calculated differently at different state x.

Moreover, smaller ω0 and larger pω would make the control barrier function decay slower.
This makes sense from a mathematical perspective, since the larger ω0 optimizes the nominal
CBF constraint with larger decay rate. Similarly, for smaller pω, we will have optimized value
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of ω deviating more from the value ω0, which also brings a larger decay rate on the control
barrier function.

3.5.3 Persistent Feasibility and Safety

Note that point-wise feasibility for all x with h(x) > 0 does not guarantee that our system
is persistently feasible, i.e., the system might become unsafe even if the system is initialized
at x(0) = x0 with h(x0) > 0. This is due to the fact that when we reach h(x) = 0, we
can’t change ω to make the optimization problem feasible while simultaneously enforcing
the optimal-decay CBF constraint (3.22c) and the input constraint. This makes the control
barrier function invalid with respect to the safe set defined in (3.3) due to the input constraint.
In this case, the CBF-based control policy isn’t safe, i.e., it is not forward complete, see [12,
Definition 1]. However, given any invariant set that is a subset of the safe set C, our optimal-
decay CBF-QP/CLF-CBF-QP will be persistently feasible if the initial state lies inside this
safe invariant set.

The maximum invariant set for an optimal-decay controller could be different with respect
to hyperparameters, such as pω and ω0, which will be illustrated in Sec. 3.6.4. Notice that
solving an explicit representation of this control invariant set for a nonlinear system is usually
intractable [151, 15, 164] and this exceeds the scope of this chapter. We will discuss the
invariant safety and related performance in future work.

Remark 3.7. When pω tends to +∞ in (3.21) and (3.22), then given a state x, if the
original CBF constraint is satisfied, i.e.,

∃u ∈ Uadm(x), Lfh(x) + Lgh(x)u ≥ −α(h(x)),

we will have the optimized value of ω as ω∗(x) = ω0. Specifically, when ω0 = 1, it will
make the optimal-decay CBF-QP and CLF-CBF-QP as the original CBF-QP/CLF-CBF-
QP. However, when the original CBF-QP and CLF-CBF-QP become infeasible, i.e.,

∀u ∈ Uadm(x), Lfh(x) + Lgh(x)u < −α(h(x)),

our optimal-decay form is still feasible and the optimal value of ω is as follows

ω∗(x) = sup
u∈Uadm

Lfh(x) + Lgh(x)u

−α(h(x))
.

To sum up, when pω = +∞ and ω0 = 1, the optimal-decay CBF-QP and optimal-decay
CLF-CBF-QP are equivalent to original CBF-QP and CLF-CBF-QP, if the original ones
are already feasible. When the original constraint is infeasible, the optimization variable ω
makes the proposed one still feasible.



CHAPTER 3. GUARANTEED POINT-WISE FEASIBILITY WITH INPUT
CONSTRAINTS 26

0 3 6 9 12 15
0

20

40

60

(a) Control barrier function

0 3 6 9 12 15
16

18

20

22

24

26

28

30

32

(b) Ego vehicle’s speed

(c) Optimal control input

0 3 6 9 12 15
1

1.3

(d) Optimal-decay variable

Figure 3.3: Point-wise feasibility of adaptive cruise control under input constraints.

3.6 Case Study: Adaptive Cruise Control

Having presented our optimal-decay CBF-QP/CLF-CBF-QP formulation, we proceed to
validate the proposed strategy using an adaptive cruise control (ACC) example, which has
been commonly used to validate safety-critical control strategies [9, 214].

3.6.1 Simulation Setup

Consider a point-mass model of an ego vehicle moving along a straight line to follow a lead
vehicle. The dynamics are given as follows

ẋ =

 x2

− 1

m
Fr(x)

vl − x2

+

 0
1

m
0

u, (3.23)

where (x1, x2) are the position and velocity (x2 = ẋ1) of the ego vehicle, m is the mass of
the vehicle, and x3 is the distance between the vehicle and the lead vehicle traveling at a
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velocity of vl. Fr represents the aerodynamic drag and we use the empirical form given as
below

Fr = f0 + f1x2 + f2x
2
2, (3.24)

where f0, f1, and f2 are empirical constants.
A CLF-CBF-QP controller is designed to solve this ACC problem. In order to regulate

speed, we pick a control Lyapunov function as follows

V = (x2 − vd)
2. (3.25)

A control barrier function is used to guarantee that the ego vehicle will not collide with
the leading vehicle. We consider a control barrier function as

h = x3 − 1.8x2, (3.26)

where the factor of 1.8 is a result of converting to SI units. Besides speed regulation and
safe distance maintenance, we also consider input constraints as follows

cdmg ≤ u ≤ camg, (3.27)

where ca and cd are coefficients for maximum and minimum wheel forces.
Using the control Lyapunov function (3.25) and the control barrier function (3.26), we

design an original CLF-CBF-QP controller and an optimal-decay CLF-CBF-QP controller
with formulation in (3.9) and (3.22), respectively. The system is simulated with the two
controllers with a frequency at 100Hz, and the values of parameters in the simulations are
shown in Table 3.1. Notice that in the simulations, we consider α(.) and γ(.) in (3.9) and
(3.22) as linear functions with constant coefficients α and γ.

3.6.2 Point-wise Feasibility

To compare the performance between our optimal-decay CLF-CBF-QP and the original
form, we simulate the system with different initial conditions and illustrate them together in
Figure 3.3, where solid and dashed lines represents the results from our optimal-decay CLF-
CBF-QP and the original form, respectively. For our optimal-decay form, we firstly pick the
hyperparameters ω0 and pω as 1 and 108, which corresponds to the choice we discussed in
Sec. 3.5.2.

Precisely, the ego vehicle is initialized at origin x1(0) = 0 m, the initial distance between
the ego car and the leading one is set as x3(0) = 100 m and initial speed x2(0) ranges from 26
m/s to 32 m/s, shown in Figure 3.3b. We can see that CLF-CBF-QP with initial speed as 30
m/s and 32 m/s will become infeasible during the simulations. This infeasibility comes from
the conflict between input constraint and original CBF constraint and we can see clearly
that the CLF-CBF-QP fails with input saturation and our optimal-decay form handles the
problem properly, shown in Figure 3.3c. The simulation with initial speed as 26 m/s and 28
m/s does not encounter any infeasible issues where the CLF-CBF-QP and our optimal-decay
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Figure 3.4: Influence of hyperparameters and CBF decay rates on system safety performance.

form shared the same control performance. Moreover, we notice ω becomes not equal to one
only when there is a conflict between the input constraint and the original CBF constraint,
shown in Figure 3.3d. The evolution of control barrier function for two controllers are shown
in Figure 3.3a. To sum up, the optimal-decay CLF-CBF-QP is equivalent to the original
one when ω0 = 1 if the original one is already feasible, while still being as a feasible problem
even when the original CLF-CBF-QP is infeasible.

3.6.3 Convergence rate with hyperparameters

As we have stated in Sec. 3.5.3, the system might become unsafe if it is initialized outside
its invariant set. To illustrate this property, we simulate the controller from an initial speed
x2(0) = 32 m/s and leading distance x3(0) = 100 m with different values of hyperparameters
ω0 and pω. We keep the same Lyapunov function and control barrier function with the same
parameters in Table 3.1 and the simulation results are shown in Figure 3.4. In Figure 3.4a,
we can observe that smaller ω0 and larger pω would make the control barrier function decay
slower, which verified exactly what was stated in Sec. 3.5.2.

3.6.4 Safety with hyperparameters

The simulations in Sec. 3.6.1 and 3.6.3 that we have seen are all safe with set invariance on C
defined in (3.3). However, for the same initial condition x2(0) = 32 m/s, if we decrease pω, the
system could be unsafe after a while. Specifically, we show that when ω0 = 1, pω = 102, our
system actually becomes unsafe after around 4s. This happens since the initial condition no
longer lies inside the invariant set for the optimal-decay CLF-CBF-QP with this configuration
of hyperparameters, which was previously discussed in Sec. 3.5.3. It must be noted that
while a formulation guarantees point-wise feasibility for h(x) > 0, this does not guarantee
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System Parameters
m 1650 kg vl 16 m/s vd 30 m/s
f0 0.1 N f1 5 Ns/m f2 0.25 Ns2/m2

cd -0.25 ca 0.25 g 9.81 m/s2

Controller Parameters
γ 1.0 p 1.0 α 0.5

Table 3.1: Simulation parameter values for adaptive cruise control.

persistent feasibility for h(x) > 0 in a sufficiently long-time trajectory. This is seen in Figure
3.4b, where point-wise feasibility for all states with h(x) > 0 still leads to the system unsafe
after a while.

3.7 Chapter Summary

In this chapter, we have analyzed the point-wise feasibility problem of safety critical control
from the perspective of input-space and state-space. Then, in order to deal with the conflict
between CBF constraint and input constraint, we proposed an optimal-decay form for CBF-
QP and CLF-CBF-QP to guarantee point-wise feasibility inside the safe set. We numerically
verified this control design in an ACC example.

In next chapter, we will see that the feasibility problem not only exists for control barrier
functions in the continuous-time domain but also in the discrete-time domain, especially in
the formulation about model predictive control with control barrier functions.
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Chapter 4

Model Predictive Control with
Control Barrier Functions 2

4.1 Introduction

4.1.1 Motivation

Safety-critical optimal control and planning is one of the fundamental problems in robotic
applications. In order to ensure the safety of robotic systems while achieving optimal per-
formance, the tight coupling between potentially conflicting control objectives and safety
criteria is considered in an optimization problem. Some recent work formulates this problem
using control barrier functions, but only using current state information without prediction,
see [9, 2], which yields a greedy control policy. Model predictive control can give a less
greedy policy, as it takes future state information into account. However, the safety criteria
in a predictive control framework is usually enforced as distance constraints defined under
Euclidean norms, such as the distance between the robot and obstacles being larger than a
safety margin. This distance constraint will not confine the optimization until the reachable
set along the horizon intersects with the obstacles. In other words, the robot will not take
actions to avoid the obstacles until it is close to them. One way to solve this problem is to use
a larger horizon, but that will increase the computational complexity in the optimization.

We address this challenge above by directly unifying model predictive control with
discrete-time control barrier functions together into one optimization problem. This results
in a safety-critical model predictive control formulation, called MPC-CBF in this chapter. In
this formulation, the CBF constraints could enforce the system to avoid obstacles even when
the reachable set along the horizon is far away from the obstacles. We validate this control
design using a 2D double integrator for obstacle avoidance, and also demonstrate that this
method enables a racing car to safely compete with other cars in a racing competition, shown

2The material of this chapter is from “Safety-critical model predictive control with discrete-time control
barrier function” published in 2021 American Control Conference (ACC) [224].
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(a) Snapshot of first overtake [whole track (left) vs. zoom-in (right)]

(b) Snapshot of second overtake [whole track (left) vs. zoom-in (right)]

Figure 4.1: Safety-critical model predictive control applied to competitive car racing.

in Figure 4.1.

4.1.2 Related Work

4.1.2.1 Model Predictive Control

MPC is widely used for robotic systems, such as robotic manipulation and locomotion [79,
169], to achieve optimal performance while satisfying different constraints. One of the most
important criteria to deploy robots for real-world tasks is safety. There is some existing
work about model predictive control considering system safety [175, 159]. The safety criteria
in the context of MPC is usually formulated as constraints in an optimization problem
[221, 57], such as obstacle constraints and actuation limits. One concrete scenario regarding
safety criteria for robots is obstacle avoidance. The majority of literature focuses on collision
avoidance using simplified models, and considers distance constraints with various Euclidean
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norms [190, 162, 227], which we call MPC-DC in this chapter.
However, these obstacle avoidance constraints under Euclidean norms will not confine

the robot’s movement unless the robot is relatively close to the obstacles. To make the robot
take actions to avoid obstacles even far away from it, we usually need a larger horizon which
increases the computational time in the optimization. This encourages us to formulate a new
type of model predictive control, which can guarantee safety in the context of set invariance
with CBF constraints confining the robot’s movement during the optimization. Recently
in [70], model predictive control is introduced with control Lyapunov functions to ensure
stability.

4.1.2.2 Control Barrier Functions

CBFs have recently been introduced as a promising way to ensure set invariance by consid-
ering the system dynamics and implying forward invariance of the safe set. Furthermore, a
safety-critical control design for continuous-time systems was proposed by unifying a control
Lyapunov function (CLF) and a control barrier function through a quadratic program (CLF-
CBF-QP) [12]. This method could be deployed as a real-time optimization-based controller
with safety-critical constraints, shown in [136, 9, 209]. Besides the continuous-time domain,
the formulation of CBFs was generalized into discrete-time systems (DCLF-DCBF) in [2].

4.1.2.3 Model Predictive Control with Control Barrier Functions

There is some existing work that tries to combine the advantages of MPC and CBFs. Barrier
functions have been used in MPC in [206], which converts constraints to cost but not related
to safety-critical control. In [175], they use continuous-time CBFs as constraints inside a
discrete-time MPC. MPC and CBFs are organized as a high-level planner and a low-level
tracker in [159]. This method treats MPC and CBFs separately at different levels.

Inspired by the previous work of model predictive control and control barrier functions,
DCLF-DCBF can be improved by taking future state prediction into account, yielding a
better control policy. This motivates us to investigate the control design of predictive control
under the constraints imposed by CBFs. In this chapter, we focus on the discrete-time
formulation of control barrier functions applied to model predictive control, which encodes
the safety obtained from discrete-time CBFs in MPC.

4.1.3 Contribution

The contributions of this chapter are as follows.

• We present a MPC-CBF control design for safety-critical tasks, where the safety-critical
constraints are enforced by discrete-time control barrier functions.
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• We analyze the stability of our control design, and qualitatively discuss the feasibility
in terms of set intersections between reachable sets of MPC and safe sets enforced by
CBF constraints along the horizon.

• Our proposed method is shown to outperform both MPC-DC and DCLF-DCBF. It
enables prediction capability to DCLF-DCBF for performance improvement, and it also
guarantees safety via discrete-time CBF constraints in the context of set invariance.

• We verify the properties of our control design using a 2D double integrator for obstacle
avoidance. Our algorithm is generally applicable and also validated in a more complex
scenario, where MPC-CBF enables a car racing on a track while safely overtaking other
cars.

4.2 Background

Our proposed safety-critical model predictive control design builds on model predictive con-
trol and control barrier functions. We now present necessary preliminaries.

4.2.1 Model Predictive Control

Consider the problem of regulating to the origin of a discrete-time control system described
by,

xt+1 = f(xt,ut), (4.1)

where xt ∈ X ⊂ Rn represents the state of the system at time step t ∈ Z+, ut ∈ U ⊂ Rm is
the control input, and f is locally Lipschitz.

Assume that a full measurement or estimate of the state xt is available at the current
time step t. Then a finite-time optimal control problem is solved at time step t. When
there are safety criteria, such as obstacle avoidance, the obstacles are usually formulated
using distance constraints. The finite-time optimal control formulation is shown in (4.2).

MPC-DC:

J∗
t (xt) = min

ut:t+N−1|t
p(xt+N |t)+

N−1∑
k=0

q(xt+k|t,ut+k|t) (4.2a)

s.t. xt+k+1|t = f(xt+k|t,ut+k|t), k = 0, ..., N−1 (4.2b)

xt+k|t ∈ X ,ut+k|t ∈ U , k = 0, ..., N−1 (4.2c)

xt|t = xt, (4.2d)

xt+N |t ∈ Xf , (4.2e)

g(xt+k|t) ≥ 0, k = 0, ..., N−1. (4.2f)
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Here xt+k|t denotes the state vector at time step t + k predicted at time step t obtained by
starting from the current state xt (4.2d), and applying the input sequence ut:t+N−1|t to the
system dynamics (4.2b). In (4.2a), the terms q(xt+k|t,ut+k|t) and p(xt+N |t) are referred to as
stage cost and terminal cost respectively, and N is the time horizon. The state and input
constraints are given by (4.2c), and distance constraints for safety criteria are represented by
function g, in (4.2f), which could be defined under various Euclidean norms. The terminal
constraint is enforced in (4.2e).

Let u∗
t:t+N−1|t = {u∗

t|t, ...,u
∗
t+N−1|t} be the optimal solution of (4.2) at time step t. The

resulting optimized trajectory using u∗
t:t+N−1|t is referred as an open-loop trajectory. Then,

the first element of u∗
t:t+N−1|t is applied to system (4.1). This feedback control law is given

below,
u(t) = u∗

t|t(xt). (4.3)

The finite-time optimal control problem (4.2) is repeated at next time step t + 1, based on
the new estimated state xt+1|t+1 = xt+1. It yields the model predictive control strategy. The
resulting trajectory using (4.3) is referred as a closed-loop trajectory. More details can be
referred to in [26].

4.2.2 Control Barrier Functions

We now present discrete-time control barrier functions that will be used together with model
predictive control for our control design, which will be introduced in Sec. 4.3.

For safety-critical control, we consider a set C defined as the superlevel set of a continu-
ously differentiable function h : X ⊂ Rn → R:

C = {x ∈ X ⊂ Rn : h(x) ≥ 0}. (4.4)

Throughout this chapter, we refer to C as a safe set. The function h is a control barrier

function (CBF) [9] if
∂h

∂x
̸= 0 for all x ∈ ∂C and there exists an extended class K∞ function

γ such that for the control system (4.1), h satisfies

∃ u s.t. ḣ(x,u) ≥ −γ(h(x)), γ ∈ K∞. (4.5)

This condition can be extended to the discrete-time domain which is shown as follows

∆h(xk,uk) ≥ −γh(xk), 0 < γ ≤ 1, (4.6)

where ∆h(xk,uk) := h(xk+1) − h(xk). Satisfying constraint (4.6), we have h(xk+1) ≥ (1 −
γ)h(xk), i.e., the lower bound of control barrier function h(x) decreases exponentially with
the rate 1− γ.

Remark 4.1. Note that in (4.6), we defined γ as a scalar instead of a K∞ function as
in (4.5). Generally, for the discrete-time domain, γ could also be considered as a class K
function that also satisfies 0 < γ(h(x)) ≤ h(x) for any h(x). However, we will continue to
use the scalar form γ in this chapter to simplify the notations for further discussions.
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Besides the system safety, we are also interested in stabilizing the system with a feedback
control law u under a control Lyapunov function V , i.e.,

∃ u s.t. V̇ (x,u) ≤ −α(V (x)), α ∈ K. (4.7)

We can also generalize it to the discrete-time domain,

∆V (xk,uk) ≤ −αV (xk), 0 < α ≤ 1, (4.8)

where ∆V (xk,uk) := V (xk+1) − V (xk). Similarly as above, the upper bound of control
Lyapunov function decreases exponentially with the rate 1− α.

The discrete-time control Lyapunov function and control barrier function can be unified
into one optimization program (DCLF-DCBF), which achieves the control objective and
guarantees system safety. This formulation was first introduced in [2] and is presented as
follows

DCLF-DCBF:

u∗
k = argmin

(uk,δ)∈Rm+1

uTkH(x)uk + l · δ2 (4.9a)

∆V (xk,uk) + αV (xk) ≤ δ, (4.9b)

∆h(xk,uk) + γh(xk) ≥ 0, (4.9c)

uk ∈ U , (4.9d)

where H(x) is a positive definite matrix, that is pointwise differentiable in x. l is positive,
and δ ≥ 0 is a slack variable that allows the control Lyapunov function to grow when the
CLF and CBF constraints are conflicting. The safe set C in (4.4) is invariant along the
trajectories of the discrete-time system with controller (4.9) if h(x0) ≥ 0 and 0 < γ ≤ 1.

4.3 Control Design

After presenting a background of model predictive control and control barrier functions, we
formulate the safety-critical model predictive control logic in this section.

4.3.1 Formulation

Consider the problem of regulating to a target state for the discrete-time system (4.1) while
ensuring safety in the context of set invariance. The proposed control logic MPC-CBF solves
the following constrained finite-time optimal control problem with horizon N at each time
step t,
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MPC-CBF:

J∗
t (xt)= min

ut:t+N−1|t
p(xt+N |t)+

N−1∑
k=0

q(xt+k|t,ut+k|t) (4.10a)

s.t. xt+k+1|t = f(xt+k|t,ut+k|t), k = 0, ..., N−1 (4.10b)

xt+k|t ∈ X ,ut+k|t ∈ U , k = 0, ..., N−1 (4.10c)

xt|t = xt, (4.10d)

xt+N |t ∈ Xf , (4.10e)

∆h(xt+k|t,ut+k|t) ≥ −γh(xt+k|t), k = 0, ..., N−1 (4.10f)

where (4.10d) represents the initial condition constraint, (4.10b) describes the system dy-
namics, and (4.10c) shows the state/input constraints along the horizon. The terminal set
constraint is imposed in (4.2e). The CBF constraints in (4.10f) are designed to guarantee
the forward invariance of the safe set C associated with the discrete-time control barrier
function, where ∆h is as introduced in (4.6). Here we have

∆h(xt+k|t,ut+k|t) = h(xt+k+1|t)− h(xt+k|t).

The optimal solution to (4.10) at time t is a sequence of inputs as

u∗
t:t+N−1|t = [u∗

t|t, ...,u
∗
t+N−1|t].

Then, the first element of the optimizer vector is applied

u(t) = u∗
t|t(xt). (4.11)

This constrained finite-time optimal control problem (4.10) is repeated at time step t + 1,
based on the new state xt+1|t+1, yielding a receding horizon control strategy: safety-critical
model predictive control (MPC-CBF).

The dynamics constraint in (4.10b) could be linear if we have a linear system, and
(4.10c) could also be linear if X and U are defined as polytopes in the state and input space,
respectively. The discrete-time control barrier functions constraints in (4.10f) are generally
non-convex unless the CBFs are linear. This makes the whole optimization in (4.10) generally
become a nonlinear programming problem (NLP).

4.3.2 Stability

In DCLF-DCBF, control Lyapunov functions are introduced as optimization constraints
(4.9b) with corresponding slack variable as additional term in the cost function (4.9a). This
allows for the achievement of control objectives represented by CLFs and unifies the for-
mulation under one optimization with CBFs. In our MPC-CBF control design, we have
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Figure 4.2: Feasibility and reachability analysis of MPC-CBF.

the terminal cost p(xt+N |t) in (4.10a) as a control Lyapunov function, which can be used
to guarantee the stability of the closed-loop system by satisfying mild assumptions in the
context of linear systems [26, Theorem 12.2]. In general, a rigorous proof of nonlinear MPC
stability as well as MPC-CBF still remains an open challenge. More detailed analysis could
be found in [6].

4.3.3 Feasibility

Recursive feasibility is generally not guaranteed for MPC-DC defined in (4.2) [26, 108] and
other general NLP [27, Chap. 11]. In this chapter, we qualitatively analyze the feasibility
problem of MPC-CBF based on set analysis. Since the optimization (4.10) could be a NLP,
we are interested in finding under which circumstances this optimization becomes feasible,
i.e., the feasible set under the constraints (4.10b)-(4.10f) is not empty.

Given the current state xt in (4.10d), the reachable set at horizon step k is defined as
a reachable region in the state space, satisfying system dynamics in (4.10b), input/state
constraints in (4.10c) and initial condition in (4.10d). This reachable set Rk is defined as
follows for the horizon step k:

Rk = {xt+k|t ∈ X : ∀i = 0, ..., k − 1,xt+i+1|t = f(xt+i|t,ut+i|t),

xt+i|t ∈ X ,ut+i|t ∈ U ,xt|t = xt}.
(4.12)

We also define the set of state space satisfying the CBF constraints in (4.10f) and initial
condition in (4.10d) as

Scbf,k = {x ∈ X : h(x)−h(xt+k−1|t)≥−γh(xt+k−1|t)
}
, (4.13)
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Figure 4.3: Constraint activation for MPC-CBF and MPC-DC

where Scbf,k describes superlevel sets of h satisfying the control barrier function constraints
(4.10f) at each time step along the open-loop trajectory. Scbf,k also depends on the value of
optimal value xt+k−1|t, which depends on the states and the inputs of previous nodes before
the index k − 1.

We illustrate Rk and Scbf,k in the state space shown in Figure 4.2, given the initial
condition xt. Then, the feasibility of the optimization in (4.10) turns out to be whether the
intersection between the feasible set at each horizon step, Rk, and the superlevel set of h(x)
satisfying the CBF constraints, Scbf,k, is nonempty for all k = 1, ..., N .

Remark 4.2. Note that Scbf,k is not empty when h is a valid control barrier function. Fur-
thermore, Rk is also guaranteed to be nonempty, if we choose X as a control invariant set
as discussed in [26, Theorem 11.2].

In order to better understand this problem, we illustrate the level sets of control barrier
function constraints as

∂Scbf,k = {x ∈ X : h(x) = (1− γ)h(xt+k−1|t)},

with several choices of γ. The superlevel set Scbf,k are the regions illustrated on the left hand
side of these level sets, with an example where the robot approaches the obstacle from the
left to the right, shown in Figure 4.2. We can see that, if γ becomes relatively small, Scbf,k

will be smaller. In this case, the system tends to be safer as the decar-rate of CBF becomes
smaller, but the intersection between Rk and Scbf,k might be infeasible if γ becomes too
small. When the γ becomes larger, the region of Scbf,k in the state space will be increased.
This will make the optimization more likely to be feasible, however, the CBF constraints
might not be active during the optimization, if γ is too large. In this case, Rk will become
a proper subset of Scbf,k.

Remark 4.3. When γ becomes relatively small, the MPC-CBF controller makes a smaller
subset of the safe set C in (4.4) invariant, and thus is more safer, but this might also make
the optimization infeasible. A larger γ will make the optimization more likely to be feasible,
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but the CBF constraints might not be active during the optimization. We expect that γ is
chosen appropriately, such that the intersection between these two sets will not be empty
and becomes a proper subset of Rk. This leads to a tradeoff between safety and feasibility in
terms of the choice of γ. However, it still remains an open challenge for how to automatically
choose the γ.

Remark 4.4. Given xt, X , U , we could pick a value of γ to find a tradeoff between safety
and feasibility. However, when the system evolves, this γ might no longer satisfy our safety
demand or guarantee the optimization feasibility. Therefore, for a given fixed γ, we generally
only have pointwise feasibility and a persistently feasible formulation is still an open problem
and is part of future work.

4.3.4 Relation of MPC-CBF with DCLF-DCBF

When N = 1, the formulation in (4.10) could be simplified as an optimization over one step
system input u∗

k

u∗
k = argmin

uk∈Rm

p(f(xk,uk)) + q(xk,uk) (4.14a)

∆h(xk,uk) + γh(xk) ≥ 0, (4.14b)

uk ∈ U , (4.14c)

where p(f(xk,uk)) and q(xk,uk) are the terminal cost and stage cost which we have seen
previously in (4.10a). The optimization (4.14) is similar to the DCLF-DCBF formulation
(4.9). The stage cost q(xk,uk) minimizes the system input, similar as uTkH(x)uk in (4.9a).
The terminal cost minimizes the control Lyapunov function p(f(xk,uk)) in (4.14a), instead
of using CLF constraints as (4.9b). As we no longer use the CLF constraint, we do not need
a slack variable, such as δ in (4.9a), to guarantee the feasibility.

Remark 4.5. As the CLF constraints in (4.9b) are transferred into the cost function in
(4.14) with N = 1, the formulation in (4.14) becomes similar to DCLF-DCBF. To sum up,
our MPC-CBF formulation operates in a similar manner of DCLF-DCBF with prediction
N = 1.

4.3.5 Relation of MPC-CBF with MPC-DC

When γ approaches its upper bound of 1, the CBF constraints in (4.10f) becomes,

h(xt+k+1|t) ≥ 0.

If g(x) in (4.2f) and h(x) are the same, these CBF constraints are almost the same as
distance constraints defined in (4.2f) except for one horizon step difference. In other words,
the CBF constraints are at the next predicted horizon step instead of the current horizon
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step. Moreover, the feasible set at each horizon step k in MPC-DC formulation becomes
Rk∩C. While, as we have seen previously, the feasible set in MPC-CBF formulation at each
horizon step k is Rk ∩ Scbf,k. Note that Scbf,k is a subset of C. Therefore, the MPC-CBF
formulation in (4.10) has a smaller safe set than MPC-DC.

In the case the reachable set Rk is a proper subset of the safe set C, then the distance
constraints in (4.2f) are not active in the optimization (4.2), as shown in Figure 4.3a. In
other words, the distance constraints will not be active in the optimization (4.2) until the
reachable set along the horizon intersects with the unsafe regions, i.e., the reachable set
intersects the obstacles as shown in Figure 4.3b. Using our MPC-CBF formulation, the CBF
constraints in (4.10f) could always confine the reachable set Rk with an appropriate choice of
γ whenever the robot tends to approach the obstacles. In this case, even when the reachable
set Rk is a proper subset of the safe set C, the reachable set could still be constrained by its
intersection with Scbf,k, as shown in Figure 4.3a.

Remark 4.6. We discuss the constraint activation only in the cases when the robot is moving
towards the obstacles, i.e., there exists a control input u such that h(f(x,u)) < h(x). When
the robot is moving away from the obstacles, both distance constraints and CBF constraints
are inactive, which is intuitive since the robot is always safe in this case.

Remark 4.7. Our MPC-CBF formulation is safer than MPC-DC in the context of smaller
set invariance, where we can see that Rk ∩ Scbf,k is a proper subset of Rk ∩ C, as shown in
Figure 4.3.

Remark 4.8. In practice, we may need to use a smaller horizon for speeding up the opti-
mization. To achieve a similar performance compared to the MPC-DC formulation in (4.2),
we could apply smaller γ in our MPC-CBF control design in (4.10) and use a smaller hori-
zon. This could help us to reduce the complexity of the optimization for obstacle avoidance,
as will be shown in Figure 4.4e.

4.4 Examples

Having presented the MPC-CBF control design, we now numerically validate it using a
2D double integrator for obstacle avoidance and analyze its properties. We also apply this
controller to a competitive car racing problem. We use the solver IPOPT [196] in MPC-
CBF/MPC-DC/DCLF-DCBF problems [22].

4.4.1 2D Double Integrator for Obstacle Avoidance

Consider a linear discrete-time 2D double integrator

xk+1 = Axk +Buk, (4.15)
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Figure 4.4: A 2D double integrator avoids an obstacle using different control designs.

where the sampling time ∆t is set as 0.2s.
A MPC-CBF is designed as in (4.10) and (4.11) for 2D double integrator to avoid an

obstacle, where the stage cost and and terminal cost are

q(xk,uk) = x′
kQxk + u′

kRuk, p(xN) = x′
NPxN , (4.16)

where Q = 10 · I4, R = I2 and P = 100 · I4. The system is subject to state constraint X
and input constraints U ,

X = {xk ∈ Rn : xmin ≤ xk ≤ xmax},
U = {uk ∈ Rm : umin ≤ uk ≤ umax}.

The lower and upper bounds are

xmax,xmin = ±5 · I4×1, umax,umin = ±I2×1.

For discrete-time control barrier function constraint (4.10f), we choose a quadratic barrier
function for obstacle avoidance

hk = (xk(1)− xobs)
2 + (xk(2)− yobs)

2 − r2obs, (4.17)
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where xobs, yobs, and robs describe x/y-coordinate and radius of the obstacle with xobs = −2m,
yobs = −2.25m and robs = 1.5m, shown as a red circle in Figure 4.4. The start and target
positions are (−5,−5) and (0, 0), which are labelled as blue and red diamonds in Figure 4.4,
respectively.

4.4.1.1 Comparison of MPC-CBF with DCLF-DCBF

In order to compare the performance between our proposed MPC-CBF and DCLF-DCBF,
we develop a DCLF-DCBF controller for the same obstacle avoidance task, which is based
on (4.9).

For the design of DCLF-DCBF, we use R in (4.16) asH in (4.9) to ensure that we have the
same penalty on inputs. The discrete-time CBF constraints of DCLF-DCBF are the same as
the ones used in MPC-CBF. Since the terminal cost p in the model predictive control serves
as a control Lyapunov function, we choose p in MPC-CBF example as the control Lyapunov
function that is used to construct the discrete-time CLF constraints in (4.9). Based on these
choices, it is fair to compare a DCLF-DCBF controller with a MPC-CBF controller.

The simulation result of MPC-CBF and DCLF-DCBF comparison is shown in Figure
4.4a, 4.4b and 4.4c. The trajectory is denoted in black line with small circles representing
each step. The trajectory of DCLF-DCBF controller with γ = 0.4 is presented in Figure
4.4a, where the system does not start to avoid the obstacle until it is close to it. Figure
4.4b shows the trajectory for MPC-CBF controller with horizon N = 1 and γ = 0.4. This
trajectory is similar to that of DCLF-DCBF controller. Based on our analysis in Sec. 4.3.4,
the performances of DCLF-DCBF and MPC-CBF with N = 1 are almost the same, which is
validated in this simulation. Figure 4.4c shows the trajectory of MPC-CBF controller with
horizon N = 8 and γ = 0.4. We can see that this controller can drive the system to avoid
the obstacle earlier than the DCLF-DCBF controller. Also, among these three controllers,
it is the only one that can reach the goal position in the limited simulation time.

4.4.1.2 Comparison of MPC-CBF with MPC-DC

A MPC-DC controller is developed based on (4.2) using the same parameters as MPC-
CBF presented before except for the discrete-time CBF constraint, which is replaced by a
Euclidean norm distance constraint g shown in (4.2f). The function g has the same expression
as h, defined in (4.17).

Figure 4.4d and 4.4e show the simulation result of the comparison between MPC-CBF
and MPC-DC. In Figure 4.4d, MPC-CBF controllers with γ = 0.1, 0.2, 0.3, 1.0 are described
in blue, orange, yellow and purple lines, respectively. The trajectory of MPC-DC controller
is shown in black dashed line. As γ decreases, the system starts to avoid the obstacle earlier,
which means a smaller safe set as analyzed in Sec. 4.3.3, while on the other hand the
trajectory of MPC-DC is the closest to the obstacle. We also notice that the trajectories of
MPC-DC and MPC-CBF with γ = 1 are almost the same, which validates our analysis in
Sec. 4.3.5.
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controller status N γ mean/std (s) min dist cost
MPC-CBF solved 5 0.1 0.028±0.012 1.483 7.620
MPC-CBF solved 5 0.2 0.028±0.011 0.791 7.464
MPC-CBF solved 5 0.3 0.028±0.011 0.441 8.314
MPC-CBF solved 5 0.4 0.028±0.011 0.288 8.292
MPC-CBF solved 5 0.5 0.028±0.010 0.110 8.813
controller status N mean/std (s) min dist cost
MPC-DC infeas. 5 NaN NaN NaN
MPC-DC solved 7 0.033±0.013 0.000 9.102
MPC-DC solved 15 0.048±0.016 0.000 8.537
MPC-DC solved 30 0.062±0.031 0.000 8.528

Table 4.1: MPC-DC and MPC-CBF benchmark in terms of prediction horizon, computa-
tional time, minimal distance with respect to obstacle and cost integral.

The trajectories of MPC-CBF controllers with N = 5 and different choices of γ and
MPC-DC controllers with different values of horizon N are shown in Figure 4.4e. We notice
that MPC-CBF controller with smaller γ and MPC-DC with larger horizon N can make
the system avoid obstacles earlier. This verifies our analysis in Sec. 4.3.3, since smaller γ
in MPC-CBF and larger horizon N in MPC-DC make the trajectory deviate from obstacles
earlier. We also observe that even with an extremely large horizon N , e.g. N = 30, the
system only has noticeable obstacle avoidance behavior when it is close to obstacles. In
contrary, a relatively small γ is able to make the system avoid obstacles even when far away
from obstacles.

In Figure 4.4e, MPC-CBF with N = 5 and γ = 0.25 starts to turn to avoid the obstacle
with a similar behavior as MPC-DC with N = 7. This property is discussed in Remark
4.8. Since discrete-time CBF enforces the invariance of safe set, it allows a smaller N for
MPC-CBF with a smaller γ to achieve a comparable performance as MPC-DC with a larger
N .

In Table 4.1, we benchmark the MPC-CBF and MPC-DC in terms of prediction horizon,
computation time, minimal distance to the obstacle and cost integral

∑
k u

T
kuk∆t over the

trajectory. We can observe that less prediction horizon of MPC-CBF leads to less computa-
tional time. MPC-DC always reaches to the boundary of the obstacle, however, MPC-CBF
could automatically set a safety margin depending on different choices of γ. For this specific
scenario, the cost integral over the trajectory of MPC-CBF is generally less than the one of
MPC-DC.

4.4.2 Competitive Car Racing

We have evaluated the MPC-CBF design using a 2D double integrator and compared its
performance with DCLF-DCBF and MPC-DC. We proceed to implement MPC-CBF in a
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more complex scenario: competitive car racing. In some previous car racing control work
[117, 193], they only consider static obstacles on the track while we deal with dynamic
obstacles such as other cars using MPC-CBF.

4.4.2.1 Vehicle Model

We use curvilinear coordinates to describe vehicle states of the ego and other cars in a racing
competition. In this chapter, we use the nonlinear lateral vehicle dynamics model in [150,
Ch. 2] for system dynamics

xt+1 = f(xt,ut), (4.18)

where xt and ut represent the state and input of the vehicle at time step t and their definitions
are as follow

xt = [vxt , vyt , ϕt, eϕt , st, eyt ]
T , ut = [at, δt]

T , (4.19)

where st represents the curvilinear distance travelled along the centerline of the track, eyt
and eϕt are the deviation distance and heading angle error between vehicle and path. vxt ,
vyt , ϕt are the vehicle longitudinal velocity, lateral velocity and yaw rate in the curvilinear
coordinates, respectively. A representation of the state in the curvilinear coordinate is shown
in Figure 4.5. The inputs are longitudinal acceleration at and steering angle δt. In the
car racing, we assume to have K racing cars competing with the ego car, and we use the
superscript i to distinguish the i-th (i = 1, 2, ..., K) competiting vehicle from the ego one,
shown in Figure 4.5.

We note that this kinematic model is highly nonlinear and this model cannot be applied
to formulate system dynamics constraints in (4.10b). Instead, we follow the data-driven
approach proposed in [160]. We firstly simulate the vehicle system to track the centerline by
using a PID controller

δt = −k1eyt − k2eψt ,

at = k3(vd − vxt),

where vd could be any positive user-defined target speed. This PID controller allows the
vehicle to track the centerline of the track with a target speed.

Then, the linearized time-invariant dynamics is shown as below

xt+1 = Axt +But, (4.20)

where A and B are calculated with a regression-based approach [160] over the trajectory we
simulated using a PID controller. This process allows us to approximate the highly nonlinear
dynamics with the time-invariant linearized one in (4.20). The whole process is purely
data-driven without a prior knowledge of the system parameters. This linearized dynamics
(4.20) is used in CBF constraints (4.10b), which reduces the burden of the computational
complexity for the numerical simulation.
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Figure 4.5: Representation of the ego and the leading car in the curvilinear coordinate frame.

4.4.2.2 Control Design

A MPC-CBF is developed for this competitive car racing example using (4.10). The stage
cost function is designed as follows

q(xt+k|t,ut+k|t) =(xt+k|t − xr)
TQ(xt+k|t − xr) + uTt+k|tRut+k|t, (4.21)

where xr = (vt, 0, 0, 0, 0, 0), Q = diag(10, 0, 0, 0, 0, 10) and R = diag(1, 1). This cost function
allows the ego car to track the centerline with a target speed vt while minimizing the tracking
error from the centerline.

The motion of overtaking other racing cars is considered as CBF constraints in (4.10f).
At time step t, each CBF hit represents the safety criterion between ego car at (st, eyt) and
i-th other racing car at (sit, e

i
yt), described in the curvilinear coordinates, shown in Figure

4.5. We choose CBF in a quartic form as follows

hit =
(st − sit)

4

(2l1)4
+

(eyt − eiyt)
4

(2l2)4
− 1, (4.22)

where we assume all racing cars including ego car hold the shape of rectangle with a length
as 2l1 and width as 2l2. Notice that we assume that we have perfect estimation about (st, eyt)
and (sit, e

i
yt).

4.4.2.3 Simulation & Results

During the competition, we expect ego car to track the centerline with a target speed vt =
0.6m/s. MPC-CBF with a horizon N = 12 updates at 10 Hz. The system dynamics is
simulated at 1000 Hz and the controller sampling time is 0.1s. Our ego vehicle is simulated
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Figure 4.6: Speed profile during the car racing in one lap of the simulation.

with the nonlinear lateral vehicle dynamics model and we use the linearized dynamics along
the centerline to formulate our control design. In the simulation, we deploy several racing cars
to compete with the ego car. In order to better illustrate results, a snapshot of overtaking
motion with a zoom-in view is shown in Figure 4.1. The ego car begins with an initial speed
v0 = 0.2 m/s at the origin of the centerline and two other racing cars start in front of the ego
car. Two cars are simulated to move at 0.2 m/s while keeping a constant distance deviation
eiy from the centerline, where e1y = 0.1 m and e2y = −0.1 m. Figure 4.1 demonstrates that
the MPC-CBF allows ego car to safely race and overtake other cars in both left and right
directions. Figure 4.6 shows the speed profile, where the dashed black line shows the desired
speed. We can see that the ego car always tries to catch up to the target speed during the
competitive car racing. In Figure 4.1, we observe two motions of overtaking front racing
cars. Since two racing vehicles hold opposite distance deviations from the centerline, ego car
overtakes them with right and left turns respectively.

4.5 Chapter Summary

In this chapter, a safety-critical model predictive control design is proposed in this chapter,
where discrete-time control barrier function constraints are used in a receding horizon fashion
to ensure safety. We present an analysis of its stability and feasibility, and describe its relation
with MPC-DC and DCLF-DCBF. To verify our analysis, we use a 2D double integrator for
obstacle avoidance, where we can see that MPC-CBF outperforms both MPC-DC and DCLF-
DCBF. The proposed control logic is also applied to a more complex scenario: competitive
car racing, where our ego car can race and safely overtake other racing cars.

In the next chapter, we will focus specifically on the feasibility problem in the formulation
of model predictive control with control barrier functions.
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Chapter 5

Feasibility Enhancement in
Discrete-time Control Barrier
Function 3

5.1 Introduction

5.1.1 Motivation

Safety-critical optimal control and planning is one of the fundamental problems in robotic
applications. In order to ensure the safety of robotic systems while achieving optimal perfor-
mance, tight coupling between potentially conflicting control objectives and safety criteria
is considered in an optimization problem. Some researchers formulate this problem using
control barrier functions under the continuous dynamics of the system [9, 11], where the
optimal performance is achieved by the control Lyapunov functions and safety criteria is
guaranteed through control barrier functions. Recently, this methodology is also introduced
in the discrete-time domain and the optimal control problem can be formulated to calculate
the current optimal input [2], or a sequence of ones in the fashion of model predictive control
[224]. However, feasibility and safety are still the main challenges for these formulations
using discrete-time control barrier functions. In this chapter, our proposed formulations fo-
cus on how to handle these problems and provides a detailed analysis comparing to existing
methods using discrete-time control barrier functions.

5.1.2 Related Work

Designing controllers to ensure provable safety guarantees for autonomous systems is vital.
One approach to provide safety guarantees in control is to draw inspirations from control

3The material of this chapter is from “Enhancing feasibility and safety of nonlinear model predictive
control with discrete-time control barrier functions” published in 2021 60th IEEE Conference on Decision
and Control (CDC) [223].
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barrier functions [12]. The CBF-QP formulation [13] permits us to find the minimum per-
turbation for a given feedback controller to guarantee safety. Control Lyapunonv functions
(CLFs) [158] can be applied to stabilize the closed-loop dynamics of both linear and nonlin-
ear dynamical systems [61]. Together with CBFs, the CLF-CBF-QP formulation [11] enables
handling safety-critical constraints effectively in real-time. This approach is also generalized
for high-order systems [133, 214]. Robust or adaptive optimal control are also applied with
this technique [134, 90, 185, 122].

5.1.2.1 Optimal Control with Discrete-time CBFs

Besides the continuous-time domain, the formulations of CBFs are generalized into discrete-
time systems. An optimization problem can be formulated to calculate the current optimal
control input, proposed in the DCLF-DCBF formulation in [2]. A type of model predictive
control is also recently introduced to enhance performance. The model predictive control
with control Lyapunov functions (NMPC-DCLF) is proposed to ensure stability in [70],
where discrete-time CLF constraints are considered under nonlinear model predictive control
(NMPC). A control design (MPC-DCBF) for safety-critical tasks is firstly presented in [224],
where the safety-critical constraints are enforced by discrete-time control barrier functions.
This approach could also be applied to a multi-layer control framework [159, 69], where the
safety-critical control with discrete-time CBF serves as a mid-level controller or planner.

5.1.2.2 Feasibility & Safety

Among the formulations in the discrete-time domain, optimal control with discrete-time
CBFs also encounter feasibility issues. The feasibility issues arise due to the potential empty
intersection between the reachable set and the safe region confined by CBF constraints at
each time step. Moreover, with current approaches, there exists a tradeoff between safety
performance and feasibility and they cannot be enhanced at the same time, as discussed in
[224]. In other words, reducing the decay rate of CBF constraints increases the system safety,
but comes at the possibility of infeasibility. A potential way to partly handle the feasibility
issue is to adopt the CBF constraint only on the first time step as a one-step constraint,
as presented in the formulation MPC-GCBF in [124]. This approach is shown to enhance
the feasibility, however, we are still under the restriction between choosing feasibility and
safety, as the intersection between the reachable set and the safe region at the first step could
still potentially be empty. A soft constrained predictive safety filter with a terminal control
barrier function is proposed in [195], which enhances the safety with respect to the model
uncertainty. However, the tradeoff between feasibility and safety is unsolved.

Similarly, feasibility is challenging to be guaranteed in the continuous domain. Many
existing approaches relax the CLF constraint to resolve the conflict between CLF and CBF
constraints, as summarized in [12]. However, the QP-based problem could become infeasible
as the CBF constraint might violate the input constraint even when we relax the CLF
constraint. In [11], a valid CBF is specifically designed for the adaptive cruise control
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scenario based on the system dynamics under input constraints, which could ensure the
feasibility in the optimization. This approach solves the problem specifically for this system
but not for general nonlinear systems. Recently in [226], the decay rates of CBF constraints
are relaxed with optimization variables, which generally resolves the conflict between the
CBF constraint and the input constraint and guarantees point-wise feasibility.

In this chapter, the proposed formulations draw inspiration from the decay-rate relaxing
technique for the CBF constraint in the continuous-time domain, and will be shown to be
able to enhance the feasibility and the safety at the same time. The proposed formulations
are generalized for both one-step or multi-step constraints, and don’t specifically require only
a one-step constraint to increase the feasibility as done with MPC-GCBF [124].

5.1.3 Contributions

The contributions of this chapter are as follows:

• We propose two control frameworks for guaranteeing stability and safety using non-
linear MPC (NMPC), where the safety criteria are considered as discrete-time CBF
constraints, and stability criteria appear as CLFs formulated either as a terminal cost
or discrete-time constraints.

• The decay rates of the discrete-time control barrier function constraints are relaxed
in the optimization problem, which allow the proposed formulations to enhance the
feasibility and the safety at the same time for both one-step and multi-step input
optimization.

• The proposed formulations are shown theoretically to enhance the feasibility and safety
performance compared with existing approaches, and also validated with numerical
examples.

5.2 Background

Having introduced the problem, we next present background on CLFs and CBFs and revisit
some existing optimal control formulations using discrete-time CLFs and CBFs.

5.2.1 CLFs and CBFs

In this chapter, we consider a discrete-time control system as follows,

xt+1 = f(xt,ut), (5.1)

with x ∈ X representing the system state with the control input u confined by admissible
input set U . For safety-critical control, we consider a set C defined as the superlevel set of a
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continuously differentiable function h : X ⊂ Rn → R,

C = {x ∈ Rn : h(x) ≥ 0},
∂C = {x ∈ Rn : h(x) = 0},

Int(C) = {x ∈ Rn : h(x) > 0}.
(5.2)

Throughout this chapter, we refer to C as a safe set. The safe set can be regarded as the
ensemble of states satisfying distance constraints

h(x) ≥ 0. (5.3)

In a stricter manner, the function h becomes a control barrier function in the discrete-time
domain if it satisfies the following relation,

∆h(xk,uk) ≥ −γkh(xk), 0 < γk ≤ 1, (5.4)

where ∆h(xk,uk) := h(xk+1) − h(xk). Satisfying constraint (5.4), we have h(xk+1) ≥ (1 −
γk)h(xk), i.e, the lower bound of control barrier function h(x) decreases exponentially at
time k with the rate 1− γk.

Besides the system safety, we are also interested in stabilizing the system with a feedback
control law u under a control Lyapunov function V in the discrete-time domain,

∆V (xk,uk) ≤ −αkV (xk), 0 < αk ≤ 1, (5.5)

where ∆V (xk,uk) := V (xk+1) − V (xk). Similarly as above, the upper bound of control
Lyapunov function decreases exponentially at time k with the rate 1− αk.

5.2.2 Existing Approaches Revisited

In this section, we will revisit some existing optimal control formulations using discrete-time
CLFs or CBFs.

5.2.2.1 DCLF-DCBF [2]

The discrete-time control Lyapunov function and control barrier function can be unified
into one optimization program, which achieves the control objective and guarantees system
safety. This formulation was introduced in [2] and is presented as follows,

DCLF-DCBF:

u∗
k = argmin

(uk,s)∈Rm+1

uTkH(x)uk + ϕ(s) (5.6a)

∆V (xk,uk) + αkV (xk) ≤ s (5.6b)

∆h(xk,uk) + γkh(xk) ≥ 0 (5.6c)

uk ∈ U , (5.6d)



CHAPTER 5. FEASIBILITY ENHANCEMENT IN DISCRETE-TIME CONTROL
BARRIER FUNCTION 51

where H(x) is any positive definite matrix and s ≥ 0 is a slack variable together with an
additional cost term ϕ(s) ≥ 0 that allows the Lyapunov function to grow when the CLF and
CBF constraints are conflicting. The safe set C in (5.2) is invariant along the trajectories of
the discrete-time system with controller (5.6) if h(x0) ≥ 0 and 0 < γk ≤ 1.

5.2.2.2 MPC-DCBF [224]

Inspired by the previous work of model predictive control and control barrier functions,
DCLF-DCBF can be improved by taking future state prediction into account, yielding the
form of MPC-DCBF firstly introduced in [224]:

MPC-DCBF:

J∗
t (xt)=min

U
p(xt+N |t)+

N−1∑
k=0

q(xt+k|t,ut+k|t) (5.7a)

s.t. xt+k+1|t = f(xt+k|t,ut+k|t), k = 0, ..., N−1 (5.7b)

ut+k|t ∈ U , xt+k|t ∈ X , k = 0, ..., N−1 (5.7c)

xt|t = xt, (5.7d)

∆h(xt+k|t,ut+k|t) ≥ −γkh(xt+k|t). k = 0, ..., N−1 (5.7e)

Here, at each time t, the optimized cost-to-go function is denoted as J∗
t (xt) and U =

[uTt|t, ...,u
T
t+N−1|t]

T . In the cost function, p(xt+N |t) and q(xt+k|t,ut+k|t) represent terminal

cost and stage cost at each time step. The constraint (5.7b) describes the system dynam-
ics, (5.7c) shows the input constraints along the horizon and (5.7d) represents the initial
condition constraint. The CBF constraints imposed in (5.7e) are designed to guarantee the
forward invariance of the safe set C associated with the discrete-time control barrier function.
Here we have

∆h(xt+k|t,ut+k|t) = h(xt+k+1|t)− h(xt+k|t).

The optimal solution to (5.7) at time t is a sequence of inputs as U∗ = [u∗T
t|t , ...,u

∗T
t+N−1|t]

T .
Then, the first element of the optimizer vector is applied, i.e.,

ut = u∗
t|t(xt). (5.8)

This constrained finite-time optimal control problem (5.7) is repeated at time step t + 1,
based on the new state xt+1|t+1, yielding a receding horizon control strategy. In [224], MPC-
DCBF has been shown to have better exploration performance with predictive horizon, which
can be beneficial in maneuvering through deadlock conditions. However, MPC-DCBF has
a smaller region of feasibility than the DCLF-DCBF controller as more constraints are used
to confine the optimal control input.
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5.2.2.3 MPC-GCBF [124]

In the formulation (5.7), the CBF constraints are imposed on multi-steps along the horizon.
This increases the computational complexity with a large horizon and the possibility of
infeasibility also increases with more constraints. One way to suppress the computational
complexity and enhance the feasibility is to apply a one-step CBF constraint, which is done
by modifying the CBF constraint in (5.7e) as follows,

∆h(xt+1|t,ut|t) ≥ −γh(xt|t). (5.9)

This approach is firstly shown in the MPC-GCBF formulation in [124], and enhances the
feasibility and reduces the computational time at the same time due to fewer constraints.
This approach is also generalized with consideration over the high relative-degree constraint,
where constraints in (5.7e) are modified as constraints posed on two nonadjacent steps,

h(xt+m|t) ≥ (1− γ)mh(xt|t), (5.10)

where m represents the relative degree of the high-order safety constraint.

5.2.2.4 CLF-NMPC [70]

Beside the control barrier functions, the model predictive control is also unified with control
Lyapunov functions, where stability constraints with CLFs are considered in the proposed
CLF-NMPC formulation [70]. The CLF constraint can be imposed during one-step or multi-
step,

∆V (xt+k|t) ≤ −αkV (xt+k|t) + sk, (5.11)

where sk is the slack variable. The safety criteria is not considered in CLF-NMPC. For more
details see [70].

5.3 CLFs and CBFs unified with NMPC

In this section, we are going to present two proposed formulations: NMPC-DCBF and
NMPC-DCLF-DCBF unifying discrete-time CLFs and CBFs with NMPC.

5.3.1 Formulations

Firstly, we incorporate discrete-time CBF constraints of decay rates under a relaxing tech-
nique into a nonlinear model predictive control framework, denoted as NMPC-DCBF with
the decision variables U = [uTt|t, ...,u

T
t+N−1|t]

T and Ω = [ω1, ..., ωMCBF−1]
T .
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NMPC-DCBF:

J∗
t (xt) = min

U,Ω
βV (xt+N |t) +

N−1∑
k=0

q(xt+k|t,ut+k|t) + ψ(ωk) (5.12a)

s.t. xt+k+1|t = f(xt+k|t,ut+k|t), k=0, ..., N−1 (5.12b)

ut+k|t ∈ U , xt+k|t ∈ X , k = 0, ..., N − 1 (5.12c)

xt|t = xt, (5.12d)

h(xt+k+1|t) ≥ ωk(1− γk)h(xt+k|t), ωk ≥ 0 k = 0, ...,MCBF − 1 (5.12e)

The system dynamics (5.12b), the input constraint (5.12c) and the initial condition (5.12d)
are imposed on the optimization. The control Lyapunov function V (xt+N |t) is used as a
terminal cost scaled up with the parameter β, together with the cumulative stage cost along
the horizon

∑N−1
k=0 q(xt+k|t,ut+k|t). The terminal cost as CLF adopts the fashion of work

from the field of MPC, as noted in [152], where stability usually can be achieved without
the need to specify a terminal state constraint if β is selected large enough.

Different from the formulation in (5.7), the decay rates of control barrier functions are
relaxed from the fixed value 1− γk into optimization variables ωk(1− γk) and an additional
cost about the relaxing rate variables ψ(ωk) ≥ 0 is included in the optimization. This
function ψ can be tuned for different performance. The slack variable ωk for relaxing is
constrained by (5.12e) such that the following relation is guaranteed,

h(xt+k+1|t) ≥ ωk(1− γk)h(xt+k|t) ≥ 0. (5.13)

This results in the safety guarantee for the first MCBF steps in the open-loop trajectory
but not for the entire horizon N . Here, one horizon length N is designed for dynamics
constraint, input constraint and stage cost, and another horizon lengthMCBF ≤ N is applied
for CBF constraints, which allows us to choose the appropriate value of MCBF to reduce the
computational complexity. We denote this formulation as NMPC-DCBF as the optimization
is always nonlinear since the constraints (5.12e) are nonlinear even if system dynamics and
the h(.) function are linear. Note that the constraints inside a MPC-DCBF could become
linear if the system dynamics and the h(.) function are linear.

Remark 5.1. Here, we hypothesize that the existence of the closed-loop trajectory can still
be guaranteed by iterations. Formal guarantee of this property requires analysis of recursive
feasibility and reachability, which will be proved in the subsequent work.

Remark 5.2. NMPC-DCBF represents a generalized form of MPC-DCBF and MPC-GCBF
with the relaxing technique of decay rates of safety constraints. When the slack variable ωk is
fixed as 1, NMPC-DCBF becomes the same as MPC-DCBF when MCBF = N and the same
as MPC-GCBF when MCBF = 1.
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Remark 5.3. The fixed decay rates for safety constraints existing in MPC-DCBF and MPC-
GCBF are relaxed and become optimization variables in NMPC-DCBF, which increase the
optimization feasibility.

Remark 5.4. MPC-GCBF reduces the computational complexity and increases feasibility by
reducing multi-step constraints into one-step. However, one-step constraint might not confine
the system sufficiently and the optimization problem may become infeasible after a while in
the closed-trajectory, as shown in Figure 5.4b. Moreover, its set invariance for high-relative
degree constraint relies on additional assumptions that h(xt+i|t) > 0 for i = 0, 1, ...m−1,
shown in [124, Theorem 2]. This could be invalid as it depends on the initial condition of
the system. Additionally, identifying the high-relative degree of general complex dynamical
systems could be difficult. In our proposed approach, we continue to use the multi-step
constraints, which guarantee stronger set invariance with less assumptions. To apply NMPC-
DCBF on a high-relative degree system, we just simply need MCBF ≥ m, where m represents
the relative-degree defined in (5.10).

Alternatively, the stability criteria with CLF could be posed as constraints instead of as
a terminal cost, which leads to the formulation as follows,

NMPC-DCLF-DCBF:

J∗
t (xt)= min

U,Ω,S

N−1∑
k=0

q(xt+k|t,ut+k|t)+ψ(ωk)+ϕ(sk) (5.14a)

s.t. xt+k+1|t = f(xt+k|t,ut+k|t), k = 0, ..., N − 1 (5.14b)

ut+k|t ∈ U , xt+k|t ∈ X , k = 0, ..., N − 1 (5.14c)

xt|t = xt, (5.14d)

h(xt+k+1|t) ≥ ωk(1− γk)h(xt+k|t), ωk ≥ 0 k = 0, ...,MCBF − 1 (5.14e)

V (xt+k+1|t) ≤ (1− αk)V (xt+k|t) + sk, k = 0, ...,MCLF − 1 (5.14f)

where MCLF and MCBF are the horizon length for CLF and CBF constraints respectively,
which can be chosen to be less than the prediction horizon N . The slack variables S =
[s1, ..., sMCLF

]T are introduced to avoid infeasibility between CLF and CBF constraints and
additional term ϕ(sk) ≥ 0 is added into the cost function to minimize those slack variables.
This formulation is denoted as NMPC-DCLF-DCBF for later discussions.

Remark 5.5. NMPC-DCLF-DCBF represents a generalized form for DCLF-DCBF with
horizon lengths for cost and constraints. When the horizon lengths for CLF and CBF con-
straints equal to one, i.e., MCLF = MCBF = 1, the NMPC-DCLF-DCBF becomes exactly
as DCLF-DCBF except the decay rate of CBF constraint is relaxed. This relaxation is nec-
essary as it enhance feasibility. Compared with NMPC-CLF in [70], NMPC-DCLF-DCBF
represents an extended form by adding safety constraints.
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Remark 5.6. On one hand, the proposed formulations (5.12), (5.14) have additional com-
putational complexity generated due to the introduction of the optimization variables ωk. On
the other hand, reducing the horizon length for constraints (MCBF and MCLF) could reduce
the computational complexity. The joint influence on computational complexity arising from
the additional optimization variables and reduced constraint horizons for the optimization
problem depends on the system dynamics and non-linearity of the control barrier functions.
When the control barrier functions are nonlinear, the majority of non-linearity in the opti-
mization comes from the CBF constraints, and therefore the reduction in complexity arising
from the reduced constraint horizons would dominate the increase in complexity that arises
from the introduction of additional optimization variables ωk.

5.4 Theoretical Analysis

In this section, we are going to illustrate theoretically the advantages about feasibility and
safety of the proposed approaches. These advantages compared with the state-of-the-art are
summarized in Table 5.1.

5.4.1 Theoretical Analysis of Feasibility

In this section, we are going to illustrate the enhancement of feasibility with reachability
analysis by comparing MPC-DCBF and NMPC-DCBF.

For the MPC-DCBF formulation, the reachable set and safe region confined by the CBF
constraint at each time are defined respectively as follows:

RMPC-DCBF
k = {xt+k|t ∈ Rn : ∀i = 0, ..., k − 1,xt+i+1|t = f(xt+i|t,ut+i|t),

ut+i|t ∈ U ,xt+k|t ∈ X ,xt|t = xt},
(5.15)

SMPC-DCBF
k = {xt+k|t ∈ Rn : h(xt+k|t)−h(xt+k−1|t)≥−γkh(xt+k−1|t)}. (5.16)

The optimization of MPC-DCBF is feasible when the intersections between the reachable
set RMPC-DCBF

k and safe set SMPC-DCBF
k at time t+ k are non-empty for all k. We denote the

safe region at each time step as SMPC-DCBF
k , but notice that it also depends on the value of

optimal value xt+k−1|t, which depends on the states and the inputs of previous nodes before
the index k− 1. SMPC-DCBF

k could be rewritten as a function of reachable set at the one-step
before,

SMPC-DCBF
k ={xt+k|t ∈ Rn : h(xt+k|t) ≥ (1− γk) inf

x∈RMPC-DCBF
k−1

h(x)}, (5.17)

as (5.16) leads to the following equation being valid

h(xt+k|t) ≥ (1− γk)h(xt+k−1|t),
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with at least one value of xt+k−1|t.
For the NMPC-DCBF formulation, the reachable set is the same as MPC-DCBF as they

share the same initial condition, system dynamics and input constraints, i.e.,

RNMPC-DCBF
k = RMPC-DCBF

k .

The corresponding safe region at each step is as follows,

SNMPC-DCBF
k = {xt+k|t ∈ Rn : ωk ≥ 0, h(xt+k|t) ≥ ωk(1− γk) inf

x∈RNMPC-DCBF
k−1

h(x)}. (5.18)

As ωk is an optimization variable with constraint ωk ≥ 0, this leads us to rewrite SNMPC-DCBF
k

as follows,

SNMPC-DCBF
k = {xt+k|t ∈ Rn : h(xt+k|t) ≥ 0} = C. (5.19)

We can see that any value of γk for NMPC-DCBF won’t affect the feasibility, as SNMPC-DCBF
k

equals the safe set C defined in (5.2), which is independent of γk. Hence, we have SMPC-DCBF
k

in (5.17) always as a subset of SNMPC-DCBF
k in (5.19), as

SMPC-DCBF
k ⊂ SNMPC-DCBF

k = C (5.20)

which results in showing that the feasible regions of decision variable xt+k|t is always larger
when applying NMPC-DCBF approach compared to MPC-DCBF

RMPC-DCBF
k ∩ SMPC-DCBF

k ⊂ RNMPC-DCBF
k ∩ SNMPC-DCBF

k , (5.21)

where feasibility region at step k is the intersection between reachable set Rk and safe set
Sk for both approaches. To sum up, as the relaxing technique for decay rates is applied
in NMPC-DCBF and NMPC-DCLF-DCBF, we can state they outperform MPC-DCBF /
MPC-GCBF / DCLF-DCBF from the perspective of feasibility.

Remark 5.7. In (5.19), we see that SNMPC-DCBF
k = C, which is the same as the region

enforced by the distance constraint (5.3). This reveals the NMPC-DCBF holds the same
feasible region as MPC-DC [224]. Therefore, the feasible regions for NMPC-DCBF and
NMPC-DCLF-DCBF are constant with respect to different hyperparameters γk, which will
be shown in Figure 5.1, 5.2 and 5.3.

5.4.2 Theoretical Analysis of Safety

The system safety can be influenced by many factors, including the safety function, the cost
function, and other hyperparameters, etc. In this section, we focus on the influence from the
hyperparameter γk and the additional cost function ψ(ωk) for the slack variable ωk of decay
rate.
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By reducing γk for MPC-DCBF / MPC-GCBF / DCLF-DCBF, the system safety will
increase as the smaller γk represents a slower decay rate of lower bound of control barrier
function, see (5.4). However, from (5.17), we can see that reducing γk for MPC-DCBF
makes SMPC-DCBF

k smaller, which leads the optimization more likely to be infeasible along
the trajectory as the intersection between the reachable set and the region constrained by
safety constraint decreases. This leads to a tradeoff between feasibility and safety. This
tradeoff also happens among DCLF-DCBF and MPC-GCBF with similar reasons and forces
us to choose either feasibility or safety for performance. However, in the case of our proposed
NMPC-DCBF, the region confined by safety constraint won’t be affected by changing the
value of γk, as shown in (5.19). Hence, the intersection between the reachable set and the
region constrained by safety constraint is independent of γ. This allows us to enhance the
safety by reducing γk while not harming feasibility, which resolves the tradeoff between
feasibility and safety.

The design of the additional cost function ψ(ωk) for the decay-rate slack variable ωk could
also affect the safety performance. For example, the function ψ(ωk) can be in the form as
follows,

ψ(ωk) = Pω(ωk − 1)2 (5.22)

which keeps ωk close to 1 and thus minimizes the deviation of the CBF constraint from the
nominal decay rate of 1 − γk. When the hyperparameter Pω becomes larger, the optimized
value of ω tends to be closer to 1, which implies the deviation from the nominal decay rate
1− γk is smaller. Numerically, γk tends to be optimized as value smaller than 1 to increase
the safe region (5.19) confined by CBF constraint at each time step. When ωk = 0, the
relaxed CBF constraint becomes equivalent to a simple distance constraint and MPC with
distance constraints (MPC-DC [224]) needs longer horizon to generate an expected obstacle
avoidance performance in a closed-loop trajectory. Therefore, it’s not recommended to set
a relatively too small value for Pω, which would over-relax the CBF constraint, i.e., the
optimized value of ωk could be too small.

To sum up, by reducing γk and utilizing an appropriate form of the additional cost func-
tion for decay-rate slack variable ωk, the proposed approach would outperform the existing
formulations in term of safety while not harming feasibility performance.

5.5 Numerical Examples & Results

In this section, we are going to show numerical results to illustrate the advantages of our
proposed formulations with respect to the existing approaches. Consider the discrete-time
linear triple-integrator system,

xk+1 = Axk +Buk (5.23)

where x = [x, v, a]T and u = [j]T represent position (x), velocity (v), acceleration (a) and
jerk (j), respectively. The admissible input set is U = {j ∈ R : jmin ≤ j ≤ jmax}.

For numerical simulations in this section, we set the sampling time as ∆t = 0.1s together
with input lower and upper bounds as jmin,max = −1m/s3, 1m/s3. All simulations run in
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(a) γk = 0.05 (b) γk = 0.10

(c) γk = 0.15 (d) γk = 0.20

Figure 5.1: Feasibility comparison with high-order CBF between MPC-DCBF and NMPC-
DCBF with different values of decay rates.

MATLAB and the optimal control is formulated with Yalmip [120] as modelling language
and solved with IPOPT [196].

5.5.1 Numerical Results for Feasibility

Our proposed formulations along with existing ones is compared by solving the optimization
problems at all sampling states in a closed space. Precisely, we iterate over sampling states
in the closed space X as

X = {(x, v, a) ∈ R3 : xmin ≤ x ≤ xmax, vmin ≤ v ≤ vmax, amin ≤ a ≤ amax}

and run these optimal controllers to see whether the optimization problems are feasible at
a given state xt. For simulation, we set xmin,max = −2m, 0m, vmin,max = 0m/s, 2m/s and
amin,max = 0m/s2, 2m/s2. All the feasibility performance comparison is evaluated between
approaches with the same horizon N and same form of stage cost and terminal cost.

To compare the feasibility performance among MPC-DCBF, MPC-GCBF and NMPC-
DCBF, we choose a high-order control barrier function

h(x) = −x, (5.24)
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(a) γk = 0.05 (b) γk = 0.10

(c) γk = 0.15 (d) γk = 0.20

Figure 5.2: Feasibility comparison with high-order CBF between MPC-GCBF and NMPC-
DCBF with different values of decay rates.

which enforces the system to stay on one side of the yz plane (x ≤ 0). In Figs. 5.1, 5.2,
results from NMPC-DCBF are compared with MPC-DCBF and MPC-GCBF for feasibility
analysis. The comparisons are validated with different values of γk = 0.05, 0.10, 0.15, 0.20.
For a reasonable comparison, the horizon length of CBF constraints is assumed asMCBF = 3
for NMPC-DCBF to compare with MPC-GCBF, as the relative-degree of the CBF in (5.24) is
3 for a triple integrator system. The formulations of MPC-DCBF and MPC-GCBF are shown
to enhance the feasibility with larger value of γ. MPC-GCBF does enhance the feasibility
compared with MPC-DCBF as more states are feasible for MPC-GCBF with any value of
γk. The feasibility of the proposed NMPC-DCBF is shown to consistently outperform MPC-
DCBF and MPC-GCBF for any value of γk, where the feasible state region for MPC-DCBF
or MPC-GCBF lies always inside the one for NMPC-DCBF. Additionally, the feasible state
region of NMPC-DCBF is independent of the value of γk, shown in Figs. 5.1, 5.2, which
verifies SNMPC-DCBF

k is independent of γk as shown in (5.19).
To compare the feasibility performance between DCLF-DCBF and NMPC-DCLF-DCBF,

we choose a relative-degree one control barrier function

h(x) = x2 + v2 + a2 − 1, (5.25)

as the DCLF-DCBF method can only optimize one-step control input. The comparison result
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(a) γk = 0.05 (b) γk = 0.10

(c) γk = 0.15 (d) γk = 0.20

Figure 5.3: Feasibility comparison with CBF between DCLF-DCBF and NMPC-DCLF-
DCBF with different values of decay rates.

(a) MPC-DCBF (N = 8) (b) MPC-GCBF (N = 8) (c) NMPC-DCBF (N =
8,MCBF = 8)

Figure 5.4: Evolution of control barrier function in the closed-loop trajectory by using con-
trollers MPC-DCBF, MPC-GCBF and NMPC-DCBF with various decay rates.
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is shown in Figure 5.3, where NMPC-DCLF-DCBF outperforms DCLF-DCBF in terms of
feasibility for any values of γk. Similar to what we have seen previously, DCLF-DCBF
enhances the feasibility with larger γk, while the feasible state region for NMPC-DCLF-
DCBF is independent of γk. Notice that the unsafe states, which are inside the sphere region
defined by (5.25), are excluded from the state sampling test for feasibility. The zero-level
surface of the control barrier function is colored in yellow in Figure 5.3.

We also remark that the number of safety constraints for NMPC-DCBF and NMPC-
DCLF-DCBF are larger than the ones for MPC-GCBF and DCLF-DCBF, but the feasibility
performance are enhanced in our proposed approach, which demonstrates the importance of
decay-rate relaxing technique that are introduced in the two proposed formulations. To sum
up, the proposed formulations outperform the state-of-the-art in terms of feasibility.

5.5.2 Safety

The safety performance between controllers are compared numerically in this section. Given
the same initial condition x0 = [−2.0, 0.0, 1.0]T , we test each controller performance by
using hyperparameters γk = 0.05, 0.10, 0.15, 0.20. The results for comparison among these
approaches are shown in Figure 5.4. Among MPC-DCBF and NMPC-DCBF, it can seen that
by reducing the value of γk, the value of CBF decreases slower, which implies a safer closed-
loop trajectory. We notice that NMPC-DCBF is the only approach that maintains feasibility
along the trajectory with γ = 0.05, while the other two approaches are infeasible right at the
initial condition. Additionally, as illustrated in Figure 5.4b, MPC-GCBF becomes infeasible
after around 5 seconds in a closed-loop trajectory starting from the initial condition. This
arises from the fact that the one-step constraint doesn’t sufficiently confine the system for
safety and leads the system into an infeasible state after a while. We also notice that the
control barrier function for NMPC-DCBF with γk = 0.20 is larger than γk = 0.15 after
t = 8s. This happens due to numerical errors as after t = 8s, the CBF h(x) is very close to
zero and its derivative becomes almost zero and the solver tends to optimize the additional
cost for relaxing decay-rate variable instead of the stage and terminal cost. Together with
feasibility analysis in Sec. 5.5.1, we have shown that by reducing γk, NMPC-DCBF could
enhance the safety of the closed-loop trajectory while not adversely affecting feasibility, which
resolves the tradeoff between feasibility and safety.

5.6 Chapter Summary

In this chapter, we have proposed formulations to unify control Lyapunov function and con-
trol barrier functions under the framework of nonlinear model predictive control. Compared
with previous work, the decay-rate of the CBF constraints are relaxed and different horizon
lengths are considered for the cost function and the constraints. The proposed formulations
are shown both theoretically and numerically to outperform the state-of-the-art from the
perspective of feasibility and safety.
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The proposed formulations in this chapter largely reduces the possibility of infeasibility
and will be used for control and trajectory generations in later parts, especially for Chap-
ters 7, 9 and 10.
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Part II

Obstacle Avoidance for Control and
Trajectory Generation
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Chapter 6

Polytopic Obstacle Avoidance for
Continuous-time Control Systems 4

6.1 Introduction

Achieving safety-critical navigation for autonomous robots in an environment with obstacles
is a vital problem in robotics research. Recently, control barrier functions (CBFs) together
with quadratic program (QP) based optimizations have become a popular method to design
safety-critical controllers. In this chapter, we propose a novel duality-based approach to
formulate the obstacle avoidance problem between polytopes into QPs in the continuous
domain using CBFs, which could then be deployed in real-time.

6.1.1 Related Work

6.1.1.1 Control Barrier Functions

One approach to provide safety guarantees for obstacle avoidance in control problems is
to draw inspiration from control barrier functions. CBF-QPs [12] permit us to find the
minimum deviation from a given feedback control input to guarantee safety. The method
of CBFs can also be generalized for high-order systems [133, 214], discrete-time systems [2,
223, 7] and input-bounded systems [224, 3, 99, 28]. It must be noted that early work on
nonovershooting control in [107] could also have been used to obtain results similar to control
barrier functions. Specifically, CBFs are widely used for obstacle avoidance [222, 179, 83,
126, 74, 127] with a variety of applications for autonomous robots, including autonomous
cars [38], aerial vehicles [210] and legged robots [81]. The shapes of robots and obstacles
are usually approximated as points [38], paraboloids [52] or hyper-spheres [224], where the
distance function can be calculated explicitly as an analytic expression from their geometric

4The material of this chapter is from “Duality-based convex optimization for real-time obstacle avoid-
ance between polytopes with control barrier functions” published in 2022 American Control Conference
(ACC) [187]. This paper is was led by Akshay Thirugnanam.
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Figure 6.1: Snapshots of solving the moving sofa (piano) problem where the controlled object
can maneuver through a tight corridor whose width is smaller than the diagonal length of
the controlled object.

configuration. The distance functions for these shapes are differentiable and can be used as
control barrier functions to construct a safety-critical optimal control problem.

However, these approximations usually over-estimate the dimensions of the robot and
obstacles, e.g., a rectangle is approximated as the smallest circle that contains it. When a
tight-fitting obstacle avoidance motion is expected, as shown in Figure 6.1, robots and obsta-
cles are usually approximated as polytopes. While this makes maneuvers less conservative
for obstacle avoidance, computing the distance between two polytopes requires additional
effort [63]. Moreover, since this distance is not in an explicit form, it cannot be used directly
as a CBF. Furthermore, the distance between polytopes is non-differentiable [1], which ne-
cessitates the use of nonsmooth control barrier functions (NCBFs) to guarantee safety [66],
[65].

6.1.1.2 Obstacle Avoidance between Polytopes

We narrow our discussions about obstacle avoidance between polytopes into optimization-
based approaches. In [110], obstacle avoidance between rectangle-shaped objects in an offline
planning problem is studied, where collision avoidance is ensured by keeping all vertices of the
controlled object outside the obstacle. Generally, when controlled objects are polyhedral, the
collision avoidance constraints can be reformulated with integer variables [71]. This method
applies well for linear systems using mixed-integer programming but cannot be deployed
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as real-time controllers for general nonlinear systems due to the complexity arising from
integer variables. The obstacle avoidance problem between convex regions could also be
solved by using sequential programming [167], where penalizing collisions with a hinge loss
is considered through an offline optimization problem.

Recently, a duality-based approach [227] was introduced to non-conservatively reformu-
late obstacle avoidance constraints as a set of smooth non-convex ones, which is validated
on navigation problems in tight environments [225, 171, 64, 53]. This idea does optimize
the computational time compared with other ideas, but nonlinear non-convex programming
is still involved. Moreover, this approach can only be used for offline planning for nonlin-
ear systems. This philosophy has been extended into discrete-time control barrier functions
(DCBFs) to enforce obstacle avoidance constraints between polytopes in real-time [188].
However, the resulting DCBF formulation is still non-convex with non-convex DCBF or
nonlinear system dynamics, and the computation time of the DCBF formulation might not
be sufficiently low enough to be real-time. On the other hand, a continuous-time formula-
tion can result in a convex optimization formulation even for nonlinear systems, which leads
to faster computation times. Thus, continuous-time obstacle avoidance between polytopes
requires a computationally efficient implementation, such as CBF-QPs and proper analysis
on the nonsmooth nature of distance between polytopes to guarantee safety. To summa-
rize, real-time obstacle avoidance between polytopes with convex programming for general
nonlinear systems is still a challenging problem.

6.1.2 Contributions

The contributions of this chapter are as follows:

• We propose a novel approach to reformulate a minimization problem for obstacle avoid-
ance between polytopes for nonlinear affine systems into a duality-based quadratic
program with CBFs.

• We establish the obstacle avoidance algorithm for the minimum distance between poly-
topes under a QP-based control law that guarantees safety, where the nonsmooth na-
ture of the minimum distance between polytopes is resolved in the dual space. This
formulation is used for real-time safety-critical obstacle avoidance.

• Our proposed algorithm demonstrates real-time obstacle avoidance at 50Hz in the
moving sofa (piano) problem [80] with nonlinear dynamics, where an L-shaped con-
trolled object can maneuver safely in a tight L-shaped corridor, whose width is less
than the diagonal length of the controlled object.
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6.2 Background

We consider N robots, with the i-th robot having states xi ∈ X ⊂ Rn and nonlinear, control
affine dynamics:

ẋi(t) = f i(xi(t)) + gi(xi(t))ui(t), i ∈ [N ], (6.1)

where, ui(t) ∈ U ⊂ Rm, f i : X → Rn and gi : X → Rn×m are continuous, and [N ] =
{1, ..., N}. We assume X to be a connected set and U a convex, compact set. While the
dimensions of the states and inputs for each system can be different, we assume them to be
the same across the systems for simplicity. Throughout the chapter, superscripts of variables
denote the robot index and subscripts denote the row index of vectors or matrices.

6.2.1 Closed-loop Trajectory for Discontinuous Inputs

Polytopes have non-differentiable surfaces, and the minimum distance between polytopes
could be non-differentiable at these points of non-differentiability. Hence, enforcing safety
constraints with the nonsmooth distance could result in the loss of continuity property of
the feedback control. Since f i and gi might not be Lipschitz continuous and ui(t) may be
discontinuous, the solution of (6.1) need not be unique or even well-defined. In this case, to
have a well-defined notion of a solution to (6.1), the dynamical system (6.1) is turned into
a differential inclusion. Let ui : X → U be some measurable feedback control law. A valid
solution for the closed loop trajectory is defined via the Filippov map [65] as

ẋi(t) ∈ F [f i + giui](xi(t)) := co{ lim
k→∞

(f i+giui)(x(k)) : x(k) → xi(t), x(k) /∈ Qf ,Q} (6.2)

where ‘co’ stands for convex hull, x(k) denotes the k-th element of the sequence {x(k)}, Qf

is a system-dependent zero-measure set, and Q is any zero-measure set. The resulting map
F [f i + giui] : X → 2R

n
is a non-empty convex, compact, and upper semi-continuous set-

valued map. Here 2R
n
denotes the power set of Rn. For a set-valued map Γ : X → 2R

n

to be upper semi-continuous at a ∈ X , we require, ∀ {a(m)} ∈ X and {b(m)} such that
b(m) ∈ Γ(a(m)), limm→∞ a(m) = a and limm→∞ b(m) = b ⇒ b ∈ Γ(a). Then for all xi0 ∈ X ,
a Filippov solution exists for the differential inclusion (6.2) with xi(0) = xi0 [45, Prop. 3].
A Filippov solution on [0, t] is an absolutely continuous map xi : [0, T ] → X which satisfies
(6.2) for almost all t ∈ [0, T ]. Throughout the chapter, the term “almost all” means for all
but on a set of measure zero.

6.2.2 Minimum Distance between Polytopes

For robot i, we define the polytope P i(xi) as the l-dimensional physical domain associated
to the robot at state xi ∈ X with

P i(xi) := {z ∈ Rl : Ai(xi)z ≤ bi(xi)}, (6.3)
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where Ai : X → Rri×l and bi : X → Rri×1 represent the half spaces that define the geometry
of robot i at some state, shown in Figure 6.2. We assume that the following properties hold
for Ai and bi:

• ∃ R, r > 0 such that ∀ xi ∈ X , ∃ c ∈ Rl such that Br(c) ⊂ P i(xi) ⊂ BR(c), where
Br(c) represents the open ball with radius r centered at c.

• Ai, bi are continuously differentiable, and ∀ x ∈ X , the set of inequalities Ai(x)z ≤ bi(x)
does not contain any redundant inequality.

• ∀ x ∈ X , the set of active constraints at any vertex of P i(x) are linearly independent.

The first assumption requires that the geometry of the robot P i(x) be uniformly bounded
with a non-empty interior for all x ∈ X . This assumption guarantees regularity condi-
tions [20, Definition 2.3] are met for minimum distance computations, which in turn guar-
antee the essential conditions of continuity [20, Theorem 2.3] and differentiability [20, The-
orem 2.4] of minimum distance. The last assumption requires that no more than l half
spaces intersect at any vertex. As an example, a square pyramid in 3D does not satisfy this
criterion. Any polytope that does not satisfy this assumption can be tessellated into smaller
polytopes, such as tetrahedra.

The square of the minimum distance between P i(xi) and Pj(xj) is defined as hij(xi, xj),
where hij : X × X → R can be computed using the following QP:

hij(xi, xj) := min
{zi,zj}

∥zi − zj∥22

s.t. Ai(xi)zi ≤ bi(xi), Aj(xj)zj ≤ bj(xj), zi, zj ∈ Rl.
(6.4)

Note that compared to the prior work on CBFs, the distance hij is implicit and is a solution
of a minimization problem. By the regularity and smoothness assumptions on the polytopes,
hij is locally Lipschitz continuous [103, Lemma 1]. Variables zi, zj ∈ Rl denote points inside
the polytopes P i(xi) and Pj(xj) respectively. Since the feasible sets of (6.4) are non-empty
(by assumption), convex, and compact, the solution to the QP (6.4) always exists and is
non-negative. When the robots intersect with each other the minimum distance is uniformly
zero, and there is no measure of penetration between the polytopes.

6.2.3 Nonsmooth Control Barrier Functions

For obstacle avoidance, we want to design a controller such that the minimum distance
between any pair of robots i and j should be strictly greater than 0. We define a safe set
of states S ij as the zero-superlevel set of the minimum distance between robots i and j, hij

[12],
S ij := {(xi, xj) : hij(xi, xj) > 0}c, (6.5)
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where (·)c denotes closure of a set. Note that since hij(xi, xj) = 0 for intersecting robot
geometries, we use closure to obtain the correct safe set. The closed-loop system is considered
safe if (xi(t), xj(t)) ∈ S ij ∀ t ∈ [0, T ], where T is time till which the solution is defined.

Let ui(xi), uj(xj) ∈ U be feedback control laws that are measurable, with corresponding
Filippov solutions xi(t), xj(t) for t ∈ [0, T ]. Since hij is locally Lipschitz and the state
trajectories are absolutely continuous, hij(t) := hij(xi(t), xj(t)) is an absolutely continuous
function, and is thus differentiable at almost all t ∈ [0, T ].

Lemma 6.1. [66, Lemma 2] Let α : R → R be a locally Lipschitz class-K function. If

ḣij(t) ≥ −α(h(t)) (6.6)

for almost all t ∈ [0, T ] and h(0) > 0, then h(t) > 0 ∀ t ∈ [0, T ], making the system safe.

In this case the absolutely continuous function hij(t) is called a Nonsmooth Control
Barrier Function (NCBF), which is a generalization of Control Barrier Functions (CBFs) to
nonsmooth functions. The constraint (6.6) is called the NCBF constraint. In the following
section we derive a safety-critical feedback control law that satisfies this property.

Remark 6.1. For simplicity of discussion, the later analysis will be illustrated for a pair
of robots i and j, and results will be generalized where necessary. Further, for simplicity of
notation, we denote x := (xi, xj), h(x) := hij(xi, xj), S := S ij, and u := (ui, uj) for the pair
of systems i and j.

6.3 NCBFs for Polytopes

In this section, we will illustrate a general approach for imposing NCBF constraints for
polytopes. In order to enforce the NCBF constraints, we need to be able to write ḣ(t)
explicitly in terms of Ȧi(t), Ȧj(t), ḃi(t), ḃj(t), which in turn depend on u. In the following
sub-section, we attempt to construct an explicit formula for ḣ(t).

6.3.1 Primal Approach

To explicitly compute ḣ(t), we first need to show that it exists. Let x(t), t∈[0, T ] be the
Filippov solution corresponding to a feedback control law u(x). Let O(t) be the set of all
optimal solutions to (6.4) at time t. For any pair of optimal solutions (z∗i(t), z∗j(t)) ∈ O(t),
let s∗(t) := z∗i(t) − z∗j(t) be the separating vector. s∗(t) is fundamental for the distance
formulation between polytopes since it is related to the minimum distance hij(t) = ∥s∗(t)∥22.
We will next prove that s∗(t) is unique, continuous, and right-differentiable.

Lemma 6.2. For all t∈[0, T ], the separating vector s∗(t) is unique for all pairs of primal
optimal solutions (z∗i(t), z∗j(t)).
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Proof. The feasible set of (6.4) is convex and compact, and the cost function ∥zi − zj∥22 is
convex. Projecting the feasible set onto the zi + zj = 0 surface, the resulting set is also
convex and compact. Note that s = zi−zj ∈ Rl represents the projected co-ordinates on the
zi+ zj = 0 surface. The resulting cost function is ∥s∥22, is strictly convex, and therefore, the
optimal solution s∗(t) of the projected problem exists and is unique. Since for any pair of
primal optimal solutions (z∗i(t), z∗j(t)), z∗i(t)−z∗j(t) is an optimal solution to the projected
problem, z∗i(t)− z∗j(t) equals s∗(t) for all pairs of optimal solutions of (6.4).

For all (z∗i(t), z∗j(t)) ∈ O(t), we define Acti(t) ⊂ [ri] (Actj(t) ⊂ [rj]) as the set of indices
of constraints that are active for all z∗i(t) (z∗j(t)) for P i(t) (Pj(t)). Then,

Affi(t) := {zi : AiActi(t)(t)z
i = biActi(t)(t)} (6.7)

Affj(t) := {zj : Aj
Actj(t)

(t)zj = bj
Actj(t)

(t)}

represent two parallel affine spaces such that the minimum distance between robots i and j at
t is the distance between Affi(t) and Affj(t). These affine spaces can be points, hyperplanes,
or even the entire space if the two polytopes intersect. An example is pictorially depicted in
Figure 6.2.

We now assume that for almost all t ∈ [0, T ], ∃ ϵ > 0 such that the dim(Affi(t)),
dim(Affj(t)), and dimension of the othogonal subspace common between Affi(t) and Affj(t)
are constant for τ ∈ [t, t + ϵ). This is true when the set of times when states of the system
oscillate infinitely fast has zero-measure. In practice the states of the system do not oscillate
infinitely fast due to limited control frequency and inertia of the system. Then, under this
assumption, we have the following result:

Lemma 6.3. The separating vector s∗(t) is continuous and right-differentiable for almost
all t ∈ [0, T ].

Proof. Let t be a time when the dimensions of the affine spaces and null space is constant for
τ ∈ [t, t + ϵ). The separating vector s∗(τ) is the unique vector from Affi(τ) to Affj(τ) that
is perpendicular to both of them. These three constraints (that define s∗(τ) and establish
orthogonality of s∗(τ) to Affi(τ) and Affj(τ)) can be written in the form of a system of linear
equalities with the matrix right-differentiable at τ = t. By the assumption on constant
dimensions of the above spaces (Affi(t),Affj(t), and their common orthogonal subspace),
this matrix has constant rank for τ ∈ [t, t+ ϵ). By Lemma 6.2, there is at least one solution
to this system ∀ τ ∈ [t, t+ ϵ). A right-differentiable solution to s∗(τ) can be found from this
linear system using Gauss elimination. Since s∗(t) is unique by Lemma 6.2, s∗(t) must be
right-differentiable, and thus continuous, at t.

To impose the NCBF constraint we then compute ḣ(t) = limδ→0+ 1/δ(h(t+ δ)−h(t)) as:

ḣ(t+) =
d

dτ
∥z∗i(τ)− z∗j(τ)∥22

∣∣∣∣
τ=t+

. (6.8)
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Figure 6.2: At any two configurations, the minimum distance between the robots i and j is
the same as the minimum distance between the affine spaces Affi and Affj.

Although, h(t) = ∥s∗(t)∥22 is right-differentiable for almost all times, the primal optimal
solutions z∗i(t), z∗j(t) could be non-differentiable or even discontinuous. So, ḣ(t) cannot be
written explicitly as a minimization problem from (6.8), since ż∗i(t) and ż∗j(t) need not be
well-defined. This leads us to consider the dual formulation instead.

As a motivation, consider enforcing the collision avoidance constraint P i∩Pj=∅ explicitly.
Constraining the distance between any two points in P i and Pj to be greater than 0 is not
sufficient, since they may not be the closest points. This is due to the fact that (6.4) is a
minimization problem. However, constraining a plane to separate P i and Pj is sufficient to
guarantee P i∩Pj=∅ even if it is not the maximal separating plane. The dual formulation of
(6.4) allows us to explicitly compute this separating plane constraint, which can be used in
the NCBF constraint (6.4). The reason for using the dual formulation instead of the primal
is further elaborated upon later in Remark 6.2.

6.3.2 Dual Formulation

The dual program of a minimization problem is a maximization problem in terms of the
corresponding dual variables. For a quadratic optimization problem, as in (6.4), the dual
program has the same optimal solution as that of (6.4). So, differentiating the dual program
will give ḣ(t) as a maximization problem. Since any feasible solution to a maximization
problem gives us a lower bound of the optimum, we use the dual problem of (6.4) to get a
lower bound of ḣ(t). This enables us to express the NCBF constraint as a feasibility problem
rather than an optimization problem.
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To obtain the dual program, we first transform the constrained optimization problem
(6.4) to an unconstrained one by adding the constraints to the cost with weights λi and λj,
which are called the dual variables. The unconstrained problem is optimized in terms of zi

and zj to obtain the Lagrangian function L(λi, λj) as

L(λi, λj)=−1

4
λiAi(xi)Ai(xi)Tλi T−λibi(xi)−λjbj(xj). (6.9)

The dual program is then defined as the maximization of the Lagrangian function.

Lemma 6.4. The dual program corresponding to (6.4) is:

h(x) = max
{λi,λj}

L(λi, λj)

s.t. λiAi(xi) + λjAj(xj) = 0, λi, λj ≥ 0.
(6.10)

Proof. The Lagrangian function for (6.4) is [27, Chap. 5]:

Λ(zi, zj, λi, λj) =λj(Aj(xj)zj − bj(xj))+ (6.11)

λi(Ai(xi)zi − bi(xi)) + ∥zi − zj∥2,

where λi ∈ R1×ri , λj ∈ R1×rj are the dual variables. The Lagrangian dual function can be
written as:

L(λi, λj) = inf
zi,zj∈Rl

(
Λ(zi, zj, λi, λj)

)
, (6.12)

and together with the Weak Duality Theorem [27, Chap. 5], we have,

L(λi, λj) ≤ h(x), ∀ λi, λj ≥ 0. (6.13)

As the constraints in (6.4) are affine in zi and zj at any given time, constraint qualification
holds and the Strong Duality Theorem can be applied, resulting in

max
λi,λj≥0

L(λi, λj) = h(x). (6.14)

L(λi, λj) can be explicitly computed. Let the minimizer for (6.12) be zi, zj. Then,

∂Λ

∂zi
= 0 ⇒ 2(zi − zj)T + λiAi(xi) = 0, (6.15)

∂Λ

∂zj
= 0 ⇒ 2(zj − zi)T + λjAj(xj) = 0.

Hence, for the minimum of (6.12) to exist, from (6.15) the following must hold:

λiAi(xi) + λjAj(xj) = 0, (6.16)

λiAi(xi) = −2(zi − zj)T .
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Substituting the value of (zi − zj) from (6.16) in (6.11) and using (6.12), we have

L(λi, λj) =− 1

4
λiAi(xi)Ai(xi)Tλi T − λibi(xi)

− λjbj(xj).
(6.17)

The dual formulation (6.25) then follows from (6.16) and (6.17).

Since an optimal solution to (6.4) always exists, an optimal solution to (6.10) also always
exists. Let (z∗i(t), z∗j(t)) ∈ O(t) and the active set of constraints at z∗i(t) be Acti(z∗i(t), t).
Linear independence constraint qualification (LICQ) is said to be held at z∗i(t) if Ai

Acti(z∗i(t),t)

is full rank [26, Definition 2.1]. By the linear independence assumption on P i(t), since the set
of the active constraints at any vertex of P i(t) are linearly independent, Ai

Acti(z∗i(t),t)
is also

full-rank for all z∗i(t) [26, Lemma 2.1]. Then, the primal problem (6.4) is considered non-
degenerate and there exists a unique dual optimal solution for (6.10) [26, Lemma 2.2]. The
dual optimal solution (λ∗i(t), λ∗j(t)) along with any primal optimal solution (z∗i(t), z∗j(t))
must then satisfy the KKT optimality conditions at t:

2λ∗i(t)Ai(t) = z∗i(t)T − z∗j(t)T = s∗(t)T , (6.18)

2λ∗j(t)Aj(t) = z∗j(t)T − z∗i(t)T = −s∗(t)T ,
λ∗ik (t) = 0 for k /∈ Acti(z∗i(t), t),

λ∗jk (t) = 0 for k /∈ Actj(z∗j(t), t).

Then, by LICQ, Ai
Acti(t)

and Aj
Actj(t)

have full rank and the non-zero components of the dual

optimal solutions at t can be written explicitly as:

λ∗i(t)=s∗(t)TAi †
Acti(t)

, λ∗j(t)=− s∗(t)TAj †
Actj(t)

, (6.19)

where (·)† is the generalized inverse. By assumption Affi(τ) and Affj(τ) have full rank for
τ ∈ [t, t + ϵ) for almost all t ∈ [0, T ], and thus λ∗i(t) and λ∗j(t) are right-differentiable
at almost all t ∈ [0, T ]. Since λ∗i(t), λ∗j(t), Ai(t) and Aj(t) are right-differentiable, we can
differentiate the constraints of (6.10). Finally, we can explicitly write a linear program,
which is obtained by differentiating the cost and constraints of (6.10), to calculate ḣ(t) as:

Lemma 6.5. Let,

g(t) = max
{λ̇i,λ̇j}

L̇(t, λ∗i(t), λ∗j(t), λ̇i, λ̇j)

s.t. λ̇iAi(t) + λ∗i(t)Ȧi(t) + λ̇jAj(t) + λ∗j(t)Ȧj(t) = 0,

λ̇ik ≥ 0 if λ∗i(t)k = 0,

λ̇jk ≥ 0 if λ∗j(t)k = 0.

(6.20)
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where L̇(t, λi, λj, λ̇i, λ̇j) represents the time-derivative of Lagrangian function L(λi, λj) and
is as follows,

L̇ =− 1

2
λiAi(t)Ai(t)T λ̇i T − 1

2
λiAi(t)Ȧi(t)Tλi T

− λ̇ibi(t)− λiḃi(t)− λ̇jbj(t)− λj ḃj(t).
(6.21)

Then, for almost all t ∈ [0, T ], ḣij(t) = g(t).

Proof. Since (λ∗i(t), λ∗j(t)) is the optimal solution to (6.10), its derivative (λ̇∗i(t), λ̇∗j(t)) is
a feasible solution to (6.20) for almost all t ∈ [0, T ]. So, ḣij(t) = d

dt
L(λ∗i(t), λ∗j(t)) ≤ g(t)

for almost all t ∈ [0, T ]. Let (λ̇i, λ̇j) be a feasible solution to (6.20). We can integrate the
constraints of (6.20) to find (λ̄i(τ), λ̄j(τ)), τ ∈ [t, t+ ϵ) which satisfy:

(λ̄i(t), λ̄j(t)) = (λ∗i(t), λ∗j(t)) (6.22)

(λ̄i(t), λ̄j(t)) is dual feasible for (6.10)

So, (λ̄i(τ), λ̄j(τ)) are dual feasible and have cost less than hij(τ), i.e. L(λ̄(τ), λ̄(τ)) ≤
hij(τ) ∀τ∈[t, t+ ϵ) and L(λ̄(t), λ̄(t))=hij(t). Differentiating the cost yields

ḣij(t) ≥ L̇(t, λ∗i(t), λ∗j(t), λ̇i, λ̇j)

for all feasible (λ̇i, λ̇j), and thus ḣij(t)≥g(t). So, g(t)=ḣij(t) for almost all t∈[0, T ].

Based on the linear program in (6.20), we can conservatively implement the NCBF con-
straint by enforcing, for some (λ̇i, λ̇j) feasible for (6.20),

L̇(t, λ∗i(t), λ∗j(t), λ̇i, λ̇j) ≥ −α(h(t)). (6.23)

Lemma 6.5 then guarantees that

ḣ(t) ≥ L̇(t, λ∗i(t), λ∗j(t), λ̇i, λ̇j) ≥ −α(h(t)) (6.24)

which is the required NCBF constraint.

Remark 6.2. Due to the direction of inequality required for the NCBF constraint, ḣ(t) needs
to be expressed as a maximization problem. This is the primary motivation for considering
the dual problem, since writing ḣ(t) using the primal problem results in a minimization
problem (6.8).

We use (6.23) to motivate a feedback control law to guarantee safety of the system. The
input u implicitly affects L̇ via the derivatives of the boundary matrices Ai, Aj, bi, bj. Note
that L̇ is affine in λ̇i, λ̇j, and u. So, (6.23) is a linear constraint in λ̇i, λ̇j, and u. So, ∀ x ∈ S,
(6.10) is used to compute h(x), λ∗i(x), and λ∗j(x) and the optimal solution of the following
quadratic program is used as the feedback control:
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u∗(x) = argmin
{u,λ̇i,λ̇j}

∥u− unom(x)∥2Q (6.25a)

s.t. L̇(t, λ∗i(x), λ∗j(x), λ̇i, λ̇j, u) ≥ −α(h(x)− ϵ21) (6.25b)

λ̇iAi(x)+λ∗i(x)(Lf iAi(x)+LgiAi(x)u) (6.25c)

+λ∗j(x)(LfjAj(x)+LgjAj(x)u) = −λ̇jAj(x)
λ̇ik ≥ 0 if λ∗i(x)k<ϵ2, λ̇

j
k ≥ 0 if λ∗j(x)k<ϵ2, (6.25d)

|λ̇i| ≤M, |λ̇j| ≤M, (6.25e)

u ∈ U , (6.25f)

where unom(x) is a non-safe nominal feedback control law, L(⋆)(·) represents the Lie derivative
of (·) along (⋆), Q ≻ 0 is the cost matrix, M is a large number, and ϵ1 and ϵ2 > 0 are small
constants. unom(x) can be obtained by a control Lyapunov function or by any tracking
controller. Note that (6.25) is a feedback law which does not assume existence of Filippov
solutions, since it is only a function of x and not t.

Remark 6.3. Since h(x) is quadratic in nature, its gradient (if it exists) can be zero at ∂S,
which can affect forward invariance of S [12, Remark 5]. For example, in 1D, let ẋ = u and
h(x) = x2. Then at x = 0, the NCBF constraint reduces to 0 · u ≥ 0, which is true ∀ u ∈ U .
This would imply that the system remains safe irrespective of the input, which is not true.
This problem can be solved by setting h(x) = x2− ϵ21, which would result in non-zero gradient
at x = ϵ1. So, we consider an ϵ1 > 0 and the ϵ21-level set of h as

Ωϵ21
= {x : h(x) = ϵ21}. (6.26)

We can then redefine h(x) as (h(x)− ϵ21). If the new h satisfies (6.6), then the ϵ21-superlevel
set is safe.

Remark 6.4. The constant ϵ2 is used to ensure upper semi-continuity of the feasible set of
control inputs for (6.25). This is similar to the almost-active gradient method used to prove
safety in [65, Theorem 3].

We now prove that (6.25) results in system safety.

Theorem 6.1. Let x(0) ∈ S and (6.25) be feasible ∀ x ∈ S for some locally Lipschitz class-K
function α. Then, using the feedback control law (6.25), the system remains safe irrespective
of the cost function.

Proof. Let the feasible set of control inputs for (6.25) be Fu(x). The control input u∗(x)
is feasible for (6.25), and hence satisfies (6.25b), which implies safety by (6.24). However,
it shall be noted that since u∗ need not be continuous, the Filippov operator (6.2) could
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be required to obtain a valid closed loop trajectory. The control inputs obtained from the
Filippov operation might not be feasible for (6.25), and we might lose the safety property.

The overview of the proof is as follows: We show that: (1) for any control law chosen
from the feasible set of inputs Fu(x), the control input obtained after applying the Filippov
operator is still feasible for (6.25), and (2) any control input feasible for (6.25) results in a
safe trajectory.

Therefore, we first need to show that inputs obtained from the Filippov operator F is
feasible for (6.25). We can prove this by showing F [Fu](x) = Fu(x).

6.3.2.1 F [Fu](x) = Fu(x)

Recall, from the definition of the Filippov operator (6.2), that the Filippov operator applied
on a set-valued function makes it closed and convex point-wise and upper semi-continuous.
To show that F [Fu](x) = Fu(x), we can equivalently show that Fu is closed and convex
point-wise, and upper semi-continuous, thus making it invariant to the Filippov operator.

By assumption, (6.25) is always feasible. So, Fu(x) ̸= ∅ ∀ x ∈ S. Further, since U is
convex and compact, Fu(x) is convex and compact pointwise ∀ x ∈ S. Finally, we need
to show that Fu(x) is upper semi-continuous. Consider any sequences {x(p)} → x and
{u(p)} → u, where u(p) are feasible for (6.25) at x(p), i.e. u(p) ∈ Fu(x(p)). To show that Fu

is upper semi-continuous, we have to show that u is feasible for (6.25) at x, i.e. u ∈ Fu(x).
This is not trivial to show because the number of constraints in (6.25d) changes depending
on x.

We now prove some general properties for optimization problems, using which we can
conclude upper semi-continuity of Fu. Consider an optimization problem O of the form
ρ∗(ξ) = maxv{ρ(ξ, v) : v ∈ Π(ξ, v)}, where Π(ξ, v) = {v : πk(ξ, v) ≤ 0, k ∈ K(ξ)}, where
ρ is the continuous cost function, π is a continuous vector function, K is an index set, and
the inequality is applied element-wise. Let Π(ξ, v) be non-empty and uniformly bounded
in ξ, and let v∗(ξ) be an optimal solution at ξ. Note that the constraints enforced in the
optimization can vary with ξ since the index set K depends on ξ. Here are the three
properties as follows,

(a) If the index set is reduced, the optimal cost increases:

Define Π̄(ξ, v) = {v : πk(ξ, v) ≤ 0, k ∈ K̄}, where K̄ ⊆ K(x) ∀ξ. Define the corre-
sponding optimization problem Ō as ρ̄∗(ξ) = maxv{ρ(ξ, v) : v ∈ Π̄(ξ, v)}, with optimal
solution v̄∗(ξ). Since Π(ξ, v) ⊆ Π̄(ξ, v), ρ̄∗(ξ) ≥ ρ∗(ξ) ∀ξ.

(b) Continuity property of optimal cost ρ̄∗:

Consider a sequence {ξ(p)}→ξ and optimal solutions {v̄∗(ξ(p))}→v̄. By continuity of π
and ρ, πK̄(ξ, v̄) = limp→∞ πK̄(ξ(p), v̄

∗(ξ(p))) ≤ 0, i.e. (ξ, v̄) is a feasible solution for Ō,
and ρ̄∗(ξ) ≥ ρ(ξ, v̄) = limp→∞ ρ(ξ(p), v̄

∗(ξ(p))) = limp→∞ ρ̄∗(ξ(p)).

(c) Limit property of the index set, K(ξ):
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Let K(ξ) be of the form K(ξ) = {k : ηk(ξ) < ϵ}, where η is a continuous, non-negative
vector function and ϵ > 0. Consider a sequence {ξ(p)}→ξ. By continuity of η, ∃P ∈ N
such that ∀p ≥ P , and ∀k ∈ K(ξ), ηk(ξ(p)) < ϵ. Thus, K(ξ) ⊆ K(ξ(p)) ∀p ≥ P .

We now use the above properties to show upper semi-continuity of Fu, which is the
feasible set of inputs for (6.25). The variables ξ and v in the optimization problem O
correspond to the pair (x, u) and λ̇ in (6.25) respectively. Define the index set as K(y) =
{(ki, kj) : λ∗ik (y) < ϵ2, λ

∗j
k (y) < ϵ2} ⊆ [ri]× [rj] corresponding to (6.25d). Note that λ∗i and

λ∗j, corresponding to η, are continuous functions (Sec. 6.3.2).
Now consider the following optimization problem, denoted as LP(x, y, u) relating O to

(6.25):

g(x, y, u)= max
{λ̇i,λ̇j}

L̇(t, λ∗i(x), λ∗j(x), λ̇i, λ̇j, u) (6.27a)

s.t. λ̇iAi(x)+λ∗i(x)(Lf iAi(x)+LgiAi(x)u) (6.27b)

+λ∗j(x)(LfjAj(x)+LgjAj(x)u)=−λ̇jAj(x)
λ̇ik ≥ 0 if k ∈ Ki(y), (6.27c)

λ̇jk ≥ 0 if k ∈ Kj(y),

|λ̇i| ≤M, |λ̇j| ≤M. (6.27d)

Note that the cost (6.27a) of LP(x, y, u) corresponds to the LHS of (6.25b), and the con-
straints (6.27b)-(6.27d) correspond to (6.25c)-(6.25e). The parameter y in LP(x, y, u) only
affects the index set in (6.27c). Thus, u if feasible at x only if g(x, x, u) ≥ −α(h(x) − ϵ21).
Also, since u(p) is feasible at x(p), g(x(p), x(p), u(p)) ≥ −α(h(x(p))− ϵ21).

The optimization LP(x, x, u) corresponds to the optimization problemO as defined above.
Note that by continuity of Ai, Aj, bi, bj, λ∗i, and λ∗j, the cost (6.27a) and constraint matrices
(6.27b)-(6.27d) are continuous, similar to O. Moreover, the feasible set of (6.27) is non-empty
(by the assumption in Theorem 6.1) and is uniformly bounded due to (6.27d). Thus, the
optimization problem LP(x, x, u) fits the framework of O.

By Property (c), ∃P∈N such that K(x) ⊆ K(x(p)) ∀p ≥ P . Truncate the sequences
{x(p)} and {u(p)} before P . Define the optimization problem LP(x(p), x, u(p)) corresponding
to Ō. By Property (a), g(x(p), x, u(p)) ≥ g(x(p), x(p), u(p)) ∀p. Let the optimal solution

to LP(x(p), x(p), u(p)) be λ̇(p). Since λ̇(p) is uniformly bounded (by (6.27d)), by Bolzano-

Weierstrass Theorem, there exists a sub-sequence λ̇(q) such that it converges to λ̇. We
now restrict the analysis to the q sequence. By Property (b) for Ō, we have g(x, x, u) ≥
limq→∞ g(x(q), x, u(q)).
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Combining all the inequalities from above, and by continuity of h(x) (Lemma 6.3),

g(x, x, u) ≥ lim
q→∞

g(x(q), x, u(q))

≥ lim sup
q→∞

g(x(q), x(q), u(q))

≥ lim sup
q→∞

−α(h(x(q))− ϵ21) = −α(h(x)− ϵ21).

Thus, u is feasible at x and Fu(x) is upper-semicontinuous.

6.3.2.2 Safety

Finally, we show that the Filippov operator does not affect the safety of the system. Let
u∗(x) = (u∗i(x), u∗j(x)) ∈ Fu(x) be any measurable feedback control law, obtained as the
solution of (6.25). Then, taking the Filippov operator,

F [u∗](x) ⊂ F [Fu](x) = Fu(x).

Given x(0) such that h(0) > ϵ21, a closed loop trajectory (xi(t), xj(t)), t ∈ [0, T ] can be
obtained using the Filippov solution, where (xi(t), xj(t)) are absolutely continuous in [0, T ]
and for almost all t ∈ [0, T ], satisfy,

ẋi(t) = f i(x(t)) + gi(x(t))ui(t)

ẋj(t) = f j(x(t)) + gj(x(t))uj(t),

where u(t) = (ui(t), uj(t)) ∈ F [u∗](x(t)) ⊂ Fu(x(t)). Note that the constraints of (6.25)
are stronger than those of (6.20), meaning that for any (u, λ̇i, λ̇j) feasible for (6.25), (λ̇i, λ̇j)
is feasible for (6.20), and by (6.25b) and Lemma 6.5, (λ̇i, λ̇j) satisfies (6.24). Since u(t) is
feasible for (6.25), ∃ (λ̇i(t), λ̇j(t)) such that the closed loop trajectory satisfies (6.25b):

L̇(t, λ∗i(t), λ∗j(t), λ̇i(t), λ̇j(t)) ≥ −ᾱ(h(t)− ϵ21),

for almost all t ∈ [0, T ]. By (6.24), ḣ(t) ≥ −α(h(t) − ϵ21) for almost all t ∈ [0, T ]. By
Lemma 6.1, h(t) > ϵ21 ∀ t ∈ [0, T ], and thus the system remains safe.

Remark 6.5. This formulation can be extended to more than 2 robots by introducing a new
pair of dual variables for each pair of robots, and the corresponding constraints in (6.25).
Note that the dual variable for robot i corresponding to robot j is different from that for robot
k. Thus, the analysis in Sec. 6.3 remains valid. Additionally, static or dynamic obstacles
can be represented as uncontrolled robots and non-convex shaped robots can be represented
through unions of different polytopes with each using the same states and inputs.

6.4 Numerical Examples

In this section, we consider the problem of moving an L-shaped sofa through an L-shaped
corridor. The approach presented in Sec. 6.3 is applied to solve the problem in real-time.
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6.4.1 Simulation Setup

The sofa is the controlled object, with the side length of the L-shape as 1m and the width
as 0.1m, as illustrated in Figure 6.1. To implement our controller, we consider the sofa as
the union of two 1m× 0.1m arms perpendicular to each other. The width of the corridor is
1m.

The states of the sofa are x = (z1, z2, θ) ∈ R2 × R, where (z1, z2) is the position of the
vertex at the intersection of the two arms, and θ is the angle of rotation. The inputs to the
sofa are (v, ω), where v is the speed of the sofa and ω the angular velocity. The velocity of
the sofa is assumed to be along a π

4
angle to the arm. The nonlinear control affine dynamics

of the sofa is then,

ż1 = v cos(θ +
π

4
), ż2 = v sin(θ +

π

4
), θ̇ = ω. (6.28)

Further, we impose input bounds as |v| ≤ 0.3m/s and |ω| ≤ 0.2 rad/s. The corridor is
represented as the union of three rectangular walls, shown in Figure 6.1. The polytopes
corresponding to these walls are defined as follows:

W i := {z ∈ R2 : AW
i

z ≤ bW
i}, i ∈ [3] (6.29)

We note the general problem description in Sec. 7.2 allows for such static obstacles by
eliminating the dependence of AW

i
and bW

i
on the state, as mentioned in Remark 6.5.

Similarly, the sofa is represented as:

Pj(x) := {z ∈ R2 : AS
j

(x)z ≤ bS
j

(x)}, j ∈ [2], (6.30)

where Pj(x) is denoted as Arm j. Arm 1 is the blue-colored polytope in Figure 6.1, whereas
Arm 2 is the green-colored one. Again, our description allows for this by choosing the same
states and inputs for the two polytopes.

The NCBF is chosen as the square of the minimum distance as in (6.4). Notice that the
QP-based program (6.25) will always have a solution, as v = 0, ω = 0 is always a feasible
solution. Since we have static obstacles and the controlled object consists of two polytopes,
we only enforce NCBF constraints between W i and Pj for i ∈ [3], j ∈ [2].

A control Lyapunov function Vclf [12] is introduced in the final QP formulation in place
of the nominal controller with the form as follows:

Vclf (x) = (z1 − zd1)
2 + (z2 − zd2)

2 + k(θ − θd)2, (6.31)

where θd = −π
4
. The desired position (zd1 , z

d
2) is chosen to be at the end of the corridor, and

the initial orientation is π
4
. The CLF constraint V̇clf ≥ −α1Vclf − s is then enforced, where

s ≥ 0 is a slack variable. The slack variable ensures that the feasibility of the QP-based
program is not affected by the CLF constraint. The margin ϵ1 as defined in Remark 6.3 is
chosen as 1.5 cm and ϵ2 is chosen as 10−5.
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Figure 6.3: Square of minimum distance (NCBF) between the arms of the sofa and the walls.

6.4.2 Results

The simulations are performed on a Virtual Machine with 4 cores of a 2.20Ghz Intel Core
i7 processor, running IPOPT [196] on MATLAB, and the visualization is generated by
MPT3 [77]. The snapshots of the sofa trajectory is shown in Figure 6.1 and also illustrated
in the multimedia attachment.

6.4.2.1 Enforcement of NCBF constraint

The system remains safe throughout the simulation since the NCBF hij is greater than ϵ21 for
all possible robot-obstacle interactions as depicted in Figure 6.3. In Figure 6.4, the values
of ḣ(t), and LHS and RHS terms in the NCBF constraints from (6.25) are shown. We can
see that by Lemma 6.5, the LHS term in the NCBF constraint is always a lower bound to
ḣ(t). This verifies the safety property of our duality-based approach.

6.4.2.2 Computation time

Table 6.1: Statistical analysis of computation time (ms) per iteration

Timing (ms) mean ± std p50 p99 max
Distance QPs (6.10) 1.07 ± 0.29 0.99 1.94 20.1
Polytope-NCBF-QP (6.25) 14.5 ± 1.55 14.2 19.3 37.6
Total (2× 3 + 1 = 7 QPs) 21.1 ± 1.69 20.8 26.9 41.6

From Table 6.1, we can see that there are large outliers in computation time per iteration,
but they occur in less than 0.1% iterations. Nevertheless, from Table 6.1, we can apply our
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controller at 50Hz. The fast computation time allows us to directly implement the control
inputs from (6.25) on the robot in real-time.

The optimization problem for the sofa problem has 51 variables and at most 72 con-
straints. In general consider N controlled robots in a d-dimensional space with f facets
and m control inputs. Then, the polytope-NCBF-QP (6.25) has (1+d)N(N−1)

2
constraints

along with at most 2f N(N−1)
2

non-negativity constraints and N(m+2f) variables, whereas a

CBF-QP formulation using spherical over-approximation would have N(N−1)
2

constraints and
Nm variables.

6.4.2.3 Continuity of derivative of control barrier function and dual variables

Figure 6.4 also shows that both ḣ(t) and the lower bound of ḣ(t) can have discontinuities.
For the case of the moving sofa problem, a discontinuity in ḣ(t) can arise when the sofa
is rotating and the point of minimum distance on the sofa with any wall jumps from one
vertex to another, since the end points of the sofa arm need not have the same velocity
when rotating. The dual optimal variables λ∗i(t) and λ∗j(t) are always continuous and right-
differentiable as shown in Sec. 6.3. The dual variables are plotted in Figure 6.5, which
demonstrate this property.

6.4.2.4 Deadlocks

For various initial conditions, the sofa can get stuck in a deadlock in the corridor. This can
happen when the arms of the sofa are so large that it cannot turn at the corner. It can also
happen when the two arms of the sofa get too close to the wall and the sofa cannot turn
because it would cause one of its arms to penetrate the wall. Our controller still ensures
safety in this case. A high-level planner could help by generating a deadlock free trajectory
at low frequency that then serves as input to our control law.

6.4.3 Discussions

6.4.3.1 Nonlinearity of the system dynamics

The duality-based formulation (6.25) is a convex quadratic program even when the system
dynamics is nonlinear, as long as it is control affine. This allows us to achieve dynamically-
feasible obstacle avoidance with QPs for polytopes.

6.4.3.2 Optimality of solution vs computation time

As noted in Sec. 6.3, the cost function of the QP-based program (6.25) does not affect the
safety of the system. If the optimization solver does not converge to the optimal solution, the
current solution can be used if it is feasible. This can be useful in real-time implementations
where both control frequency and safety matter. A feasible solution to (6.25) can be directly
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Figure 6.4: NCBF constraint enforcement between Arm 1 and Wall 1 (top figure) and Arm
1 and Wall 3 (bottom figure).

found in some cases, such as when the NCBF is constructed using a safe backup controller
[178].

6.4.3.3 Trade-off between computation speed and tight maneuvering

A polytope with f i faces would require f i dual variables in the dual formulation (6.25)
and additional constraints. Using a hyper-sphere as an over-approximation to the polytope
would require fewer dual variables, as in [214]. However, such an approximation can be too
conservative and completely ignore the rotational geometry of the polytope. Using the full
polytope structure can prove beneficial in dense environments, such as the sofa problem,
where a spherical approximation cannot work. So, there is a trade-off between computation
speed and maneuverability. In practice, a hybrid approach should be used: a hyper-sphere
approximation when two obstacles are far away, and the polytope structure when closer,
which could find a good trade-off between computation speed and maneuverability for tight
obstacle avoidance in dense environments.

6.4.3.4 Robustness with respect to the safe set

Since we use the minimum distance between two polytopes as the NCBF and not the signed
distance, the minimum distance is uniformly zero when two polytopes intersect. So, the
proposed controller is not robust in the sense that if the state leaves the safe set, it will not
converge back to it.
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Figure 6.5: Dual optimal solutions for Arm 1 (left figure) and Arm 2 (right figure) of the
robot corresponding to the obstacle wall 3.

6.5 Chapter Summary

In this chapter, we have presented a general framework for obstacle avoidance between
polytopes using the dual program of a minimum distance QP problem. We have shown that
the control input using our method can be computed using a QP for systems with control
affine dynamics, enabling real-time implementation. We have numerically verified the safety
performance of our controller for the problem of moving an L-shaped sofa through a tight
corridor. We also have explored properties such as robustness and deadlock avoidance.
Further work in this topic would involve extending our method to other convex shapes, and
deriving safety guarantees for more general classes of systems.

In this chapter, we focused on the dual optimization for polytopic obstacle avoidance
with control barrier functions in the continuous-time domain. The discrete-time domain
formulations will be discussed in the next chapter.
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Chapter 7

Polytopic Avoidance for Discrete-time
Control Systems 5

7.1 Introduction

Obstacle avoidance in optimization-based control and trajectory planning has received sig-
nificant attention in the robotics community. When a tight-fitting obstacle avoidance motion
is expected, the robot and the obstacles need to be considered as polyhedral. In this chapter,
we propose an optimization formulation to consider obstacle avoidance between polytopes
using discrete-time control barrier function (DCBF) constraints with dual variables. The
proposed formulation is shown to be a computationally fast algorithm that can serve as a
local planner to generate dynamically-feasible and collision-free trajectories, or even directly
as a safety-critical controller for general dynamical systems.

7.1.1 Related Work

7.1.1.1 Graph Search-based and Sampling-based Approaches

Motion planning techniques in real-world applications often consider high-level path planning
and low-level control synthesis, given safety requirements and dynamical constraints. Graph
search-based and sampling-based approaches such as PRM [24], A* [49], RRT* [87] have
been explored, and many variant approaches have also been proposed based on them, which
could be applied as efficient strategies for high-dimensional kinematic planning. However,
generally, these algorithms assume that a low-level controller exists, and is able to track
kinematically feasible trajectories in real time. This leads to trajectories that are dynamically
infeasible and results in large tracking errors on dynamical systems. Other approaches such
as kinodynamic RRT* [200], LQR-RRT* [145] try to bridge the gap between path planning

5The material of this chapter is from “Safety-critical control and planning for obstacle avoidance between
polytopes with control barrier functions” published in 2022 IEEE International Conference on Robotics and
Automation (ICRA) [188].
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Figure 7.1: Comparison of various approaches for trajectory planning with polytopic obstacle
avoidance.

and control synthesis by finding appropriate steering inputs to go between two vertices in
the sampling graph. However, these approaches cannot do dynamic collision checking with
respect to the exact nonlinear dynamics of the robot. For general dynamical systems, we
still need to locally generate a dynamically feasible and collision-free trajectory.

7.1.1.2 Optimization-based Control and Trajectory Planning

We now narrow down our discussion to optimization-based approaches for generating collision-
free trajectories. The existing methods in this sub-area can be classified under two categories:
those that generate obstacle avoidance behaviors with additional cost terms, and those that
apply constraints to achieve a similar behavior. Additional cost terms were first introduced
under the philosophy of potential fields [85], and were later generalized to be named as “bar-
rier function” [206]. This approach has been applied to solve optimal control and trajectory
generation problems with broad applications [167, 117, 158, 139, 212]. Other methods con-
sider the obstacle avoidance criteria as constraints in the optimization problem. An example
of such a constraint is the distance constraint, enforced using inequality constraints on the
distance function between the robot and obstacles, where the robots and the obstacles are
usually approximated as points [142], lines [23], paraboloids [52], ellipsoids [162], or hyper-
spheres [224]. The distance functions for these shapes have analytical expressions and are
differentiable so that nonlinear optimization (NLP) solvers can easily compute the gradients.
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7.1.1.3 Obstacle Avoidance between Polytopes

When a tight-fitting obstacle avoidance motion is expected, the above over-approximations
of the shape of the robot can lead to deadlock maneuvers, shown in Figure 4.1. A tight
polytopic approximation of the shape of the robot enables obstacle avoidance maneuvers
that are less conservative, see [101]. However, the distance function between two polytopes is
implicit and not analytic [71], and requires a large amount of numerical computation [62, 47].
Moreover, this distance function between polytopes is also non-differentiable with respect
to the robot’s configuration, which makes it hard to be treated as a constraint directly for
a nonlinear programming problem. For collision avoidance between two polytopes, mixed-
integer programming [71, 154, 48, 213] applies well for linear systems but cannot be deployed
as a real-time controller or trajectory planner for general nonlinear systems due to the added
complexity from integer variables [119]. To handle the non-differentiability of the distance
function between two polytopes, a duality-based approach [228] is introduced to reformulate
constraints as a set of smooth non-convex ones. However, obstacle avoidance behavior with
this method can only be achieved with a relatively long horizon and needs to be solved offline
for nonlinear systems [227, 225, 171, 54, 64]. Recently, a dual optimization formulation [187]
was introduced to construct a differentiable control barrier function (CBF) [12] for polytopes,
but it only optimizes one-step control input and is only applicable for continuous-time affine
systems with a relative-degree of one. This formulation could also run into a deadlock for
general high relative-degree systems.

7.1.1.4 Obstacle Avoidance with DCBFs

To resolve the problems mentioned above, it’s required to propose a computationally fast
multi-step optimization formulation for systems with nonlinear discrete-time dynamics. Re-
cently, it has been shown that considering discrete-time control barrier function (DCBF)
constraints instead of distance constraints can handle this challenge, where the DCBF con-
straints can regulate the obstacle avoidance behavior with a smaller horizon and prevent
local deadlock in trajectory generation, see [223]. The control and planning problems with
one-step [2] or multi-step [223] optimization using DCBF constraints have been studied,
and various applications on different platforms, including car racing [224], autonomous ve-
hicles [125], and bipedal robots [186] have validated this approach. In the work mentioned
above, the robots and the obstacles are only considered as points or hyper-spheres, while
obstacle avoidance constraint between polytopes is still an unsolved problem in all previous
work by using discrete-time control barrier functions.

7.1.2 Contributions

The contributions of this chapter are as follows:

• We formulate the dual form of the obstacle avoidance constraint between polytopes as
DCBF constraints for safety. These proposed DCBF constraints are incorporated into
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an NMPC formulation which enables fast online computation for control and planning
for general nonlinear dynamical systems.

• The proposed NMPC-DCBF formulation for polytopes is validated numerically. Differ-
ent convex and non-convex shaped robots are shown to be able to navigate with tight
maneuvers through maze environments with polytopic obstacles using fast real-time
control and trajectory generation.

7.2 Background

In this section, we present a brief background on optimization formulations using discrete-
time control barrier functions and obstacle avoidance between polytopic sets.

7.2.1 Optimization Formulation using DCBFs

Consider a discrete-time dynamical system with states x ∈ X ⊂ Rn and inputs u ∈ U ⊂ Rm,
as

xk+1 = f(xk, uk), (7.1)

where xk := x(k), uk := u(k), k ∈ Z+, U is a compact set and f is continuous.

7.2.1.1 Discrete-time CBFs

Obstacle avoidance for safety for this dynamical system is defined in terms of invariance of
its trajectories with respect to a connected set. In other words, if the dynamical system (7.1)
is safe with respect to a set S ⊂ X , then any trajectory starting inside S remains inside S.
The set S is defined as the 0-superlevel set of a continuous function h : X → R as:

S := {x ∈ X ⊂ Rn : h(x) ≥ 0}. (7.2)

We refer to S as the safe set and it represents the region outside the obstacle. h is defined
as a discrete-time control barrier function (DCBF) if ∀ x ∈ S,∃ u ∈ U such that

h(f(x, u)) ≥ γ(x)h(x), 0 ≤ γ(x) < 1, (7.3)

Let γk := γ(xk). Satisfying (7.3) implies h(xk+1) ≥ γkh(xk), i.e., the lower bound of the
DCBF decreases exponentially with the decay rate γk [2]. Given a choice of γ(x), we denote
K(x) as

K(x) := {u ∈ U : h(f(x, u))− γ(x)h(x) ≥ 0}. (7.4)

Then, if x0 ∈ S and uk ∈ K(xk), then xk ∈ S for ∀ k ∈ Z+, i.e., the resulting trajectory is
safe [2].

Given a valid DCBF h [12], imposing DCBF constraint (7.3) in an optimization problem
could guarantee system safety, i.e., collision-free trajectories. If γ(x) is close to 1, the system
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converges to ∂S slowly but can easily become infeasible. On the other hand, if γ(x) is close
to 0, the constraint (7.3) is feasible in a larger domain but can approach ∂S quickly and
become unsafe. The later proposed formulation in [223] (discussed in Chapter 6) introduces
a relaxing form of DCBF constraint as follows,

h(f(x, u)) ≥ ω(x)γ(x)h(x), 0 ≤ γ(x) < 1. (7.5)

where the relaxing variable ω resolves the tradeoff between feasibility and safety and is
optimized with other variables inside an optimization formulation.

When one-step control input is optimized [2], it could lead to a deadlock situation such
that the robot is safe but unable to track the reference command. A nonlinear model
predictive control formulation [224] can overcome these problems, shown as follows,

NMPC-DCBF [224] (discussed in Chapter 6):

min
U,Ω

p(xt+N |t) +
N−1∑
k=0

q(xt+k|t, ut+k|t)+ψ(ωk) (7.6a)

s.t. xt|t = xt, (7.6b)

xt+k+1|t = f(xt+k|t, ut+k|t), k = 0, ..., N−1 (7.6c)

ut+k|t ∈ U , xt+k|t ∈ X , k = 0, ..., N−1 (7.6d)

h(xt+k+1|t) ≥ ωkγkh(xt+k|t), ωk ≥ 0 k = 0, ..., NCBF − 1, (7.6e)

where xt+i|t and ut+i|t denote the predicted state and input at time t+ i evaluated at the cur-
rent time t. N and NCBF ≤ N denote the prediction and safety horizons respectively, which
allows us to control the optimization computation complexity, and U = [uTt|t, ..., u

T
t+N−1|t]

T

and Ω = [ω0, ..., ωNCBF−1] are the joint input and relaxation variables respectively. p(·) and
q(·, ·) are the terminal and stage costs respectively, and ψ is the penalty function for the
relaxation variable.

The optimization formulation (7.6) can be regarded as a control problem with U∗ =
[u∗Tt|t, ..., u

∗T
t+N−1|t]

T as the optimized control inputs, as well as a trajectory planning problem

withX∗ = [x∗Tt|t, ..., x
∗T
t+N |t]

T as the optimized trajectory. From the joint optimal input vector
U∗ the first input u∗t|t is applied at time t ∈ Z+, and the optimization (7.6) is solved again
at time t+ 1 with xt+1.

7.2.2 Obstacle Avoidance between Polytopic Sets

In this work, we assume that there are NO static obstacles together with a single controlled
robot. We further assume that the geometry of all the obstacles and the robot can be over-
approximated with a union of convex polytopes, which is defined as a bounded polyhedron.

Let the state of the robot be x ∈ Rn with its discrete-time dynamics as defined in (7.1)
and the geometry of the robot and obstacles be in a l-dimensional space. We denote the
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geometry of the i-th static obstacle and the dynamic robot at some state x ∈ X by the
polytopes:

Oi := {y ∈ Rl : AOiy ≤ bOi} (7.7)

R(x) := {y ∈ Rl : AR(x)y ≤ bR(x)},

respectively, where bOi ∈ RsOi , i ∈ {1, ...NO} and bR(x) ∈ RsR , and AR, bR are continuous.
Inequalities on vectors are enforced element-wise. We assume that Oi, i ∈ {1, ...NO} and
R(x) ∀ x ∈ X are bounded and non-empty. sOi , sR represent the number of facets of
polytopic sets for the i-th obstacle and the robot, respectively.

Then Oi, ∀ i ∈ {1, ..., NO}, and R(x), ∀ x ∈ X , are non-empty, convex, and compact
sets, and the minimum distance between any pair (Oi,R(x)) is well-defined. The minimum
distance is 0 if and only if Oi and R(x) intersect. The square of the minimum distance
between Oi and R(x), denoted by hi(x), can be computed using a QP as follows:

hi(x) = min
(yOi ,yR)∈R2l

∥yOi − yR∥22 (7.8a)

s.t. AOiyOi ≤ bOi , AR(x)yR ≤ bR(x). (7.8b)

where (7.8) is a convex optimization problem. To ensure safe motion of the robot, we
enforce DCBF constraints (7.3) pairwise between each robot-obstacle pair. Then, the safe
set corresponding to the pair (Oi,R) is defined as:

Si := {x ∈ Rn : hi(x) > 0}c, (7.9)

where (·)c denotes the closure of a set. Enforcing the DCBF constraint for each hi ensures
that the state remains in Si for all i, and thus the state remains in S := ∩NO

i=1Si. Note
that, due to the relaxation variable ω, enforcing multiple DCBF constraints for each hi is
equivalent to enforcing a single DCBF constraint on h(x) := mini{hi(x)}. Thus, we focus
on how to enforce the DCBF constraint for a given pair (Oi,R).

However, (7.3) requires computation of hi(f(x, u)) via (7.8), which can only be solved
numerically. This results in an optimization formulation with non-differentiable implicit con-
straints, which results in a significant increase in computation time. In the following section
we derive explicit differentiable constraints which guarantee that the DCBF constraint is
satisfied without affecting the feasible set of safe inputs K(x) ∀ x ∈ X .

7.3 Optimization with Dual DCBF Constraints

In this section, we derive the duality-based optimization which allows generating obstacle
avoidance maneuvers for the controlled robot in tight environments with obstacles.
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7.3.1 Dual Optimization Problem

Corresponding to the minimization problem (7.8), we can define a dual problem. The dual
problem is always a convex optimization problem, and a maximization problem if the original
primal problem is a minimization one.

The dual formulation of (7.8) can be explicitly computed as [27, Chap. 8]:

gi(x) = max
(λOi ,λR)

−λOibOi − λRbR(x) (7.10a)

s.t. λOiAOi + λRAR(x) = 0, (7.10b)

∥λOiAOi∥2 ≤ 1, λOi ≥ 0, λR ≥ 0. (7.10c)

Here λOiAOi represents the normal vector of the plane of maximum separation between the
polytopes.

The Weak Duality Theorem [27, Chap. 5] states that gi(x) ≤ hi(x) holds for all opti-
mization problems. Since (7.8) is a convex optimization with linear constraints and has a
well-defined optimum solution in R+, the Strong Duality Theorem [27, Chap. 5] also holds,
which states that

gi(x) = hi(x). (7.11)

7.3.2 Obstacle Avoidance with Dual Variables

In order to remove the implicit dependence of hi(x) on x via (7.8), we enforce a constraint
stronger than (7.3) which does not require explicit computation of hi(x) via (7.8). The dual
formulation of (7.8), (7.10), can be used to achieve this.

Let ḡi(x, λ
Oi , λR) be the cost corresponding to any feasible solution (λOi , λR) of (7.10).

Since (7.10) is a maximization problem and the Strong Duality Theorem (7.11) holds for the
primal problem (7.8),

ḡi(x, λ
Oi , λR) := −λOibOi−λRbR(x) ≤ hi(x). (7.12)

Then, at time k, we can enforce the stronger constraint

− λOibOi − λRbR(f(xk, u)) ≥ γkhi(xk) (7.13)

which, using (7.12), implies
hi(f(xk, u)) ≥ γkhi(xk), (7.14)

as required. Hence, the DCBF constraint can be enforced by (7.13) subject to (f(xk, u), λ
Oi , λR)

being feasible, i.e., the stronger DCBF constraint (7.13) along with the feasibility constraints
(7.10b), (7.10c) should be satisfied

−λOibOi−λRbR(f(xk, u)) ≥ γkhi(xk), (7.15a)

λOiAOi+λRAR(f(xk, u))=0, (7.15b)

∥λOiAOi∥2 ≤ 1, λOi ≥ 0, λR ≥ 0. (7.15c)
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By the Strong Duality Theorem (7.11), ∃ λOi∗, λR∗ satisfying (7.10b)-(7.10c) such that
for all x ∈ X ,

ḡi(x, λ
Oi∗, λR∗) = −λOi∗bOi − λR∗bR(x) = hi(x). (7.16)

This means that for any fixed x ∈ X , the input u satisfies the DCBF constraint (7.3) with
the implicit definition of hi if and only if the tuple (u, λOi∗, λR∗) satisfies (7.13). So, the
feasible set of inputs is not reduced at any x ∈ X .

7.3.3 Optimization Formulation

We adopt the philosophy of the NMPC-DCBF method to enforce safety constraints be-
tween polytopes, as shown in Sec. 7.3.2, and construct a multi-step optimization formula-
tion. For simplicity of notation, we drop the explicit dependence of hi(xt+k|t) on xt|t and
[uTt|t, ..., u

T
t+k−1|t]

T . Since hi(xt+k|t) is also not explicitly known at time t, to impose DCBF
constraints along the horizon, we extend the idea in Sec. 7.3.2 by enforcing a constraint
stronger than hi(xt+k+1|t) ≥ γkhi(xt+k|t) which does not rely on computations of hi(xt+k|t)
and hi(xt+k+1|t) via (7.8).

The primal optimization problem (7.8) provides an upper bound to hi(x), which can be
used in the stronger DCBF constraints. Let (yOi , yR) be any feasible solution of (7.8). Since
(7.8) is a minimization problem and its solution is well-defined for all x ∈ X ,

h̄i(x, y
Oi , yR) := ∥yOi − yR∥22 ≥ hi(x). (7.17)

Then at time t, we can enforce

− λOibOi − λRbR(xt+k+1|t) ≥ γk∥yOi − yR∥22 (7.18)

which, using (7.12) and (7.17), implies

hi(xt+k+1|t) ≥ −λOibOi−λRbR(xt+k+1|t)

≥ γk∥yOi − yR∥22 ≥ γkhi(xt+k|t),
(7.19)

as required. Additionally, we can introduce the relaxation variables without affecting the
analysis in this section.

Remark 7.1. The primal problem (7.8) and the dual problem (7.10) provide upper and lower
bounds respectively for the distance function h, which is implicit in nature. These bounds can
be calculated implicitly since they are equal to the cost functions subject to the corresponding
constraints of each optimization problem. Thus, any implicit constraint on h can be converted
into a weaker explicit set of constraints using these bounds.

Then at time t, we first calculate the optimal solutions (yOi∗
t , yR∗

t ) to the minimum
distance QP (7.8) using x = xt, hence the NMPC-DCBF formulation for polytopes is shown
as follows:
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NMPC-DCBF for Polytopes:

min
U,Ω

p(xt+N |t)+
N−1∑
k=0

q(xt+k|t, ut+k|t)+ψ(ωk) (7.20a)

s.t. xt|t = xt, yOi
0 = yOi∗

t , yR0 = yR∗
t (7.20b)

xt+k+1|t = f(xt+k|t, ut+k|t), k=0, ..., N−1 (7.20c)

ut+k|t ∈ U , xt+k|t ∈ X , k=0, ..., N−1 (7.20d)

−λOi
k+1b

Oi−λRk+1b
R(xt+k+1|t) ≥ ωkγk∥yOi

k −yRk ∥22,
for k=0, ..., NCBF−1 (7.20e)

AR(xt+k+1|t)y
R
k ≤ bR(xt+k+1|t), A

OiyOi
k ≤ bOi ,

for k=1, ..., NCBF−1 (7.20f)

λOi
k A

Oi+λRk A
R(xt+k|t)=0, ∥λOi

k A
Oi∥2 ≤ 1,

for k=1, ..., NCBF (7.20g)

λOi
k+1 ≥ 0, λRk+1 ≥ 0, ωk ≥ 0,

for k=0, ..., NCBF−1 (7.20h)

The subscripts of λOi , λR, yOi , yR denote the time, (7.20e) is the DCBF constraint between
polytopes, (7.20f) is the primal feasibility condition, and (7.20g)-(7.20h) are the dual feasi-
bility conditions. The initial conditions, system dynamics constraints, and input and state
constraints are represented by (7.20b), (7.20c), and (7.20d) respectively. This NMPC-DCBF
formulation (7.20) corresponds to enforcing safety constraints only between the pair (Oi,R)
of polytopes. To enforce DCBF constraints between every pair of robot and obstacle, we in-
troduce corresponding dual and primal variables and enforce the constraints (7.20e)-(7.20h)
for each pair.

Remark 7.2. The mathematical intuition behind (7.20) is different from the previous work
in [187] (discussed in Chapter 6) that focuses on duality in the continuous domain. Moreover,
the system dynamics is not required to be control affine in our proposed (7.20). Furthermore,
differentiability of dual variables is required in [187] and not needed in this work.

7.3.4 Complexity and Performance

7.3.4.1 Exponential DCBF Constraint

To reduce complexity of the NMPC-DCBF shown in (7.20), we can modify the DCBF
constraint hi(xt+k|t) ≥ ωkγkhi(xt+k−1|t) by rolling out time k and removing the dependence
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(a) Triangle-shaped
robot

(b) Rectangle-shaped
robot

(c) Pentagon-shaped
robot

(d) L-shaped robot

(e) Triangle-shaped
robot

(f) Rectangle-shaped
robot

(g) Pentagon-shaped
robot

(h) L-shaped robot

Figure 7.2: Snapshots from simulation of tight maneuvers of obstacle avoidance with a
controlled robot with different shapes in two maze environments.
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on xt+k−1|t from the LHS of the DCBF constraint, thus enforcing the following exponential
DCBF constraints:

hi(xt+k|t) ≥ ωk(Π
k
j=0γj)hi(xt|t). (7.21)

The exponential decay rate Πk
j=0γj arises due to rolling out the decay rate at time j, γj. The

DCBF constraint (7.21) only contains hi(xt|t) on the RHS for all k, which can be explicitly
computed at each time step using xt = xt|t. Note that the RHS of the DCBF constraint
(7.19) at time k ≥ 1 cannot be computed explicitly, since xt+k|t implicitly depends on the
control inputs. This leads to modifying (7.20e) with,

− λOi
k b

Oi − λRk b
R(xt+k|t) ≥ ωk(Π

k
j=0γj)hi(xt|t) (7.22)

Such a formulation speeds up the computational time, as only h(xt|t) needs to be calculated
at each time t. This change affects neither the feasibility nor the safety of the system.

7.3.4.2 Horizon Length Selection

Compared with distance constraints, DCBF constraints allow effective obstacle avoidance
behavior with smaller horizon length. Our NMPC-DCBF formulation does not require the
obstacle avoidance horizon length NCBF be equal to N , which additionally reduces the com-
plexity [223]. Additionally, maneuvers such as deceleration for obstacle avoidance or revers-
ing motion for deadlock avoidance are motion primitives that only require a small horizon
in the MPC formulation. To sum up, DCBF constraints with dual variables enable fast
optimization for obstacle avoidance between polytopes.

7.4 Numerical Results

In this section, we consider an autonomous navigation problem. We model the controlled
robot with different shapes, including triangle, rectangle, pentagon and L-shape. The pro-
posed optimization-based planning algorithm allows us to successfully generate dynamically-
feasible collision-free trajectories even in tight maze environments, shown in Figure 7.2.
Animation of the navigation problems can be found in the video attachment.

7.4.0.1 Environment

The tight maze environment is described by a combination of multiple convex obstacles,
including shapes like triangle, rectangle pentagon, etc. The controlled robot is also modelled
with different shapes, including triangle, rectangle, pentagon and L-shape, whose orientation
is determined by the yaw angle. The L-shape is non-convex, but can be represented by two
convex polytopes. The dimensions for each robot shape are mentioned in Figure 7.2.
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7.4.0.2 System Dynamics

The controlled robot is described by the kinematic bicycle model, which is typical for testing
trajectory planning algorithms in tight environments. The continuous-time dynamics of the
robot is given as follows,

ċx = v cos(ϕ), ċx = v sin(ϕ), v̇ = a, ϕ̇ =
v tan δ

l
, (7.23)

where system states are x = (cx, cy, v, ϕ) with (cx, cy) as the center of rear axes, ϕ as yaw
angle and v as the velocity, and u = (a, δ) are inputs with steering angle δ and acceleration
a. The wheel base of the robot is l = 0.1m. The steering angle and acceleration are limited
between ±0.5rad and ±1m/s2.

7.4.0.3 Global Planning

The global path from the starting position to the goal is generated using the A∗ algorithm.
The 2-D space is sub-divided into grids and obstacle collision checks are performed at each
grid point during the algorithm. A safety margin, which is smaller than at least one di-
mension of the robot, is used for the collision checks. Finally, the generated optimal path is
reduced to fewer waypoints using line-of-sight reductions, similar to the θ∗ algorithm [132].
The generated global path is not dynamically feasible, and is only safe at the node points.

7.4.0.4 Local Trajectory Generation

The local trajectory planning is formulated using the NMPC-DCBF formulation (7.20) to
track the local reference trajectory while avoiding obstacles. The local reference trajectory
X̄ = [x̄Tt|t, x̄

T
t+1|t, ..., x̄

T
t+N |t]

T is generated from a start point with a constant speed v0 and the
same orientation as the global planner. The start point is found by local projection from
the current robot’s position to the global path. For tracking the local reference trajectory,
the cost function (7.20) in the optimizer is constructed with terminal cost, stage cost, and
relaxing cost function, respectively as

p(xt+N |t) =||xt+N |t − x̄t+N |t||2QT
, (7.24a)

q(xt+k|t, ut+k|t) =||xt+k|t − x̄t+k|t||2Q + ||ut+k|t||2R + ||ut+k|t − ut+k−1|t||2dR, (7.24b)

ψ(ωk) =pω(ωk − 1)2, (7.24c)

where ut−1|t = u∗t−1|t−1 represents the last optimized control input. The dynamics constraints

(7.20c) is applied with the discrete-time forward Euler formulation from the continuous-
time dynamics (7.23). The input constraints (7.20d) is imposed by the steering angle and
acceleration limits mentioned above. A prediction horizon of N = 11 is used, with the DCBF
horizon as NCBF = 6, and the decay rate as γk = 0.8. The obstacle avoidance constraints
(7.20e)-(7.20h) can be applied directly to each pair of the convex-shaped (triangle, rectangle,
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pentagon) robot and each convex obstacle. When the robot is non-convex shaped (L-shape),
these constraints are applied to the convex parts of the robot and each convex obstacle.

To reduce the complexity of the optimization formulation, we only consider the obstacles
which are within a specified radius from the robot at any given time. The radius is calculated
using the reference tracking velocity, prediction horizon and the maximum deceleration of
the robots.

7.4.0.5 Warm Start

The NMPC-DCBF formulation is a non-convex optimization, and hence computationally
challenging to solve in general. Although the DCBF constraints help to reduce the com-
plexity, as discussed in Sec. 7.3.4.2, it still requires a good initial guess to lead to faster
numerical convergence. The initial guess trajectory and control inputs are generated using
a braking controller. An acceleration input equal to the maximum deceleration is provided
and the steering angle is set to zero. Once the robot comes to a halt, the acceleration input
is also set to zero. The braking control inputs, along with the trajectory generated from it
are provided as an initial guess to the optimization at each time step. Since at each time step
hi(xt|t) is solved using (7.10), the dual optimal solution from this computation is provided
as an initial guess for the dual variables for the entire horizon.

7.4.0.6 Simulation Results

To evaluate the performance of (7.20), we study the navigation problem with two different
maze environments with four choices of robot shapes. The optimization problems are im-
plemented in Python with CasADi [14] as modelling language, solved with IPOPT [22] on
Ubuntu 18.04 with Intel Xeon E-2176M CPU with a 2.7GHz clock. From the snapshots we
can observe tight-fitting obstacle avoidance motion of the robot, and also reversing motion to
avoid deadlock. These examples highlight the safety and planning features of our implemen-
tation. We also analyze the computational time of trajectory generation using (7.20), which
is shown in Table 7.1. This illustrates that optimization (7.20) can be solved sufficiently
fast to be deployed on different-shaped robots for trajectory generation in different maze
environments. The details of hyperparameter selections can be found in the open-source
repository.

The specific choice of the parameters in the optimization formulation (7.20) can influence
safety and deadlock behaviors in the robot. Qualitatively, for safety, the reference tracking
velocity should be such that the robot can come to a halt within the prediction horizon with
the input as the maximum deceleration. There is also a trade-off between deadlock avoidance
and safety: Higher value of the terminal cost weight QT improves deadlock avoidance, but
can also increase velocity of the robot, leading to unsafe motion.

To tune the hyperparameters for a given system, consider the set of feasible trajectories
of (7.20) for some reference trajectory X̄. First, to capture the affect of all control inputs on
the DCBF h, the safety horizon NCBF must be larger than the relative degree of the system
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with respect to h. If there exists any safe trajectory at the current state that brings the robot
to rest, the resulting control law guarantees that the closed-loop trajectory is also safe. Thus,
it is desirable to choose the safety horizon NCBF high enough so that the robot can come to
rest within NCBF steps. However, choosing a large safety horizon may result in an increased
computation time and safety could be achieved in practice with proper tuning of the decay
rate γ. Choosing γ closer to 1 prioritizes safety over reference tracking while choosing γ
closer to 0 ensures faithful tracking at the cost of safety. Note that the relaxation variable
ωk is essential for feasibility of (7.20) especially for γ closer to 1, see [223]. Selecting a large
terminal cost parameter pω in (7.24c) is also key to ensure that the effective decay rate does
not deviate, thus prioritizing safety of the system. Finally, the stage cost parameter Q in
(7.24b) and the terminal cost parameter QT in (7.24a) present a trade-off between reference
tracking and exploration. Larger values of Q result in the closed-loop trajectory closely
following the reference trajectory. Notice that since the reference trajectory may not be
dynamically feasible, this may still result in deadlocks. Selecting larger values of QT mostly
penalizes deviation from the terminal state and thus promotes exploration during timesteps
k = 1, ..., NCBF−1. This can result in better deadlock avoidance maneuvers as depicted in
Figure 7.2.

Table 7.1: Solver time statistics of NMPC-DCBF with polytopic obstacles.

Env Robot Shape median std min max

Maze 1

triangle (Figure 7.2a) 51ms 19ms 14ms 149ms
rectangle (Figure 7.2b) 49ms 25ms 15ms 185ms
pentagon (Figure 7.2c) 71ms 15ms 15ms 272ms
L-shape (Figure 7.2d) 85ms 13ms 13ms 215ms

Maze 2

triangle (Figure 7.2e) 33ms 24ms 13ms 121ms
rectangle (Figure 7.2f) 29ms 25ms 13ms 122ms
pentagon (Figure 7.2g) 30ms 29ms 13ms 150ms
L-shape (Figure 7.2h) 29ms 49ms 13ms 233ms

7.5 Chapter Summary

In this chapter, we proposed a nonlinear optimization formulation using discrete-time control
barrier function based constraints for polytopes. The proposed formulation has been shown
to be applied as a fast optimization for control and planning for general nonlinear dynamical
systems. We validated our approach on navigation problems with various robot shapes in
maze environments with polytopic obstacles.

We have seen discussions involving optimization, control and trajectory generation about
control barrier functions in different chapters until now. After this chapter, We will present
different robotics applications with control barrier functions.
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Chapter 8

Safety-Critical Autonomous Driving
with Finite State Machine 6

8.1 Introduction

Safety is critical in the automobile industry, and significant progress in this area has been
made via (semi-)autonomous driving in the past few decades. While systems like adaptive
cruise control or lane departure warning systems have proven to improve vehicle’s safety in
simple scenarios, it is desirable in the future that autonomous driving could handle safety-
critical tasks in more complex driving scenarios, for example, autonomous lane change ma-
neuvers. Lane change is challenging for both drivers and autonomous driving controllers
since multiple surrounding vehicles should be considered and their future movements should
be predicted. The more challenging fact is that drivers or controllers have little time to
respond to avoid a crash if a threat occurs. According to statistics provided by US National
Highway Traffic Safety Administration (NHTSA) in [170], about 9% of all vehicle crashes
involved lane change maneuvers.

8.1.1 Related Work

Several recent results focus on this topic. In [207, 82], new methods are proposed to predict
the intent of other surrounding vehicles. Research in [202, 166] focuses on the generation
of optimal trajectories for lane change maneuvers. Various low-level controllers have been
developed to track the optimal path generated by planners. Model predictive control (MPC)
is a commonly used method. In [229, 36, 16], MPC based controllers are implemented.
Additionally, simple linear [92] or nonlinear [37] feedback control method has also been
proven to be suitable for this task.

6The material of this chapter is from “Rule-based safety-critical control design using control barrier
functions with application to autonomous lane change” published in 2021 American Control Conference
(ACC) [74].
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Lane	Change	Behavior
Planner

Mid-level	Path	Planner

Low-level	Controller

Safety-critical	
Controller

Hardware-level	Control

Steering,	throttle/brake

Collision-free	trajectory

Different	maneuvers:	
left/right	lane	change,	etc.

Trajectory	tracking

Traditional	Lane	Change	Strategy Proposed	Ruled-Based	Control

Figure 8.1: Control and planning strategy for lane change.

Based on previous work like [229, 36], we can summarize the traditional autonomous
lane change strategy as shown in the left side of Figure 8.1. A high-level behavior planner
makes the decision on the ego vehicle should stay in the current lane or change to the
left (right) adjacent lane. This can be done by human drivers (e.g. activating the turn
signal) or by algorithms [191]. Once a specific lane change maneuver is triggered, a mid-
level path planner generates a collision-free optimal trajectory for the ego vehicle, which
will be tracked by a low-level controller. However, the mid-level path planner usually can
not be updated at a high frequency and may not respond to a sudden threat immediately,
which means its planned trajectory may not always meet safety-critical requirements in a fast
changing environment. Furthermore, there are always notable tracking errors in the low-level
controller, which means tracking a collision-free trajectory could still be potentially unsafe.
Therefore, in a safety-critical autonomous lane change strategy, safety relevant constraints
should be considered in the low-level controller directly and the controller must work at a
high update frequency.

In order to guarantee the system’s safety in the low-level controller, control barrier func-
tions (CBFs) have recently been introduced to ensure set invariance by considering the
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system dynamics and several researchers have used CBFs to ensure the system’s safety for
the vehicle control design problems. In [38, 175, 224, 159], CBFs are used to implement
obstacle avoidance. A CBF-based controller to supervise the safety of a learning based lane
keeping controller is proposed in [39]. In [9], CBFs are unified with control Lyapunov func-
tions (CLFs) via a quadratic program, and it illustrates this CLF-CBF-QP formulation in the
context of adaptive cruise control. Due to its low computational complexity, this quadratic
program allows the low-level controller to work at a high update frequency, which motivates
us to investigate the safety-critical lane change control design through the CLF-CBF-QP
formulation.

Rule-based strategies are also widely used in control design. One example is the finite
state machine (FSM), which can make decisions according to input signals and transition
conditions [131]. Since its computational complexity is lower than that of a traditional
path planner, the FSM can be used in a low-level controller and work at a high update
frequency, which inspires us to use a well-designed FSM to replace the mid-level path planner
in traditional lane change strategies.

Based on the above analysis, we propose a rule-based safety-critical lane change control
design. A FSM works as the basic structure, where a quadratic program based optimization
problem using CLF and CBF constraints (CLF-CBF-QP) is formulated to achieve control
objectives and guarantee the system’s safety. The FSM can unify the mid-level path planner
and low-level controller in traditional lane change strategy as one: a low-level safety-critical
controller, see Figure 8.1. The FSM is used to make the decision of whether the ego vehicle
can do a collision-free lane change maneuver or not. If the current traffic environment isn’t
suitable for a lane change maneuver, the ego vehicle will keep the current lane until a safe
situation occurs. Additionally, if a threat arises during a lane change maneuver, the FSM will
enter another state to drive the ego vehicle back to its current lane. Since the safety relevant
constraints are considered in the low-level controller directly and a quadratic program allows
the controller to run with high update frequency, our proposed strategy can guarantee the
ego vehicle’s safety in complex environments.

8.1.2 Contribution

The contribution of this chapter is as follows:

• We present a rule-based safety-critical design by using CLF-CBF-QP formulation,
which can achieve the control objective and guarantee the vehicle’s safety via low-
level control in lane change maneuvers. The quadratic program allows the controller
to work at a high update frequency.

• A finite state machine is used to unify mid-level planner and low-level controller into
one optimization problem, a low-level safety-critical controller. The FSM helps the
proposed strategy do switches between multiple CBF constraints in a complicated
environment.
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• We verify the performance of our controller using both typical and randomly generated
driving scenarios. The result shows that our approach is generally applicable in both
highway and city driving scenarios.

8.2 Background

8.2.1 Vehicle Model

In this chapter, we use a kinematic bicycle model (8.1) in [105] for our numerical validation
and its dynamics is described as follows,

ẋ = v cos (ψ + β) (8.1a)

ẏ = v sin (ψ + β) (8.1b)

ψ̇ =
v

lr
sin β (8.1c)

v̇ = a (8.1d)

β = tan−1

(
lr

lf + lr
tan (δf )

)
(8.1e)

where acceleration at vehicle’s center of gravity (c.g.) a and front steering angle δf are the
inputs of the system. x and y denote the coordinates of the vehicle’s c.g. in an inertial
frame (X,Y ). ψ represents the orientation of the vehicle. lf and lr describe the distance
from vehicle’s c.g. to the front and real axles, respectively. β represents the slip angle of the
vehicle.

Remark 8.1. Both kinematic and dynamic bicycle models are commonly used vehicle models
in the field of autonomous driving research. From [147], authors show that the kinematic bi-
cycle model works under small lateral acceleration and also recommend 0.5µg as a limitation
for the validity of the kinematic bicycle model (µ is friction coefficient and g is gravitational
acceleration). In this work, we assume our controller will result in small longitudinal accel-
eration and this criteria will be considered as a constraint in our optimal control problem in
Sec. 8.3

Notice that the kinematic model in (8.1) represents a nonlinear nonaffine system. For our
later usage, we assume that the slip angle β is constrained with a small angle assumption
in our control design together, where we approximate cos β = 1 and sin β = β. Hence, (8.1)
could be simplified as a nonlinear affine form as follows,

ẋ
ẏ

ψ̇
v̇

 =


v cosψ
v sinψ

0
0

+


0 −v sinψ
0 v cosψ
0 v/lr
1 0

[
a
β

]
(8.2)
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This nonlinear affine model in (8.2) with inputs a and β will be used for our safety-critical
control design. Input δf in (8.1) can be calculated through (8.1e)

8.2.2 Safety-Critical Control

Consider a nonlinear affine control system

ẋ = f(x) + g(x)u, (8.3)

where x ∈ D ⊂ Rn, u ∈ U ⊂ Rm represent the system’s state and input, and U is the
admissible input set of the system, f and g are locally Lipschitz.

For this nonlinear affine system, we are interested in the system’s safety. For the same
control system (8.3), we define a superlevel set C ⊂ D ⊂ Rn of a differentiable function h :
D × R → R,

C = {x ∈ Rn : h(x, t) ≥ 0} , (8.4)

and we refer to C as a safe set. The function h becomes a control barrier function (CBF) if
it can satisfy the following condition [210]:

sup
u∈U

[
∂h

∂t
+ Lfh(x, t) + Lgh(x, t)u] ≥ −γh(x, t). (8.5)

When h(x, t) is time-invariant, denoted as h(x), then the condition above could be simplified
[12] as follows,

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −γh(x). (8.6)

The control barrier function guarantees the set invariance of C for the system’s safety. Besides
the system’s safety, we have a control Lyapunov function for the system’s stability, where a
function V : D ∈ Rn → R+ is a control Lyapunov function (CLF) if (i) V is positive definite
and (ii) it can satisfy the following condition:

inf
u∈U

[LfV (x) + LgV (x)u ≤ −αV (x)]. (8.7)

Notice that γ and α in (8.5) and (8.7) could be generalized into extended class K∞ and K
functions, respectively; and we only treat them as linear functions with constant coefficients
in this chapter.

To guarantee the system’s safety and achieve its control objective simultaneously, the
control Lyapunov function and control barrier function can be unified as a quadratic program
(CLF-CBF-QP) [9] and written as follows:

u(x) = argmin
(u,δ)∈Rm+1

1

2
uTH(x)u+ pδ2 (8.8a)

s.t. LfV (x) + LgV (x)u ≤ −αV (x) + δ (8.8b)

∂h

∂t
+ Lfh(x, t) + Lgh(x, t)u ≥ −γh(x, t) (8.8c)
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Figure 8.2: Finite state machine of lane change controller.

where H(x) is a positive definite matrix, and δ is a relaxation variable to make the CLF
constraint become a soft constraint to mediate stability for safety, and p is the penalty for
this relaxation variable. This formulation will be used for our control design, which will be
introduced in Sec. 8.3.

8.3 Control Design

After introducing the vehicle model and CLF-CBF-QP formulation, a safety-critical lane
change controller will be presented in this section. The proposed controller is a finite state
machine (FSM), where rule-based CLF-CBF-QP formulations are used to calculate the sys-
tem’s optimal input. This FSM will be introduced in Sec. 8.3.1. Then we will present the
safety-based conditions for switches of constraints in Sec. 8.3.2. Finally, details about the
CLF-CBF-QP formulations will be shown in Sec. 8.3.3.

8.3.1 Finite State Machine

Figure 8.2 shows the proposed FSM. The FSM’s output is a state representing one of the
following:
Adaptive Cruise Control State - ACC: The ego vehicle maintains a desired speed and follows
a leading vehicle in its current lane at a safe distance.
Left or Right Lane Change State - L or R: The ego vehicle is expected to do a collision-free
lane change maneuver to the left or right adjacent lane, respectively.
Back to Current Lane From Left or Right State - BL or BR: The ego vehicle drives back to
its current lane to avoid a potential crash if a threat arises during a lane change maneuver.
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Having presented the FSM’s state definitions, we next introduce the FSM’s input signals
(c, p, e) and reveal how they make the FSM switch between the above states.
Command from High-Level Behaviour Planner (c) : This indicates the high-level planner’s
expected maneuver for the ego vehicle. Value 0 will set the controller in ACC state; value
1 or -1 will make the controller work in L or R state, respectively.
Positional Information - (p) : This represents the ego vehicle’s relative lateral position.
Value 0 means the ego vehicle is in its current lane; if it moves across the edge between
current and target lanes, p will change to 0.5; finally, when the ego vehicle is totally in its
target lane for more than some duration of time, e.g. 1.5s, p will become 1, which represents
the success of a lane change maneuver and will bring the controller back to ACC state.
Traffic Environment Information - (e) : This shows whether the ego vehicle can do a lane
change maneuver under safety-critical constraints. When the CLF-CBF-QP formulation is
in the L or R state and is numerically unsolvable due to a potential future collision, e will
change from 1 to 0. When c is not 0 but e is 0, then if the FSM is in ACC state, it will
continue working in this state; otherwise, as shown in Figure 8.2, the FSM will go back to
ACC state via BL or BR state.

When c’s value is -1 or 1 but the ego vehicle is in ACC state, a predictive calculation as
in (8.10) will be made to determine if the ego vehicle can get enough space for a lane change
maneuver after accelerating to the speed limit. When the result shows this is possible, the
speed limit will be the desired speed for ACC state and the ego vehicle will re-enter L or
R state once the lane change CLF-CBF-QP is solvable.

These switches between different states implement the function of a planner in our pro-
posed strategy. According to the input signals, the FSM will decide when is the best oppor-
tunity to do the lane change maneuver. Additionally, if this maneuver is interrupted, the
FSM will drive the ego vehicle to change to its target lane again once it is safe.

8.3.2 Safety-Based Conditions for Switches of CBFs

In this section, we will show the continuity of the system’s safety under different CBF con-
straints. In our controller, the switches between different CBF constraints could happen
when the FSM changes state or a CBF constraint is removed from the CLF-CBF-QP for-
mulation (see Sec. 8.3.3). This asks the controller to guarantee the continuity of system’s
safety. As shown in Figure 8.3, system’s CBF constraints before and after a switch can be
described as safe sets C1 and C2, respectively. When h2(x, t) replaces h1(x, t) as the new CBF
constraint, if the system’s state x is in the intersection of C1 and C2, the new barrier function
h2(x, t) will make the new safe set C2 invariant after the switch, which will guarantee the
system’s safety. This condition is used to design switches between different CBF constraints
in this chapter.
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Figure 8.3: Safe sets’ invariance for switches of CBF constraints.

Figure 8.4: Typical lane change scenario.

8.3.3 Rule-Based CLF-CBF-QP Formulation

We now present the CLF-CBF-QP formulations in different FSM states. Firstly, we consider
a typical lane change scenario as shown in Figure 8.4, where the red vehicle is our ego vehicle.
In the controller, up to three vehicles will be selected as vehicles of interest (vehicles with
letters in Figure 8.4): vehicle fc represents the vehicle immediately in front of the ego vehicle
in its current lane (blue vehicle in Figure 8.4); vehicle bt represents the vehicle immediately
behind the ego vehicle in the target lane (purple vehicle in Figure 8.4); vehicle ft denotes the
vehicle immediately in front of the ego vehicle in the target lane (yellow vehicle in Figure
8.4). Other surrounding vehicles like green ones in the Figure 8.4 will not be considered in
the controller. The frame in Figure 8.4 is the inertial frame used in further discussion, which
is called E.

Remark 8.2. In this work, we are interested in the safety-critical control of the autonomous
lane change maneuver. To explore this problem, we assume the controller has access to
accurate data of all surrounding vehicles. This could be done through Lidar, vision, radar,
and ultrasonic sensors.
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Table 8.1: Notations and Symbols for control design.

Notation Description
Vehicle’s Dimension Data

lfc length of vehicle’s body that is in front of the c.g.
lrc length of vehicle’s body that is behind the c.g.
wlc width of vehicle’s body that is on the left of c.g.
wrc width of vehicle’s body that is on the right of c.g.

Ego Vehicle’s Data
(x, y) coordinates of c.g. in frame E
v ego vehicle’s speed
ψ ego vehicle’s yaw angle
vd ego vehicle’s desired speed
vl ego vehicle’s speed limit of current scenario
al ego vehicle’s acceleration limit
ϵ a safety factor between 0.1-1 (1 is safest)

Other Vehicles’ Data
(xk, yk) coordinates of vehicle k’s c.g. in frame E
vk vehicle k’s speed
ak vehicle k’s acceleration

∆xk
time varying longitudinal distance between vehicle k
and the ego vehicle, equal to |x− xk| − lfc − lrc.

∆yk
time varying lateral distance between vehicle k and

the ego vehicle, equal to |y − yk| − wrc − wlc.

Table 8.1 shows notations that will be used for further discussion and the subscript k
can represent fc, bt or ft, which indicates the corresponding vehicle with respect to the ego
vehicle.

Remark 8.3. The vehicle’s position, velocity or yaw angle information is a function of time.
In order to simplify the notations for discussion, in this chapter, we omit time information
in the notations. For example, v represents the speed of the ego vehicle at the current time.

We next present constraints used in the optimization problem, divided into two groups:
Hard Constraints: These represent the safety-critical relevant constraints. In our con-
troller, these constraints are used to keep the ego vehicle at a safe distance from the sur-
rounding vehicles, which is defined by us as 1+ϵ times following vehicle’s speed. For example,
if the ego vehicle changes its lane, the distance between it and the vehicle bt should be greater
than (1+ϵ)vbt. Hard constraints should never be violated under any conditions and will be
guaranteed through CBF constraints.
Soft Constraints: These introduce the control objectives related constraints. The control
goals will only be achieved through CLFs when the hard constraints are satisfied, for example
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the speed or position of the ego vehicle. Through CLF constraints, it is possible to track a
desired position without a reference trajectory.

Next we present details of the CLF-CBF-QP formulations in each FSM state.
For all FSM states, the following CLFs will be used to regulate the ego vehicle to track

the desired speed vd and reach its lateral dynamics’ control objective:

Vv(x) = (v − vd)
2, (8.9a)

Vy(x) = (y − yl)
2, (8.9b)

Vψ(x) = ψ2, (8.9c)

where yl is the y coordinate of current lane’s center line for states ACC, BL and BR or y
coordinate of target lane’s center line for states L and R in frame E.

As mentioned in Sec. 8.3.1, if input c is 1 or -1 but the FSM is in ACC state, a
simple predictive calculation will be done to determine the ego vehicle’s desired speed by
first computing the distances between the ego vehicle and the three vehicles of interest:

∆x′fc = ∆xfc + vfc
vl − v

al
−

v2l − v2

2al
− (1 + ϵ)v, (8.10a)

∆x′ft = ∆xft + vft
vl − v

al
−

v2l − v2

2al
− (1 + ϵ)v, (8.10b)

∆x′bt = ∆xbt − vbt
vl − v

al
+

v2l − v2

2al
− (1 + ϵ)vbt. (8.10c)

If all equations above are greater than 0, which means the ego vehicle will have enough
space to change the lane through accelerating to the current scenario’s speed limit vl, vl will
become the new desired speed vd in ACC state; otherwise, the original desired speed vd will
be used in ACC state.
CBF in ACC state: In this state, safety-critical control should keep the distance between
the ego vehicle and vehicle fc greater than a pre-defined value. We refer to the distance
constraints and force based constraints in [9] and construct the following CBF:

hfc(x, t)=

{
∆xfc−(1 + ϵ)v−

(vfc − v)2

2al
if v ≥ vfc

∆xfc−(1 + ϵ)v else
(8.11)

If the ego vehicle is faster than its leading vehicle fc, the traveling distance during
deceleration process will be considered in the hfc(x, t). Otherwise, hfc(x, t) ≥ 0 indicates
the ego vehicle meets the safety-critical requirement directly. Converting this CBF into its
corresponding constraint in the CLF-CBF-QP formulation will guarantee hfc(x, t) always
greater than 0. This condition will also be used for similar expressions later.
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CBFs in L or R state: In this state, all three vehicles of interest should be considered in
the safety-critical control design. Following CBFs will be constructed:

hfc(x, t)=

{
∆xfc−(1 + ϵ)v−

(vfc − v)2

2al
if v ≥ vfc

∆xfc−(1 + ϵ)v else
(8.12a)

hft(x, t)=

{
∆xft−(1 + ϵ)v−

(vft − v)2

2al
if v ≥ vft

∆xft−(1 + ϵ)v else
(8.12b)

hbt(x, t)=

{
∆xbt−(1 + ϵ)vbt−

(vbt−v)2

2al
if vbt ≥ v

∆xbt−(1 + ϵ)vbt else
(8.12c)

Similarly to the (8.11), (8.12c) can be used to keep a safe distance between the ego
vehicle and vehicle bt (or after the ego vehicle accelerates to the same speed as vehicle bt).
Additionally, during a lane change maneuver, after the ego vehicle changes to its target lane,
vehicle fc and bt will no longer be the vehicles of interest. Therefore, hfc(x, t) and hbt(x, t)
will not be used if the ego vehicle is totally in its target lane.

CBFs in BL or BR state: In this state, since the ego vehicle will go back to its current
lane, it should keep a safe distance from vehicle fc by using the CBF as in (8.13a). More
importantly, hard constraints should be used to prevent a potential crash with interrupted
vehicles, which can be either vehicle ft or bt. Equations (8.13b) and (8.13c) are used to
prevent a crash in both longitudinal and lateral directions (if the vehicle ft or bt is overlapping
with the ego vehicle longitudinally). Following CBFs are used in this case:

hfc(x, t)=

{
∆xfc−(1 + ϵ)v−

(vfc−v)2

2al
if v≥vfc

∆xfc−(1 + ϵ)v else
(8.13a)

hft(x, t)=

{
∆xft−

(vft−v)2

2al
if ∆xft≥0 , v≥vft

∆xft if ∆xft≥0 , v<vft
∆yft−0.1ϵ else

(8.13b)

hbt(x, t)=

{
∆xbt−

(vbt−v)2

2al
if ∆xbt≥0 , vbt≥v

∆xbt if ∆xbt≥0 , vbt<v
∆ybt−ϵ else

(8.13c)

Remark 8.4. For the switches between different FSM states, we take the change from L
to ACC state as an example to show the continuity of the system’s safety under different
CBF constraints. We assume that the ego vehicle does a left lane change maneuver and only
vehicle fc, ft exist. The corresponding safe sets of CBF (8.12a) and (8.12b) are called Cfc
and Cft, respectively. In L state, the ego vehicle’s state x is in the intersections of these two
sets. When the FSM enters ACC state, CBF (8.11) will be the only hard constraint in the
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controller, which will build the same safe set as Cft since vehicle ft becomes the new leading
vehicle. In this case, the intersection of sets Cft and Cfc is the subset of Cft, which meets the
proposed safety-based conditions for switches of CBF constraints in Sec. 8.3.2.

Finally, the system’s optimal input will be calculated through a quadratic program, where
the CLFs and CBFs in different states will be used to construct the constraints,

u = argmin[
u δv δy δψ

]T
∈R5

1

2
uTHu+ pvδ

2
v + pyδ

2
y + pψδ

2
ψ (8.14a)

s.t. LfVj(x) + LgVj(x)u ≤ −αjVj(x) + δj (8.14b)

∂hk(x, t)

∂t
+Lfhk(x, t)+Lghk(x, t)u ≥ −γkhk(x, t) (8.14c)

where j can represent subscript v, y or ψ and k can denote subscript fc, ft or bt. f and
g are corresponding items in nonlinear affine kinematic bicycle model (8.2). According to
the FSM’s current state, different combinations of CBFs and CLFs will be used for the
optimization problem (8.14). This quadratic program carries a low computational cost,
which makes the controller work at a high update frequency.

Remark 8.5. Notice that the barrier functions used in this chapter are time-varying func-
tions. When we construct the CBF constraints in (8.14), we must use surrounding vehicle’s
time-varying speed and acceleration information to calculate corresponding partial deriva-
tives.

8.4 Results

Having introduced the ruled-based safety-critical lane change controller, we will validate our
algorithm through numerical simulations in this section. Simulations are also illustrated in
a supplement video1. The controller is simulated to work at an update rate of 100Hz and
parameters in Table 8.2 will be used.

As discussed in Remark 8.1, we apply constraints on the system’s input to satisfy the
requirement of the kinematic bicycle model and physical limitations of the ego vehicle, which
are shown in Table 8.3.

8.4.1 Simulation with Pre-designed Typical Scenarios

To evaluate our controller’s performance, we test the algorithm on the ego vehicle in the
following pre-designed typical scenarios, which can be used to mimic most driving scenes.
For these scenarios, our ego vehicle is simulated to start from initial position (x(0), y(0)) =
(0m, 1.75m) with an initial speed v(0) = 27.5m/s and the target lane is the adjacent one

1https://youtu.be/icmy9u2a4z4

https://youtu.be/icmy9u2a4z4
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Vehicle Parameter Hyperparameter
Parameter Value Parameter Value Parameter Value

lf 1.11m
H

[
0.01 0
0 0

]
αv 1.7

lr 1.74m αp 0.8
lfc 2.15m ϵ 0.5 αs 12
lrc 2.77m pv 0.1 γfc 1
wlc 0.93m pp 15 γft 1
wrc 0.93m ps 400 γrt 1

Table 8.3: Vehicle input bounds.

β β̇ a ay
minimum 15 15s 0.3g 0.3g
maximum -15 -15s -0.3g -0.3g

Table 8.4: Initial setups for lane change numerical simulations.

Simulation Initial Position (x1(0), y1(0)) Constant Speed v1(t)
1 (55 m, 1.75 m) 22 m/s
2 (-15 m, 5.25 m) 19 m/s
3 (3 m, 8.75 m) 33 m/s

on the left. The width of each lane is 3.5m, the ego vehicle’s speed limit is vl = 33.33 m/s
and its desired speed is set as vd = 27.5 m/s. Another surrounding vehicle is also simulated
and it is initialized with a different position and constant speed in each simulation, shown in
Table 8.4. This surrounding vehicle is set to stay on its original lane for first two simulations
and it is required to change to the same target lane as the ego vehicle in the third one.

The numerical simulations of these scenarios are shown in Figure 8.5 by snapshots. The
ego vehicle’s speed, front steering angle and FSM’s state are plotted in Figure 8.6.

Overtaking a slow leading vehicle occurs frequently and the first simulation is a simple
example of this overtaking maneuver. The ego vehicle decelerates to keep away from the slow
leading vehicle and changes the lane. Additionally, during the lane change maneuver, the
ego vehicle should pay attention to the approaching vehicle in its target lane. Our controller
is shown to guarantee the safety of both ego vehicle and this coming vehicle in our second
simulation. The ego vehicle accelerates to gain enough space to change the lane. Finally, a
dangerous scenario that may happen during a lane change maneuver is that two vehicles try
to change to the same lane at the same time due to lack of observation before changing the
lane. In the third simulation, the ego vehicle avoids the other vehicle by driving back to its
current lane and then changes to its target lane once it is safe. Our ego vehicle is able to



CHAPTER 8. SAFETY-CRITICAL AUTONOMOUS DRIVING WITH FINITE STATE
MACHINE 113

(a) Simulation 1: ego vehicle overtakes a slow leading one.

(b) Simulation 2: a target lane’s surrounding vehicle approaches ego one.

(c) Simulation 3: ego vehicle avoids another surrounding vehicle.

Figure 8.5: Snapshots of three lane change simulations.

Figure 8.6: Ego vehicle’s speed, front steering angle and FSM’s state during simulations.
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achieve the lane change maneuver and ensure its safety along the trajectory.

8.4.2 Simulations with Randomly Generated Tests

To show statistically the robustness of our control design in different environments, we also
deploy tests with numerous driving scenarios with randomly generated surrounding vehicles.
We will mimic highway and urban road environments where two groups of random scenarios
will be generated. Notice that we adopt the suggested values of speed ranges and lane widths
provided by US Federal Highway Administration (FHWA) [182] to generate two groups of
random tests.

We can summarize the simulations’ basic settings of two groups as follows: only ego
vehicle is equipped with our controller and will start from initial position x(0) = 0m and
y(0) is equal to the y coordinate of the initial lane’s center line in frame E with initial speed
v(0), whose value is determined by the driving scenario. The target lane of the ego vehicle is
the adjacent one on the left. There will be six vehicles generated randomly around the ego
vehicle. One vehicle (denoted as 1st vehicle) is in the initial lane and another four vehicles
(denoted as 2nd to 5th vehicle, respectively) are in the ego vehicle’s target lane. These five
vehicles will move with random initial speed and random acceleration. Finally, one vehicle
(denoted as 6th vehicle) is simulated to be in the left adjacent lane of target lane. It will
change to the same target lane with a constant speed and begin at a random position. All
of above six surrounding vehicles have a vehicle speed lower bound and upper bound, which
are determined by the corresponding scenario. Examples of randomly generated scenarios
are shown in Figure 8.7, where red is the ego vehicle. Random tests’ relevant data are
summarized in Table 8.5. We do 5000 simulations with a length of 60s for every scenario and
a statistical analysis of our controller’s performance in urban roads and highway are shown
in Table 8.6.

From the results, we find that more than 55% of the simulations finish the lane change
maneuver under 60 seconds. Less than 0.5% of simulations fail to find a solution for the
CLF-CBF-QP formulation. In other cases, the ego vehicle does not change to the target
lane but meets all safety-critical requirements during the simulations. In order to explore
the reasons of later two kinds of results, we look back on details of simulations. The randomly
generated vehicles may move at a similar speed with the ego vehicle. Some of them in ego
vehicle’s target lane have small longitudinal distance with the ego vehicle, which makes it
impossible to change the lane (see Figure 8.7b). Our controller fails when a travelled vehicle,
like vehicle ft, passes “through” a slow moving vehicle since we don’t constraint the distance
between normal vehicles in our simulator (see Figure 8.7c). When this happens, the slow
vehicle becomes vehicle ft and the CBF (8.13b) consequently becomes negative, which will
make the quadratic program infeasible. Note that vehicles passing “through” other vehicles
will not occur in real life. Additionally, in the real world, drivers will respond to surrounding
vehicle’s lane change maneuver to ensure the safety and avoid potential threats, for example,
decelerate to keep away from cut-in vehicles. This kind of response is not considered in our
random test, which makes it more challenging for the controller.
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Table 8.5: Simulation setup for random tests for urban road and highway.

Notations Values Values

Urban Road Highway
Driving Lane’s Width 3m 3.6m
Ego Vehicle’s v(0) 13m/s 29m/s
Ego Vehicle’s vd 13m/s 29m/s
Ego Vehicle’s vl 16.67m/s 33.33m/s

1st vehicle’s x1(0) in E [25m,40m] [50m,65m]
2nd-5th vehicle’s xk(0) in E [-50m,50m] [-85m,85m]
6th vehicle’s x6(0) in E [-50m,50m] [-85m,85m]
1st-6th vehicle’s vk(0) [11m/s,15m/s] [26m/s,32m/s]
1st-5th vehicle’s ak [-2m/s2,2m/s2] [-3m/s2,3m/s2]

Speed lower and upper bound [10m/s,16.67m/s] [23m/s,33.33m/s]

Table 8.6: Simulation results of 5000 groups of lane-change simulations.

Result In City On Highway

Change the lane successfully 62.46% 55.58%
Still in the current lane after 60s 37.06% 44.22%

CLF-CBF-QP formulation is not solvable 0.48% 0.20%

(a) The ego vehicle changes to its target lane in a randomly generated driving scenario successfully.

(b) The ego vehicle is still in its current lane after 60s since surrounding vehicles move with similar
speed and the distance between them is small.

(c) The ego vehicle fails to do a lane change maneuver. A fast vehicle (yellow one) drives “through”
a slow vehicle (one of the green ones). The change of vehicle ft in the controller makes the barrier
function hft(x, t)’s value change suddenly. This scenario will not happen in real world.

Figure 8.7: Selected examples of randomly generated scenarios.
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8.5 Discussion

In our proposed algorithm, we use a kinematic bicycle model with small angle assumption
on the slip angle for control design. However, since the kinematic bicycle model is based on
the zero slip angle assumption, it asks us to limit the ego vehicle’s lateral acceleration, which
limits the controller’s performance. The small angle assumption also causes a mismatch
between the real dynamics model and our approximated nonlinear affine dynamics model.
Therefore, it is desirable to explore the use of a nonlinear non-affine dynamic bicycle model
in the future work. Besides, in this work, we assume the perception system is able to sense
surrounding environment accurately and the controller can receive the sensors’ measurements
without time delay. To enhance the performance of our safety-critical controller, we need to
incorporate a state estimator and introduce a safety margin for the noisy data from distance
estimation between the ego vehicle and surrounding ones. The communication time cost
between sensors and controller should also be considered in the future work.

8.6 Chapter Summary

In this chapter, we presented a safety-critical lane change control design using rule-based
CLF-CBF-QP formulation. Utilizing a FSM, we divide a lane change maneuver into different
states, which allows the proposed strategy to function as both a planner and a controller.
A quadratic program based safety-critical control is applied to achieve optimal lane change
motion while guaranteeing safety. We tested the proposed control design using three pre-
designed typical driving scenarios and 5000 randomly generated tests in different scenarios
to show the effectiveness and robustness.

In this chapter, we focused on the finite state machine approach for motion planning
in autonomous driving problems. In the next chapter, we will discuss how parallelism to-
gether with control barrier functions can enhance the performance about autonomous racing
problems.
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Chapter 9

Autonomous Racing using Control
Barrier Functions with Parallel
Computation for Trajectory
Generation 7

9.1 Introduction

9.1.1 Motivation

Recently, autonomous racing is an active subtopic in the field of autonomous driving research.
In autonomous racing, the ego car is required to drive along a specific track with an aggressive
behavior, such that it is capable of competing with other agents on the same track. By
overtaking other leading vehicles and moving ahead, the ego vehicle can finish the racing
competition with a smaller lap time. While the behavior of overtaking other vehicles has been
studied in autonomous driving on public roads, however, these techniques are not effective
on a race track. This is because autonomous vehicles are guided by dedicated lanes on public
roads to succeed in lane follow and lane change behaviors, while the racing vehicles compete
in the limited-width tracks without guidance from well-defined lanes. Existing work focuses
on a variety of algorithms for autonomous racing, but most of them could not provide a
time-optimal behavior with high update frequency in the presence of other moving agents
on the race track. In order to generate racing behaviors for the ego racing car, we propose
a racing algorithm for planning and control that enables the ego vehicle to maintain time-
optimal maneuvers in the absence of local vehicles, and fast overtake maneuvers when local
vehicles exist, as shown in Figure 9.1.

7The material of this chapter is from “Autonomous racing with multiple vehicles using a parallelized
optimization with safety guarantee using control barrier functions” published in 2022 IEEE International
Conference on Robotics and Automation (ICRA) [73].



CHAPTER 9. AUTONOMOUS RACING USING CONTROL BARRIER FUNCTIONS
WITH PARALLEL COMPUTATION FOR TRAJECTORY GENERATION 118

Figure 9.1: Snapshots from simulation of the overtaking behavior.

9.1.2 Related Work

In recent years, researchers have been focusing on planning and control for autonomous driv-
ing on public roads. For competitive scenarios like autonomous lane change or lane merge,
both model-based methods [166] and learning-based methods [220] have been demonstrated
to generate the ego vehicle’s desired trajectory. Similarly, control using model-based meth-
ods [192, 74, 123] and learning-based methods [106] has also been developed. However, the
criteria to evaluate planning and control performance are different for car racing compared
to autonomous driving on public roads. For autonomous racing [121], when the ego racing
car competes with other surrounding vehicles, most on-road traffic rules are not effective.
Instead of maneuvers that offer a smooth and safe ride, aggressive maneuvers that push
the vehicle to its dynamics limit [148] or even beyond its dynamics limit [67] are sought to
win the race. In order to quickly overtake surrounding vehicles, overtake maneuvers with
tiny distances between the cars and large orientation changes are needed. Moreover, due to
the bigger slip angle caused by changing the steering orientation more quickly during racing,
more accurate dynamical models should be used for autonomous racing planning and control
design. We next enumerate the related work in several specific areas.

9.1.2.1 Planning Algorithms

For autonomous racing, the planner is desired to generate a time-optimal trajectory. Al-
though some work using convex optimization problems [117, 97, 25, 31, 75, 180, 4] or
Bayesian optimization (BO) [89] reduces the ego vehicle’s lap time impressively, either no
obstacles [97, 25, 31, 75, 180, 4, 89] or only static obstacles [117] are assumed to be on the
track. When moving vehicles exist on the track, nonlinear dynamic programming (NLP)
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[51], graph-search [181] and game theory [118, 198, 94] based approaches have demonstrated
their capabilities to generate collision-free trajectories. Additionally, in order to improve
the chance of overtaking, offline policies are learnt for the overtake maneuvers at different
portions of a specific track [21]. However, these approaches don’t solve all challenges. For
instance, work in [51, 198, 94, 21] does not take lap timing enhancement into account. In
[181], the ego vehicle is assumed to compete on a straight track with one constant-speed
surrounding vehicle. These assumptions are relatively simple for a real car racing compe-
tition. In [118], it is assumed that the planner knows the other vehicle’s strategy and the
complexity of the planner increases excessively when multiple vehicles compete with each
other on the track.

9.1.2.2 Control Algorithms

Researchers focus on enhancing performance of the ego vehicle by achieving its speed and
steering limits through better control design, e.g., obtaining the optimal lap time by driving
fast. The majority of existing work focuses on developing controllers with no other vehicles
on the track. The learning-based controllers [161, 95, 98, 199] leverage the control input
bounds to achieve optimal performance in iterative tasks. Model-free methods like Bayesian
optimization (BO) [140], Gaussian processes (GPs) [78], deep neural networks (DNN) [146,
197] and deep reinforcement learning (DRL) [153, 59] have also been exploited to develop
controllers that result in agile maneuvers for the ego car. To deal with other surrounding
vehicles, DRL has also been used in [176] to control the ego vehicle during overtake maneu-
vers. Recently, model predictive based controllers (MPC) with nonlinear obstacle avoidance
constraints have become popular to help the ego vehicle avoid other vehicles in the free
space. A nonconvex nonlinear optimization based controller is implemented in [162] to help
the ego vehicle avoid static obstacles. Researchers in [111] use mixed-integer quadratic pro-
grams (MIQP) to help the ego vehicle compete with one moving vehicle. In [29], GPs was
applied to formulate the distance constraints of a stochastic MPC controller with a kine-
matic bicycle model. However, large slip angles under aggressive maneuvers will cause a
mismatch between real dynamics model and the kinematic model used in the controller, re-
sulting in the controller being unable to guarantee the system’s safety in some cases. In [224],
a safety-critical control design by using control barrier functions is proposed to generate a
collision-free trajectory without a high-level planner, where infeasibility could arise due to
the high nonlinearity of the optimization problem. Moreover, due to the lack of a trajectory
planner, deadlock could happen very often during overtake maneuvers, such as in [224, 29].
A comparison of various approaches and their features are enumerated in Table 9.1.

As mentioned above, all the previous work on planning and control design for autonomous
racing could not enhance the lap timing performance and simultaneously compete with
multiple vehicles. Inspired by the work on iterative learning-based control and optimization-
based planning, we propose a novel racing strategy to resolve the challenges mentioned above
with a steady low computational complexity.
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Figure 9.2: Autonomous Racing Strategy.

9.1.3 Contribution

The contributions of this chapter are as follows:

• We present an autonomous racing strategy that switches between a learning-based
MPC trajectory planner (in the absence of surrounding vehicles) and optimization-
based homotopic trajectory planner with a low-level safety-critical controller (when
the ego vehicle competes with surrounding vehicles).

• The learning-based MPC approach guarantees time-optimal performance in the ab-
sence of surrounding vehicles. When the ego vehicle competes with surrounding vehi-
cles, multiple homotopic trajectories are optimized in parallel with different geometric
reference paths and the best time-optimal trajectory is selected to be tracked with an
optimization-based controller with obstacle avoidance constraints.

• We validate the robust performance together with steady low computational complexity
of our racing strategy in numerical simulations where randomly moving vehicles are
generated on a simulated race track. It is shown that our proposed strategy allows the
ego vehicle to succeed in overtaking tasks without deadlock when there are multiple
vehicles moving around the ego vehicle. We also demonstrate that our strategy would
work for various racing environments.

9.2 Background

In this section, we revisit the vehicle model and learning-based MPC for iterative tasks. The
learning-based MPC will be used as the trajectory planner when no surrounding vehicles
exist.
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9.2.1 Vehicle Model

In this work, we use a dynamic bicycle model with decoupled Pacejka tire model under
Frenet coordinates. The system dynamics is described as follows,

ẋ = f(x, u), (9.1)

where x and u show the state and input of the vehicle, f is a nonlinear dynamic bicycle
model in [150]. The definition of state and input is as follows,

x = [vx, vy, ωz, eψ, sc, ey]
T , u = [a, δ]T , (9.2)

where acceleration at vehicle’s center of gravity a and steering angle δ are the system’s
inputs. sc denotes the curvilinear distance travelled along the track’s center line, ey and eψ
show the deviation distance and heading angle error between vehicle and center line. vx, vy
and ωz are the longitudinal velocity, lateral velocity and yaw rate, respectively.

In this chapter, this model (9.1) is applied for precise numerical simulation using Eu-
ler discretization with sampling time 0.001s (1000Hz). Through linear regression from the
simulated reference path, an affine time-invariant model as below,

xt+1 = A(x̄)xt +B(x̄)ut (9.3)

will be used in the trajectory planner to avoid excessive complexity from nonlinear optimiza-
tion, where x̄ represents the equilibrium point for linearized dynamics. On the other hand,
an affine time-varying model as below,

xt+1 = At(x̄k)xt +Bt(x̄k)ut + Ct(x̄k) (9.4)

where matrices At(x̄k), Bt(x̄k), and Ct(x̄k) are obtained at local equilibrium point x̄k on
reference trajectory with iterative data which is close to xt. The dynamics (9.4) will be used
on racing controller design for better tracking performance.

9.2.2 Iterative Learning Control

A learning-based MPC [161], which improves the ego vehicle’s lap timing performance
through iterative tasks, will be used in this chapter. This has the following components:

9.2.2.1 Data Collection

The learning-based MPC optimizes the lap timing through historical states and inputs from
iterative tasks. To collect initial data, a simple tracking controller like PID or MPC can be
used for the first several laps. During the data collection process, after the j-th iteration
(lap), the controller will store the ego vehicle’s closed-loop states and inputs as vectors.
Meanwhile, through offline calculation, every point of this iteration will be associated with
a cost, which describes the time to finish the lap from this point.
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Figure 9.3: Illustration of learning-based MPC.

9.2.2.2 Online Optimization

After the initial laps, the learning-based MPC optimizes the vehicle’s behavior based on
collected data. At each time step, the terminal constraint is formulated as a convex set
(green convex hull in Figure 9.3). This convex set includes the states that can drive the ego
vehicle to the finish line in the previous laps. By constructing the cost function to create a
minimum-time problem, an open-loop optimized trajectory can be generated. Since the cost
function is based on the previous states’ timing data, the vehicle is able to drive to the finish
line with time that is no greater than the time from the same position during previous laps.
As a result, the ego vehicle will reach the time-optimal performance after several laps.

More details of this method can be found in [161]. In our work, this approach will be used
for trajectory planning when the ego vehicle has no surrounding vehicles. This helps with
better lap timing without surrounding vehicles. Notice that the data for iterative learning
control will be collected through offline simulation with no obstacles on the track, as shown
in Figure 9.2.

9.3 Racing Algorithm

After introducing the background of vehicle modeling and learning-based MPC, we will
present an autonomous racing strategy that can help the ego vehicle enhance lap timing
performance while overtaking other moving vehicles.

9.3.1 Autonomous Racing Strategy

There are two tasks in autonomous racing: enhancing the lap timing performance and com-
peting with other vehicles. To deal with these two problems, our proposed strategy will
switch between two different planning strategies. When there are no surrounding vehicles,
trajectory planning with learning-based MPC is used to enhance the timing performance
through historical data. Once the leading vehicles are close enough, an optimization-based
trajectory planner optimizes several homotopic trajectories in parallel and the collision-free
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Figure 9.4: A typical overtaking scenario when there are n vehicles in the range of overtaking.

optimal trajectory is selected with an optimal-time criteria, which will be tracked by a low-
level MPC controller. By adding obstacle avoidance constraints to the low-level controller,
it has the ability to guarantee the system’s safety. The racing strategy is summarized in
Figure 9.2.

9.3.2 Overtaking Planner

To determine if a surrounding vehicle is in the ego vehicle’s range of overtaking, following
condition must be satisfied:

− ϵl ≤ sc,i − sc ≤ ϵl + γ|vx − vx,i| (9.5)

where sc and sc,i are ego vehicle’s and i-th surrounding vehicle’s traveling distance, vx and vx,i
are ego vehicle’s and i-th surrounding vehicle’s longitudinal speed. l indicates the vehicle’s
length. ϵ and γ are safety-margin factor and prediction factor which we can tune for different
performance.

As shown in Figure 9.4, when there are n vehicles in the ego vehicle’s range of overtaking,
there exists (n+1) potential areas, each leading to paths with a different homotopy, that the
ego vehicle can use to overtake these surrounding vehicles. These areas are the one below the
n-th vehicle, the one above the 1st vehicle, and the ones between each group of adjacent ve-
hicles. n+1 groups of optimization-based trajectory planning problems are solved in parallel,
enabling steady low computational complexity even when competing with different numbers
of surrounding vehicles. To reduce each optimization problem’s computational complexity
through fast convergence, geometric paths with a distinct homotopy class that laterally lay
between vehicles or vehicle and track boundary (black dashed curves in Figure 9.4) are used
as reference paths in the optimization problems. By comparing the optimization problems’
costs, the optimal trajectory is selected from n+1 optimized solutions. For example, as the
case shown in Figure 9.4, the dashed orange line in Area 2 will be selected since it avoids
surrounding vehicles and finishes overtake maneuver with smaller time. The function to
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(a) Control points for the Bezier-curve next to the track boundary.

(b) Control points for the Bezier-curve between two adjacent vehicles.

Figure 9.5: Third order Bezier-curves (dashed black lines) and their control points (blue
points) for two different cases.

Figure 9.6: One typical scenario where the reference Bezier-curve has a conflict with the
surrounding vehicle when approaching with a large lateral difference.

minimize during the selection is shown as follows,

Js(xt) = min
xt

−Ks(sct+N
− sct)−

Np∑
k=1

((sct+k
− sc,it+k

)2 + (eyt+k
− ey,it+k

)2 − l2 − d2) + b

(9.6)
where Ks is a scalar used in metric for timing and b is a non-zero penalty cost if the new
potential area of overtaking is different from the area of overtaking in the last time step.
A bigger value of Ks is applied such that the ego vehicle is optimized to reach a farther
point during the overtake maneuver, which results in a shorter overtaking time since the
planner’s prediction horizon and sampling time are fixed. Additionally, the other terms in
(9.6) prevents the ego vehicle from changing direction abruptly during an overtake maneuver
and guarantees the ego vehicle’s safety.

Bezier-curves are widely used in path planning algorithms in autonomous driving research
[72, 34, 149] because it is easy to tune and formulate. Third-order Bezier-curves are used in
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this work. Each Bezier-curve is interpolated from four control points, including shared start
and end points with two additional intermediate points, shown in Figure 9.5. Specifically, the
start point for the Bezier curve is the ego vehicle’s current position and end point is on the
time-optimal trajectory generated from learning-based MPC planner. The selection of end
point makes vehicle’s state as close as possible to the time-optimal trajectory after overtake
behavior. To make all curves smoother and have no or fewer conflicts with surrounding
vehicles, the other two control points will be between the track’s boundary and vehicle for
Areas 1 and n+1, shown Figure 9.5a, or between two adjacent vehicles, shown in Figure 9.5b.
These two intermediate control points will have the same lateral deviation from the center
line. The key advantage of our selection of control points is that the interpolated geometric
curve won’t cross the connected lines between control points with its convexity, shown in
Figure 9.5. This property makes our reference paths collision-free with respect to surrounding
vehicles in most cases, which speeds up the computational time of the trajectory generation
at each area.

Remark 9.1. In order to avoid mixed-integer and nonlinear optimizations to speed up com-
putation, the planners are separated into (a) the overtaking planner that generates different
homotopic reference paths; and (b) trajectory generator that generates dynamically-feasible
and collision-free trajectories (in parallel) based on the generated homotopic reference paths.
The overtaking planner generates potential reference geometric paths for obstacle avoidance
by choosing control points of the Bezier curves in different homotopic regions. However, this
does not guarantee the reference path is collision free. For instance, when the ego vehicle
is approaching other surrounding vehicles with a big lateral difference (see Figure 9.6), the
Bezier-curve path used in the planner might not be collision-free with other surrounding ve-
hicles (while the Bezier control points are.) The parallelized trajectory optimizer then runs
multiple trajectory optimizations in parallel for each homotopy class, warm starting from
the corresponding Bezier curve. One of the generated dynamically-feasible and collision-free
trajectories is then chosen to be sent to the overtaking controller.

The details of the optimization formulation for trajectory generation will be illustrated
in the next section.

9.3.3 Trajectory Generation

After illustrating the planing strategy, this subsection will show the details about the opti-
mization problem used for trajectory generation for each potential area with different homo-
topic paths that the ego vehicle can use to overtake the surrounding vehicles.
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The optimization problem is formulated as follows,

argmin
xt:t+Np|t,ut:t+Np−1|t

p(xt+N |t)+

Np−1∑
k=0

q(xt+k|t)

+

Np−1∑
k=1

r(xt+k|t, ut+k|t, xt+k−1|t, ut+k−1|t) (9.7a)

s.t. xt+k+1|t = Axt+k|t +But+k|t, k = 0, ..., Np−1 (9.7b)

xt+k+1|t ∈ X , ut+k|t ∈ U , k = 0, ..., Np−1 (9.7c)

xt|t = xt, (9.7d)

g(xt+k+1|t) ≥ d+ ϵ, k = 0, ..., Np−1 (9.7e)

where (9.7b), (9.7c), (9.7d) are constraints for system dynamics, state/input bounds and
initial condition. The system dynamics constraint describes the affine linearized model de-
scribed in (9.3). The cost function (9.7a) is composed with three parts along the horizon
length Np, the terminal cost p(xt+N |t), the stage cost q(xt+k|t) and the state/input changing
rate cost r(xt+k|t, ut+k|t). The construction of cost function and constraints in the optimiza-
tion will be presented in detail in the following subsections.

9.3.3.1 Terminal Cost

Terminal cost is related to the ego vehicle’s traveling distance along the track during over-
taking process:

p(xt+N |t) = Kd(sct+N|t − sct) (9.8)

This compares the open-loop predicted traveling distance at the N -th step sct+N|t with the
ego vehicle’s current traveling distance sct . This works as the cost metric for timing during
the overtaking process.

9.3.3.2 Stage Cost

The stage cost introduces the lateral position differences between the open-loop predicted
trajectory and other two paths along the horizon:

q(xt+k|t)=||xt+k|t−xR(sck)||
2
Q1

+||xt+k|t−xT (sck)||
2
Q2

(9.9)

Here xR and xT are the reference path and time-optimal trajectory in Frenet coordinates.
The time-optimal trajectory is generated by the learning-based MPC trajectory planner used
on a track without other agents, as discussed in Sec. 9.2.2. sck is an initial guess for the
traveling distance at the k-th step, which is equal to sck = sct + vxtk∆t, where a constant
longitudinal speed is assumed along the prediction horizon.
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9.3.3.3 State/Input Changing Rate Cost

To make the predicted trajectory smoother, the state/input changing rate cost r(xt+k|t, ut+k|t)
is formulated as follows:

r(xt+k|t, ut+k|t, xt+k−1|t, ut+k−1|t) = ||xt+k|t − xt+k−1|t||2R1
+ ||ut+k|t − ut+k−1|t||2R2

(9.10)

9.3.3.4 Obstacle Avoidance Constraint

In order to generate a collision-free trajectory, collision avoidance constraint (9.7e) is added in
the optimization problem. To reduce computational complexity, only linear lateral position
constraint will be added when the ego vehicle overlapes with other vehicles longitudinally.
|sc(t) + vx(t)k∆t− sc,i(t+ k)| < l + ϵ will be used to check if the ego vehicle is overlapping
with other vehicle longitudinally along the horizon. In (9.7e), g(x) = |ey,i − ey| shows the
lateral position difference, l and d are the vehicle’s length and width, ϵ is a safe margin.

After parallel computation, the optimized trajectory x∗t:t+N |t with the minimum cost

Js(xt) discussed in (9.6) will be selected from n+1 groups of optimization problems. It will
be tracked by the MPC controller introduced in 9.3.4.

9.3.4 Overtaking Controller

After introducing the algorithm for trajectory generation, a low-level tracking controller with
model predictive control used for overtaking will be discussed in this part. The constrained
optimization problem is described as follows:

argmin
ũt:t+Nc−1|t,ω1:Nc−1

Nc−1∑
k=0

q̃(x̃t+k|t, ũt+k|t) + pω(1− ωk)
2 (9.11a)

s.t. x̃t+k+1|t =At+k|tx̃t+k|t +Bt+k|tũt+k|t (9.11b)

+Ct+k|t, k = 0, ..., Nc−1

x̃t+k+1|t ∈X , ũt+k|t ∈ U , k = 0, ..., Nc−1 (9.11c)

x̃t|t =x̃t, (9.11d)

h(x̃t+k+1|t) ≥γωkh(x̃t+k|t), k = 0, ..., Nc−1 (9.11e)

where (9.11b), (9.11c), (9.11d) describe the constraints for system dynamics (9.4), input/state
bounds and initial conditions, respectively. The q̃(x̃t+k|t, ũt+k|t) = ||x̃t+k|t − x∗t+k|t||2Q̃1

+

||ũt+k|t||2Q̃2
represents the stage cost, which tracks the desired trajectory x∗t:t+N |t optimized

by the trajectory planner. Equation (9.11e) with 0 ≤ γ < 1 represents discrete-time control
barrier function constraints [223] with relaxation ratio ωk for feasibility [226], which could
guarantee the system’s safety by guaranteeing h(x̃t+k|t) > 0 along the horizon with forward
invariance. In this project, h(x̃t+k|t) = (s̃c,i − s̃c)

2 + (ẽy,i − ẽy)
2 − l2 − d2 is used to represent

the distance between the ego vehicle and other vehicles. The optimization (4.10) allows us
to find the optimal control u∗t = ũt|t in a manner similar to MPC.



CHAPTER 9. AUTONOMOUS RACING USING CONTROL BARRIER FUNCTIONS
WITH PARALLEL COMPUTATION FOR TRAJECTORY GENERATION 129

Remark 9.2. Notice that (9.7) uses a distance constraint for obstacle avoidance while (4.10)
uses control barrier functions. The reason why we don’t combine these optimizations into one
under dynamics (9.11b) is that this cascaded approach for trajectory generation and control
is shown to be more computationally efficient and less likely to generate deadlock behavior.

9.4 Results

Having illustrated our autonomous racing strategy in the previous section, we now show the
performance of proposed algorithm. The setup and results of numerical simulations will be
presented in the following part.

9.4.1 Simulation Setup

In all simulations, all vehicles are 1:10 scale RC cars with a length of 0.4m and a width
of 0.2m. Other vehicles drive along trajectories with fixed lateral deviation from track’s
center line. The track’s width is set to 2 m. The horizon lengths for trajectory planner and
controller are Np = 12, Nc = 10 and shared discretization time ∆t = 0.1s. In our custom-
designed simulator, both state and input noises are considered. Surrounding vehicles’ speed
and position information is used for trajectory generation. However, no interaction between
the ego vehicle and other surrounding vehicles is included.

The optimization problems (9.7) and (4.10) are implemented in Python with CasADi [14]
used as modeling language, are solved with IPOPT [22] on Ubuntu 18.04 on a laptop with
a CPU i7-9850 processor at a 2.6Ghz clock rate.

9.4.2 Racing With Other Vehicles

Snapshots shown in Figure 9.7 illustrate examples of the overtaking behavior in both straight
and curvy track segments when competing with other vehicles. When the ego vehicle com-
petes with three surrounding vehicles, it could overtake them on one side of all vehicles
(Figure 9.7a) or between them (Figure 9.7b). The animations of more challenging overtak-
ing behavior can be found at https://youtu.be/1zTXfzdQ8w4. As shown in Table 9.1, the
proposed racing planner could update at 25 Hz and could help the ego vehicle overtake mul-
tiple moving vehicles. By switching to a trajectory planning based on learning-based MPC,
the ego vehicle is able to reach its speed and steering limit when there are no surrounding
vehicles.

To better analyze the performance and limitations of our autonomous racing strategy
in different scenarios, random tests are introduced under two groups. The first group of
simulation aims to show the overtaking time for passing one leading vehicle with different
speeds, and statistical results are summarized in Table 9.2. We can observe that when the
surrounding vehicles’ speed reaches between 1.2m/s and 1.6m/s, much more time is needed
for the ego vehicle to overtake the leading vehicle. This is because as the leading vehicle’s

https://youtu.be/1zTXfzdQ8w4
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(a) Overtaking snapshots on curvy track seg-
ment. Other surrounding vehicles move at 1.3
m/s, 1.3 m/s and 1.35 m/s.

(b) Overtaking snapshots on straight track seg-
ment. Other surrounding vehicles all move at
1.2 m/s.

Figure 9.7: Snapshots from simulation of the overtaking behavior.

Speed Range [m/s] 0 - 0.4 0.4 - 0.8 0.8 - 1.2 1.2 - 1.6

mean [s] 1.613 2.312 3.857 13.095
min [s] 0.8 1.2 1.8 3.5
max [s] 3.6 5.2 21.6 36.1

Table 9.2: Time taken to overtake the leading vehicle traveling at different speeds.

speed increases, less space becomes available for the ego vehicle to drive safely. Especially in
a curve, the ego vehicle’s speed limit decreases when less space can be used to make a turn.
Since more than half of our track is with curves, the ego vehicle needs to wait for a straight
segment to accelerate to pass the leading vehicle.

Speed Range [m/s] 0 - 0.4 0.4 - 0.8 0.8 - 1.2 1.2 - 1.6

Single 100 % 100 % 96 % 84 %
Two 100 % 100 % 98 % 66 %
Three 100 % 98 % 84 % 36 %

Table 9.3: Overtaking success rate for the ego vehicle after one lap.

The second group of simulation shows the proposed racing strategy’s success rate to
overtake multiple leading vehicles in one lap, and statistical results are summarized in Table
9.3. We can find that when more than one surrounding vehicle exists, much more space
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would be occupied by other vehicles. As a result, the ego vehicle might not have enough
space to accelerate to high speed to pass surrounding vehicles. Although in these cases,
the ego vehicle can not overtake all surrounding vehicles after one lap, our proposed racing
strategy can still guarantee the ego vehicle’s safety along the track.

During our simulation, the mean solver time for our planner for single, two or three
surrounding vehicles is 39.21ms, 39.41ms and 40.23ms. We also notice that when the number
of surrounding vehicles is larger than three, the steady complexity still holds but the track
becomes too crowded for the ego vehicle to achieve high success rate of overtake maneuver.
This validates the steady low computational complexity of proposed planning strategy thanks
to the parallel computation for multiple trajectory optimizations.

Moreover, the optimized multiple trajectory candidates offer more choices for overtaking,
which helps the ego vehicle avoid deadlock.

Figure 9.8: Speed and lateral deviation from the track’s center line.

9.4.3 Racing Without Other Vehicles

As discussed in Sec. 9.3.1, when there are no other surrounding vehicles, the ego vehicle
adopts the learning-based MPC formulation for trajectory generation and control. In this
chapter, the learning-based MPC uses historical data from two previous laps (implying k = 2
in Figure 9.3) and the initial data are calculated offline before the racing tasks. For the same
setup as shown in Figure 9.7a, the ego vehicle’s speed and deviation from track’s center
line along the track is shown with learning-based MPC’s profile in Figure 9.8. The overtake
maneuver happens in a hairpin curve and the curve’s apex is occupied by other moving
vehicles, resulting in less space being available for the ego vehicle and thus causing it to slow
down to avoid a potential collision. After it passes all surrounding vehicles, the ego vehicle
goes back to drive at its speed and steering limit to achieve time-optimal behavior.
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9.5 Chapter Summary

In this chapter, we have presented an autonomous racing strategy that enables an ego ve-
hicle to enhance its lap timing performance while overtaking other moving vehicles. The
proposed racing strategy switches between two modes. When there are no surrounding vehi-
cles, a learning-based model predictive control (MPC) trajectory planner is used to guarantee
that the ego vehicle achieves better lap timing performance. When the ego vehicle is com-
peting with other surrounding vehicles to overtake, an optimization-based planner generates
multiple dynamically-feasible trajectories through parallel computation. Each trajectory is
optimized under a MPC formulation with different homotopic Bezier-curve reference paths
lying laterally between surrounding vehicles. The time-optimal trajectory among these dif-
ferent homotopic trajectories is selected and a low-level MPC controller with control barrier
function constraints for obstacle avoidance is used to guarantee system’s safety-critical per-
formance. The proposed algorithm has the capability to generate collision-free trajectories
and track them while enhancing the lap timing performance with steady low computational
complexity, outperforming existing approaches in both timing and performance for a au-
tonomous racing environment. We have verified the performance of our proposed algorithm
through numerical simulation, where several surrounding vehicles are simulated to start from
random positions with random speeds on a track.

In the next chapter, we focus on bridging model-based safety and model-free RL, and
this leads to a navigation task with control barrier functions, which can represented by a
low-dimensional model with RL policy.
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Chapter 10

Safety Navigation for Legged Robots
with Reinforcement Learning 8

10.1 Introduction

It is challenging for robotic systems to achieve control objectives with coupled dynami-
cal models while considering input, state and safety constraints. ode-based safety-critical
optimal control methods that combine control barrier functions (CBFs) [12] or Hamilton-
Jacobi (HJ) reachability analysis [18] are able to provide formal safety guarantees for control,
planning and navigation problems on different platforms such as autonomous vehicles [9,
175], aerial systems [35, 174] and legged robots [41, 69]. However, previous work on applying
explicit formulation for such safety-critical methods are only able to be validated on rela-
tively simple or low-dimensional systems such as a 5 Degree-of-Freedom (DoF) 2D bipedal
robot [137] or a quadrotor with decoupled dynamics [76]. When encountering the safety-
critical control problem on complex and high-dimensional systems, such as a 3D bipedal
robot Cassie [112] which has 20 DoF and hybrid walking dynamics, model-based methods
will face challenges since the full-order dynamics model of the robot is computationally not
tractable for online implementation with current computing tools.

Model-free reinforcement learning (RL) methods, on the other hand, are able to leverage
full-order dynamics model of the robot during offline training in simulation to provide a
policy for the control purposes online. With the recent progress on solving the sim-to-real
problem, RL demonstrates the capacity to control a large range of dynamic robots in the real
world [86, 144, 216, 109, 143, 173, 114, 32, 219]. For example, with the help of RL, a robust
and versatile walking controller for a bipedal robot Cassie is obtained in [114] to reliably
track given commands of walking velocities, walking height, and turning yaw rate in real
life. This RL-based controller shows significant improvements over traditional model-based

8The material of this chapter is from “Bridging Model-based Safety and Model-free Reinforcement Learn-
ing through System Identification of Low Dimensional Linear Models” which will appear in 2022 Robotics:
Science and Systems (RSS) [113]. This paper was led by Zhongyu Li.
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Figure 10.1: Proposed method to bridge model-based safety and model-free reinforcement
learing (RL).

walking controllers [68, 112] by showing boarder feasible commands and the ability to stay
robust to random perturbations.

Such robust controllers create interesting questions in the community: where does the
robustness come from and whether we can formally assess the stability of such a RL-based
controller/policy? Addressing such questions is very interesting as studying properties of a
RL policy can further our understanding of the reason that RL demonstrates advantages on
controlling highly dynamic systems. Moreover, if we can find an explicit dynamic model of a
system controlled by RL, we may be able to utilize such a model to formally guarantee safety
for such autonomous systems. However, this is very challenging as the policy obtained by RL
is usually represented by a high dimensional nonlinear neural network and explicit analysis on
nonlinear systems with RL with rigorous proofs is still an unsolved problem. In this chapter,
we seek to ascertain the feasibility to find and study a low dimensional representation of
a complex dynamic robot driven by a RL policy and to utilize such a simple model to
provide formal guarantees on stability and safety during the task of autonomous navigation,
as abstractly illustrated in Figure 10.1.

10.1.1 Related Work

10.1.1.1 Safety & Learning

There has been some exciting progress to bridge safety and learning. Previous approaches
can be summarized into three classes: (a) learning dynamics to improve model-based per-
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formance, (b) increasing robustness in RL by model-based safety, and (c) providing learned
stability and safety with existing model-based controllers. We provide more details on each
of these approaches next.

Learning Dynamics in Model-based Control Safety can be guaranteed based on mod-
ern control frameworks. One approach is to integrate adaptive control with standard ma-
chine learning or data-driven methods, such as frequency filter [211], NN [194], GP [60]
and DNN [93]. The safety properties are usually considered on the whole system with
some parts being learned in MPC problems [30, 104], shielding [8], Control Barrier Func-
tions (CBFs) [40], Hamiltonian analysis [17]. These approaches can guarantee safety for
tasks such as stabilization [96, 204] and tracking [141, 50]. However, these approaches usu-
ally make assumptions to apply on a known model structure, such as control affine or linear
system with bounded uncertainty, which becomes challenging to apply on high-dimensional
nonlinear systems.

Model-based Safety in Reinforcement Learning Another approach to bridge safety
and learning is to increase robustness and safety in RL tasks by model-based methods. When
using RL to solve a control problem through trials and errors, safety is considered by imposing
input constraints or safety rewards. Safe exploration [130] and safe optimization [183] of
MDPs under unknown or selected cost function can be formulated. Constrained MDPs are
also common in RL tasks with Lagrangian methods [43] and generalized Lyapunov/barrier
functions [42, 40] and shielding [8]. Nonetheless much of the work remains confined to rather
naive simulated tasks, such as moving a 2D agent on a grid map.

Learned Certifications for Model-based Controllers Remaining methods for con-
necting safety and learning are to provide certification on learned stability and constraint
set using existing model-based controllers. Stability criterion can be achieved by Lyapunov
analysis on region of attraction (RoA) [155, 46] or of Lipschitz-based analysis for safety [91]
during reinforcement learning. Safety with constraint set certifications can be learned us-
ing control synthesis such as feedback linearization controllers [203], control barrier func-
tions (CBFs) [218, 184, 156, 128], and Hamilton-Jacobi (HJ) reachability analysis [55, 88,
17]. However, all these approaches are only validated on simple dynamic systems such as
5 DoF bipedal robot in simulation or 7 DoF static robot arm in the real world. This is
because these approaches usually suffer from a curse of dimensionality, in other words, find-
ing a valid control barrier function [9] or a backward reachable set [18] for high dimensional
systems remain unsolved problems. As we will see, the proposed method in this chapter
is an “inverse” of such a methodology: we use model-based methods to find certifications
on closed-loop systems with RL-based controllers, which is more practical to apply on high
order and nonlinear systems.
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10.1.1.2 Low-dimensional Structure of Deep Learning

Finding low-dimensional structures of high-dimensional data is widely used in the statistical
learning field, such as PCA, kernels, etc [208]. More recently, researchers in the deep learning
field realize that learning on nonlinear functions in high-dimensional space may tend to
linearize and compress the system and obtain a low-dimensional linear representation of
it [5, 201, 33] within the learning components. But this is still an open question and under
debate. However, there is little effort exerted on finding the low-dimensional structure of a
system driven by RL as the optimization of RL is usually realized through trial and error. In
this work, we show some evidence that policy optimization RL may learn through linearizing
the nonlinear system.

10.1.2 Contributions

In this chapter, we propose a new direction to bridge model-based safety and model-free
reinforcement learning by finding a low dimensional model of a closed-loop system controlled
by a learned policy, as shown in Figure 10.1. We use the walking controller of a person-
sized bipedal robot Cassie, which is represented by a deep neural network optimized by
reinforcement learning in [114], as an example. According to the best of our knowledge, this is
the first attempt to apply system identification using a low-dimensional model on the complex
system controlled by a RL policy. We find out that a linear model is sufficient to describe
this low-dimensional representation. This linear model shows desirable properties such as
all dimensions are decoupled, minimum phase, and asymptotic stability. We further show
that linearity exists across multiple RL policies under a provided criterion. Such a method
shows the possibility to answer the questions from control community to learning community:
to analyze the stability of the policies obtained by RL. Additionally, we demonstrate that
the linearity analysis can reflect the convergence of RL. Furthermore, based on the found
linear model, we propose one of the first safe navigation framework using a high-dimensional
nonlinear robot, a bipedal robot Cassie, that combines low-level RL policy for locomotion
controller and high-level safety-critical optimal control.

10.2 Methodology

In this section, the experimental platform, the bipedal robot Cassie, and its RL policy for
locomotion controller are briefly introduced. Moreover, the method utilized to find the low-
dimensional model by system identification through input-output pairs is also presented.

10.2.1 Cassie and Its RL policy for Walking Controller

Cassie is a person-size bipedal robot. It has 10 motors and 4 underactuated joints connected
by springs. A detailed introduction of Cassie can be found in [68, 112]. There has been
some exciting progress on applying model-free reinforcement learning to obtain locomotion
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Figure 10.2: System identification on the closed-loop system.

controllers on Cassie in the real world [216, 114, 173, 172]. Among these work, [114] develops
a robust and versatile walking controller on Cassie that can track variable commands via RL.
This policy is represented by a 2-layer fully-connected neural network with 512 tanh nonlinear
activations in each layer, and directly outputs 10 dimensional desired motor positions which
are then used in a joint-level PD controller to generate motor torques in real time. The
policy observation includes reference motion to imitate, robot current states, and 4 timestep
past robot states and actions. This single policy is able to track a 4 dimensional command,
which is comprised of the desired sagittal walking speed q̇dx, lateral walking speed q̇dy , walking
height qdz , and turning yaw rate q̇dϕ. The agent is trained in Mujoco [189] which is a physics
simulator, and the policy is optimized by Proximal Policy Optimization (PPO) [168].

In real-world experiments, the policy demonstrates considerable robustness and sophis-
ticated recoveries. For example, in a recovery case demonstrated in [114], the robot almost
falls down and deviates a lot from the nominal walking states, but the controller is still able
to regulate the system without letting the states go unbounded and triggering instability.
Although it is very hard to show the explicit stability and RoA of a controller represented
by a high dimensional nonlinear neural network, it is possible that the robustness of this
RL-based controller is due to its stability while having a relatively large RoA, or ideally,
being globally stable.

Therefore, in this work, we utilize two types of RL-based controllers based on [114]: (1)
the same multi-layer perceptrons (MLP) introduced in [114], (2) the same MLP but with an
additional encoder represented by a 2-layer convolutional neural network (CNN) to record
longer history of robot states and actions that last 2 seconds (66 timesteps).

10.2.2 System Identification

In order to understand the dynamics of the RL-based controller, we choose to identify the
entire closed-loop system comprising of Cassie being controlled by the walking controllers
obtained through RL. The input u to this closed-loop system has only 4 dimensions, which is
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(a) An Example of System Inputs: Desired Saggital Walking Velocity
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(b) System Outputs using MLP: Measured Saggital Walking Velocity
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(c) System Outputs using CNN: Measured Saggital Walking Velocity

Figure 10.3: An example of input-output pair used in this chapter to identify the dynamics
of Cassie being controlled by the RL-based walking controllers.

the control reference [q̇dx, q̇
d
y , q

d
z , q̇

d
ϕ]
T . The output of this system is the observed robot walking

velocities and walking height, i.e. y = [ˆ̇qx, ˆ̇qx, q̂z, ˆ̇qϕ]
T . We then collect input-output pairs of

this system in a high-fidelity simulator of Cassie built on MATLAB Simulink. Please note
that the control policy is trained on Mujoco and has no access to the data from Simulink
during training and has also been shown to work in Simulink.

One example of the input-output signal of the saggital walking velocity dimension is
shown in Figure 10.3. There are three types of the input signals: 1) random step signal as
shown in 0-200 s in Figure 10.3a, 2) random ramp signal as demonstrated in 200-400 s in
Figure 10.3a, and 3) swept frequency sine wave (chirp) whose frequency linearly expands
from 0 Hz to 1 Hz in 400-500 s in Figure 10.3a. The resulting robot outputs represent the step
response, ramp response, and frequency response of this system, respectively, as illustrated
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in the corresponding time span in Figure 10.3b and 10.3c. After selecting a model structure,
the parameters of the model can be fitted by combining the input signals and the output
signals measured from the Cassie driven by the RL-based controller. As it is unsafe for the
person-sized bipedal robot to experimentally follow those random input signals in real-life,
Simulink provides a safe validation domain in this chapter.

10.3 Linearity

In this section, we use a linear model structure, i.e., ẋ = Ax + Bu, to fit the input-output
pairs of the system which is Cassie being controlled by the RL-based controller. Linear
models show reasonably good fitting accuracy across all four dimensions which are saggital
walking velocity q̇x, lateral walking velocity q̇y, walking height qz, and turning yaw rate q̇ϕ.
The fitted linear systems show that they are stable systems while some of them having non-
minimum phase. Moreover, the results also show that the input frequency should stay below
certain threshold to preserve the linearity of the system.

10.3.1 Linear Systems

The fitting results using linear models for the four dimension outputs of the system which is
Cassie being controlled by the CNN-based RL policy for walking controller are demonstrated
in Figure 10.4. The fitting results of MLP-based RL walking controller are presented in
Figure 10.5. During the fitting phase of each dimension, the measured input-output data of
the system are used to find the parameters of the selected linear model in order to minimize
the difference between the predicted and measured system outputs. For different dimensions
of the system, the dynamic model may be varied. Therefore, the structure of the linear
model, i.e., numbers of zeros and poles, are searched in order to maximize fitting accuracy
while having the simplest structure which has the least number of zeros and poles. During
the validation phase, the fitted model is utilized to predict next 5 step system output using
the system input and 1 step measured output data, the prediction results are shown as the
blue lines in Figure 10.4.

The fitted dynamics of saggital walking velocity fẋ(xẋ, uẋ) is given by:

Yẋ(s) =
0.4694s2 + 6.089s+ 8.697

s3 + 6.432s2 + 11.03s+ 8.274
Uẋ(s) (10.1)

with a prediction accuracy of 79.67% when compared with the ground truth measured data,
as shown in Figure 10.4a. The dynamics of the lateral walking velocity fẏ(xẏ, uẏ) is obtained
by using a linear system of 3 poles and 1 zeros, and it can be written as:

Yẏ(s) =
13.59s+ 24.56

s3 + 11.48s2 + 32.5s+ 40.13
Uẏ(s) (10.2)

which has a prediction accuracy of 55.87%. However, as shown in Figure 10.4b, there is a
large oscillation of the robot base lateral direction when Cassie is walking. After applying a
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(a) Fitted Linear Model of q̇x (b) Fitted Linear Model of q̇y

(c) Fitted Linear Model of qz (d) Fitted Linear Model of q̇ϕ

Figure 10.4: Fitting results using linear models for all four dimensions of Cassie being
controlled by a CNN-based RL policy.

low-pass filter with a cut-off frequency of 5 Hz on the measured lateral velocity, the prediction
accuracy on the flitted signal is 83.03% using the same fitted model via (10.2).

The dynamics of walking height fz(xz, uz) and the dynamics of turning yaw velocity
fϕ̇(xϕ̇, uϕ̇) are fitted as:

Yz(s) =
145.9s+ 37.55

s3 + 46.43s2 + 161s+ 38.38
Uz(s) (10.3)

and

Yϕ̇(s) =
0.3078s2 + 5.267s+ 5.553

s3 + 4.595s2 + 7.528s+ 6.045
Uϕ̇(s) (10.4)
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(a) Pole-Zero Plot of q̇x (b) Pole-Zero Plot of q̇y (c) Zoomed Plot of q̇y

(d) Pole-Zero Plot of qz (e) Zoomed Plot of qz
(f) Pole-Zero Plot of q̇ϕ

Figure 10.5: Pole-Zero plots of the identified linear systems of MLP controller for saggital
walking velocity, lateral walking velocity, walking height, and turning yaw rate.

and with prediction accuracy of 85.67% in Figure 10.4c and 65.58% (81.77% after filtering
the measured output) in Figure 10.4d, respectively.

According to the prediction performance as demonstrated in Figure 10.4, all of the four
dimensions show reasonably good linearity as the fitting accuracy of them are all around
80%. Therefore, we can come to a conclusion that all of these 4 dimensions of Cassie during
walking shows linearity when the robot is controlled by the RL policy.

10.3.2 Stability

Stability analysis can be applied on each dimension after obtaining the low-dimensional
linear dynamics model of the closed-loop system. Since the dynamics of each dimension is
able to be explicitly expressed by a transfer function, a commonly used stability criterion is
the position of the poles of the system. Please note that during the model identification in
Sec. 10.3.1, we allow the algorithm to find unstable models as long as the fitting results are
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better than stable models, i.e., we don’t impose stable model constraint during fitting.
The plots of poles and zeros of all four dimension of the system using the CNN policy

are shown in Figure 10.6. As illustrated in Figure 10.6c, there is a very close pole-zero pair
of the identified qz dynamics. However, that pole cannot be cancelled otherwise it will lead
to worse fitting accuracy.

According to the plot, all of the identified linear systems are asymptotically stable as
all the poles are on the Left Half Plane (LHP) [56]. Moreover, all zeros are on the LHP as
well, therefore, all dimensions are minimum phase. This shows that the system controlled by
CNN-based RL policy has a very nice property that the closed-loop system with RL-based
policy can be represented through a linear model which is also stable.

Remark 10.1. All poles of the linear system obtained through system identification of the
closed-loop system under MLP-based RL policy (pole-zero plots are in Figure 10.5) are asymp-
totically stable, however, the system driven by MLP is non-minimum phase in dimensions of
the saggital and lateral walking velocity. Therefore, when choosing to utilize the robot driven
by such an RL policy, the high-level controller/planner should be carefully designed. Such
stability analysis provides a guidance to utilize the system controlled by RL policies.

10.3.3 Criterion for Linearity

Although Cassie driven by the RL policy for walking controller shows reasonably good linear-
ity as shown in Fig 10.4, there is a criterion for the existence of linearity. That is, the input
frequency cannot exceed a threshold which is around fc = 0.6 Hz. The frequency 0.6 Hz is
an empiric value and this is found when the input tends to excite nonlinearity of the system
if the input frequency exceed that value during system identification. The fitted linear model
shows worse fitting accuracy if the chirp signal enters the region where frequency is larger
than 0.6 Hz in Figure 10.4. This may be related to the stepping frequency of Cassie. Given
the fact that Cassie steps on each feet at a stepping rate of 1.25 Hz, fc = 0.6 Hz is in one
half of it. The existence of this cutoff frequency may be due to fact that the RL policy is
unable to change the walking velocities, such as q̇x, q̇y, q̇ϕ, faster than the time Cassie takes
to complete one walking step (comprising of two steps: left foot stance followed by right
foot stance). Another evidence of this validity of this relationship is that there is no obvious
linearity lost after this frequency threshold in the identified qz dynamics. This is because
changing the walking height doesn’t need to wait until completion of one walking step, e.g.,
robot can change the walking height by changing the length of the stance leg at any time.
The phenomenon of loosing linearity after this frequency threshold will frequently appear in
the later part of this chapter.
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(a) Pole-Zero Plot of q̇x (b) Pole-Zero Plot of q̇y

(c) Pole-Zero Plot of qz (d) Pole-Zero Plot of q̇ϕ

Figure 10.6: Pole-Zero plots of the identified linear systems that uses CNN policy for saggital
walking velocity, lateral walking velocity, walking height, and turning yaw rate.

10.4 Decoupling System

The system, Cassie driven by the RL policy as a walking controller, is a Multiple-Input
Multiple-Output (MIMO) system, and there are four inputs, u = [q̇dx, q̇

d
y , q

d
z , q̇

d
ϕ]
T ∈ R4 and

four outputs, y = [ˆ̇qx, ˆ̇qy, q̂z, ˆ̇qϕ]
T ∈ R4. As demonstrated in an existing design for navigation

autonomy on Cassie proposed in [115], these four dimensions are tightly coupled using a
model-based controller on Cassie and a lot of effort is exerted to consider such couplings
for the planning purpose otherwise the planned output may cause a walking failure [115].
In this section, we will show that the closed-loop Cassie system with the RL policy as the
walking controller has a four dimensional dynamics, i.e., fẋ(xẋ, uẋ), fẏ(xẏ, uẏ), fz(xz, uz),
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Figure 10.7: Decoupling test.
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and fϕ̇(xϕ̇, uϕ̇), obtained in Sec.10.3, and these are all decoupled.
In order to test a system M that is independent of another system N, we applied four

steps:

1. Collect the first measured input-output pair where the input to M is a swept-frequency
signal, chirp, while the input to N is a fixed value.

2. Identify a model for M using the first input-output pair.

3. Obtain the second input-out pair where the input to M is a chirp while the input to
N is also a chirp.

4. Test the prediction accuracy using the identified model from step 2 on the second pair.

If the testing accuracy shows no significant loss than fitting accuracy, M is independent of
N, otherwise, M and N are coupled. This is because a fixed value (zero frequency) doesn’t
contain any information of a swept-frequency wave (chirp) signal. As a result, if the model
for M identified by data where the input to N is a fixed value is able to accurately predict a
measured input-output data when the input to N is a chirp, this could show that the change
in N will not excite the dynamics in M.

Let us consider the test on the dependency between saggital walking velocity q̇x and
lateral walking velocity q̇y using the CNN-based RL policy as an example. During fitting the
model for q̇x in Sec. 10.3, the walking velocity command q̇y is fixed at 0 m/s, as shown in
Figure 10.7a. The fitting accuracy is 82.86%. This fitted model is directly applied to predict
the measured output of q̇x when the input to q̇y is also a chirp. As shown in Figure 10.7b,
the identified model still shows reasonably good prediction accuracy on this input-output
pair, resulting in the accuracy of 78.81%. Therefore, we can draw a conclusion that saggital
walking velocity q̇x is independent of lateral walking velocity q̇y. Same decoupling tests are
applied on all of the combinations of the four dimensions using the CNN-based RL policy,
as shown in Figure 10.7, and the quantitative accuracy data is recorded in Table 10.1.

According to Figure 10.7 and Table 10.1, for the dynamics on each dimension, the model
fitted on the data when the inputs on other dimensions are fixed values can well describe the
dynamics when the input to one other dimension is a chirp, such as q̇y ↔ qz pair, qz ↔ q̇ϕ
pair, and q̇y ↔ q̇ϕ pair. Although fitting accuracy for the q̇y, qz and q̇ϕ decreases under the
existence of a chirp q̇x, the accuracy can be still over 50% if we only look at the measured
output before the cut-off frequency fc = 0.6 Hz introduced in Sec. 10.3.3. In conclusion, such
a system can be considered as decoupled under a low-frequency input, and higher frequency
may excite the coupled dynamics along some dimensions.

In order to show the generality of the phenomenon that when Cassie being controlled
by a RL walking policy tends to show linearity, we test the measured input-output pairs
obtained from using different RL policies. We test 4 policies:

1. A MLP-based RL policy is well trained with around 400 million samples from scratch
using reward formulation.
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(b) Fitted Model using Policy 2
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(c) Fitted Model using Policy 3 (d) Fitted Model using Policy 4

Figure 10.8: Cross policy validation using lateral walking velocity q̇y as an example.

2. A MLP-based RL policy uses a different reward form but is in the middle of training
after 30 million samples using Policy 1 as a warm start.

3. A MLP-based RL Policy keeps training on Policy 2 using the same reward and is
trained with 100 million samples.

4. A CNN-based RL policy (different neural network structure) and different reward, and
well trained after 400 M samples from scratch.

We use the dynamics of lateral walking velocity q̇y as an example. The system identification
is applied on Cassie driven by these 4 policies, respectively, and the results are shown in
Figure 10.8. If the measured input-output data can be well fitted by a linear model, we can
tell that Cassie being controlled by each of these policies shows linearity.

According to Figure 10.8, since Policy 2 is not well trained, the system driven by this
policy shows the worst linearity, i.e., a linear model cannot well predict the system output
by the input. Specifically, the nonlinearity appears after the cut-off frequency fc. After
being trained with ample samples, Policy 3 which uses the same reward and neural network
structure, shows a clear existence of the linearity in Figure 10.8c. Moreover, the measured



CHAPTER 10. SAFETY NAVIGATION FOR LEGGED ROBOTS WITH
REINFORCEMENT LEARNING 148

input-output pairs from the other policies, like Policy 1 and 4, demonstrate reasonably good
fitting accuracy before cutoff frequency fc = 0.6 Hz.

From all the discussion above, we can draw a conclusion that linearity is not always
guaranteed. If a RL policy is not well-trained, such as Policy 2, even if we “force” the
system identification to find a linear structure, the fitting result could be poor because of
the existence of strong nonlinearity in the system. However, if the learning of the policies
has converged, the linearity appears, such as Figure 10.8a, 10.8c, 10.8d, and this is validated
across different RL policies with different rewards or neural network structure.

Remark 10.2. We note that the proposed linearity analysis could potentially be a metric for
the convergence of the learning of a RL policy on a dynamic system.

Therefore, we can summarize the low-dimensional representation of Cassie being con-
trolled by a well-trained RL policy using a linear model as below:[

ẋ
y

]
=

[
A B
C 0

] [
x
u

]
(10.5)

where the states x = [xTẋ ,x
T
ẏ ,x

T
z ,x

T
θ̇
]T , output y is [yẋ, yẏ, yz, yθ̇]

T = [q̇x, q̇y, qz, q̇θ]
T , and

input u is [uẋ, uẏ, uz, uθ̇]
T = [q̇dx, q̇

d
y , q

d
z , q̇

d
θ ]
T , and matrices A = diag(Aẋ, Aẏ, Az, Aθ̇), B and

C are proper stack of Bẋ, Bẏ, Bz, Bθ̇ and Cẋ, Cẏ, Cz, Cθ̇, respectively. Hence the linearized
dynamics is as follows, [

ẋẋ,ẏ,z,ϕ̇
yẋ,ẏ,z,ϕ̇

]
=

[
Aẋ,ẏ,z,ϕ̇ Bẋ,ẏ,z,ϕ̇

Cẋ,ẏ,z,ϕ̇ 0

] [
xẋ,ẏ,z,ϕ̇
uẋ,ẏ,z,ϕ̇

]
(10.6)

And these models are the control canonical forms of (10.1), (10.2), (10.3), and (10.4) showed
in Sec. 10.3, respectively.

10.4.1 Safety-critical Navigation Framework

In this section, we demonstrate an application of the proposed methodology, that is, utilizing
the identified simple system to provide safety guarantee on the nonlinear system driven by
its RL policy.

The linear system representation expressed in (10.5) can be applied to solve a safe nav-
igation problem for Cassie. The navigation autonomy framework proposed in this chapter
can be found in Figure 10.9 which is based on [115] to navigate unknown environments
with height-constraints using Cassie. In this autonomy, after being given a goal location, a
global planner firstly finds a collision-free path on the map from the robot’s current position,
followed by two local planners using nonlinear optimization to track the global path. The
locomotion controller used in the previous work to enable Cassie to follow planning results is
based on Hybrid Zero Dynamics (HZD) and is developed in [112] based on [68]. A detailed
introduction of this autonomy can be found in [115].
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Figure 10.9: Safe navigation autonomy using Cassie driven by a RL walking policy and the
identified linear system.

In this work, we use the CNN-based RL locomotion policy on Cassie. Instead of using
the nonlinear reduced-order dynamics model in [115] during local planning by collocation,
we adopt its identified linear system in (10.5) and safety-critical control framework that com-
bines nonlinear model predictive control (NMPC) and discrete-time control barrier function
(DCBF) introduced in [223].

To formulate the NMPC-DCBF problem, we over-approximate the geometries of Cassie
and the obstacles by cylinders. The distance between robot and each obstacle oi can be
computed analytically as follows,

doik = (xgk − xoi)2 + (ygk − yoi)2 − (Rrobot +Roi)2, (10.7)

where xgk y
g
k are the global x-y position of the robot at time k, (xoi , yoi) is the position of

the obstacle oi, R
robot is the radius of the cylindrical approximation of Cassie, and Roi is the

radius of the obstacle. Obstacle avoidance between the robot and the obstacle can then be
enforced by constraining doik > 0, ∀k. However, over short planning horizons this constraint
can fail to ensure long-term obstacle avoidance. Therefore, we use DCBF constraints, which
can provide long-term obstacle avoidance, even on short planning horizons [224]. The DCBF
constraint is as follows,

doik+1 ≥ ωkαDCBFd
oi
k , 0 ≤ αDCBF ≤ 1, ωk ≥ 0 (10.8)

where αDCBF represents the maximum decay-rate at which hoik can converge to zero and ωk
is a slack variable which enhances feasibility and safety [223]. Specifically, the trajectory
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generation problem with NMPC-DCBF is formulated as follows,

min
x,u,δ

J(x,u, δ,ω), (10.9a)

s.t. xk+1 = Adxk +Bduk (10.9b)

x0 = xinit (10.9c)

xk ∈ Xadm,uk ∈ Uadm, (10.9d)

xgk+1 = xgk + Cd
ẋxẋ,k cos(C

d
ϕ̇
xϕ,k)dt, (10.9e)

ygk+1 = ygk + Cd
ẏxẏ,k sin(C

d
ϕ̇
xϕ,k)dt, (10.9f)

doik+1 ≥ ωkαDCBFd
oi
k , ωk ≥ 0, (10.9g)

[xgN , y
g
N ,xϕ,N ]

T = [xgf , y
g
f ,xϕ,f ]

T + δ (10.9h)

where Ad, Bd, Cd are coefficients of discrete-time dynamics transferred from the proposed
continuous linear dynamics in (10.5). The cost function is designed as below,

J(x,u, δ,ω) =
N−1∑
i=1

(||xi||2Q + ||ui||2R + ||xi+1 − xi||2dQ + ρ(1− ωk)
2) + ||δ||2K . (10.10)

The discrete-time dynamics (10.9b), together with kinematics along x and y axis in (10.9e)
and (10.9e) formulate a trajectory optimization problem, where the robot’s orientation is
considered to transfer the robot’s velocity in the robot’s frame into the world frame. The
initial condition, state and input constraint can be found in (10.9c), (10.9d). Specifically,
Xadm represents the combination of state constraint together with safety constraint to avoid
nearby obstacles defined by distance functions, presented in [115]. Uadm is the input con-
straint. ω = [ω1, ..., ωN−1]

T represents the relaxation variables of decay rate αDCBF for DCBF
constraints. We also notice that ρ in (10.10) shall be chosen as a relatively large scalar such
that the DCBF constraints wouldn’t be over-relaxed [226]. Moreover, δ represents the slack
variable for terminal constraint on desired final state [xgf , y

g
f ,xϕ,f ]

T which is minimized with
a quadratic term in the cost function.

The output from the reactive local planner is the real-time desired sagittal and lateral
walking velocities q̇dx,y, walking height qdz , and turning yaw rate q̇dϕ. This is the input u to
the linear system that was identified to describe the closed-loop dynamics of Cassie driven
by its RL locomotion policy. Moreover, u is firstly passed through a low pass filter with
cutoff frequency of 0.5 Hz which is below the threshold of the linearity criterion found in
Sec. 10.3.3 to prevent exciting nonlinearity of the system.

10.4.2 Autonomy Validation

To validate the proposed autonomy that combines NMPC-DCBF with CNN-based RL lo-
comotion policy, the entire algorithm is tested in a joint simulation on Cassie, as shown in
Figure 10.10a In this test, a congested space with two obstacles and a height-constrained
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Figure 10.10: Validation of the proposed safety-critical navigation autonomy in the joint
simulation.

space (arch) in between is built on Gazebo where the robot depth camera reading is simu-
lated. The robot dynamics driven by its RL policy is computed on MATLAB Simulink which
has high-fidelity for the dynamics computation. These two simulators are synchronized and
the result is illustrated in Figure 10.10.

During the simulation, the robot successfully achieves accelerating to full speed (around
1 m/s) when there are no obstacles while quickly pulling back when obstacles are in range.
Moreover, the robot shows the capacity to crouch down to travel underneath the arch with a
relative high speed. By using the linear model in the optimization, the two-second local-term
trajectory can be solved around 0.1−0.2 s which is at least 5 times faster than prior approach
using a nonlinear model [115]. Additionally, it turns out that there are reduced deadlocks
and the whole navigation task can be finished around 20 s which is almost twice faster than
the existing work with HZD-based controller [115] which results in conservative planned
speed (it finishs the same trial in 50 s). For the controller performance, the RL-based policy
for walking controller is also more robust and agile than the HZD-based walking controller,
such as the coupled walking dynamics are cancelled by RL so the robot can quickly lift its
body up after passing through an arch while accelerating to its goal without falling over, as
shown in Figure 10.10a.

By using nonlinear model predictive control with control barrier functions, we provide
a formal safety guarantee on such a high order nonlinear complex system. All this allows
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Cassie controlled by RL locomotion policy during navigation while enabling the safety-critical
control-planners to exploit the agility brought by the RL policy. We remark that our imple-
mentation is the first work to use a nonlinear model predictive control formulation to achieve
safety-critical navigation in height-constrained environments within a joint simulation of vi-
sion and high-fidelity dynamics.

10.5 Chapter Summary

In this chapter, we demonstrate evidence that a reinforcement learning based controller
acting on a highly nonlinear dynamical system, such as a bipedal robot, may tend to linearize
it such that the entire closed-loop system can be represented by a low-dimensional linear
system. This is an interesting finding since a high order nonlinear system controlled by a
high dimensional nonlinear neural network policy behaves like a linear system. Based on
this observation, we propose a new direction to bridge safety-critical control and model-free
RL by finding certifications for stability and safety on the low-dimensional model identified
on the complex system driven by its RL policy. We validate such new methodology on a
bipedal robot Cassie controlled by its RL locomotion policy. We apply the first attempt to
do system identification on this closed-loop system to find a linear model, and later we find
that such a system demonstrates reasonably good linearity. Moreover, the fitted multiple-
input multiple-output linear model is decoupled, minimum phase and asymptotically stable
in all dimensions. We also provide a criterion for the linearity existence, that is, the input
frequency should be under a given threshold. By analyzing the fitted linear model, we are
able to explain the robustness using RL-based controller demonstrated in previous work [114]
may come from the guaranteed stability of the closed-loop system. This actually shows a
new method to provide stability analysis over a controller represented by high dimensional
neural network optimized by reinforcement learning. By cross comparing such linearity on
different RL policies, we show that linearity is preserved across different well-trained policies,
but linearity is not guaranteed if the learning of the RL policy has not converged.

For application, the fitted linear model is later utilized in a safety-critical navigation
framework using NMPC-DCBF which utilizes the RL policy as a robust and powerful low-
level walking controller on Cassie. In this application, we note that while the RL policy for the
walking controller is able to address the highly nonlinear dynamics of Cassie, the identified
closed-loop dynamics represented in a linear model is able to provide guarantees of stability
while also introducing safety through control barrier functions. Moreover, such a method is a
more practical approach to bridge model-based safety and mode-free reinforcement learning.
Because RL has shown the capacity to well control high-dimensional nonlinear systems in
the real world by exploiting the system full-order dynamics and using a low-dimensional
linear dynamic model for safety-critical control is more realistic in real time.

After having presented the technical work in this thesis, we will draw a brief conclusion
in the next chapter.
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Chapter 11

Conclusion

11.1 Conclusion

This thesis addresses several existing challenges about control barrier functions in optimiza-
tion, control, planning and navigation.

In Part I, we address the feasibility problem in optimal control for CLF-CBF-QP under
input constraints in Chapter 3. We also notice that the potential conflict between input con-
straints and safety constraints also exists in the discrete-time domain together with model
predictive control, presented in Chapter 4. This conflict is later formally identified in reach-
ability analysis and enhanced in proposed formulations discussed in Chapter 5.

In Part II, we focus on the tight-fitting obstacle avoidance for control and trajectory gen-
eration, specifically for polytopic obstacle avoidance. The formulations for obstacle avoidance
in continuous domain and discrete-time domain are discussed in Chapter 6 and Chapter 7,
respectively.

In Part III, we discuss about the limited performance and deadlock issues for trajectory
generation with finite state machines and computationally-fast trajectory generation for
high-dimensional nonlinear systems, together with applications about autonomous driving,
autonomous racing and legged robots in Chapter 8, 9 and 10 respectively.

11.2 Future Work

Regarding the challenging problems of control barrier functions, there are several interesting
topics for future work.

11.2.1 Persistent Feasibility for General Nonlinear Systems

Related to optimization feasibility about CBFs, a general approach of guaranteeing feasibility
for both one and high relative-degree nonlinear systems would be an interesting topic based
on the results of Chapter 3. In Chapter 3, we discussed a relaxing approach over the decay
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rate of the control barrier function, which can be regarded as a linear relaxation, i.e., single
variable relaxing. Future work can implement general relaxation for the functional space of
the class K α(.) function with relaxing on multiple variables. We also notice that the relation
between control barrier functions and viability kernel remains a challenging problem, while
Chapter 3 focused on the point-wise feasibility problem. Based on a more general relaxing
technique, we hope the persistent feasibility can be tackled, which will finally bridge the
control barrier function and viability kernel [165]. This problem could be challenging as
viability kernel for high-dimensional systems are not easy to be calculated and approximated.
However, if this relation has been figured out, we will be able to walk around the calculation
of viability kernel in later research, which is equivalent to a synthesis of high-dimensional
set calculation with a low-dimensional representation of a multivariable relaxing function.

11.2.2 Linearity and Convexification of DCBF in Trajectory
Generation

Related to trajectory generation with CBFs in discrete-time domain, we have seen that cur-
rent work is usually related to nonlinear optimization with non-convex obstacle avoidance
constraints, shown in Chpaters 4, 7, 9, 10. Although the complexity could be more or less
optimized by warm starting (Chapter 7), reference trajectories (Chapter 9), or local planner
guidance (Chapter 10), we still suffer from the non-convexity or the non-linearity of obstacle
avoidance. We expect future work about DCBF would be on how to linearize the obsta-
cles locally or globally in order to convert the trajectory generation problem into a convex
optimization. This direction would be relatively hard but iterative [100] or sequential [84]
approaches could be potential tools to handle these problems, but it involved intensive en-
gineering. An alternative approach would be converting nonlinear control barrier functions
into some linear ones in a set of local convex regions in the state space and this would result
the problem into a mixed-integer programming.

11.2.3 Relation between Continuous-time and Discrete-time
domain CBFs

Besides the problems mentioned above, another interesting topic would be on how to bridge
the safety between the continuous-time domain and the discrete-time domain. In the continuous-
time domain, researchers are required to describe the system in the control affine form, while
lacks prediction behavior, while are also required to do nmpc-like optimization for the tra-
jectory generation problem, while lacks of convexity or linearity. A two-layer approach [163]
has been tried to address this challenge and safety can also be enhanced through predictive
terms [195]. Future interesting work could be a direct combination between these two parts
while offering advantages in both continuous-time and discrete-time domains. This could be
potentially achieved by reinforcement learning over h(.) and α(.) and γ(.) in the continuous-
time domain, even the system dynamics f(.) and g(.), shown in (3.9). The learning errors
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can be treated as robust term in the discrete-time domain. However, these learning approach
could be hard as we try to find some sparse features in the latent space for the trajectory
generation.

In summary, there are still numerous opportunities for improving performance of opti-
mization with control barrier functions, and this thesis only explores a few aspects of them.
There are also likely many new ideas to explore for the convex optimization, differential
geometry related to the safety term using control barrier functions, which will help them
become more widely used in real-life applications.
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