
Model-Based Design for Legged Robots: Predictive Control and Reinforcement Learning

by

Ayush Agrawal

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Koushil Sreenath, Chair
Professor Francesco Borrelli

Professor Claire Tomlin

Fall 2022

Model-Based Design for Legged Robots: Predictive Control and Reinforcement Learning

Copyright 2022

by

Ayush Agrawal

1

Abstract

Model-Based Design for Legged Robots: Predictive Control and Reinforcement Learning

by

Ayush Agrawal

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Associate Professor Koushil Sreenath, Chair

Legged robots have the potential to provide extreme mobility in highly rugged terrain. De-
veloping such locomotion capabilities within these robots is challenging for several reasons,
including their inherent hybrid and nonlinear dynamics. Moreover, uncertainties in the
robot’s model arising due to external payloads, joint friction, wear and tear, and uncer-
tainties introduced by environmental factors such as changing contact conditions or force
perturbations can significantly hinder the performance and reliability of these robots. De-
veloping safe, reliable, and robust feedback controllers is crucial as we begin to deploy such
robots into environments with humans. Moreover, the underlying feedback controllers must
be able to quickly adapt to rapidly changing environmental factors that can significantly
affect their performance.

Recent developments in Reinforcement Learning have shown tremendous success and impres-
sive results on several legged robot platforms to navigate challenging terrain. While these
methods can generate very complex behaviors, they are highly sample inefficient as they do
not take into account any knowledge of the dynamical structure of the robot. Model-based
methods such as Control Lyapunov Functions (CLFs), Control Barrier Functions (CBFs),
and Model Predictive Control (MPC), on the other hand, provide us with a set of tools
to achieve desired control objectives while remaining within specified constraints for the
closed-loop system. The performance of both RL-based control and model-based methods
can significantly degrade if an accurate model of the underlying system is not known. In
such cases, achieving the best performance will require learning from real-world data. This
thesis develops planning algorithms and feedback controls through the lens of model-based
techniques to achieve safe, stable, and robust legged locomotion on challenging terrain. In
particular, we present a trajectory generation method to achieve aperiodic running with pre-
cise foot placement for a 2D bipedal robot model. We then develop a novel coordinate-free
geometric MPC for the Cassie biped and validate our approach through several hardware
experiments. We apply the developed trajectory generation method and geometric MPC

2

on a quadruped robot to navigate challenging terrain with visual feedback. Using tools
from model-based methods such as CLFs and CBFs, we then develop novel reward function
shaping methods to achieve safe and robust locomotion policies for bipedal and quadrupedal
robots. We show that our method can significantly reduce the sample complexity to learn a
stabilizing controller, which allows us to finetune policies directly on hardware using only a
few seconds to a few minutes of data.

i

To my parents.

ii

Contents

Contents ii

List of Figures v

List of Tables x

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 1
1.3 Legged Locomotion Research over the Years 2
1.4 Contributions . 3
1.5 Thesis Organization . 4
1.6 Chapter Summary . 5

2 Robot Dynamics and Trajectory Optimization 6
2.1 Dynamical Models for Legged Locomotion 6
2.2 Robot Description . 15
2.3 Chapter Summary . 17

I Model-Based Locomotion Control 19

3 Bipedal Robotic Running on Stochastic Discrete Terrain 20
3.1 Introduction . 20
3.2 Dynamical Model for Running . 23
3.3 Hybrid Zero Dynamics Based Control . 25
3.4 Numerical Validation . 32
3.5 Chapter Summary . 34

4 Geometric Variational Model Predictive Control 36
4.1 Related Work . 36
4.2 Geometric Model Predictive Control . 37
4.3 Experiments . 44

iii

4.4 Chapter Summary . 49

5 Vision-Aided Dynamic Quadrupedal Locomotion on Discrete Terrain us-
ing Motion Libraries 54
5.1 Introduction . 55
5.2 Hybrid Model of Trotting . 57
5.3 Approach . 58
5.4 Experiments . 62
5.5 Chapter Summary . 63

II Combining Model-Based Control with Model-Free Policy
Optimization 66

6 Combining Model-Based Design and Model-Free Policy Optimization to
Learn Safe, Stabilizing Controllers 67
6.1 Introduction . 68
6.2 Control Lyapunov Functions and Control Barrier Functions 69
6.3 Learning Safe, Stabilizing Controllers for Uncertain Systems 70
6.4 Simulations . 75
6.5 Chapter Summary . 78

7 Lyapunov Design for Robust and Efficient Robotic Reinforcement Learn-
ing 79
7.1 Introduction . 79
7.2 Background and Problem Setting . 82
7.3 Lyapunov Design for Infinite Horizon Reinforcement Learning 85
7.4 Examples and Practical Implementations . 88
7.5 Chapter Summary . 91

8 Conclusion and Future Work 92

Bibliography 96

A Proof of Theorem 6.1 107

B Additional Literature Review 109

C Asymptotic Stability and Lyapunov Theory 111
C.1 Asymptotic Stability and Lyapunov Theory 111
C.2 Notation and Terminology . 111
C.3 Basic Stability Results . 111

iv

D Missing Proofs and Intermediate Results 113
D.1 Proof of Theorem 7.1 . 113
D.2 Proof of Lemma 7.1 . 114

E Additional Experiment Details 115
E.1 A1 Quadruped Results . 115
E.2 Cartpole Results . 118

v

List of Figures

1.1 An overview of this thesis. 5

2.1 Various robots considered in this dissertation, along with their model scales
and associated contact models depicting the contact wrench. (Left) Unitree

A1 quadruped robot with a point contact foot, (Center) Cassie biped with a line
contact foot, and (Right) Digit Humanoid robot with a planar contact foot. . . 8

2.2 Figure illustrating the configuration of the Cassie bipedal robot. 15
2.3 Digit humanoid robot model. Digit has 30 DoFs and 20 actuated joints, where

each arm has 4 DoFs and each leg has 8 DoFs with 6 of them being actuated. . 17

3.1 Illustration of the problem of the stepping stone. The goal of the feedback control
design is for the bipedal robot to traverse over a set of discrete terrain with wide
gaps. Such terrain can only be traversed by performing agile maneuvers like
running or jumping. 21

3.2 Generalized coordinates of the bipedal robot RABBIT. 24
3.3 Illustration of the domains in running. 25
3.4 Illustration of two-step-periodic gait design. We optimize over two running steps

with constraints on the step lengths l0 and l1 in the first and second running
steps, respectively. The periodicity constraint enforces the states of the robot at
the end of the second step x2 to return to the states at the beginning of the first
step x0. 27

3.5 Snapshots of the robot running over the discrete footholds using the control
method presented in this chapter. 29

3.6 Illustration of gait interpolation. The desired gait parameters are obtained based
on the desired step length of the previous step ld0 and the desired step length
of the current step ld1. Points marked by blue circles denote gait parameters in
the gait library. Red star denotes the gait parameters based on the desired step
lengths and obtained using bilinear interpolation of the existing gaits in the gait
library. 31

3.7 Resulting location of footsteps from 300 steps, over 10 experiments (30 steps
per experiment). Outer dashed lines indicate a 5cm deviation from the desired
step length. Red dots denote the actual value of the step length obtained from
simulation. 33

vi

3.8 Motor Torques from one of the simulations. The top and bottom red lines indicate
the maximum and minimum allowable control inputs. 33

3.9 Vertical Ground Reaction Forces from one of the simulations. 34
3.10 Resulting location of footsteps from 50 steps from a single simulation using qa

(vector relative degree 2) as the outputs during the stance phase. Outer dashed
lines indicate a 39cm deviation from the desired step length. Red dots denote the
actual value of the step length obtained from simulation. 35

4.1 A rigid-body reduced order model for Cassie. 38
4.2 Proposed MPC framework applied to Cassie. Blocks in blue are run at 2kHz on

the real-time computer. The geometric MPC is run at 500Hz on an Intel NuC

computer, which communicates via UDP to the real-time computer. The desired
velocity ṗd and angular rate ωd are sent by the user through the radio. 39

4.3 (Top) Snapshots of Cassie performing a crouching maneuver using the proposed
approach. (Bottom) Plot illustrating tracking of the pelvis height. Note that the
desired pelvis velocity is set to zero in this experiment since the desired height
command is input by the user through the radio. 45

4.4 Expriemental results for stepping in place using the proposed MPC approach. . 46
4.5 Estimated spring forces from hardware for stepping in-place. 47
4.6 Snapshots of Cassie robot illustrating recovery from a push in the backwards

direction. The first and the last tiles are about 3s apart. 48
4.7 Snapshots of Cassie walking diagonally and sideways. 48
4.8 Estimated forward (Top) and lateral (Bottom) velocities while the robot is walk-

ing diagonally (2s−4s) with a maximum forward velocity of 1m/s and a maximum
lateral velocity of 0.5m/s. 49

4.9 (Top) Snapshots of Cassie blindly negotiating a ramp of 20◦ and a flight of stairs of
height 6cm using the proposed Model Predictive Controller. (Bottom) Estimated
forward and lateral velocities experienced by the robot. 50

4.10 Snapshots of Cassie blindly walking over randomly placed wooden planks and
soft rubber mats. 51

4.11 Snapshots of Cassie blindly sidestepping over a raised platform of height 8cm. . 51
4.12 Snapshots of outdoor walking experiments. Using the proposed approach, Cassie

is able to negotiate a wide variety of terrain, including paved concrete roads and
sidewalks, grass, and loose soft ground such as mulch. Cassie is also able to tackle
large sloped terrains (uphill and downhill), as well as step across curbs. Note that
in all experiments, Cassie is blind and cannot perceive the surrounding terrain. . 52

5.1 The A1 quadruped robot walking over a random discrete terrain using our pro-
posed approach. 54

vii

5.2 (Top) A trotting gait consists of two DS and QS domains as indicated by the
figures marked from QS 0 to DS 1. For a ‘one-step’ periodic gait, the state at
the beginning of the next step (QS 2) must coincide with the initial state of
the previous step (QS 0). (Bottom) A ‘one-step’ periodic trotting gait is overly
restrictive to capture all possible transitions between l0 and l1. When l0 and l1 are
chosen independently, ‘one-step’ periodic solutions for a trotting gait do not exist
(the configuration of the robot in QS 2 does not coincide with the configuration
in QS 0). To obtain ‘one-step’ periodic trotting gaits, l0 and l1 are constrained
by l0(0) + l1(1) = l0(1) + l1(0). A ‘two-step’ periodic trotting gait used in this
chapter consists of four DS and four QS phases and provides sufficient flexibility
to choose l0 and l1 independently. 59

5.3 Different terrains tested in our experiments, and visualization of a local map built
on the robot. 60

5.4 (A) Snapshots of the robot, (B) visualization of the terrain map illustrating the
foot-placement of the robot on the stepping stones, and (C) forward velocity of
the robot from real world data. 61

5.5 Robot recovering from a missed foot placement due to an error in the state
estimate. 64

6.1 Snapshots of the RABBIT walking across a field of stepping stones using our
proposed approach. The mass and inertia of the links are scaled by three times
introducing significant model uncertainty. 67

6.2 A trace of a trajectory for the double pendulum under the influence of the learned
controller. The horizontal black line represents the safety constraint, while the
blue curve traces the end-effector. 76

6.3 Plot of the desired step length vs actual step length achieved by the learned con-
troller for the walking simulation. The black dashed lines indicate the necessary
step length constraint required to successfully walk over stepping stones. 77

7.1 We learn precise stabilizing policies on hardware for the Quanser cartpole [114]
(top) and the Unitree A1 quadruped [116] (bottom) using only seconds and a
few minutes of real-world data, respectively. A video of our experiments can be
found here https://youtu.be/l7kBfitE5n8 80

7.2 (Left) Plot illustrating improved velocity tracking of the learned policy (in dark green)

compared to the nominal locomotion controller (in pink) to track a desired velocity

profile (in dashed black line) using our proposed method on the Unitree A1 robot

hardware. (Right) Plot from the simulated benchmark study illustrating cumulative

velocity tracking error (lower is better) over 10s rollouts at different stages of the

training. In orange, we show the results of fine-tuning using SAC with a standard

RL cost. In blue, we fine-tune using SAC with our reward reshaping method, with a

candidate CLF designed on a nominal linearized model of the robot. In both cases, we

plot the results using the discount factor that achieved the best performance. 89

https://youtu.be/l7kBfitE5n8

viii

8.1 Simulation results in MuJoCo for (Top) Digit squatting in-place and (Bottom)
re-orienting its body using the proposed geometric MPC in Chapter 4. 94

E.1 Comparison between nominal controller and learned policy after training on 60s of real-

world data on the A1 robot with an added 10lb weight. The learned policy is able to

significantly reduce the tracking error caused by the added weight. 117
E.2 Cumulative gait tracking error (lower is better) over 10s rollouts at different stages

of the simulated fine-tuning benchmark comparison of the A1 quadruped with an
unknown load. In orange, we show the results of fine-tuning using SAC with a
standard RL cost which penalizes the distance to the desired gait with a discount
factor of γ = 0.99. In blue, we plot the performance of our cost reshaping method
with SAC and a discount factor of γ = 0. For both cost formulations, we plot
the discount factor that led to the best performance. 117

E.3 Experimental plots of the cart position and pendulum angle of the cartpole sys-
tem. (left) The policy trained only in simulation fails to bring the real cartpole
system to the upright position; (right) by fine-tuning the learned policy with 20s
of real-world data using our CLF-based reward function, we obtain a successful
policy. 119

E.4 Comparison of the simulation results of fine-tuning a cartpole swing-up policy
after adding model mismatch. A policy trained on a nominal dynamics model
of the cartpole fails when deployed on the new dynamics. In blue, we show the
results of continuing to train the agent with the original costs and discount factor.
In orange, we fine-tune using our reshaping method with the pre-trained value
function and a discount factor of γ = 0. For each episode of training on the new
dynamics model, we compare the performance of both methods when running
the cartpole from 10 initial conditions: (on the left) the average original reward
without the CLF term, and (on the right) the cumulative number of successful
swing-ups. The plots show the mean and standard deviation of the results over
10 different training random seeds. 120

ix

E.5 (Top) Snapshots of RABBIT [25], a five-link bipedal robot, successfully walking
with our learned controller in the PyBullet simulator [31]. (Bottom-Left) Average
tracking error (lower is better) per episode at different stages of the training pro-
cess when fine-tuning a model-based walking controller under model mismatch.
In blue, using our CLF-based reward formulation and SAC, the robot learns a
stable walking gait with only 40k steps (40 seconds) of training data. In orange,
with a baseline that uses a typical reward penalizing the tracking error to the
target gait, the training takes longer to converge and does not achieve the same
performance. The results show the best performance for both method across
different discount factors and training hyper-parameters. (Bottom-Right) Com-
parison of the tracking error of roll-outs of different learned walking policies. In
blue, a policy learned with 40k steps of the environment using our CLF-based
reward. In dashed green, a policy learned using the baseline reward with 40k
steps of the environment. In orange, a policy learned using the baseline reward
with 620k steps of the environment (best baseline policy). The jumps in tracking
error occur at the swing-leg impact times. The policy learned with our reward
formulation clearly outperforms the baseline, even when the baseline has 15 times
as much data. 122

E.6 Learning curves for an inverted pendulum system under different input con-
straints. The curves plotted correspond to the smallest discount factors that
led to stabilizing policies. On the left, the obtained learning curves use a CLF in
the reward. On the right, the reward does not include the CLF term. The black
dots denote the first stabilizing policy for each training. For each setting we plot
the learning curve for the discount factor that achieved the best performance. . 124

x

List of Tables

3.1 Optimization constraints . 28

4.1 Numerical values of the MPC parameters implemented on the Cassie robot hard-
ware. 43

5.1 Success rates of the three controllers on different terrains over 3 hardware runs
on the A1 robot. Our approach (GVMPC) outperforms the baseline controllers
on aligned and staggered terrains. The failure mode of GVMPC on the staggered
terrain is due to the stance foot slipping at the edge of the terrain. All controllers
use the same vision feedback. 62

xi

Acknowledgments

This thesis could not have been completed without the love, support, and mentorship of
the many talented and wonderful people I’ve met along my PhD journey.

First, I would like to thank my advisor, Professor Koushil Sreenath, with whom I’ve
had the pleasure of working for over seven years. Thank you, Koushil, for giving me this
unique opportunity to work on such challenging problems alongside the coolest robots on
this planet, for spending numerous hours helping me with experiments, for your constant
support and guidance throughout graduate school and for showing me what it takes to be
great mentor.

Thank you, Professor Claire Tomlin and Professor Francesco Borrelli, for being on my
committee and for the many wonderful discussions I have had over the years during office
hours and group meetings.

Thank you to my group members: Quan, for showing me what it takes to be a great
researcher and for inspiring me to pursue a PhD; Avinash, for our endless discussions on
geometric control and RL; Bike and Shu, for the countless hours helping me with experiments;
Zhongyu, for showing me what it takes to be a great PhD student mentor. Thank you Katie,
Jun, Matthew, and Akshay for your support throughout my graduate studies.

Thank you to my many collaborators: Tyler and Fernando for our countless discussions
on model-based control, CBFs, RL and for the many hours we spent on debugging hardware;
Jason and Somil for teaching me so much more about reachability and for the many wonderful
conversations around hybrid systems, locomotion and learning.

Thank you to Akshara Rai for providing me with the opportunity to work with her as
an intern at FAIR and for her mentorship and support during my internship. Thank you to
Dennis Da for taking the time to chat about controls and learning for legged robots.

Thank you to my Bala and Prasanth for tolerating me as your housemate for over four
years, for all the fun road trips and house parties, and for being the best friends I could ever
ask for.

Most importantly, thank you to my parents for being so patient and supportive of my
decision. I couldn’t have done it without you by my side.

Finally, I would like to acknowledge the financial support from the National Science
Foundation (Grants CMMI-1944722 and IIS-1834557), from META AI through BAIR Open
Research Commons, from InnoHK of the Government of Hong Kong via the Hong Kong
Centre for Logistics Robotics and from UC Berkely through the scholarships: 1) William
S. Floyd, Jr. Graduate Student Fellowship, 2)The Gordon M. and Merle I. Steck Cal Club
Endowed Scholarship, 3) The William C. Webster Graduate Fellowship and 4) Graduate
Division Block Grant Award.

1

Chapter 1

Introduction

1.1 Motivation

Animals with legs exhibit highly dynamic locomotion capabilities in nature. They are able
to locomote with extreme agility on challenging terrain using visual feedback, adapt to
changing environmental conditions, and leverage contacts to stabilize themselves. Animals
can also change their gait type depending on the locomotion speed to minimize energy
consumption. Taking inspiration from the versatile locomotion capabilites of these animals,
roboticists have sought to build legged robots that have the ability to navigate on rugged and
unstructured terrain. These capabilities make them ideal candidates for various applications,
such as search and rescue operations, space exploration, building maintenance, and offshore
platform inspection. Moreover, the human-like form factor of robots such as Agility Robotics’
Digit [2], and Boston Dynamics’ Atlas [21] are particularly well suited for deployment in
spaces designed for humans, such as warehouses and inside homes with narrow corridors and
doorways. Robotic legged locomotion can also inform the design and control of interactive
and assistive devices such as lower-limb exoskeletons and prostheses [6, 59].

1.2 Challenges

Enabling such autonomous locomotion capabilities in legged robots is, however, challeng-
ing due to their increased complexity compared to other robots such as wheeled platforms
and fixed-base manipulators. Additionally, several components, including low-level balance
control, high-level motion planning, state estimation, and perception, must work together
reliably. Moreover, as we begin to integrate these robots into spaces around humans, it is
important for the underlying feedback controllers to be robust against uncertainties in the
environment and the robot model, both of which can significantly change over its opera-
tional life cycle. There are several challenges associated with designing feedback controllers
for legged robots.

CHAPTER 1. INTRODUCTION 2

1. Nonlinear and Hybrid Dynamics: Legged locomotion such as walking, running, and
hopping can be described by a set of nonlinear continuous phases followed by discrete
impact events [53]. This nonlinear and hybrid nature of locomotion, coupled with the
high-dimensionality of legged robots, makes it particularly challenging to synthesize
stabilizing feedback controllers and planning algorithms that can be realized in real-
time.

2. Constrained Environments: Legged robots need to navigate in constrained environ-
ments, such as across narrow passageways and over flights of stairs. This places tight
constraints on the foot positions and base pose of the robot. Additionally, these robots
need to operate within torque limits and friction cone limits imposed by the environ-
ment.

3. State Estimation: Model-based control, especially that rely on estimates of centroidal
quantities, requires accurate state estimation, which can be particularly challenging
for legged robots that impact with the ground.

4. High-dimensional visual inputs: For legged robots to interact with their environment,
they must have the capability to perceive and reason about the surrounding terrain.

1.3 Legged Locomotion Research over the Years

Legged robotics research has a rich history dating back to the 1960’s, when one of the first
walking machines, the Walking Truck, was developed by General Electric in 1965. The
machine was mechanically driven through hydraulic valves coupled to the human operator’s
hand and foot motions and without any computer control.

Over the last five decades, researchers around the world have worked to address several
challenges associated with robotic legged locomotion. The last decade in particular, has
seen breakthroughs in trajectory generation, optimal control, and numerical optimization
techniques, as well as reinforcement learning that has led to impressive results in agile loco-
motion behaviors on legged systems. One of the earliest and most notable works on dynamic
legged locomotion was by Marc Raibert’s group at the MIT LegLab in the early 1980s, where
they developed a series of highly dynamic hopping and running robots [115]. The proposed
feedback controllers relied on simple heuristics to maintain the velocity, body height and
posture. Later that decade, Tad McGeer showed it was possible to achieve stable passive
dynamic walking without the need for any feedback control [90]. As mentioned earlier, a pri-
mary challenge with designing feedback controllers for legged robots arises due to their high
dimensionality and having to coordinate several joints together, in addition to their nonlin-
ear and hybrid dynamics. This inspired several works on utilizing reduced-order models for
planning foot-steps and ground reaction forces to stabilize the robot while reducing the com-
putational burden for online planning and control. Taking a departure from reduced-order
models, Grizzle et al. proposed the Hybrid Zero Dynamics (HZD) framework that leveraged

CHAPTER 1. INTRODUCTION 3

nonlinear feedback control, hybrid dynamics of the robot, and numerical computation of
limit cycles for walking and running.

With the advances in numerical optimization, legged robotics research saw a paradigm
shift in control methods. While reduced-order models are still popular today, recent model-
based feedback controllers leverage optimization programs such as Quadratic Programs
(QPs) that can be evaluated in real-time. An advantage of such methods is that phys-
ical constraints such as torque limits and friction cone constraints can be incorporated as
constraints in the optimization. Advances in numerical optimization have also led to efficient
ways to compute trajectories for the full nonlinear and hybrid model of the robot.

More recently, another breakthrough in legged locomotion control took place with the
advances in robotic Reinforcement Learning. Several recent works have shown impressive
results on achieving robust and agile locomotion on a variety of legged platforms. RL is
not only able to synthesize and stabilize highly complex behaviors [122, 143], but also learn
robust and adaptive policies in the presence of model and environmental uncertainties [121,
79]. RL has also proven to be effective in the presence of high dimensional visual inputs [1,
91].

1.4 Contributions

This thesis explores model-based control design and learning techniques for developing agile
and robust legged locomotion control for bipedal and quadrupedal robots. In particular,
we take a first-principles approach and use tools from trajectory optimization, Control Lya-
punov Functions (CLFs) and Control Barrier Functions (CBFs), geometric mechanics, Model
Predictive Control (MPC), and Reinforcement Learning (RL). The key contributions of this
thesis are summarized below and outlined in Figure 1.1.

1. Planning and Controls for Robotic Running with Precise Foot Placement: Due to their
high dimensionality and nonlinear and hybrid nature of the dynamics, planning trajec-
tories for legged robots in real-time is challenging, especially for agile maneuvers such
as running with multiple modes. This thesis explores the use of trajectory libraries
generated offline for dynamic locomotion for bipedal robotic running.

2. Geometric Model Predictive Control: We develop a novel coordinate-free Model Predic-
tive Control algorithm on a rigid-body reduced order model for legged robots evolving
on the SO(3) manifold. We show that our method is versatile and applicable to a
different legged robotic platform, including the bipedal robot Cassie, the humanoid
robot Digit and the Unitree A1, a small-scale quadrupedal robot. We perform several
indoor and outdoor experiments with the A1 and Cassie robots on a variety of terrain
to demonstrate the robustness of our approach.

CHAPTER 1. INTRODUCTION 4

3. Vision-Aided Locomotion on Challenging Terrain: Utilizing our method to generate
trajectory libraries offline and the geometric MPC algorithm, we develop a planning
and controls framework for a quadruped robot to navigate a field of stepping stones
using visual inputs from a depth camera.

4. Robust and Efficient Robotic Reinforcement Learning: We explore the combination of
model-based control with model-free policy optimization methods to develop safe and
robust feedback controllers for legged robots.

1.5 Thesis Organization

The thesis is divided into two parts. In Part I, we develop model-based feedback controllers
for quadruped and bipedal robots to navigate challenging terrain. We begin our presentation
in Chapter 3, where we extend our framework for walking to running with precise foot
placement on stepping stones for a 2D bipedal robot. Our initial hypothesis suggested a
straightforward extension to running. However, a primary challenge with running is the loss
of control authority during flight phases. This places tight constraints on the forward take-
off velocity to achieve precise foot placement. Through extensive numerical simulations, we
illustrate that the choice of outputs is crucial to obtain accurate foot placement. We propose
a set of output variables that enables the controller to achieve precise foot placement.

While our previous works were focused on 2D bipedal locomotion in constrained settings,
in Chapter 4, we extend our MPC approach to the bipedal robot platform Cassie. We
illustrate the efficacy of our controller in handling a wide variety of outdoor terrain, including
large slopes, grass, mulch, stepping down curbs, and external disturbances in the form of
pushes.

In Chapter 5, we illustrate the effectiveness of offline motion libraries and online model
predictive control for a quadruped robot to autonomously navigate a field of stepping stones
using visual feedback.

For robots to reliably work in the real-world, the underlying locomotion controller must
be robust to unmodeled disturbances such as added payloads and uncertainty in the oper-
ating environment. A primary disadvantage of model-based techniques is the requirement
of an accurate whole-body or reduced-order model of the robot. An inaccurate model can
significantly degrade the control performance and lead to undesired behavior. Additionally,
model-based techniques like MPC can require a significant amount of parameter tuning (such
as cost function weights and feedback gains) on hardware to achieve the desired performance.

In Part II, we aim to address some of these challenges through data-driven approaches.

In particular, Chapter 6 develops a framework inspired by CLFs and CBFs to learn a safe
and stabilizing controller when the true dynamics of the underlying system are unknown.
We validate our approach through numerical simulations of a walking robot on randomly
spaced stepping stones.

CHAPTER 1. INTRODUCTION 5

Figure 1.1: An overview of this thesis.

While our previous work focused on learning a policy entirely in simulation, it did not
allow for adapting to disturbances that were out-of-distribution on hardware. In Chapter 7,
we develop a novel cost-shaping method inspired by CLFs to rapidly learn stabilizing policies
using data collected from hardware. We perform several experiments on a cartpole system
and on the A1 robot, along with simulations on a 2D model of the RABBIT biped to test
the efficacy of our approach.

1.6 Chapter Summary

In this chapter, we presented the main motivation to develop legged robots and the primary
challenges associated with designing feedback controllers for such robots. We presented
a summary of legged locomotion control literature ranging from reduced-order pendulum
models to reinforcement learning methods. The next chapter presents dynamical models of
legged robots and a method to obtain periodic trajectories for legged locomotion.

6

Chapter 2

Robot Dynamics and Trajectory
Optimization

In this chapter, we first present the dynamical models of the various robots considered in
this dissertation. We will use these models to develop model-based feedback controllers in
Part I as well as design cost functions for learning safe and robust locomotion policies in
Part II. Next, we present a method to obtain periodic orbits for legged locomotion using
developed the hybrid models.

2.1 Dynamical Models for Legged Locomotion

Legged locomotion can be characterized by of alternating continuous phases depending on the
nature of interaction with the environment. For example, walking in a bipedal robot can be
described by alternating modes of single-support and double-support phases when one or two
feet are in contact with the ground, respectively. Similarly, trotting in a quadrupedal robot
can be described by alternating phases of double-support, when two diagonally opposing
feet are in contact with the ground, and quadruple-support when all four feet are in contact
with the ground. This interaction of the feet with the ground can be described by either
a compliant or rigid model. As is common practice in designing feedback controllers for
legged robots, we will consider this interaction to be non-compliant. Under this assumption,
the ground contact is modeled as a holonomic constraint, meaning that the foot is rigidly
attached to the ground through constraint forces. These forces are typically known as the
Ground Reaction Forces (GRFs). The dynamical equations describing the motion of each
phase are obtained as

Dq̈ + Cq̇ + G = Bτ + JTc Fc + JTstFst, (2.1)

where q ∈ Rn denotes the generalized coordinates and τ ∈ Rm of the robot with n degrees

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 7

of freedom and m degrees of actuation. The variable D ∈ Rn×n denotes the inertia matrix,
C ∈ Rn×n denotes the Coriolis matrix, G ∈ Rn denotes the generalized gravity vector and
B ∈ Rn×m denotes the actuation distribution matrix. The term Fst ∈ Rnst denotes the
GRFs acting on the robot’s contacting feet and Jst ∈ Rnst×n denotes the Jacobian of the
associated contact frame. Additionally, robots can have constraints between their joints,
such as through five-bar linkages, or have compliant elements between joints, such as in
Series Elastic Actuators (SEAs). These can be captured by additional forces Fc ∈ Rnc

acting on the robot, with Jc ∈ Rnc×n denoting the associated Jacobian. The general form of
the equation in (2.1) are typically known as the manipulator equations. The configuration
variables q typically include the pose (pb ∈ R3, Rb ∈ SO(3)) of the robot, the actuated joints
qa ∈ Rm as well as unactuated joints.

Constrained Dynamics

The dynamical equations in (2.1) represent the unconstrained equations of motion of the
robot. The terms Fst and Fc denoting the holonomic constraint forces can be eliminated
by finding their closed-form expressions. In this section, we illustrate how to obtain these
closed-form expressions. For simplicity, we will drop the term JTc Fc in the discussion to
follow and consider specific cases in later chapters to obtain Fc in later chapters. Consider
the equation of the form

Dq̈ + Cq̇ + G = Bτ + JTstFst. (2.2)

Next, we can obtain the expressions for holonomic constraint hst ∈ Rnst describing the
pose of the contacting foot with the ground, which can be obtained through the forward
kinematics of the robot. The equation describing the holonomic constrained is obtained as

hst(q) = 0. (2.3)

We can then find the first and second-time derivatives of (2.3), and we obtain the follow-
ing,

ḣst = Jstq̇ = 0, (2.4)

ḧst = Jstq̈ + J̇ q̇ = 0. (2.5)

We can now solve for q̈ and Fst from (2.2) and (2.5),

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 8

Figure 2.1: Various robots considered in this dissertation, along with their model scales
and associated contact models depicting the contact wrench. (Left) Unitree A1 quadruped
robot with a point contact foot, (Center) Cassie biped with a line contact foot, and (Right)
Digit Humanoid robot with a planar contact foot.

[
D −JTst
Jst 0nc×nc

]
︸ ︷︷ ︸
(nst+n)×(nst+n)

[
q̈
Fst

]
=

[
−Cq̇ −G + Bτ

−J̇stq̇

]
. (2.6)

The equation in (2.6) represents a set of (nst+n) simultaneous linear equations in (q̈, Fst)
and (nst + n) unknowns. From (2.6), a closed form expression for Fst can be obtained as

Fst = −
(
JstDJTst

)† (
JstD

−1τ + J̇stq̇
)
. (2.7)

Remark 2.1. Having obtained a closed form expression for Fst, we can now substitute this
in (2.2) to obtain the constrained dynamical equations. Additionally, note that the solution
for Fst is affine w.r.t. the inputs τ . Substituting the expression for Fst in (2.2) maintains
the affine structure of the dynamics with respect to the inputs τ .

Defining the state of the robot to be x := (q, q̇), the dynamics of the continuous phase
can be obtained as

ẋ = f(x) + g(x)τ, (2.8)

where the vector fields f and g are obtained from (2.1) and (2.7).

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 9

Contact Types

Continuing our development of the dynamical model of legged robots, in this section, we
introduce the specific forms for the contact wrenches Fst depending on the design of the
robot’s feet. Below, we describe the most common contact types in legged robots.

1. Point Contact: For quadruped robots like the Unitree A1 and bipedal robots like
RABBIT, the interaction between the ground and the foot can be modeled as a point
contact. In this case, the contact wrench Fst ∈ R3 consists of only linear forces as
illustrated in Figure 2.1,

Fst =

fst,xfst,y
fst,z

 . (2.9)

2. Line Contact: For robots with narrow feet like that of the biped Cassie, the robot
is unactuated about the length of its feet. In this case, the contact wrench is five-
dimensional and defined as,

Fst =

fst,x
fst,y
fst,z
mst,y

mst,z

 , (2.10)

where mst,y is the moment in the pitch direction and mst,z is the moment in the yaw
direction as depicted in Figure 2.1.

3. Planar Contact: Humanoid robots like Digit, on the other hand, have a significantly
larger footprint, and the contact between the ground and the feet are typically modeled
as a planar surface contact. In this case, the contact wrench is illustrated in Figure
2.1 and defined as,

Fst =

fst,x
fst,y
fst,z
mst,x

mst,y

mst,z

 . (2.11)

In the next section, we describe additional constraints on these wrenches.

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 10

Contact Constraints

Note that we have not placed any additional constraints on the forces Fst yet. Due to phys-
ical constraints such as friction, the wrench produced by the ground is limited. Additional
constraints imposed on the desired locomotion behavior (such as flat-footed walking), will
further limit the ground reaction wrench. In this section, we briefly describe the constraints
imposed on different contact types. These will be used in later chapters of this disserta-
tion to obtain dynamically feasible trajectories and develop optimization-based locomotion
controllers.

1. Point Contact: For a point contact, the contact wrench is limited by friction con-
straints, and due to the fact that the ground cannot pull the robot (typically known
as the unilateral vertical ground reaction force constraint). These are expressed as the
following inequalities,

√
f zst

2 + f yst
2 < µf zst, (2.12)

f zst ≥ 0. (2.13)

where the inequality in (2.12) is based on the Amontons–Coulomb model and µ denotes
the coefficient of static friction. Since the inequality in 2.12 is nonlinear, a more
conservative but linear friction model is typically used for feedback control,

− µ√
2
f zst < fxst <

µ√
2
f zst, (2.14)

− µ√
2
f zst < f yst <

µ√
2
f zst. (2.15)

The constraints in (2.13), (2.14) and (2.15) can be written in matrix form,

−1 0 − µ√

2

1 0 − µ√
2

0 −1 − µ√
2

0 1 − µ√
2

0 0 −1

︸ ︷︷ ︸

Apoint
st

Fst ≤ 0. (2.16)

We define the set Kpoint
st

Kpoint
st := {Fst ∈ R3 | Apoint

st Fst ≤ 0}. (2.17)

to be the set of contact wrenches that satisfies the inequalities in (2.16).

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 11

2. Line Contact: In addition to the friction constraints in (2.14) and (2.15), we place
additional constraints to avoid rotation of the foot about the heel and the toe. These
are described by the following inequalities,

− lf
2
f zst < my

st <
lf
2
f zst, , (2.18)

where lf is the length of the contacting foot. These are known as the Zero Moment
Point (ZMP) constraints. Additionally, we place friction constraints on the yaw mo-
ment,

−γf zst < mz
st < γf zst, , (2.19)

where γ is the coefficient of torsional friction. Combining the inequalities in (2.14),
(2.15), (2.18) and (2.19), we obtain the following linear inequality constraint in Fst,

−1 0 − µ√
2

0 0

1 0 − µ√
2

0 0

0 −1 − µ√
2

0 0

0 1 − µ√
2

0 0

0 0 −1 0 0

0 0 − lf
2

−1 0

0 0 − lf
2

1 0
0 0 −γ 0 −1
0 0 −γ 0 1

︸ ︷︷ ︸

Aline
st

Fst ≤ 0. (2.20)

Similar to (2.17), we define the set Kline
st to be

Kline
st := {Fst ∈ R5 | Aline

st Fst ≤ 0}. (2.21)

3. Planar Contact: The planar contact model includes an additional constraint on the
roll contact moment, similar to the ZMP constraints introduced for the line contact,

−wf
2
f zst < mx

st <
wf
2
f zst, , (2.22)

where wf is the width of the foot. We define the set Kplanar
st to be

Kline
st := {Fst ∈ R6 | Aplanar

st Fst ≤ 0}, (2.23)

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 12

where Aplanar
st is defined as

−1 0 − µ√
2

0 0 0

1 0 − µ√
2

0 0 0

0 −1 − µ√
2

0 0 0

0 1 − µ√
2

0 0 0

0 0 −1 0 0 0

0 0 − lf
2

0 −1 0

0 0 − lf
2

0 1 0
0 0 −wf

2
−1 0 0

0 0 −wf

2
1 0 0

0 0 −γ 0 0 −1
0 0 −γ 0 0 1

︸ ︷︷ ︸

Aplanar
st

Fst ≤ 0. (2.24)

Impact Model

The equations of motion in (2.1) describe the dynamics of the continuous phases of locomo-
tion, such as when the robot is in single-support or flight phases. Legged robots continuously
make and break contact with the environment, such as when the swing leg of the robot makes
contact with the ground. The set of states (and inputs) where impact occurs is known as the
switching surface S. Such interactions can be modeled as discrete and instantaneous plastic
impact events (zero coefficient of restitution). Under such a model, the generalized veloci-
ties undergo a discrete change while the configuration remains unchanged. At impact, the
generalized post-impact velocities q̇− can be obtained using momentum conservation laws.
An additional assumption on the post-impact velocity of the impacting foot to remain zero
is utilized to obtain the following system of linear equations,[

D(q) −JTst(q)
Jst(q) 0

]
·
[
q̇+

Fst

]
=

[
D(q)q̇−

0

]
, (2.25)

where Fst denotes the impact forces and q̇− denotes the pre-impact velocities. We can obtain
the expression for the post-impact velocities q̇+ as,

q̇+ = ∆(q, q̇−),
(
q, q̇−

)
∈ S. (2.26)

Hybrid Model

We can now put together the continuous-time dynamics in (2.6) and the discrete-impact
dynamics (5.2) to obtain a hybrid dynamical model of locomotion,

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 13

Σ :

{
ẋ = f(x) + g(x)u, (x, τ) /∈ S
x+ = ∆ (x−) , (x, τ) ∈ S

(2.27)

Gait Generation

Having presented the hybrid dynamical model of legged locomotion, we now illustrate how
this model can be used to generate periodic gaits for bipedal and quadrupedal locomotion.
We will use these trajectories throughout Part I of this dissertation to develop model-based
locomotion controllers. Specifically, we will obtain periodic solutions, also known as periodic
gaits, for the hybrid dynamical system in (2.27). For the system of the form ẋ = f(x, u),
the problem of finding an optimal trajectory can be stated as

J(x(t), u(t)) = min
x(t),τ(t)

∫ T

0

L(x(t), τ(t))dt (2.28)

τ(t))dt

c(x(t), τ(t)) ≤ 0, 0 ≤ t ≤ T,

where L(·) represent the running cost function, and c(·) represents the path constraints.

There are several approaches to numerically solve the trajectory optimization problem
in (2.28). In this dissertation, we utilize the direct collocation method [19], which begins by
transcribing the continuous-time trajectory optimization problem in (2.28) to a problem in
discrete-time. This allows us to convert an infinite-dimensional problem, where the decision
variables x∗(t) and τ(t)∗ are functions, to that of a finite dimensional constrained parameter
optimization problem. Specifically, the time interval t ∈ [0, T] is divided into a fixed number
of uniformly distributed intervals, and the trajectory optimization problem turns to finding
the optimal state and inputs at each of the discretization points.

In particular, the even-numbered nodes (e.g., t0, t2, . . . , tN) are called cardinal nodes,
and the odd-numbered nodes between every two cardinal nodes are called interior nodes. At
each discrete node of t = ti, an approximation of state variables xi = x(ti) and control inputs
τi = τ(ti) is introduced as a set of optimization variables to be solved. The approximation of
the slope of state variables ẋi = ẋ(ti) is also introduced as defect variables in the optimization.

The Hermite-Simpson methods then use piecewise continuous cubic interpolation polyno-
mials to approximate the solution of the system over each interval between two neighboring
cardinal nodes. This approximation can be fully determined by the approximated state vari-
ables and slopes at the cardinal nodes. Hence, if the approximated states xi and slopes ẋi
at the interior nodes match the interpolation polynomial at time t = ti, then the resulting
piecewise polynomials are considered as an approximated solution of the system [58]. To
find this approximated solution, e.g., the discrete representation of the states, the original

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 14

continuous time trajectory optimization problem can be converted to the following form
given by

J(xi, ui) = min
τi

N−1∑
i=1

wiL(xi, τi) (2.29)

st. ẋi = f(xi, τi)

c(xi, τi) ≤ 0, 0 ≤ i ≤ N

ẋi − 3(xi+1 − xi−1)/2∆ti + (ẋi−1 + ẋi+1)/4 = 0

xi − (xi+1 + xi−1)/2 − ∆ti(ẋi−1 − ẋi+1)/8 = 0,

where for all i ∈ {1, 3, · · · , N−1}, where ∆ti = ti+1−ti−1 is the time interval between two
cardinal nodes, and wi is weighting factor of each node determined by the Gaussian quadra-
ture [63]. Specifically, the last two constraints are called collocation constraints, which are
determined by cubic interpolation polynomials. The above nonlinear programming problem
can be solved by existing numerical NLP solvers such as IPOPT.

Common Constraints in Legged Locomotion

The path constraints c(x, τ) introduced in (2.28) encode several physical and user-defined
constraints. Below, we highlight some typical constraints.

1. Defect Constraints : These are constraints on the estimated states from the optimizer
and states obtained from the interpolation polynomial. A complete description of
defect constraints can be found in [62].

2. System dynamics : The system dynamics, (2.1) are imposed as equality constraints.

3. Periodicity of an orbit : To obtain periodic gaits, the post impact states at the last
node at the current domain are enforced to be equal to the first node of the next
domain.

4. Domain of admissibility : The holonomic constraints in (2.5) and the constraints in
(2.17), (2.21) or (2.23) depending on the contact type, must be satisfied to ensure
holonomic and contact constraints are met.

5. Gait Time: The duration of the trajectory T is a decision variable that can be
optimized for. (Alternately, the time step ∆ti can also be considered as a decision
variable).

6. Speed, Step Length and Foot clearance: The desired average speed, step length, and
vertical foot clearance with the ground can be specified.

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 15

Figure 2.2: Figure illustrating the configuration of the Cassie bipedal robot.

2.2 Robot Description

Having presented the dynamics of a legged robot and a method to obtain gaits for locomotion,
in this section, we briefly describe mathematical models of the various robots (Figure 2.1)
considered in this dissertation.

Cassie Bipedal Robot

Cassie is a high-dimensional underactuated bipedal robot with an average height of 0.9m
and weighing around 32kg. The configuration of the robot can be described by the variable
q = [p,Rb, qL, qR] with p ∈ R3 denoting the position of the base, Rb ∈ SO(3) denoting
the orientation, and qi ∈ R7, i ∈ {L,R} denotes the configuration variables of the left
and right legs respectively. Specifically, each leg comprises of five actuated joints qa,i =
[qhy,i, qhr,i, qhp,i, qkp,i, qtp,i] denoting the hip yaw, hip roll, hip pitch, knee pitch and toe pitch,
and two unactuated spring joints, qs,i = [qks,i, qas,i], denoting the knee and ankle springs
respectively. As described in Chapter 2, the dynamics of the robot can be expressed by
the standard manipulator equations (2.1). Specifically for Cassie, these equations take the
following form,

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 16

Dq̈ + Cq̇ + G = Bτ + JTs τs + JTstFst, (2.30)

where D ∈ R20×20 denotes the inertia matrix, C ∈ R20×20 denotes the Coriolis matrix,
G ∈ R20 denotes the generalized gravity vector, B ∈ R20×10 is the actuation distribution
matrix, τs ∈ R4 are the spring torques, Js is the Jacobian of the spring deflections, τ ∈ R10 are

the input joint torques, Fst ∈ R10 are the contact wrenches and Jst :=
[
JTst,1, J

T
st,2

]T ∈ R10×20

is the Jacobian of the contact poses. Specifically, we model the interaction between each
foot and the ground as a line-contact, as described in Section 2.1.

In this chapter, we assume that the springs cannot deflect. This can be modeled as a
holonomic constraint on the configuration variables of the robot.

Digit Humanoid Robot

Digit is a humanoid robot with 30 degrees of freedom (DoF) and 20 actuated joints as listed
in (2.31)

q = [qx, qy, qz, qyaw, qpitch, qroll,

q1L, q2L, ..., q12L, q1R, q2R, ..., q12R]T ,
(2.31)

where (qx, qy, qz, qyaw, qpitch, qroll) represent the floating base coordinate, (q1, q2, ..., q8) and
(q9, q10, q11, q12) denote leg and arm joints, respectively. The corresponding DoFs are defined
in (2.32)

q1
q2
q3
q4
q5
q6
q7
q8

=

hip roll
hip yaw
hip pitch

knee
shin

tarsus
toe pitch
toe roll

,

q9
q10
q11
q12

 =

shoulder roll

shoulder pitch
shoulder yaw

elbow

 . (2.32)

The generalized coordinates of Digit are illustrated in Fig. 2.3, where Digit’s arm is fully
actuated with four DoFs: q9, q10, q11, q12, and Digit’s leg has 8 DoFs with 6 of them being
actuated: q1, q2, q3, q4, q7, q8. Note that q5 and q6 are passive and connected via leaf springs.
In addition, q7 and q8 are actuated via rods by two motors attached at q6.

A1 Quadruped Robot

The Unitree A1 is a 10kg quadruped with 3 motors in each leg, with a total of 12 actuated
joints and 6 underactuated base degrees of freedom (DoF). The configuration of the robot

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 17

q7L

q6L

q4L

q11L

q10L

q3L
Thigh

Shin

Tarsus

Foot

q9L

q12Lq1L q2L

q5L

q8L

qz

qy
qx

qϕ

qψ

qθ

Figure 2.3: Digit humanoid robot model. Digit has 30 DoFs and 20 actuated joints, where
each arm has 4 DoFs and each leg has 8 DoFs with 6 of them being actuated.

is represented by q =
[
pT ,ΘT , qTFR, q

T
FL, q

T
RR, q

T
RL

]T ∈ Q ⊂ R18, where p ∈ R3 denotes the
Cartesian position of the robot, Θ ∈ R3 denotes the ZY X Euler angle representation of the
orientation of the body, and qi ∈ R3, i ∈ {FR,FL,RR,RL} denotes the actuated joints of
the front/rear right/left legs. The actuated joints include hip abduction, hip and knee pitch
DoFs.

2.3 Chapter Summary

In this chapter, we presented a hybrid dynamical model for legged locomotion, including
various contact types found in legged robots and physical constraints imposed on the contact
wrench. Additionally, we presented a method to numerically obtain trajectories for the
nonlinear hybrid locomotion model. Finally, in Section 2.2, we presented the models for

CHAPTER 2. ROBOT DYNAMICS AND TRAJECTORY OPTIMIZATION 18

specific robots considered in this dissertation. We will use these models and trajectory
generation methods throughout the dissertation to develop model-based feedback controllers.
In the next chapter, we develop a planning and control method for a 2D biped for running
with precise foot placement.

19

Part I

Model-Based Locomotion Control

20

Chapter 3

Bipedal Robotic Running on
Stochastic Discrete Terrain

To navigate across discrete terrain with large displacements in the stepping locations, bipedal
robots have to be able to perform agile and dynamic maneuvers such as jumping or run-
ning while also satisfying strict constraints on foot placement and ground contact forces. In
this chapter, we analyze the problem of bipedal running over stochastically varying discrete
terrain with large changes in step lengths. Specifically, our method is based on designing
a library of running gaits that are two-step-periodic. We illustrate the capabilities of the
proposed controller through numerical simulations of a five-link underactuated robot RAB-
BIT, running over discrete terrain with step lengths that vary between 0.6m and 1.2m. This
is about 1.5 times the robot’s leg lengths and twice the step length that could have been
achieved by walking.

3.1 Introduction

Legged robots have the promise of being able to serve in applications such as in space and
urban exploration, as personal robots in homes and in search and rescue operations. It is
their inherent morphology and mechanical structure that renders them potentially superior
candidates over their wheeled counterparts. A key task in such applications is the ability to
locomote over discrete footholds such as in unstructured environments like wooded paths or
over a flight of stairs in indoor environments. This, however, introduces several challenges
and constraints, including (a) Strict constraints on foot placement, (b) Friction constraints,
and (c) Input constraints. Violation of any of these constraints will render the system
unstable.

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 21

Figure 3.1: Illustration of the problem of the stepping stone. The goal of the feedback control
design is for the bipedal robot to traverse over a set of discrete terrain with wide gaps. Such
terrain can only be traversed by performing agile maneuvers like running or jumping.

Related Work

The problem of robotic legged bipedal walking over discrete terrain has been studied in the
past, with a wide variety of techniques being used. Early methods for footstep planning,
such as in [76], relied on simple models like the 3D inverted pendulum and cart-table models
to generate walking patterns to walk over randomly generated stepping stones. In [113], the
authors present a method based on the concept of capture points to control a bipedal robot
to walk over discrete steps. The controller regulates the center-of-pressure on the stance
foot so as to ‘guide’ the capture point to the desired stepping location. More recently, in
[139], the authors present a centroidal momentum-based controller for a high-dimensional
robot ATLAS, to walk over partial footholds, including line and point contact surfaces. In
[36], a mixed integer quadratically constrained quadratic program is presented for footstep
planning of a humanoid robot to walk on uneven terrain with obstacles. In [101], the authors
present a method based on Control Barrier Functions (CBFs) to design feedback controllers
for high-dimensional 3D robots to walk over stochastically generated discrete steps with
changing step heights and step lengths. In [96], the authors propose a method that combines
a one-step-periodic gait library approach with a CBF-based feedback controller that signif-
icantly improved the performance as in [100]. In [50], the authors propose a bio-inspired
controller based on Central Pattern Generators (CPGs) to achieve step length and step
height modulations over a wide range for bipedal walking.

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 22

With regards to bipedal robotic running, while numerous studies have been carried out,
there have been limited studies on agile locomotion, like running, of legged systems over
discrete terrain. One of the earliest works on running over rough terrain was by Hodgins
and Raibert [65]. The authors presented three intuitive control designs for regulating the
step length for a bipedal robot that could run over rough terrain, including stairs with
changing step heights. In [107], the authors propose a reinforcement learning-based approach
to control a physics-based legged character to navigate over terrain with wide gaps, steps,
and obstacles. The authors are able to translate their method to a wide variety of high-
dimensional characters, including a 21-link planar dog and a 7-link planar biped. In [38],
the authors propose an intuitive dead-beat control strategy based on a point-mass model for
running over 3D stepping stones. The authors perform numerical simulations on a point-
mass model with massless legs for running over 3D stepping stones. In [57], the authors
present a neuromuscular controller for bipedal running.

In our previous work [105, 103], we presented a method to design a feedback controller
for an underactuated legged robot to walk over discrete terrain with stochastically varying
step heights and step lengths. The method relied on pre-computing a library of a small
number of walking gaits (through a nonlinear offline program) that were two-step-periodic
and parametrized by the step lengths and step heights in the first and second steps. The
controller then performed a bilinear interpolation between the different gaits based on the
current and desired step lengths/heights during run-time. By switching among a set of two-
step-periodic gaits, the controller was able to achieve aperiodic walking with precise footstep
placement over randomly generated discrete terrain. The control method was successfully
implemented on an underactuated bipedal robot, ATRIAS, over a wide range of complex
terrain. In our most recent work [7], the two-step periodic gaits were also extended to
quadrupedal robots.

Problem Statement and Approach

In this chapter, we study the problem of bipedal robotic running over randomly varying
discrete terrain with large changes in step lengths (Figure 3.1). In particular, we develop
a model-based feedback controller for an underactuated legged system that does not have
knowledge of the entire terrain ahead of time but only the position of the next stepping
location is known. By only using a one-step preview of the upcoming stepping location,
the method renders itself capable of being combined with vision sensors (like cameras and
LiDAR) to estimate the stepping locations.

Motivated by the success of the ‘two-step-periodic’ gait library approach for bipedal
walking, we extend this approach to the case of bipedal running. A primary advantage of the
proposed method is that, unlike most other methods that rely on simplifications of the system
dynamics, it considers the full nonlinear hybrid dynamics of the system, both during offline
gait generation and during the control phase. Given the current state-of-the-art in trajectory
optimization for nonlinear hybrid systems and computational power, another advantage of

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 23

our method is that it is easy to implement on a physical system. A key reason for the success
of the ‘two-step-periodic’ gait approach in [103] was it allowed for smooth transitions between
walking gaits at different step-lengths/heights, thereby inherently preventing violations in
friction cone and unilateral ground reaction force constraints and by using only a small
number of gaits in the gait library. The method, therefore, seems promising to use in richer
locomotion behaviors such as running and jumping.

The problem of robotic running over discrete footholds, however, places some additional
challenges, which stems from the loss of control authority of the angular momentum during
flight phases (i.e. when the robot is completely in the air). Additional challenges also arise
due to the increased number of possible hybrid modes of the system. These are potential
reasons for why the applicability of the ’two-step-periodic’ gait library approach might not
be straightforward. In particular, we show that by reasoning about the dynamics and by
the proper choice of output variables to be controlled, the ‘two-step-periodic’ gait library
approach can be extended to the case of running as well.

Contributions

The key contributions of this chapter are as follows:

1. We extend the ‘two-step-periodic’ gait library approach, initially presented in [105,
103] to develop a control strategy for bipedal robotic running over discrete footholds
that follows strict constraints on the states and control inputs of the system;

2. By doing so, we are able to expand the capabilities of the robot to traverse over wider
gaps in the discrete footholds that was not possible with only walking;

3. We show that, by a proper selection of output variables to be controlled, we can
significantly reduce the error in the foot placement locations while running.

Organization

The rest of the chapter is organized as follows: In Section 3.2, we present the hybrid model
for running, followed by the trajectory optimization and control design method in Section
3.3. Finally, in Section 3.4, we present results from numerical simulations of a five-link
underactuated bipedal robot.

3.2 Dynamical Model for Running

In this section, we present a brief overview of the dynamical model of a planar five-link
two-legged robot for running behaviors. These models will be used for generating opti-
mal trajectories as well as for control synthesis. The specific robot under consideration is
RABBIT. More details about the dynamical model can be found in [25].

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 24

Figure 3.2: Generalized coordinates of the bipedal robot RABBIT.

Figure 3.2 illustrates a schematic diagram of the robot. The configuration variables,

defined as q :=
[
pxhip pzhip qT q1R q2R q1L q2L

]T
include the world frame position of the

hip
[
pxhip pzhip

]T
, world frame orientation of the torso qT and the relative joint angles of

the thigh q1 and shin q2 links. The subscripts L and R refer to the left and right links,
respectively. For future reference, we define the actuated joints qa :=

[
q1R q2R q1L q2L

]
.

As noted in Chapter 2, the equations of motion have the form,

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bτ + JTstFst, (3.1)

where τ ∈ R4 are the control inputs that actuates each of the joints qa, F ∈ R2 are the
ground reaction forces at the stance foot and Jst := ∂pst

∂q
∈ R2×7 is the Jacobian of the stance

foot position pst. We note that during flight, since there are no external contact forces acting
on the robot, Fst ≡ 0.

Like walking, the dynamics for running motions is also hybrid. Specifically, running
comprises of alternating phases of single-support Σs and flight Σf phases as illustrated in
Figure 3.3. The hybrid dynamics is written as

Σs :

{
ẋ = fs(x) + gs(x)u, (x, τ) /∈ Ss→f

x+ = ∆s→f (x−) , (x, τ) ∈ Ss→f

Σf :

{
ẋ = ff (x) + gf (x)τ, x /∈ Sf→s

x+ = ∆f→s (x−) , x ∈ Sf→s

(3.2)

Here Ss→f := {(x, u) | F z(x, u) = 0} is the switching surface corresponding to the
transition between stance and flight domains and is defined as the set of states and control

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 25

Stance Flight

Figure 3.3: Illustration of the domains in running.

inputs such that the vertical ground reaction force F z(x, u) is zero (this corresponds to the
case when the stance foot lifts off from the ground). Similarly, we define the switching surface
Sf→s := {x | pzsw(x) = 0} corresponding to the transition between flight to stance as the set
of states such that the vertical component of the position of the swing foot is zero.

In addition, ∆s→f = I is the identity operator and ∆f→s is obtained from rigid impact
dynamics. The vector fields f(x) and g(x) are obtained for stance and flight phases using
Lagrange’s equations of motion (3.1).

In the next sections, we present our control approach based on the ‘two-step-periodic’
gait library.

3.3 Hybrid Zero Dynamics Based Control

In this section, we briefly present the Hybrid Zero Dynamics (HZD) framework [137, 138],
which uses the dynamical model presented in Section 3.2 to generate periodic gaits and design
feedback controllers for running. The HZD method begins by selecting a set of outputs ya for
the hybrid dynamical system as in (3.2). Driving these outputs to a set of desired quantities
yd defines how the various links of the robot move. The HZD controller then implements an
Input-Output (IO) Linearizing controller to drive the outputs ya to yd.

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 26

Output Selection

In this section, we present our choice of outputs ya (also known as virtual constraints). We
note that several valid choices for the outputs exist. As in [105], a candidate for ya is the set
of actuated joint angles qa. However, since we are interested in achieving precise step lengths,
which is achieved through the flight phase, we choose the horizontal velocity of the center of
mass as one of the outputs during the stance phase. This choice of output is motivated by
the fact that the horizontal distance achieved during flight is dependent on the exit velocity
of the stance phase (velocity of the center of mass at the instant before entering the flight
phase). We also note that this is a relative degree 1 output [67] [11]. The complete set of
outputs during the stance phase ysa and flight phase yfa is chosen as

ysa =

vxcom
qst1
qsw1
qsw2

 , (3.3)

yfa =

qT
qst2
qsw1
qsw2

 . (3.4)

The superscripts st and sw in ys denote stance and swing legs respectively, and st = L/R
(and sw = R/L), depending on whether the Left or Right Leg is in stance respectively. In
yf , the superscripts st and sw denote the stance and swing legs in the preceding stance
phase.

The desired outputs yd := yd (τ p, αp) are parametrized by Bézier splines, where αp are
the coefficients of the Bézier spline and τ p is a phase variable that monotonically increases
from 0 to 1 and p ∈ {s, f}. Specifically, we will find the Bézier parameters αp and phase
variable parameters through a Nonlinear Program such that enforcing the outputs ya to the
desired outputs yd (τ p, αp) through a feedback controller will result in a two-step-periodic
solution for the hybrid model in (3.2). This is schematically illustrated in Figure 3.4. We
note that, there are several choices for the phase variable τ p. In particular, we choose the
normalized absolute stance leg-angle qstLA as the phase variable during stance and normalized
time during flight,

τ s :=
qstLA − qstLA,max

qstLA,max − qstLA,max
, (3.5)

τ f :=
t− tmin

tmax − tmin
, (3.6)

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 27

Figure 3.4: Illustration of two-step-periodic gait design. We optimize over two running
steps with constraints on the step lengths l0 and l1 in the first and second running steps,
respectively. The periodicity constraint enforces the states of the robot at the end of the
second step x2 to return to the states at the beginning of the first step x0.

with qstLA defined as

qstLA := qT + qst1 +
qst2
2

− π

2
; (3.7)

qstLA,max, q
st
LA,min, tmin, tmax are constants to be determined. For future reference, we collect

the constant parameters used in the gait phase variable definitions above into the following
vectors,

θs :=

[
qstLA,max
qstLA,min

]
, (3.8)

θf :=

[
tmax
tmin

]
. (3.9)

Two-Step-Periodic Gait Design

Having presented the hybrid dynamical model for running and the choice of outputs ya to
be controlled, we now present a method to find the parameters αs, αf , θs and θf , such that
the resulting gaits are two-step-periodic.

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 28

Motor Torque |τ | ≤ 10 N m

Friction Cone
∣∣∣Fx

st

F z
st

∣∣∣ ≤ 0.6

Vertical Ground Reaction Force during stance F v
st ≥ 0 N

Swing Foot Clearance during stance hf | ≥ 0.05 m

Table 3.1: Optimization constraints

The two-step-periodic gait design involves obtaining gait parameters such that the post-
impact states of the system after two running steps return to the initial states at the start of
the first step. The gaits are parametrized by the step lengths in the first and second running
step l0 and l1, respectively and we define the set of parameters as

P (l0, l1) := {αs (l0, l1)α
f (l0, l1) , θ

s (l0, l1) , θ
f (l0, l1)}. (3.10)

Subsequently, we find parameters P (l0, l1) for (l0, l1) ∈ L× L to build a library of gaits,

G := {P (l0, l1) | (l0, l1) ∈ L× L}, (3.11)

where L is a predefined set of step lengths. Specifically, we choose L = {0.6, 0.8, 1.0, 1.2},
with a total of 16 gaits in the gait library.

As described in Chapter 2, the problem of obtaining the gait library G is cast as a
nonlinear program. In particular, the objective function considered here is the integral of
squared torques over step length:

J =

∫ T

0

||τ(t)||22 dt. (3.12)

and constraints for the optimization are formulated as in Table 3.1.

In addition to the above constraints, we also need to guarantee the periodicity of the gait
through the periodicty constraints :

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 29

Figure 3.5: Snapshots of the robot running over the discrete footholds using the control
method presented in this chapter.

1. The initial state at the start of the first stance phase is given by x = x+
0 with corre-

sponding (initial) step length l0.

2. Transition constraints between stance and flight: The state at the end of the first
stance phase is equal to the state at the beginning of the first flight phase (corre-
sponding to the step length l0).

3. Step Length constraint: The step-length constraint is enforced as the difference be-
tween the position of the stance foot at the beginning of the flight phase and the
position of the swing foot at the end of the flight phase being equal to the desired
step-length l0.

4. The state at the end of the first flight phase (before impact) is x = x−
1 with (resulting)

step length l0.

5. Impact constraints at the end of the first flight phase are enforced as x+
1 = ∆(x−

1).

6. The initial state at the start of the second stance phase is given by x = x+
1 with a

corresponding (initial) step length of l1.

7. Transition between Stance and Flight phase: The constraint is enforced as in 2 between
the second stance and flight phase.

8. The state at the end of the second flight phase (before impact) is x = x−
2 with

(resulting) step length of l2.

9. Impact constraints at the end of the second step are enforced as x+
2 = ∆(x−

2).

10. Periodic constraints are then enforced as x+
2 = x+

0 , resulting in l2 = l0.

The generation of the two-step-periodic running gaits using direct collocation with the
specifications mentioned above involves discretization of each phase in time by a specified
number of nodes N ,

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 30

0 = t0 < t1 < t2 < · · · < tN = T, (3.13)

where T represents the time to impact. In particular, we use N = 10 for each phase and use
the method of Direct collocation to solve the following trajectory optimization problem,

J = min
u(t)

∫ T

0

||τ(t)||22 dt (3.14)

st. x(t) =

∫ t

0

f(x(t)) + g(x(t))τ(t)dt

c(x(t), τ(t)) ≤ 0, 0 ≤ t ≤ T.

Here, c(x(t), τ(t)) represents the physical constraints described in Table 3.1 as well as peri-
odicity constraints. The desired gait parameters P (l0, l1) can be extracted from the optimal
state trajectories through a simple Bézier curve fit. We use the open-source optimization
and simulation toolbox FROST [61] to perform the above optimization. We refer the reader to
[86] for more details on the specifics of the trajectory optimization scheme. We then generate
the gait library G by obtaining the parameters P (l0, l1) for different values of (l0, l1) ∈ L×L
through the NLP described above.

Control Design

We use an input-output linearizing controller as in [137, 138]. We first define the outputs to
be regulated to zero as the difference between the actual and desired quantities ya and yd as:

yp := ypa − ypd, p ∈ {s, f}. (3.15)

We further differentiate between the relative degree one and relative degree two outputs
during stance as

ys1 :=
[
1 0 0 0

]
(ysa − ysd) , (3.16)

ys2 :=

0 1 0 0
0 0 1 0
0 0 0 1

 (ysa − ysd) . (3.17)

The IO Linearizing controller is then given by,

u = (Ap)−1 (−Bp (x, αp, θp) + vp) , p ∈ {s, f}, (3.18)

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 31

Figure 3.6: Illustration of gait interpolation. The desired gait parameters are obtained based
on the desired step length of the previous step ld0 and the desired step length of the current
step ld1. Points marked by blue circles denote gait parameters in the gait library. Red star
denotes the gait parameters based on the desired step lengths and obtained using bilinear
interpolation of the existing gaits in the gait library.

where Ap is the decoupling matrix and is defined as

As :=

[
Lgy

s
1

LgLfy
s
2

]
, (3.19)

Af := LgLfy
f , (3.20)

and Bp is defined as

Bs :=

[
Lfy

s
1

L2
fy

s
2

]
, (3.21)

Bf := L2
fy

f . (3.22)

Here, Lfy and Lgy denote the Lie-derivatives of the output y with respect to the vector
fields f and g. Further, v is a feedback term, which could be, for example, a linear feedback

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 32

controller

vs :=

[
−K1y

s
1

−K2y
s
2 −K3ẏ

s
2

]
, (3.23)

vf := −K4y
f −K5ẏ

f , (3.24)

where Ki > 0, i = 1, 2, ...5 are appropriate gain matrices.

The specific values of the parameters αp and θp depend on the desired step lengths of
the preceding step ld0 and current step ld1. The superscript d represents the desired quantity.
We restrict the desired step lengths ld1 to be within the range of L. This is schematically
illustrated in Figure 3.6 We use bilinear interpolation of the gait parameters P (3.10) as in
[105] to compute the gait parameters P (l0, l1) corresponding to the step lengths ld0 and ld1.

Remark 3.1. In our method, we perform a linear interpolation of the Bézier parameters
that parametrize the periodic gaits rather than the time trajectories of the states. The inter-
polated gait is, therefore also a smooth Bézier curve. The primary motivation behind doing
so is since the desired step length is different in every step, planning for each of these tran-
sients would cause an explosion of planned trajectories. Instead, we plan for periodic gaits -
specifically a two-step periodic gait to build a library of gaits G as in (3.11). During imple-
mentation, depending on the current step length l0 and the desired step length l1 of the next
step, we select the four closest gaits (in terms of step length) from G and perform a bilinear
interpolation (See Figure 3.6) resulting in P (l0, l1). Specifically, we only use the first step
of the interpolated two-step periodic gait and then switch to another interpolated gait at the
end of the first step. This makes the transients smoother (as opposed to large jumps in the
desired outputs which generally causes a violation of unilateral constraints such as friction
constraints and input constraints) as the exit state at the end of the first step is close to the
entry state of the periodic gait used for the second step.

Remark 3.2. The proposed method performs a linear interpolation as opposed to a nonlin-
ear interpolation. There are certainly several ways to represent this nonlinear model. For
example, in [33], the authors propose Support Vector Machines (SVMs) and neural network
model to interpolate between the different gaits.

3.4 Numerical Validation

In this section, we present our numerical results from simulation of the five-link underac-
tuated robot RABBIT. We performed multiple simulations with randomly varying desired
step lengths. The desired step lengths were sampled from a uniform distribution between
0.6m and 1.2m, which is about twice the desired step length reported in [100] and about 1.5
times the robot’s leg length. Figure 3.5 presents snapshots of the robot running over one
realization of the discrete terrain. Figure 3.7 illustrates the footstep locations along with the

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 33

0.6 0.7 0.8 0.9 1 1.1 1.2
desired step length (m)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

ac
tu

al
 s

te
p

le
ng

ht
 (m

)

Figure 3.7: Resulting location of footsteps from 300 steps, over 10 experiments (30 steps per
experiment). Outer dashed lines indicate a 5cm deviation from the desired step length. Red
dots denote the actual value of the step length obtained from simulation.

Figure 3.8: Motor Torques from one of the simulations. The top and bottom red lines
indicate the maximum and minimum allowable control inputs.

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 34

0 2 4 6 8 10 12 14
time (s)

-100

0

100

200

300

400

500

600

700

800

no
rm

al
 g

ro
un

d
re

ac
tio

n
fo

rc
e

(N
)

Figure 3.9: Vertical Ground Reaction Forces from one of the simulations.

desired stepping locations from ten such simulations with 30 steps per simulation. We note
that the average step-length error increases as the desired step-length increases.

In all our simulations, the foot placement was accurate to ±5cm of the desired step
lengths while all other constraints, such as input limits (Figure 3.8) and unilateral vertical
ground reaction force (Figure 3.9) constraints were met. The average running velocity was
1.8m/s.

Remark 3.3. As mentioned in Section 3.3, a candidate choice for the outputs during the
stance phase are the actuated joint angles qa (all outputs have relative degree two). However,
the results we obtained using these outputs were very different from those obtained using the
outputs defined in (3.3) with one relative degree one output. In particular, we observe a
significantly poor performance in the placement of footsteps with a maximum error of 39cm.
We attribute the success of the outputs in (3.3) to the fact that the horizontal displacement
of the center of mass depends solely on its exit velocity during stance. Regulating the exit
velocity directly during stance will potentially lead to an accurate step length at the end of the
flight phase and hence smaller errors in step length. Figure 3.10 illustrates the performance
of the controller using the actuated joints qa as the outputs.

3.5 Chapter Summary

In this chapter, we presented a control strategy for bipedal robotic running over stochastically
varying discrete terrain and potentially increased the range of step lengths to twice that
could have been achieved only by walking. The controller maintains the stability of the
robot while respecting critical safety constraints such as constraints on foot placement and
ground reaction forces. With a proper choice of the outputs to be controlled, the resulting
step length from simulation is accurate to 5cm of the desired step length.

CHAPTER 3. BIPEDAL ROBOTIC RUNNING ON STOCHASTIC DISCRETE
TERRAIN 35

0.6 0.7 0.8 0.9 1 1.1 1.2

desired step length (m)

0.6

0.7

0.8

0.9

1

1.1

1.2

ac
tu

al
 s

te
p

le
ng

th
 (

m
)

Figure 3.10: Resulting location of footsteps from 50 steps from a single simulation using
qa (vector relative degree 2) as the outputs during the stance phase. Outer dashed lines
indicate a 39cm deviation from the desired step length. Red dots denote the actual value of
the step length obtained from simulation.

While we are yet to formally prove any theoretical guarantees on switching between
the different periodic gaits, we provide some intuitive explanation about the success of the
method as in Remark 3.1. A potential direction to address this is the stability conditions
for switching controllers between different exponentially stable periodic orbits as provided
in [92]. Moreover, the method here is simple to implement and requires a small number of
two-step periodic gaits to run over a terrain with a wide range of step lengths.

While this chapter focused on developing feedback controllers for a planar bipedal robot,
in the next chapter, we develop a locomotion controller for a 3D bipedal robot Cassie. In
particular, we develop an optimization-based controller that can handle physical constraints
such as friction constraints, and we validate our approach through numerous hardware ex-
periments.

36

Chapter 4

Geometric Variational Model
Predictive Control

In Chapter 3, we introduced an HZD-based control method for a planar 2D bipedal robot.
HZD is a popular approach that was initially developed for 2D bipedal robots and has been
extended to several 3D bipedal robots in recent years. At its core, the HZD approach begins
by finding a periodic orbit that incorporates the full nonlinear and hybrid dynamics of the
robot and includes physical constraints, such as friction and input limits, as well as user-
defined constraints, such as walking speed and step length, through a constrained nonlinear
program. Once a periodic solution is found, an input-output linearizing controller is utilized
to drive the outputs to zero. In addition to requiring the true nonlinear dynamics of the
robot, the input-output linearizing controller does not enforce physical constraints such as
unilateral ground reaction force and friction constraints or limits enforced by the robot’s
actuators. More recent work has leveraged advances in optimal controls to incorporate these
constraints in the feedback control design. These methods solve a pointwise QP at every
control iteration to track the desired outputs computed offline. However, a drawback of such
approaches is the lack of predictive capability.

In this chapter, we take a departure from the HZD method and develop a model predic-
tive controller based on a reduced order model which is geometrically consistent with the
underlying configuration manifold structure of this model. We illustrate the efficacy of our
approach through several numerical simulations and hardware experiments on the Cassie

biped.

4.1 Related Work

MPC is a widely used method to control legged robots but requires linearization of CoM
dynamics to simplify the underlying optimization for efficient real-time computation. A
common approach to linearizing the CoM dynamics involves a small angle approximation

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 37

of the body roll and pitch, and a Jacobian linearization of the orientation dynamics [37,
146]. However, the small-angle approximation restricts the domains in which the model is
valid, especially on uneven terrain where the robot might experience high angular velocities
and pitch due to disturbances. Additionally, since the dynamics of the robot body evolve
on the SE(3) manifold, singularity issues arise in the Jacobian linearization process. Euler
discretization of the continuous-time orientation dynamics also results in the loss of the
underlying geometric structure of the SO(3) manifold and, as a result, the discrete-time
dynamics are not energy preserving [124].

This has led to research in geometric variation-based optimal control approaches [26,
141, 66] that linearize the quadruped dynamics using rotation matrices instead of Euler
angles. The resulting linearization is coordinate-free and does not suffer from singularities.
However, [26] does not consider discrete-time dynamics of the linearized system required for
MPC, and [66] use forward Euler to discretize the orientation dynamics. Euler discretization
of the orientation dynamics, however, results in the loss of important mechanical properties
like energy and momentum conservation, and the discrete-time dynamics may not evolve
in the SO(3) manifold [124]. More recently in [32], a nonlinear MPC utilizing Lie group
integrators was presented to achieve stable hopping on a monoped. In [131], an error-state
MPC is proposed where the linearized dynamics are derived on the Lie Algebra.

4.2 Geometric Model Predictive Control

We now present our Geometric Variational MPC (GVMPC) framework, which outputs the
contact forces of the stance legs, with the objective of stabilizing the robot’s CoM trajectory
and body orientation. GVMPC applies variation-based linearization [141] to a reduced-order
model of the robot while ensuring that the discretized system is energy-conserving. Similar
to prior works, we model the robot as a single rigid body actuated by linear forces and
moments about its CoM.

Discretization

We begin by formulating a discrete-time model of the rigid-body dynamics as required by the
MPC. Inspired by [124] we consider the system Lagrangian discretized using the Trapezoidal
rule with a time step of ∆t := tk+1 − tk,

Lk ≈
∫ tk+1

tk

Ldt = L∆t, (4.1)

where L is the Lagrangian in continuous time. To obtain the discrete-time dynamics of the
system, we equate the action sum to zero,

ΣN−1
k=0 δLk + δWk = 0. (4.2)

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 38

Figure 4.1: A rigid-body reduced order model for Cassie.

δWk is the infinitesimal work done by the force fk and moment τk obtained as,

δWk := ∆t (fk · δpk + τk · δηk) , (4.3)

where δpk is an infinitesimal displacement and δηk ∈ R3 can be interpreted as an infinitesimal
change in orientation.

The discrete-time equations of motion for the rigid-body dynamics are then,

pk+1 = pk + ṗk∆t, (4.4)

ṗk+1 = ṗk + ∆tg +
fk+1

m
∆t, (4.5)

Rk+1 = Rk∆Rk, (4.6)

Iωk+1 = ∆RT
k Iωk + ∆tτk+1, (4.7)

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 39

Figure 4.2: Proposed MPC framework applied to Cassie. Blocks in blue are run at 2kHz on
the real-time computer. The geometric MPC is run at 500Hz on an Intel NuC computer,
which communicates via UDP to the real-time computer. The desired velocity ṗd and angular
rate ωd are sent by the user through the radio.

where Rk ∈ SO(3) denotes the rotation matrix, I ∈ R3×3 is the inertia tensor, g ∈ R3 is the
gravity vector. ∆Rk := exp (∆tω̂k) denotes the change in orientation of the body from time tk
to time tk+1, where the exponential map exp : so(3) → SO(3) maps a skew-symmetric matrix

to a rotation matrix. We define the state of the rigid body to be ξk :=
[
pTk , ṗ

T
k , R

T
k , ω

T
k

]T
and

the input to be Fk :=
[
fTk , τ

T
k

]T
.

Linearization

Having obtained the discrete-time model of the system, we next compute a variation-based
linearization [141] of the nonlinear discrete-time dynamics around a reference trajectory. The
resulting linearized model will be locally valid on the SE(3) manifold and will be used to
formulate our MPC problem as a quadratic program (QP) that can be solved in real-time.
To compute the linearization, we take infinitesimal variations around a reference state.

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 40

Since the position and velocity dynamics in (4.4) and (4.5) are already linear, we turn to
the linearization of the orientation dynamics (4.6) and (4.7). The variations on SO(3) with
respect to a reference trajectory Rd

k ∈ SO(3) is given by,

δRk = Rd
kη̂k, (4.8)

where ηk ∈ R3 and η̂k maps R3 → so(3) such that âb = a × b for all a, b ∈ R3, where × is
the vector cross product. The variation in the angular velocity is

δωk =
1

∆t
(∆Rkηk+1 − ηk) . (4.9)

Using the variations in (4.8), and from the nonlinear discrete-time dynamics of the rota-
tion matrix in (4.6), we get the linear discrete-time system about a reference as,

Rk+1 = Rk exp (ω̂k∆t) , (4.10)

δRk+1 = δRk exp
(
ω̂dk∆t

)
+ Rd

kδ (exp (ω̂k∆t)) , (4.11)

⇒ Rd
k+1η̂k+1 = Rd

kη̂k exp
(
ω̂dk∆t

)
+ Rd

kω̂k exp
(
ω̂dk∆t

)
, (4.12)

⇒ η̂k+1 = Rd⊤

k+1R
d
k︸ ︷︷ ︸

exp(ω̂d
k∆t)

−1

(
η̂k exp

(
ω̂dk∆t

)
+ δ̂ωk exp

(
ω̂dk∆t

))
, (4.13)

⇒ η̂k+1 = exp
(
ω̂dk∆t

)−1
η̂k exp

(
ω̂dk∆t

)
+ exp

(
ω̂dk∆t

)−1
δ̂ωk exp

(
ω̂dk∆t

)
, (4.14)

= ∆̂Rd⊤
k ηk + ∆t∆̂R

d⊤

k δωk

[
∵ R⊤ω̂R = R̂⊤ω

]
, (4.15)

⇒ ηk+1 = ∆Rd⊤

k ηk + ∆t∆Rd⊤
k δωk. (4.16)

Similarly, the linearized discrete-time dynamics for the angular velocity is obtained from
(4.7), (4.8) and (4.9) as,

δ (Iωk+1) = δ
(
∆R⊤

k Iωk + hτk+1

)
, (4.17)

⇒ Iδωk+1 = δ∆R⊤
k Iω

d
k + ∆Rd⊤

k Iδωk + hδτk+1, (4.18)

⇒ Iδωk+1 = ∆t
(
δω̂k∆Rd

k

)⊤
Iωdk + ∆Rd⊤

k Iδωk + ∆tδτk+1, (4.19)

⇒ Iδωk+1 = ∆t∆Rd⊤

k δω⊤
k Iω

d
k + ∆Rd⊤

k Iδωk + hδτk+1, (4.20)

= −∆t∆Rd⊤

k δωkIω
d
k + ∆Rd⊤

k Iδωk + ∆tδτk+1, (4.21)

= ∆t∆Rd⊤

k

(
Îωdk

)
δωk + ∆Rd⊤

k Iδωk + ∆tδτk+1, (4.22)

Iδωk+1 = ∆t∆Rd⊤

k

(
∆tÎωdk + I

)
δωk + ∆tδτk+1. (4.23)

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 41

Putting together the linear and angular components, the linearized discrete-time system
is given by,

δξk+1 = Akδξk + BkδFk, (4.24)

where δξk :=
[
δpTk , δṗ

T
k , η

T
k , δω

T
k

]T
is the error state of the linearized system.

The matrices Ak and Bk are given by,

Ak :=

I3 ∆tI3 03 03

03 I3 03 03

03 03 ∆RdT

k ∆t∆RdT

k

03 03 03 aω

 , (4.25)

Bk :=

03 03
∆tI
m

03

03 03

03 ∆tI−1

 , (4.26)

aω := I−1∆RdT

k

(
∆tIωdk

∧

+ I
)
.

The linear discrete-time dynamics in (4.24) represents the evolution of the infinitesimal
variations on the manifold around a reference trajectory. These variations represent the
distance between two points on the manifold. Under the assumption that the actual rotation
matrix Rk is close to the desired rotation matrix Rd

k, the variation δξk can be approximated
as

δξk ≈

pk − pdk
ṗk − ṗdk

1
2

(
RdT

k Rk −RT
kR

d
k

)∨

ωk −RT
kR

d
kω

d
k

 , (4.27)

where the vee map ∨ : so(3) → R3 is the inverse of the hat operator, so that x̂∨ = x, ∀x ∈ R3.
The last two terms in (4.27) denote the errors on the tangent bundle TSO(3) manifold [80,
22]. With this approximation, the dynamics in (4.24) represents the evolution of the error
on the manifold locally around the reference trajectory ξd.

Geometric MPC-QP

Given the desired CoM states ξd generated from the motion library at the current trotting
step, we compute the initial error state δξ(0) as in (4.27) and solve the following QP,

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 42

F ∗
st,k = arg min

Fst,k,δξk,δFk

∥δξN∥P + ΣN
k=0

(
∥δξk∥Q + ∥δFk∥R + ∥Fst,k − F 0

st∥Qst

)
(4.28)

s.t. δξk+1 = Ak(ξ
d
k)δξk + Bk(ξ

d
k)δFk, (4.29)

Fst,k ∈ Kline
st (µ, γ, lf) , (4.30)

0 ≤ F z
sti

≤ cikF̄st, i ∈ {0, 1, 2, 3} (4.31)

GcFst,k = δFk +

[
mg
03×1

]
, (4.32)

δξ0 = δξ(0), (4.33)

where (4.30) denotes the line-contact constraints defined in (2.21), (4.33) denotes the CoM
wrench and contact forces, with Gc denoting the grasp-map [94]. The inequality in (4.31)
represents the unilateral constraints on the vertical ground reaction forces at the feet; cik ∈
{0, 1} denotes the binary contact state of foot i ∈ {L,R} (L and R denoting Left and Right
foot respectively). The above QP outputs the desired contact wrenches F ∗

st,k for the stance
feet. For legs in swing, the contact forces are set to zero by the constraint in (4.31). The
term ∥Fst,k − F 0

st∥Qst in the cost incentivizes the predicted contact wrench Fst,k to remain
close to the desired contact wrench applied at the previous timestep F 0

st. We implement the
above QP using the OSQP solver [127], with a horizon length of 20 and timestep of 0.02s,
which is equivalent to the desired time period of the walking gait. The stance-leg torques
are obtained through the quasi-static relation

τst = −JTstF
∗
st,0. (4.34)

On hardware, we also implement an inverse-kinematics-based control to track the desired
rigid body states ξd, making the total stance leg torque

τst = −JTstF
∗
st,0 + τik,st

(
ξ, ξd

)
. (4.35)

Additionally, for walking, we set the desired x − y position of the center of mass to be

equal to the actual x− y position, i.e. Sxyp
d
k ≡ Sxypk, where Sxy :=

[
1 0 0
0 1 0

]
.

Remark 4.1. Since the horizon length of the MPC spans one walking step, the desired
contact state cik of either foot can change during this period. As our MPC does not optimize
over the contact states, the grasp map Gk

c and desired contact state cik (which are parameters
of the MPC problem) must be carefully chosen when formulating the constraints at every
timestep. For k = 0, we utilize the true contact state of each foot obtained by thresholding
the estimated spring forces and grasp map obtained from forward kinematics. For k > 0, we
set the desired contact state cik depending on the time remaining in the current gait cycle.
When k∆t exceeds the time remaining in the gait, the desired contact state for each leg

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 43

Parameter Description Symbol Numerical Value

State Stage Cost Q

diag[500, 500, 2300
500, 500, 600,

80, 20, 10,
20, 5, 1]

Input Stage Cost R
diag[0.005, 0.005, 0.001

0.005, 0.05, 1]

Contact Force Difference Stage Cost Qst
diag[10−2, 10−2, 10−2, 10−4,10,

10−2, 10−2, 10−2, 10−4,10]
Terminal Cost P dlqr (Ak(0), Bk(0), Q,R)

Maximum Vertical Contact Force F̄ z
st 1000N

Coefficient of static friction µ 0.6
Coefficient of twisting friction γ 0.1

Foot Length lf 0.18m
Horizon Length N 20

Table 4.1: Numerical values of the MPC parameters implemented on the Cassie robot hard-
ware.

is switched. Additionally, the grasp map for the swing leg is computed based on its target
stepping location obtained from (4.36).

We tabulate the numerical values of the parameters in the Geometric MPC in Table 4.1.

Gait Library

Similar to [47], we utilize a library of periodic orbits for forward walking velocities ranging
from −0.5m/s to 1m/s obtained using the FROST toolbox [61]. The gaits have a step-time of
Ts = 0.4s, and consist of alternating phases of left stance and right stance phases, with no
double support phase. At every timestep of the low-level controller, a gait from the library
is chosen depending on the forward velocity of the robot, from which nominal configuration
variables and configuration velocities qO, q̇O on the periodic orbit are obtained as a function
of a time-based phase variable τs := 1/Ts. The desired reduced-order model states ξd are
also obtained from the chosen gait.

Swing Leg Control

The periodic orbits obtained for Cassie are only marginally stable and require additional
foot-stepping strategies on the swing leg to stabilize them. We implement a commonly used

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 44

Raibert heuristic to obtain a target stepping location ptgtsw,xy at the end of a walking step to
stabilize the robot,

ptgtsw,xy = ptgtO,xy + kswp
(
ṗxy − ṗdxy

)
+ kd (ṗxy − v̄xy) , (4.36)

where ptgtO,xy denotes the nominal swing foot position obtained from the gait library, ṗxy is

the instantaneous forward, and lateral velocity of the center-of-mass of the robot, ṗdxy is the
desired forward, and lateral velocity of the robot input by the user, and v̄xy is the average
velocity of the robot from the previous walking step. Next, we obtain the instantaneous
desired swing foot position and velocity by interpolating between the foot position at the
start of the gait to the target position using a bezier spine. The desired joint angles qdsw ∈ R5

and velocities q̇dsw ∈ R5 for the swing legs are found using inverse kinematics and tracked
using a PD controller with constant gravity compensation torque τ gsw for the swing knee
pitch and hip roll joints,

τsw = −kswp
(
qsw − qdsw

)
− kswd

(
q̇sw − q̇dsw

)
+ τ gsw, (4.37)

where qsw and q̇sw are the instantaneous joint angles and joint velocities of the swing leg,
respectively.

An overview of the proposed controller is illustrated in Figure 4.2. In the next section,
we present our experimental results utilizing the proposed MPC method on the Cassie robot
hardware.

4.3 Experiments

In this section, we present our main experimental results on Cassie bipedal robot. We
implement our MPC on an external onboard computer with an Intel i7-10710U processor
and communicate via UDP to the real-time computer.

Balancing and Crouching in Place

We begin by illustrating the dynamic balance capabilities of the proposed MPC framework.
When the robot is balancing on both legs, it is fully actuated. Cassie is able to stably balance
while being robust to perturbations in the form of pushes. Figure 4.3 illustrates a crouching
maneuver performed by the robot where the desired height is input by the user.

Walking Experiments

Next, we perform several indoor walking experiments to test the robustness and efficacy of
our approach. These experiments are summarized below.

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 45

0 1 2 3 4 5 6 7 8

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Figure 4.3: (Top) Snapshots of Cassie performing a crouching maneuver using the proposed
approach. (Bottom) Plot illustrating tracking of the pelvis height. Note that the desired
pelvis velocity is set to zero in this experiment since the desired height command is input
by the user through the radio.

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 46

(a) Phase portrait of the leg length in
stance and swing phases for stepping in
place.

0 1 2 3 4 5 6 7
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) Estimated forward and lateral ve-
locity.

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400
Desired Vertical Ground Reaction Force (vGRF)

(c) Desired vertical ground reaction
forces (vGRF) from MPC.

0 0.5 1 1.5 2 2.5
-100

-50

0

50

100

150

(d) Knee pitch torque for left and right
legs.

Figure 4.4: Expriemental results for stepping in place using the proposed MPC approach.

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 47

0 1 2 3 4 5 6 7
-100

0

100

200

300

400

Figure 4.5: Estimated spring forces from hardware for stepping in-place.

Stepping In-Place and Push Recovery

We first illustrate our approach for stepping in place in a lab setting. The robot can stably
step in place as illustrated by the phase portrait of the stance leg length in Figure 4.4a and
the forward and lateral velocity in Figure 4.4b. Figure 4.4c illustrates the desired vertical
ground reaction forces from the MPC. As mentioned earlier, the desired contact forces are
converted to joint torques through a kinematic relationship using the jacobian transpose.
The corresponding knee torques are illustrated in Figure 4.4d. In Figure 4.6, we show the
gait tiles of the robot recovering from a push in the backward direction. The robot can
quickly (in approximately 3s) recover from the push. Figure 4.5 illustrates the estimated
spring forces which are used to obtain the contact state of each foot.

Forward, Backward, Lateral and Strafing Motions

We conduct numerous experiments to illustrate the versatility of our controller to walk
forwards, backward, laterally, and diagonally. Figure 4.7 illustrates snapshots of the robot
walking sideways and diagonally. Figure 4.8 illustrates the tracking performance of the
controller.

Robustness to Ground Perturbations

Next, we test our controller against a variety of ground perturbations such as slopes and
small step disturbances (Figure 4.9) and across randomly placed wooden planks and soft
rubber mats (Figure 4.10). Additionally, we also demonstrate that the robot can sidestep
onto small steps, as illustrated in Figure 4.11.

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 48

Figure 4.6: Snapshots of Cassie robot illustrating recovery from a push in the backwards
direction. The first and the last tiles are about 3s apart.

Figure 4.7: Snapshots of Cassie walking diagonally and sideways.

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 49

0 2 4 6 8
-1

-0.5

0

0.5

1

1.5

0 2 4 6 8

-0.6

-0.4

-0.2

Figure 4.8: Estimated forward (Top) and lateral (Bottom) velocities while the robot is
walking diagonally (2s − 4s) with a maximum forward velocity of 1m/s and a maximum
lateral velocity of 0.5m/s.

Outdoor Walking

We perform several outdoor experiments on a wide variety of rugged terrain, including large
sloped concrete roads, sidewalks with irregularities, grass, loose ground such as mulch and
step disturbances such as across curbs. Figure 4.12 highlights several outdoor experiments
conducted across the UC Berkeley campus.

4.4 Chapter Summary

In this chapter, we proposed a linear MPC based on a rigid body model of the robot that
evolves on the SE(3) manifold. We utilized tools from differential geometry to derive linear
discrete-time dynamics of the reduced-order model that is geometrically consistent with the
underlying configuration manifold of this reduced-order model. We validated the proposed

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 50

0 10 20 30 40 50 60 70
-0.5

0

0.5
-0.4

-0.2

0

0.2

0.4

Sloped Terrain

Stepped Terrain

Figure 4.9: (Top) Snapshots of Cassie blindly negotiating a ramp of 20◦ and a flight of stairs
of height 6cm using the proposed Model Predictive Controller. (Bottom) Estimated forward
and lateral velocities experienced by the robot.

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 51

Figure 4.10: Snapshots of Cassie blindly walking over randomly placed wooden planks and
soft rubber mats.

Figure 4.11: Snapshots of Cassie blindly sidestepping over a raised platform of height 8cm.

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 52

Figure 4.12: Snapshots of outdoor walking experiments. Using the proposed approach, Cassie
is able to negotiate a wide variety of terrain, including paved concrete roads and sidewalks,
grass, and loose soft ground such as mulch. Cassie is also able to tackle large sloped terrains
(uphill and downhill), as well as step across curbs. Note that in all experiments, Cassie is
blind and cannot perceive the surrounding terrain.

CHAPTER 4. GEOMETRIC VARIATIONAL MODEL PREDICTIVE CONTROL 53

method through several hardware experiments on the Cassie bipedal robot. In the next
chapter, we extend the MPC framework developed in this chapter and the gait generation
method for aperiodic locomotion developed in Chapter 3 to quadruped robots walking on
discrete footholds using visual feedback from a depth camera.

54

Chapter 5

Vision-Aided Dynamic Quadrupedal
Locomotion on Discrete Terrain using
Motion Libraries

In this chapter, we present a framework rooted in control and planning that enables quadrupedal
robots to traverse challenging terrains with discrete footholds using visual feedback. Nav-

Figure 5.1: The A1 quadruped robot walking over a random discrete terrain using our
proposed approach.

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 55

igating discrete terrain is challenging for quadrupeds because the motion of the robot can
be aperiodic, highly dynamic, and blind for the hind legs of the robot. Additionally, the
robot needs to reason over both the feasible footholds as well as the base velocity in order to
speed up or slow down at different parts of the discrete terrain. To address these challenges,
we build an offline library of periodic gaits which span two trotting steps, and switch be-
tween different motion primitives to achieve aperiodic motions of different step lengths on a
quadrupedal robot. The motion library is used to provide targets to a geometric model pre-
dictive controller which outputs the contact forces at the stance feet. To incorporate visual
feedback, we use terrain mapping tools and a forward facing depth camera to build a local
height map of the terrain around the robot, and extract feasible foothold locations around
both the front and hind legs of the robot. Our experiments show a small scale quadruped
robot navigating multiple unknown, challenging and discrete terrains in the real world.

Video of experiments can be found here: https://youtu.be/3HAUvSsQYjs

5.1 Introduction

Legged robots have the unique capability to traverse a wide variety of challenging and rough
terrain, including terrains with gaps and discrete footholds. To navigate such terrain, a
legged robot needs to precisely place its feet on feasible footholds while maintaining its
overall stability. This requires planning over multiple footsteps and desired robot motion
between the footsteps. For example, the robot might need to slow down and take a few
steps on the same foothold before speeding up and stepping over a large gap. Moreover,
for unknown discrete terrain, the robot needs to make these decisions in real-time while
navigating; stopping might make the robot unstable and gaps harder to cross. This results
in a high-dimensional and complex optimization problem with a limited computing time
budget. Discrete and uneven terrains also present an additional challenge of controlling the
robot, as such terrains can result in the robot pitching, rolling and experiencing high angular
velocities.

Related Work

Legged locomotion on discrete terrains, such as across stepping stones, is an active area of
research with methods ranging from reduced-order models to learning-based approaches. We
summarize different research directions here:

Reduced Order Models: In [76], the authors propose a reduced order cart-pole model
to generate gaits for a bipedal robot to walk on randomly placed stepping stones. [113]
presents a method to regulate the center-of-pressure to guide the robot leg onto a discrete
foothold. More recently, in [35], a reduced-order linear inverted pendulum model is presented
to regulate the angular momentum about the stance foot at discrete impacts through the

https://youtu.be/3HAUvSsQYjs

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 56

vertical center of mass velocity. A QP-based controller is then used to track outputs for 2D
bipedal robots to walk on discrete terrain.

Optimal Control: Optimization-based controllers such as Control Barrier Functions
(CBFs) and Model Predictive Control (MPC) can enforce state and input constraints. In
[101], a CBF-based approach regulates the foot positions of a bipedal robot around a nominal
periodic gait, to step on discrete footholds. This method is extended in [106] to use a library
of walking gaits. The work in [102, 104, 3] leverages the use of two-step periodic gaits,
computed offline through trajectory optimization, to transition between gaits of different
step lengths online. In [48], a multi-layered optimal control framework is presented that
combines CBFs with MPC for precise foot placement over a planning horizon. Several other
works [89, 69, 140, 46] have also explored using trajectory optimization for dynamic legged
locomotion.

Reinforcement Learning: The work in [133] proposes to learn a high-level footstep
planner, that takes in the local height map of the terrain as input, and outputs a sequence of
desired footstep locations. A low-level joint controller is then learned to track these footsteps.
In [144], the authors propose learning the desired accelerations for a centroidal model of a
quadruped and use a heuristic approach to plan for footsteps on discrete terrain. The work
in [142] proposes a curriculum with varying levels of difficulty to learn a policy for various
bipedal robots to walk across stepping-stones. Several methods such as in [123, 147, 88] and
[134] have also explored combining learning-based approaches, particularly for vision-based
footstep planning along with model-based low-level joint control.

Approach and Primary Contributions

In this work, we study the problem of dynamic locomotion for quadrupedal robots across
discrete terrain using visual feedback. Our primary contributions in this work are threefold.
First, we extend our prior work for bipedal robots in [102, 104, 3], for solving footstep
selection problem by building a library of two-step periodic gaits, to quadrupedal robot
locomotion. By pre-computing an offline library of two-step periodic gaits, parametrized by
the step lengths in the first and second steps, transition between different step lengths can
be achieved online by switching between the different motion primitives. Moreover, with
trajectory optimization tools such as [64], an offline library with several hundred gaits can
be computed within tens of minutes. Unlike bipedal robots, however, additional kinematic
constraints exist between the front and hind limbs of the quadruped. To overcome this,
we propose to create a motion library of two-step-periodic trotting gaits comprising of four
stance phases (equivalent to four bipedal steps). Next, to stabilize these gaits, we extend
the proposed coordinate-free MPC presented in Chapter 4 to a quadrupedal robot.

Finally, using terrain mapping frameworks [40, 39] with a forward-facing depth camera,
we incorporate visual feedback and experimentally validate our proposed approach on a
Unitree A1 quadrupedal robot to navigate across multiple unknown, challenging discrete
terrains.

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 57

5.2 Hybrid Model of Trotting

In this section, we introduce the necessary background and notations for the robot dynamics
model considered in our approach. Our formulation of the dynamics is derived from prior
work on hybrid dynamics, as in [104]. We utlize the model of the A1 robot presented in
Chapter 2. Below, we provide a hybrid model for a trotting gait.

Continuous Dynamics: As mentioned in Chapter 2, the dynamics of the continuous
phases can be represented by the Manipulator equations :

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bτ + JTstFst (5.1)

Jstq̈ + J̇stq̇ ≡ 0,

where D is the inertia matrix, C the Coriolis terms, G gravitational terms, B a selection
matrix. Jst denotes the contact Jacobian, Fst denotes the contact forces at the feet, and
τ ∈ R12 denotes the motor torques.

Impact Dynamics: The collision of the feet with the ground is modeled as an instan-
taneous rigid impact, and the post-impact velocities q̇+ is obtained by solving the linear
system of equations [

D(q) −JTst(q)
Jst(q) 0

]
·
[
q̇+

Fst

]
=

[
D(q)q̇−

0

]
. (5.2)

Hybrid Model: We model each trotting step with two alternating phases of double-
support (DS), where the diagonal feet are in contact, and quadruple-support (QS), where
all four feet are in contact, as illustrated in Fig. 5.2. Combining (5.1) and (5.2), we obtain
a hybrid dynamical model for trotting as,

Σds :

{
ẋ = fds(x) + gds(x)τ, x /∈ Sds→qs

x+ = ∆ds→qs (x−) , x ∈ Sds→qs

Σqs :

{
ẋ = fqs(x) + gqs(x)τ, (x, τ) /∈ Sqs→ds

x+ = ∆qs→ds (x−) , (x, τ) ∈ Sqs→ds

, (5.3)

where x := [qT , q̇T]T is the state of the robot, fds(x), gds(x) and fqs(x), gqs(x) denote the
vector-fields in the DS and QS domains respectively and are obtained from (5.1). The
switching surface Sds→qs := {x | pzsw(x) = 0, ṗzsw(x) < 0} is defined to be the set of states
where the vertical component of the swing foot position is zero and the vertical swing foot
velocity is less than zero. Sqs→ds := {(x, τ) | λzc(x, τ) = 0} corresponds to the set of states
and control inputs where the vertical ground reaction force at the stance feet λzc(x, τ) ≡ 0
(when the stance foot lifts off from the ground). The reset map ∆ds→qs is obtained from
impact dynamics (5.2) and ∆qs→ds = I is the identity operator.

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 58

5.3 Approach

We now present our proposed approach of trajectory optimization and model-based low-
level robot control using geometric MPC. We begin by building a motion library consisting
of gaits parametrized by step length and optimized to minimize the total energy over a step,
subject to dynamics and periodicity constraints. The low-level controller takes optimized
CoM trajectories and footstep locations from the gait library to generate desired joint torques
applied to the robot. Lastly, we describe the localization and terrain mapping framework
we use in real-world experiments.

Trajectory Optimization

In this section, we present a method to generate a motion library of trotting gaits that
achieve foot placements of different step lengths. In particular, we obtain gaits that are
‘two-step’ periodic, such that the post-impact states of the robot after two trotting steps
return to the initial states at the start of the first step. The gaits are parametrized by the
step-lengths l0, l1 ∈ R2 as indicated in Fig. 5.2. The step lengths l0 and l1 each represent a
pair of distances between the left and right pairs of feet. The goal of trajectory optimization
is to find gait parameters γ (l0, l1) for various step-length pairs to construct a library of gaits
denoted by G := {γ (l0, l1) | (l0, l1) ∈ L × L}, where L := L × L is a predefined set of step
length pairs. Specifically, we choose L = {−0.2,−0.1, 0.0, 0.1, 0.2}m, with a total of 54 gaits
in the library. γ (l0, l1) comprises of the trajectory parameters for the base linear and angular
velocities and body height and orientation, which serve as reference states for the MPC as
detailed in Section 5.3.

We utilize the Direct Collocation method described in Chapter 2, which involves dis-
cretizing each phase in time by a specified number of nodes N [62], to minimize energy over
the entire trajectory, subject to dynamics and additional constraints ci(xi(t), τi(t)),

(x∗(·), τ ∗(·)) = arg min
x(t),τ(t)

Σi

∫ T

0

||τ(t)||22 dt (5.4)

st. x(t) =

∫ T

0

fi(x(t)) + gi(x(t))τ(t)dt,

ci(x(t), τ(t)) ≤ 0, 0 ≤ t ≤ T, ∀i ∈ I.
Here, I denotes the set of all discrete phases, ci(x(t), τ(t)) encodes physical constraints
such as state and input limits, friction constraints as well as periodicity and step length
constraints. The desired gait parameters γ (l0, l1) can then be extracted from the optimal
state trajectories x∗(·). We use the open-source toolbox C-FROST [64] to model and solve the
above optimization problem. We refer the reader to [104] for specific details on the trajectory
optimization formulation.

Remark 5.1. The generation of periodic gaits for quadrupeds with varying step lengths poses
additional challenges and constraints compared to bipedal robots in [104]. These challenges

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 59

Figure 5.2: (Top) A trotting gait consists of two DS and QS domains as indicated by the
figures marked from QS 0 to DS 1. For a ‘one-step’ periodic gait, the state at the beginning of
the next step (QS 2) must coincide with the initial state of the previous step (QS 0). (Bottom)
A ‘one-step’ periodic trotting gait is overly restrictive to capture all possible transitions
between l0 and l1. When l0 and l1 are chosen independently, ‘one-step’ periodic solutions
for a trotting gait do not exist (the configuration of the robot in QS 2 does not coincide
with the configuration in QS 0). To obtain ‘one-step’ periodic trotting gaits, l0 and l1 are
constrained by l0(0) + l1(1) = l0(1) + l1(0). A ‘two-step’ periodic trotting gait used in this
chapter consists of four DS and four QS phases and provides sufficient flexibility to choose
l0 and l1 independently.

arise from kinematic constraints between the left and right limbs. In particular, to indepen-
dently choose the step-length pairs l0 and l1, and to also induce periodicity constraints, we
consider ‘two-step’ periodic trotting gaits which comprise of four QS and four DS phases (as
opposed to ‘one-step’ periodic gaits). To visualize the requirement of a ‘two-step’ periodic
gait, we first consider a ‘one-step’ periodic gait. When l0 and l1 are chosen independently,
the net displacements of the left and right pairs of feet during a step is not necessarily equal.
As a result, the four feet of the robot can move closer together or further apart during a
step, resulting in a gait that is not periodic. This is illustrated in Fig. 5.2, where the chosen
step-lengths l0(0) = l0(1) = l1(0) = 0.1m and l1(1) = 0.2m result in the four feet moving
closer together at the end of a step (the configuration in QS 2 does not coincide with QS
0). Additional constraints on l0 and l1 must be placed to obtain ‘one-step’ periodic gaits. In
particular, the net displacements of the left and right pairs of feet during a step must be equal.
This is captured by the constraint l0(0) + l1(1) = l0(1) + l1(0). A ‘two-step’ periodic gait, on
the other hand, consists of two additional DS and QS phases. By appropriately choosing the
step lengths in these phases, the net displacements of the left and right pairs of feet in two

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 60

(a) Aligned terrain (b) Staggered Terrain (c) Random Terrain

(d) A1 robot on dis-
crete terrain, visual-
ized from real-world
data.

Figure 5.3: Different terrains tested in our experiments, and visualization of a local map
built on the robot.

steps can be made equal while still being able to choose l0 and l1 independently.

Footstep Planning and Gait Selection

Once we have created the gait library, we can extract desired gait variables by querying
motions that satisfy the environment foothold constraints and that start from the current
state of the robot.

Footstep Planning: To choose the desired foothold location, we first query the gait
library to obtain a nominal foothold location based on the current configuration and center-
of-mass velocity of the robot as well as a nominal desired center-of-mass velocity. Similar to
[144], we then chose the desired step length closest to the nominal foothold location and on
the feasible terrain.

Gait Selection: Given the current state of the robot and the feasible footstep map, we
extract a gait from the library based on the current step-length l0 and the desired step-length
l1 through bi-linear interpolation of the gait library [104]. This returns the desired states for
a reduced-order rigid-body model considered in the MPC controller. This update allows us
to re-target the desired CoM velocities to be consistent with the desired step lengths.

Geometric Model Predictive Control for Stance Legs

We utilize the Geometric MPC developed in Chapter 4 to obtain the stance leg torques.
The desired reduced-order model states are obtained from the gait library depending on the
chosen foothold location.

Swing leg control

For the swing-leg control, we implement an output PD controller to follow the desired foot
trajectory,

τsw = JTsw
(
−Ksw

p (psw − pswd) −Ksw
d (ṗsw − ṗswd)

)
. (5.5)

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 61

Figure 5.4: (A) Snapshots of the robot, (B) visualization of the terrain map illustrating the
foot-placement of the robot on the stepping stones, and (C) forward velocity of the robot
from real world data.

The desired foot trajectories are parametrized by Bézier polynomials such that the initial
desired position is located at the true foot position at the start of a swing phase, and the
final position based on the desired step-length, obtained through a footstep planner.

Localization and Mapping

We use a forward-facing depth camera to perceive the terrain, which makes it challenging
to pick feasible footsteps for hind limbs. This requires building a local map of the robot
by fusing a history of depth images that the robot sees, as well as the estimate of its own
inertial pose, in order to build a local map of the terrain around the robot. We fuse two
libraries to achieve this:

Localization: We implement contact-aided invariant EKF from [60] to localize the robot
in the world. The binary contact information required by the EKF, is obtained through
contact force sensors located at the feet.

Mapping: We utilize the probabilistic robot-centric mapping framework developed in
[39, 40] to obtain a height-map of the terrain. Localization estimates from the EKF and
depth images from the robot camera are fused by the mapper to build a local map around
the robot. We distinguish between stepable and un-stepable terrain based on the height and
normal direction and add a 5cm threshold at the edges between these regions to account
for inaccuracies in the foot placement controller and state estimation. The local map based
on previously observed depth images is used for picking footholds for the hind limbs, elim-
inating the issue of lack of perception towards the back of the robot. In the future, this
localization and mapping framework can be replaced by learning-based approaches, which
can automatically build a history of feasible footholds.

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 62

Heuristic Jacobian with Gait library GVMPC (ours)

Aligned 0/3 1/3 3/3
Staggered 0/3 0/3 2/3

Table 5.1: Success rates of the three controllers on different terrains over 3 hardware runs
on the A1 robot. Our approach (GVMPC) outperforms the baseline controllers on aligned
and staggered terrains. The failure mode of GVMPC on the staggered terrain is due to the
stance foot slipping at the edge of the terrain. All controllers use the same vision feedback.

5.4 Experiments

We demonstrate the robustness of our approach on the Unitree A1 quadruped (Fig. 5.3d)
on a diverse set of terrains with discrete footholds (Fig. 5.3). These terrains consist of
concrete blocks of size 6′′ × 16′′. The gap lengths between blocks range between 7cm and
18cm, and can be in different orientations. The robot is required to move forwards while
avoiding the gaps. The gap lengths are the same for the left and right legs in the aligned
terrain (Fig 5.3a), different in staggered terrain (Fig. 5.3b) or random in random terrain
(Fig. 5.3c). Random terrains pose additional constraints on the lateral foot placement. The
nominal commanded velocity is 0.25m/s and is updated by the gait library based on the
desired foot position.

First, we compare our approach to the baseline in [144] (Heuristic), which uses the
closest stepping location to a Raibert-like footstep and a Jacobian linearized rigid-body
model without any motion libraries. We use the implementation in [30]. This baseline
tests the robustness of our approach over other heuristic approaches from literature shown
on discrete terrain walking. Next, we incorporate motion libraries to this baseline stance
controller (Jacobian with Gait Library) and query CoM velocity and footstep location from
the motion library. This experiment illustrates the need for geometric MPC on uneven
terrain. Together, these experiments study the performance of our whole framework against
heuristic approaches from literature, as well as the importance of geometric MPC on uneven
terrain. Table 5.1 summarizes the success rates of the three controllers on different terrains
over three hardware runs on the A1 robot.

We observe that the Heuristic approach is not able to successfully navigate any of the
terrains. This is because the robot needs to speed up or slow down depending on the size
of the gaps. Since the Heuristic baseline only changes the footstep position but maintains
a constant CoM velocity, it is easily destabilized when walking over large gaps. The second
baseline, which uses the gait library, is able to cross the aligned terrain in 1 trial but fails on
the staggered terrain. The Jacobian linearized model does not regulate the CoM velocities
and orientations well in our experiments, causing the robot to go unstable. The instability is
caused more in the lateral direction, pointing towards foot placement feedback going unstable

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 63

due to lateral and roll angular velocities. The failure mode in the staggered experiment for
the GVMPC is due to the stance foot slipping at the edge of the terrain.

Additionally, we conducted two runs of experiments on the random terrain, which is
significantly more complicated and needs precise foot placement, and CoM position and
orientation planning. Our approach is able to navigate this terrain in 2/2 experiments. These
experiments demonstrate that our proposed Geometric MPC is able to robustly stabilize the
robot from a more extensive set of states around the desired trajectory.

Robustness to missed steps

It is possible for either the perception system or state estimator to fail. Additionally, the
foot can slip around the edges of a stepping stone. In such scenarios, it is important for
the locomotion controller to recover from such failures. In Figure 5.5, we illustrate one such
instant where the foot misses the stepping stone due to an error in the state-estimator, but
is able to recover from such disturbances.

5.5 Chapter Summary

In this chapter, we present a planning and controls framework for vision-aided navigation for
quadrupedal robots in challenging terrain. The method leverages offline computation of a
library of gaits parametrized by step lengths and an on-board geometric MPC that takes into
account the underlying geometric structure of the reduced-order rigid-body model, in both
the discretization and linearization of the dynamics. Combining our proposed method with
existing state-of-the-art tools for localization and mapping, we demonstrate the successful
implementation of quadruped locomotion on discrete terrain. While the primary focus of this
work is locomotion on discrete terrain with varying step lengths, our method can potentially
be extend to terrains with varying step widths as well as for turning on discrete terrain.

A drawback of our method is it requires the elevation map to be segmented into stepable
and un-stepable regions, which is currently achieved by thresholding the height and normal
vector direction of the elevation map and providing a safety margin from the edge of a stone.
For small-scale robots such as the A1, a gap between two stepping stones can be occluded
in the resulting depth image due to the low nominal height of the robot. This can result
in inaccurate segmentation of the height map if the threshold and safety margins are not
chosen appropriately. Our approach also utilizes an invariant EKF to estimate the position
of the robot on the elevation map. Any drift in the position estimate between steps can
lead to inaccurate foot placement. The EKF on the A1 robot was particularly challenging
to tune due to its compliant feet and the behavior of the contact sensor located at the foot
on different surfaces.

This brings us to the end of Part I of the thesis, where we developed model-based feedback
controllers to achieve agile and dynamic legged locomotion on several robotic platforms. One

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 64

Figure 5.5: Robot recovering from a missed foot placement due to an error in the state
estimate.

CHAPTER 5. VISION-AIDED DYNAMIC QUADRUPEDAL LOCOMOTION ON
DISCRETE TERRAIN USING MOTION LIBRARIES 65

of the major limitations of model-based methods is the requirement for an accurate repre-
sentative model of the system. Additional uncertainties can arise from environmental factors
such as reduced friction or external force perturbations. In such scenarios, the performance
of model-free methods can significantly degrade. Recent developments in model-free RL
methods have shown impressive results on systems with highly uncertain dynamics. Such
methods, however, are highly sample-inefficient. In the next part of the thesis, inspired by
model-based control literature, we develop novel reward functions for RL problems that in-
clude CLF and CBF terms. By including these terms, our method can learn safe, stabilizing
controllers for systems with high model uncertainty with only seconds or a few minutes of
training data.

66

Part II

Combining Model-Based Control with
Model-Free Policy Optimization

67

Chapter 6

Combining Model-Based Design and
Model-Free Policy Optimization to
Learn Safe, Stabilizing Controllers

This chapter introduces a framework for learning a safe, stabilizing controller for a system
with unknown dynamics using model-free policy optimization algorithms. Using a nominal
dynamics model, the user specifies a candidate Control Lyapunov Function (CLF) around the
desired operating point, and specifies the desired safe-set using a Control Barrier Function
(CBF). Using penalty methods from the optimization literature, we then develop a family
of policy optimization problems which attempt to minimize control effort while satisfying
the pointwise constraints used to specify the CLF and CBF. We demonstrate that when
the penalty terms are scaled correctly, the optimization prioritizes the maintenance of safety
over stability, and stability over optimality. We discuss how standard reinforcement learning
algorithms can be applied to the problem, and validate the approach through simulation.
We then illustrate how the approach can be applied to a class of hybrid models commonly
used in the dynamic walking literature, and use it to learn safe, stable walking behavior over

Figure 6.1: Snapshots of the RABBIT walking across a field of stepping stones using our
proposed approach. The mass and inertia of the links are scaled by three times introducing
significant model uncertainty.

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 68

a randomly spaced sequence of stepping stones.

6.1 Introduction

Following recent empirical successes from the reinforcement learning (RL) literature ([81]),
there has been a renewed interest in data-driven methods for controller design in the case of
model uncertainty ([17, 8]). However, despite the flexibility of model-free approaches, these
methods are known to suffer from poor sample complexity since they do not take advantage
of known structural properties of the control system. Moreover, the literature currently lacks
constructive methods for designing learning problems which give the system designer fine-
grained control over potentially competing global objectives, such as the rate of convergence
to a desired operating point or the avoidance of an unsafe region of the state-space.

Fortunately, modern model-based control theory has developed many tools such as Con-
trol Lyapunov Functions (CLFs; [126]) and Control Barrier Functions (CBFs; [9]) which
allow the system designer to constrain the pointwise closed-loop behavior of a given control
system to ensure desired global properties (stability and safety, respectively) are achieved.
When an accurate dynamics model is available, online optimization can be used to satisfy
these pointwise constraints while minimizing a cost, such as control effort [9]. In effect, these
approaches reduce the satisfaction of challenging global objectives to simple local decisions
from the perspective of controller synthesis.

This chapter takes preliminary steps towards extending this design philosophy to the
model-free setting by introducing a framework for systematically designing policy optimiza-
tion problems over a parameterized learned controller which enforces a hierarchy of user-
specified constraints on the closed-loop dynamics. To make the framework explicit, we focus
on learning safe, stabilizing controllers using CLFs and CBFs and choose to prioritize safety
over stability. We focus on the regime where the system designer has access to a dynamics
model which may be highly inaccurate but is assumed to at least capture basic structural
information about the real world plant. The model is used to construct a candidate CLF
and CBF for the plant and a family of policy optimization problems are formulated which
use penalty terms to discourage violations of the pointwise constraints imposed by these
functions. This allows the system designer to carefully constrain the desired closed-loop be-
havior for the learned controller while also allowing for additional performance terms, such
as minimizing control effort.

Our theoretical results demonstrate how to scale the penalty terms to control violations
of the constraints and appropriately prioritize safety over stability and stability over perfor-
mance. We first introduce the approach for classical control systems but then demonstrate
how to extend the approach to the hybrid case via an application to a class of hybrid mod-
els which are frequently used in the dynamic walking literature ([53]). We discuss how to
synthesize numerical approximations to the family of learning problems which can be solved
using standard machine learning techniques, including state of the art reinforcement learning

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 69

algorithms. Simulation experiments are provided for both the continuous and hybrid cases,
which demonstrate that our method is able to effectively learn safe, stabilizing controllers
in the face of large amounts of dynamics uncertainty. We can reliably solve the policy opti-
mization problems formulated over these systems using only a few minutes or even seconds
of simulated data, representing a sharp increase in the sample efficiency usually found in the
reinforcement learning literature [68, 81]. We conjecture that this is due to the large amount
of structure embedded in the learning problem through the incorporation of CLF and CBF
constraints, which reduce the search for an optimal safe, stabilizing controller to a set of
local criteria at each point in the state space.

Related Work: The unification of Control Barrier Functions and Control Lyapunov
Functions to synthesize safe, stabilizing controllers was first proposed in [9] using online
quadratic programming. In the case of model uncertainty, robust formulations have been
proposed ([98]). Learning based methods using supervised learning [128] or reinforcement
learning [27] to learn the uncertain dynamics terms in the quadratic program have also been
considered. These can be thought of as indirect learning methods, since they still require
solving an optimization problem involving the learned components to calculate the desired
controller. The primary downside of each of these approaches is that if the optimization is
infeasible at a particular point then the control strategy will generally be undefined, which
can be particularly difficult to rule out when learning unknown dynamics.

Building on our previous work [136], we introduce a framework for directly learning a
safe, stabilizing controller for the system using model-free policy optimization algorithms.
By directly learning the desired controller, our approach removes the need for solving a real-
time optimization problem involving a potentially complex learned component, which may
take a non-trivial amount of time to process during real-time applications. At points where
it is infeasible to satisfy the desired constraints, our method provides a “best effort” control
strategy which satisfies the constraints to the greatest degree possible, bypassing issues of
feasibility.

6.2 Control Lyapunov Functions and Control Barrier

Functions

Throughout most of the chapter we will consider control-affine systems of the form

ẋ = f(x) + g(x)u, (6.1)

where x ∈ Rn is the state and u ∈ Rm the input. We assume that f : Rn → Rn and
g : Rn → Rn×m are continuously differentiable.

Control Lyapunov Functions: Control Lyapunov Functions (CLFs; [126]) are com-
monly used to construct a controller which stabilizes a system to either a desired operating
point or a desired subset of the state-space [12]. Specifically, we say that the continuously

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 70

differentiable function V : Rn → R≥0 is a Control Lyapunov Function if

inf
u∈Rm

∇V (x)[f(x) + g(x)u] ≤ −σ(x) ∀x ∈ Rn \ {0}, (6.2)

where σ : Rn → R specifies a desired pointwise rate of decay. Here, V and σ are both assumed
to be positive definite, and V is additionally assumed to be radially unbounded. Under these
conditions, V can be viewed as a generalized energy function for (6.1), and condition (6.2)
ensures that there exists a control which drives the system state asymptotically to the origin.

Control Barrier Functions: Inspired by barrier functions from the optimization liter-
ature, the level sets of Control Barrier Functions (CBFs) encode user-specified safety con-
straints. Many classes of CBFs have been proposed in recent years [9, 145, 97], but for
concreteness throughout the chapter, we will use the class proposed in [145]. Specifically, we
say that the function h : Rn → R is a Control Barrier Function if

sup
u∈Rm

∇h(x)[f(x) + g(x)u] ≥ −α(h(x)) ∀x ∈ C, (6.3)

where C = {x ∈ Rn : h(x) ≥ 0} is a safe set specified by the 0-super-level set of h, and
α : (−b, a) → R, with a, b > 0, is locally Lipschitz, strictly increasing, and α(0) = 0.

It is natural to then search for a Lipschitz continuous control law which satisfies the
pointwise constraints in (6.2) and (6.3) simultaneously. One candidate control law is given
by solving a pointwise quadratic program (QP):

u∗(x) = arg min
u∈Rm

∥u∥22 (6.4)

s.t. ∇V (x)[f(x) + g(x)u] ≤ −σ(x)

∇h(x)[f(x) + g(x)u] ≥ −α(h(x))

which aims to minimize control effort while satisfying the two pointwise constraints. Unfor-
tunately, even if V and h are an actual CLF and CBF for the system, it may be impossible
to satisfy both constraints simultaneously leading to infeasibility issues. A common heuristic
is to add slack terms to one or both of the constraints to ensure feasibility of the problem
at the cost of some violation of the constraints [9].

6.3 Learning Safe, Stabilizing Controllers for

Uncertain Systems

While control laws similar to (6.4) have been successfully applied in a number of applications
they have several practical limitations. Most importantly, these approaches require that an
exact dynamics model is available to ensure that the pointwise constraints in (6.4) can be
satisfied on the real-world system. Secondly, the infeasibility issues mentioned above mean
that the controller may be undefined at certain points in the state-space, which can be

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 71

highly problematic during real-time operation. This motivates the method detailed below,
which uses a candidate CLF and CBF to learn an optimal safe, stabilizing controller for an
uncertain system using data collected from the plant. The method prioritizes satisfaction of
the CBF constraint over the CLF constraint and removes the need for real-time optimization.

Specifically we will seek to safely stabilize the plant

ẋ = fp(x) + gp(x)u, (6.5)

whose dynamics are unknown. We will also assume that a nominal dynamics model for the
plant is available:

ẋ = fm(x) + gm(x)u. (6.6)

We assume that the dynamics model has been used to synthesize a candidate CLF V (and
rate σ) and CBF h (and rate α) for the unknown plant. Even though the dynamics of the
plant are unknown, it is often reasonable to assume that the model captures enough basic
structural information about the plant to guarantee that these functions are also a valid CLF
and CBF for the real-world system. For example, in our simulated applications we design
the candidate CLF using feedback linearization, which is guaranteed to be a CLF for the
true system as long as the relative degree of the plant matches that of the model, a relatively
weak assumption.

The learned controller û : Rn × Θ → Rm is of the form

û(x, θ) = um(x) + ũ(x, θ). (6.7)

Here, um : Rn → Rm is a nominal controller supplied by the system designer which is derived
from the nominal dynamics model, and ũ : Rn × Θ → Rm is a learned augmentation. The
learned parameters (θ1, . . . , θp) ∈ Θ ⊂ Rp are to be trained so as to select the optimal safe,
stabilizing controller for the system.

Assumption 6.1. The learned controller û : Rn × θ → Rm is continuously differentiable in
both of its arguments.

Assumption 6.2. The set of learned parameters Θ is a compact convex set.

Our primary goal is to find a controller which satisfies the following infinite dimensional
constraints, when possible:

−∇h(x)[fp(x) + gp(x)û(x, θ)] − α(h(x))︸ ︷︷ ︸
∆1(x,θ)

≤ 0 ∀x ∈ C, (6.8)

∇V (x)[fp(x) + gp(x)û(x, θ)] + σ(x)︸ ︷︷ ︸
∆2(x,θ)

≤ 0 ∀x ∈ C. (6.9)

Here, the set C ⊂ Rn is the safe-set defined by the 0-super-level set of h. In words, we want
to train a controller û(·, θ) : Rn → R which satisfies the safety and stabilization constraints

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 72

that the chosen CBF and CLF impose on the real-world system. We make the following
assumption:

Assumption 6.3. The safe set C is compact.

Since it may not be possible to learn a controller which satisfies both sets of constraints
simultaneously, our learning framework must be flexible enough to prioritize the safety ob-
jective over the stabilization objective when necessary. While we do not know the terms
in ∆1(x, θ) and ∆2(x, θ) since the dynamics of the plant are unknown, these terms can be
calculated for different values of x ∈ C and θ ∈ Θ if measurements of V̇ and ḣ are available
when collecting data from the plant.

In order to enforce these constraints while minimizing control effort, we will solve opti-
mizations of the form

P(λ1,λ2) : min
θ∈Θ

Ex∼XL(λ1,λ2)(x, θ),

where

L(λ1,λ2)(x, θ) = ∥û(x, θ)∥22 + λ1H(∆1(x, θ)) + λ2H(∆2(x, θ)),

the hinge map H : R → R is defined by H(y) = max {0, y} for each y ∈ R, and the probability
distribution X : C → [0, 1] is supported on C. Here, X is understood to be the distribution of
states visited when collecting samples from the real world plant during the learning process,
and λ1, λ2 ≥ 0 are penalty parameters to be chosen later.

Remark 6.1. The requirement that X is supported on all of C is analogous to the persistency
of excitation conditions found in the adaptive control literature [119], and ensures that the
data is “rich enough” so that the correct controller is learned. Note that under this assump-
tion the penalty terms Ex∼Xλ1H(∆1(x, θ)) and Ex∼Xλ2H(∆2(x, θ)) are positive if and only if
the safety and stability constraints are violated, respectively, at some point x ∈ C. Thus this
richness requirement guarantees that violations of the pointwise constraints are appropriately
penalized by the optimization. The theoretical guarantees we provide below are algorithm ag-
nostic, and seek to characterize the global optimizers of the problem. Future work will seek to
bound the performance of specific machine learning algorithms used to solve P(λ1,λ2), which
generally come in the form of probabilistic guarantees.

Theoretical Analysis: We now demonstrate that violations of the safety and stability
constraints can be decreased to a pre-specified tolerance by scaling the penalty terms appro-
priately. For simplicity, we assume there exists at least one set of parameters which satisfies
the safety constraint:

Assumption 6.4. There exists θ∗ ∈ Θ such that for each x ∈ C we have ∆1(x, θ
∗) ≤ 0.

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 73

Next, we build up some additional notation to simplify the statement of our theoretical
results. First, define the maps Mu,M1,M2 : Θ → R≥0 by

Mu(θ) = Ex∼X∥û(x, θ)∥22,

M1(θ) = Ex∼XH(∆1(x, θ)),

M2(θ) = Ex∼XH(∆2(x, θ)).

For each chosen parameter θ ∈ Θ, Mu(θ) captures total energy exerted by the corresponding
controller across the safe set, M1(θ) is the extent to which the CBF constraint is violated,
and M2(θ) is the extent to which the CLF constraint is violated. Next, for each ε1 ≥ 0 define

Θε1 = {θ ∈ Θ: M1(θ) ≤ ε1} ,

which is the set of parameters for which the total violation of the CBF constraint is less than
ε1. We also define

M̃2 = min
θ∈Θ0

M2(θ), (6.10)

which is the smallest extent to which the CLF constraint can be violated, subject to exact
satisfaction of the CBF constraint, and is the ideal amount of violation of the CLF constraint
that can be returned by our optimization problem. We then define for each ε1, ε2 ≥ 0

Θε1,ε2 = {θ ∈ Θε1 : M2(θ) ≤ M̃2 + ε2},

which is the set of parameters corresponding to learned controllers which violate the CBF
and CLF constraints no more than ε1 ≥ 0 and ε2 ≥ 0 more than their ideal values.

We now present our first result, whose proof can be found in the Appendix:

Theorem 6.1. There exist constants, C1, C2, C3 ≥ 0 such that if λ1 ≥ C1λ2+C2

ε1
and λ2 ≥ C3

ε2

then each global optimizer θ∗ of P(λ1,λ2) satisfies θ∗ ∈ Θε1,ε2.

The result indicates that if we choose λ2 ≫ 0 and λ1 ≫ λ2 our optimization correctly
enforces safety over stability, satisfying the two constraints to the desired tolerances. Within
the set of desired controllers specified by Θε1,ε2 , the optimization is then left to reduce
the amount of control effort required to achieve these objectives. However, driving both
tolerances to zero requires taking λ1, λ2 → ∞.

One practical approach for ensuring exact satisfaction of the safety constraint for a finite
value of the multipliers is to add a small amount of extra conservativeness to the pointwise
CBF constraint. Specifically, letting ∆δ

1(θ, x) = ∆1(x, θ)+δ for some small parameter δ > 0,
one can replace ∆1(x, θ) with ∆δ

1(x, θ) in the loss L(λ1,λ2)(x, θ). Due to the continuity of the
problem data, driving Ex∼XH(∆δ

1(θ, x)) to be sufficiently small (which can be done with finite
values of λ1) will ensure exact satisfaction of the original CBF constraint. A forthcoming
article will address this point in greater detail.

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 74

However, the attractive properties mentioned above only apply to the global minimizers
of P(λ1,λ2), which in general will be non-convex, meaning that in practice only local minimiz-
ers to the problem can be found using common incremental machine learning algorithms.
Thus, we seek conditions on the structure of the learned controller which ensure that the
optimization problem is convex. Specifically, we analyze the case where the learned portion
of the controller is of the form

ũ(x, θ) =

p∑
k=1

θkuk(x), (6.11)

where {uk}pk=1 is a set of features.

Theorem 6.2. Suppose that the learned augmentation in (6.7) is of the form (6.11), and
that the set {uk}pk=1 is linearly independent. Then P(λ1,λ2) is strongly convex.

Many well-known bases such as radial basis functions [117] or polynomials can be used
to recover any continuous function up to a desired degree of accuracy by including enough
terms in the expansion. It is an important matter for future work to include these methods
in our framework, as it would enable users to design networks for the learned controller
which are guaranteed to be able to satisfy the CLF and CBF constraints to a desired degree
of accuracy. However, function approximation schemes of the form (6.11) may require a
prohibitive number of bases elements to ensure that the desired function is accurately re-
constructed in high dimensions. Thus, in practice, more compact function approximators
such as feed-forward neural networks must be used in high dimensions. Unfortunately, such
networks generally lead to non-convexities in P(λ1,λ2).

Numerical Implementation via RL: In practice, our method uses finite difference
approximations to ḣ and V̇ to compute the terms in ∆1 and ∆2, and then solves the resulting
approximations to P(λ1,λ2) using standard model-free reinforcement learning algorithms.

Specifically, we will assume that during the learning process the learned controller is
sampled every ∆t > 0 seconds, and will let tk = k∆t for k ∈ N denote the sampling
instances. When the control û(x(tk), θ) is applied over the interval [tk, tk+1] we have

∆1(x(tk)), θ) = −h(x(tk+1)) − h(x(tk))

∆t
− α(h(x(tk)))︸ ︷︷ ︸

=:∆̃1(x,θ)

+O(∆t2),

∆2(x(tk)), θ) =
V (x(tk+1)) − V (x(tk))

∆t
+ σ(x(tk))︸ ︷︷ ︸

=:∆̃2(x,θ)

+O(∆t2).

Thus, for small ∆t > 0 we approximate L(λ1,λ2) with

L̃(λ1,λ2)(x, θ) = ∥û(x, θ)∥22 + λ1H(∆̃1(x, θ)) + λ2H(∆̃2(x, θ))

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 75

and define the following reinforcement learning problem:

P̃
(λ1,λ2)

: min
θ∈Θ

Ex0∼X

[
N∑
k=0

L̃(λ1,λ2)(xk, θ)

]
(6.12)

s.t. xk+1 = xk +
∫ tk+1

tk
[f(x(t)) + g(x(t))û(xk, θ)] dt

Here, N ∈ {1, 2, . . . } is the length of the rollout for each experiment on the plant. Note
that this is a standard form for reinforcement learning problems, which can be solved using
any off-the-shelf algorithm. Future work will seek to provide correctness guarantees when
specific learning algorithms are used to solve these approximations.

6.4 Simulations

Double Pendulum With Safety Constraint: We first apply the learning framework to
the double pendulum in Figure 6.2 with two degrees of freedom q = (θ1, θ2) ∈ R2 and inputs
u = (τ1, τ2) ∈ R2, where τi is a torque applied at the joints. The Lagrangian dynamics obey

M(q)q̈ + Γ(q, q̇) = Bu,

where M(q) is the mass matrix and Γ(q, q̇) collects the gravity and Coriolis terms. The
overall state of the system is x = (θ1, θ2, θ̇1, θ̇2) ∈ R4.

The control objective is to stabilize the system to the origin, while ensuring that the
y-position of the end-effector does not dip below the constraint depicted in Figure 6.2. In
Figure 6.2 the origin corresponds to both arms pointing directly to the right. To guide
the system towards the origin, the method from [12] is used to design a CLF of the form
V (x) = xTPx. We then design a CBF which ensures satisfaction of the safety constraint
using the method of exponential control barrier functions (ECBFs) described in [97].

To set up the learning problem, we vary the dynamics parameters of the model (mass and
length of arms) by 50 percent between the ‘true’ system dynamics and the nominal model
used by the system designer. The learned controller is composed of a linear combination of
300 Gaussian radial basis functions distributed randomly throughout the state-space. We
solve the reinforcement learning problem (6.12) with a rollout length of N = 1, penalty
parameters λ1 = 1000 and λ2 = 100 and step-length of ∆t = 0.05s. The Soft Actor Critic
(SAC) algorithm from [56] is used to solve the problem. Figure 6.2 displays the performance
of the learned controller after only 800 samples are collected, which corresponds to 40 seconds
of data. The controller was tested from 20 initial conditions, maintaining safety and stability
in each scenario.

Safe Bipedal Locomotion on Stepping Stones: We will now apply the presented
method to the Hybrid Zero Dynamics (HZD) framework in order to learn an efficient, stable
and safe walking controller for a bipedal robot walking on a discrete terrain of randomly
spaced stepping stones. The robot is modelled as a hybrid system with impulse effects, as

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 76

Figure 6.2: A trace of a trajectory for the double pendulum under the influence of the learned
controller. The horizontal black line represents the safety constraint, while the blue curve
traces the end-effector.

done in [12]:

Σ :

η̇ = f(η, z) + g(η, z)u,

ż = p(η, z) when (η, z) /∈ S,
η+ = ∆X (η−, z−) ,

z+ = ∆Z (η−, z−) when (η, z) ∈ S,

(6.13)

where η ∈ X ⊂ Rna are the actuated states, z ∈ Z ⊂ Rnu the unactuated states, and
u ∈ U ⊆ Rm the control inputs. This model assumes alternating single support phases,
where the swing foot is off the ground and the stance foot remains at a fixed point. Impact
between the swing foot and the ground is modelled as a rigid impact and occurs when
(η, z) ∈ S, where S is a smooth switching manifold. In (6.13), η+ ∈ X and z+ ∈ Z are the
post-impact states, while η− ∈ X and z− ∈ Z are the pre-impact states.

The method of Hybrid Zero Dynamics (HZD) aims to drive the actuated states to zero
thereby constraining the system to evolve on a lower dimensional zero dynamics manifold
Ψ = {(η, z) ∈ X × Z : η = 0}, which contains a stable walking gait for the model. As in
[12], the system can be stabilized to this surface using feedback linearization to construct
a CLF for the actuated coordinates. Following the method in [99], we also design a CBF
which takes in the relative distance between the current and subsequent stepping stones and
forces the robot to step down on the next stepping stone during each impact event. Both of
these functions are only used to constrain the evolution of the continuous dynamics, but are
constructed so as to maintain safe, stable walking for the full hybrid dynamics. Because of
this, we can directly apply our framework to overcome model uncertainty in the continuous
dynamics.

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 77

Figure 6.3: Plot of the desired step length vs actual step length achieved by the learned
controller for the walking simulation. The black dashed lines indicate the necessary step
length constraint required to successfully walk over stepping stones.

To set up the learning problem, model uncertainty is introduced by scaling the mass and
inertia of each of the robot’s links to be three times those of the nominal model. The learned
policy takes the form of a neural network with two hidden layers of size 400× 300, and tanh
activation functions. The training data consists of rollouts of 2 consecutive walking steps with
randomly perturbed initial conditions and desired step lengths ld sampled uniformly from
L := [0.35, 0.45]m. We again use SAC to train the policy, with a time step of ∆t = 1/1000s
for numerical simulations. The training process converges in about 200,000 time steps,
corresponding to about 3 minutes and 20 seconds of data.

The trained policy is tested on 100 simulations of 10 walking steps each, with desired step
lengths uniformly sampled from L. The robot only has knowledge of the position of the next
stepping stone. A simulation is considered as a failure if the robot fails to land on any of the
desired stepping stones, or if it losses stability and falls. Out of the 100 simulations, 93 were
successful using the learned controller, while only 26 simulations were successful with the
nominal controller without the learning component. This ability of the learned controller to
adapt to different required step lengths is clearly reflected in Figure 6.3. Snapshots of the
simulation results is presented in Figure 6.1.

CHAPTER 6. COMBINING MODEL-BASED DESIGN AND MODEL-FREE POLICY
OPTIMIZATION TO LEARN SAFE, STABILIZING CONTROLLERS 78

6.5 Chapter Summary

In the last section we have shown that our method can learn safe, stabilizing controllers
for systems with high model uncertainty with only seconds or a few minutes of training
data. However, there are some limitations of our approach. First, as expected by the use
of reinforcement learning algorithms, fine tuning of the learning hyperparameters can be
time consuming, and in order to get the results shown in this chapter an extensive search
had to be conducted. It will be an important matter for future work to provide algorithm-
dependent guarantees which characterize the solutions obtained by specific methods when
solving (approximations to) P(λ1,λ2). Future work will also seek to characterize the effects of
input saturation on our theoretical guarantees.

79

Chapter 7

Lyapunov Design for Robust and
Efficient Robotic Reinforcement
Learning

Recent advances in the reinforcement learning (RL) literature have enabled roboticists to
automatically train complex policies in simulated environments. However, due to the poor
sample complexity of these methods, solving RL problems using real-world data remains a
challenging problem. This chapter introduces a novel cost-shaping method which aims to
reduce the number of samples needed to learn a stabilizing controller. The method adds
a term involving a Control Lyapunov Function (CLF) – an ‘energy-like’ function from the
model-based control literature – to typical cost formulations. Theoretical results demon-
strate the new costs lead to stabilizing controllers when smaller discount factors are used,
which is well-known to reduce sample complexity. Moreover, the addition of the CLF term
‘robustifies’ the search for a stabilizing controller by ensuring that even highly sub-optimal
polices will stabilize the system. We demonstrate our approach with two hardware examples
where we learn stabilizing controllers for a cartpole and an A1 quadruped with only seconds
and a few minutes of fine-tuning data, respectively. Furthermore, simulation benchmark
studies show that obtaining stabilizing policies by optimizing our proposed costs requires
orders of magnitude less data compared to standard cost designs.

7.1 Introduction

A key challenge in robotics is reasoning about the long-horizon behavior induced by a control
policy. This is because important system properties such as stability are inherently long-
horizon phenomena. In reinforcement learning (RL), the discount factor implicitly controls
how far into the future policy optimization algorithms plan when optimizing the objective
specified by the user. Standard approaches to designing objective functions for robotic RL,
such as penalizing the distance to a reference trajectory, inherently require a large discount

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 80

Figure 7.1: We learn precise stabilizing policies on hardware for the Quanser cartpole [114]
(top) and the Unitree A1 quadruped [116] (bottom) using only seconds and a few minutes
of real-world data, respectively. A video of our experiments can be found here https:

//youtu.be/l7kBfitE5n8

factor to learn control policies which stabilize the system [111, 43]. Unfortunately, problems
with large discount factors can be extremely difficult to solve, often requiring vast data sets
and careful tuning of hyper-parameters [41]. As a number of recent success stories have
demonstrated [79, 78, 108, 109, 84, 16], ever-increasing computational resources can be used
to solve these problems in simulation and deploy the resulting controllers directly on the real-
world system. However, because it is impractical to model every detail of complex hardware
platforms, achieving the best performance will require learning from real-world data.

This chapter introduces a cost-shaping framework which enables users to reliably learn
stabilizing control policies with small amounts of real-world data by solving problems with
small discount factors. Our approach uses Control Lyapunov Functions (CLFs), a stan-
dard design tool from the control theory literature [14, 126, 10, 12]. CLFs are ‘energy-like’
functions for the system which reduce the search for a stabilizing controller to a myopic
one-step criterion. In particular, any controller which decreases the energy of the CLF at
each instance of time will stabilize the system. Thus, CLFs reduce the long-horizon objec-
tive of stabilizing the system to a simple one-step condition. When a CLF is available and
the dynamics are known, constructive techniques from the control literature can be used to
synthesize a stabilizing controller. However, when there is uncertainty in the dynamics, it is
difficult to guarantee that a controller will always decrease the value of the CLF, or that we
have even designed a true CLF for the system.

Our approach is to 1) design an approximate CLF for the real-world system using an ap-
proximate dynamics model and 2) modify the ‘standard’ choice of cost functions mentioned

https://youtu.be/l7kBfitE5n8
https://youtu.be/l7kBfitE5n8

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 81

above by adding a term which incentivizes controllers which decrease the approximate CLF
over time. This technique effectively uses the approximate CLF as supervision for reinforce-
ment learning, enabling the user to embed known system structures into the learning process
while retaining the flexibility of RL to overcome unknown dynamics. Indeed, as our analysis
demonstrates, when our approach is used reinforcement learning algorithms implicitly learn
to ‘correct’ the approximate CLF provided by the user. When the candidate CLF is close to
being a true CLF for the system (in a sense we make precise below), a stabilizing controller
can be efficiently learned by solving a problem with a small discount factor. Moreover, the
addition of the approximate CLF ‘robustifies’ the search for a stabilizing controller by ensur-
ing that even highly suboptimal policies will stabilize the system. Finally, in situations where
it is too difficult to design a nominal CLF by hand, we demonstrate how one can be learned
using a simulation model and the standard style of RL objective discussed above. Specifi-
cally, we use the value function learned by the RL algorithm as an approximate CLF for the
real-world system. Altogether, beyond accelerating and robustifying RL, our approach also
expands the applicability of CLF-based design techniques.

We apply this technique to develop data-efficient fine-tuning strategies, wherein a nominal
controller developed using a simulation model is refined with small amounts of real-world
data. For the A1 experiment, the nominal controller is a model-based control architecture
[34], and we hand-design a CLF using a highly simplified linearized reduced-order model for
the system. Even though this model is very crude, we are nonetheless able to learn a precise
tracking controller for this 18 DOF system with only 5 minutes of real-world data. For the
cartpole swing-up task we used the value function from a simulation-based RL problem as
the candidate CLF for the real-world system, using the learning process described above.
Our fine-tuning approach then learned a robust swing-up controller after observing only one
10 second trajectory from the real-world system.

Related Work

We outline how our approach departs from related work; Appendix B contains further dis-
cussion. Discount Factors, Sample Complexity and Reward Shaping: It is well-
understood that the discount factor has a significant effect on the size of the data set that
RL algorithms need to achieve a desired level of performance. Specifically, it has been shown
in numerous contexts [18, 120, 93, 112] that smaller discount factors lead to problems which
can be solved more efficiently. This has led to a number of works which explicitly treat the
discount factor as a parameter which can be used to control the complexity of the problem
alongside reward shaping techniques [73, 110, 41, 132, 24, 95]. Compared to these works,
our primary contribution is to demonstrate how CLFs can be combined with model-free
algorithms to rapidly learn stabilizing controllers for robotic systems.

Fine-tuning with Real World Data: Recently, there has been much interest in using
RL to fine-tune policies which have been pre-trained in simulation [125, 75, 74, 87]. These
methods typically optimize the same cost function with a large discount factor in both

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 82

simulation and on the real robot. In contrast, using our cost reshaping techniques, we
solve a different problem with a smaller discount factor on hardware which can be solved
more efficiently. In Appendix E, we show that our method outperforms typical fine-tuning
approaches under moderate perturbations to the dynamics model.

Learning with Control Lyapunov Functions: A number of recent works have also tried
to overcome the reality gap using data-driven methods to improve CLF-based controllers
[130, 129, 136, 135, 23, 27]. While these methods work well when a true CLF for the
real-world system is available, our method is more general as we can still efficiently learn
stabilizing controllers when only an approximate CLF is available by modulating the discount
factor used to optimize our cost.

7.2 Background and Problem Setting

Throughout this chapter we will consider deterministic discrete-time systems of the form:

xk+1 = F (xk, uk), (7.1)

where xk ∈ X ⊂ Rn is the state at time k, uk ∈ U ⊂ X is the input applied to the
system at that time, and F : X × U → Rn is the transition function for the system. This
general nonlinear model is broad enough to cover many important continuous control tasks
for robotics. We will let Π denote the space of all control polices π : X → U for the system.
To ease exposition, for our theoretical analysis we will focus on the case where the goal is
to stabilize the system to a single point, namely the origin. Through our examples we will
demonstrate how our cost-shaping technique can be leveraged to achieve more complicated
tasks, and in Section 7.5 we outline a path for extending our theoretical results to these
settings in future work.

Control Lyapunov Functions

Control Lyapunov Functions [14, 126, 10, 12] are ‘energy-like’ functions for the dynamics
(7.1):

Definition 7.1. We say that a positive definite function W : Rn → R is a Control Lyapunov
Function (CLF) for (7.1) if the following condition holds for each x ∈ X\{0}:

min
u∈U

W (F (x, u)) −W (x) < 0. (7.2)

The condition (7.2) ensures that for each x ∈ X there exists a choice of input which de-
creases the ‘energy’ W (x). Any policy which satisfies the one-step condition W (F (x, π(x)))−
W (x) < 0 can be guaranteed to asymptotically stabilize the system [77, 4] (see Appendix
C for background on stability theory). Given a CLF for the system, model-based methods
constructively synthesize a controller which satisfies this property using either closed-form

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 83

equations [126] or by solving an online (convex) optimization problem [42, 12] to satisfy (7.2).
However, when the dynamics are unknown it is difficult to ensure that we have synthesized
a ‘true’ CLF for the system.

Remark 7.1. (Designing Control Lyapunov Functions) While there is no general procedure
for designing CLFs by hand for general nonlinear systems, there do exist constructive proce-
dures for designing CLFs for many important classes of robotic systems, such as manipulator
arms [10] and robotic walkers [12] using structural properties of the system. Moreover, in
our examples we will investigate how a CLF can be learned from a simulation model and how
very coarse CLF candidates can be used to accelerate learning a stabilizing controller.

Stability of Dynamic Programming and Reinforcement Learning

Here we investigate how a common class of cost functions found in the literature can be used
to learn stabilizing controllers. In particular, we consider a running cost ℓ : X × U → R of
the form ℓ(x, u) = Q(x) + R(u), where Q : X → R is the state cost and R : U → R is the
input cost. Both Q and R are assumed to be positive definite (in practice, both are usually
quadratic). Given a policy π ∈ Π, discount factor γ ∈0,1, and initial condition x0 ∈ X , the
associated long-run cost is:

V π
γ (x0) =

∞∑
k=0

γkℓ(xk, π(xk)) (7.3)

s.t. xk+1 = F (xk, π(xk)),

where V π
γ : X → R ∪ {∞} is the value function associated to π. Small discount factors

incentivize policies which greedily optimize a small number of time-steps into the future,
while larger discount factors promote policies which reduce the cost in the long-run. We say
that a policy π∗

γ ∈ Π is optimal if it achieves the smallest cost from each x ∈ X :

V
π∗
γ

γ (x) = V ∗
γ (x) := inf

π∈Π
V π
γ (x), ∀x ∈ X ,

where V ∗
γ : X → R ∪ {∞} is the optimal value function. Together V ∗

γ and π∗
γ capture the

‘ideal’ behavior induced by the cost function (7.3). It is well-known [18] that the optimal
value function will satisfy the Bellman equation:

V ∗
γ (x) = inf

u∈U

[
γV ∗

γ (F (x, u)) + ℓ(x, u)
]
, ∀x ∈ X , (7.4)

and an optimal policy π∗
γ will satisfy π∗

γ(x) ∈ arg minu∈U
[
γV ∗

γ (F (x, u)) + ℓ(x, u)
]
, ∀x ∈ X .

Unfortunately, it is impractical to directly search over Π to find a policy which meets these
conditions. This necessitates the use of function approximation schemes (e.g. feed-forward
neural networks) to instead represent a subset of policies Π̂ ⊂ Π to search over. Indeed,

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 84

modern RL approaches for robotics randomly sample the space of trajectories to optimize
problems of the form:

inf
π∈Π̂

Ex0∼X0

[
V π
γ (x0)

]
, (7.5)

where X0 is a distribution over initial conditions. While this approach enables these methods
to optimize high-dimensional policies, they are data-hungry, can display high-variance and
thus frequently return highly sub-optimal policies when data is limited. To better understand
the effect that this has on the stability of learned policies, for each π ∈ Π̂ and γ ∈0,1 define
the optimality gap:

επγ(x) = V π
γ (x) − V ∗

γ (x).

The temporal difference equation [18] dictates that for each x ∈ X the policy satisfies:

V π
γ (x) = γV π

γ (F (x, π(x))) + ℓ(x, π(x)). (7.6)

From these equations we can obtain:

V π
γ (F (x, π(x))) − V π

γ (x) =
1

γ

(
− ℓ(x, π(x)) + (1 − γ)V π

γ (x)
)

(7.7)

=
1

γ

(
− ℓ(x, π(x)) + (1 − γ)[V ∗

γ (x) + επγ(x)]
)

(7.8)

≤ 1

γ

(
−Q(x) + (1 − γ)[V ∗

γ (x) + επγ(x)]
)
, (7.9)

where we have first rearranged (7.6), then used V π
γ (x) = V ∗

γ (x) + επγ(x), and finally we
have used ℓ(x, π(x)) ≥ Q(x). Inequalities of this sort are the building block for proving the
stability of suboptimal polices in the dynamic programming literature [43, 111].

Remark 7.2. (Value Functions as CLFs) By inspecting the cost (7.3) we see that V π
γ is

positive definite (since Q is positive definite). Thus, if the right-hand side of (7.9) is negative
for each x ∈ X \ {0}, this inequality shows that V π

γ is a CLF for (7.1), and that π is an
asymptotically stabilizing control policy. In other words, V π

γ is a CLF which is implicitly
learned during the training process. Indeed, many RL algorithms directly learn an estimate
of the value function, a fact which we later exploit to learn a CLF for the cartpole swing
up-task in Section 7.4 using the nominal simulation environment.

Note that the right hand side of (7.9) will only be negative if V ∗
γ (x) + επγ(x) < 1

1−γQ(x).

Since from (7.3) we know that V ∗
γ (x) > Q(x) for each x ∈ X , even the optimal policy (which

has no optimality gap) will only be stabilizing if γ is large enough. On the other hand,
for a fixed γ ∈ (0, 1], this inequality also quantifies how sub-optimal a policy can be while
maintaining stability. To make these observations more quantitative we make the following
assumption:

Assumption 7.1. For each γ ∈0,1 there exists Cγ ≥ 1 such that V ∗
γ (x) ≤ CγQ(x) for each

x ∈ X .

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 85

Growth conditions of this form are standard in the literature on the stability of approx-
imate dynamic programming [85, 111, 43, 44]. Note that, because the running cost ℓ is
non-negative, we have Cγ′ ≤ Cγ′′ if γ′ ≤ γ′′. In particular, the constant C1 upper-bounds
the ratio between the one-step cost and the optimal undiscounted value function. When C1

is smaller, the optimal undiscounted policy is more ‘contractive’ and approximate dynamic
programming methods converge more rapidly to an optimal solution [85]. Thus, intuitively
the constants Cγ ≥ 1 will be smaller when the system is easier to stabilize. The following
result is essentially a specialization of the main result from [44]:

Proposition 7.1. Let Assumption 7.1 hold and let γ ∈0,1 and π ∈ Π̂ be fixed. Further
assume that there exists δ > 0 such that for each x ∈ X we have i) επγ(x) ≤ δQ(x) and ii)
Cγ + δ < 1

1−γ . Then, π asymptotically stabilizes (7.1).

Proof. Combining conditions i) and ii) with equation (7.9) yields:

V π
γ (F (x, π(x))) − V π

γ (x) ≤ 2

γ

(
− 1 + (1 − γ)[Cγ + δ]

)
Q(x).

Thus the RHS of the preceding equation will be negative-definite if Cγ + δ < 1
1−γ , which

demonstrates the desired result.

Remark 7.3. (Stability Properties of the Cost Function) In the following section we will
derive an analogous result to Proposition 7.1 for the novel reshaped cost function we propose
below. When comparing these results we will primarily focus on the effect of the constants
Cγ ≥ 1 (and the equivalent constants for the new setting). The Cγ constants can be used to
bound how large of a discount factor is need to stabilize the system. In particular, Proposition
7.1 implies that the optimal policy will stabilize the system for each γ which satisfies γ >
1 − 1

Cγ
. The Cγ constants also characterizes how ‘robust’ the cost function is to suboptimal

policies. In particular, for a fixed discount factor, the policy will stabilize the system if
δ < 1

1−γ − Cγ. Thus smaller values of the Cγ constants permit more suboptimal policies.

7.3 Lyapunov Design for Infinite Horizon

Reinforcement Learning

Our method uses a positive definite candidate Control Lyapunov Function W : Rn → R for
the nonlinear dynamics (7.1), and reshapes (7.3) to our proposed new long horizon cost
Ṽ π
γ : X → R ∪ {∞}:

Ṽ π
γ (x0) =

∞∑
k=0

γk
(

[W
(
F (xk, π(xk))

)
−W (xk)] + ℓ(xk, π(xk))

)
(7.10)

s.t. xk+1 = F (xk, π(xk)).

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 86

As we shall see below, our method works best when W is in fact a CLF for the system, but
still provides benefits when it is only an ‘approximate’ CLF for the system (in a sense we
will make precise later). For each γ ∈0,1 the new optimal value function is given by:

Ṽ ∗
γ (x) = inf

π∈Π
Ṽ π
γ (x). (7.11)

The new cost (7.10) includes the amount that W changes at each time step, and thus
encourages choices of inputs which decrease W over time. In this case, the Bellman equation
[18] dictates:

Ṽ ∗
γ (x) = inf

u∈U

[
γṼ ∗

γ (F (x, u)) + ∆W (x, u) + ℓ(x, u)
]
, ∀x ∈ X , (7.12)

where ∆W (x, u) := W (F (x, u)) − W (x). To gain some intuition for the approach let us
consider the two extremes where γ = 0 and γ = 1. In the case where γ = 1, by inspection we
see that Ṽ ∗

1 = V ∗
1 −W solves the Bellman equation. Plugging in this solution demonstrates

that any optimal policy π̃∗
1 must satisfy π̃∗

1(x) ∈ arg minu∈U [V ∗
1 (F (x, u)) + ℓ(x, u)]. This is

precisely the optimality condition for the original cost (7.3) when γ = 1, and thus the set of
optimal policies for the two problems coincide. Thus, in this case, by embedding the CLF
in the cost we are effectively using W as a warm-start initial guess for the optimal value
function. In the other extreme where γ = 0, from (7.12) we see that an optimal policy
must satisfy π̃∗

0(x) ∈ arg minu∈U
[
∆W (x, u) + ℓ(x, u)

]
. Thus, when γ = 0 the optimal policy

attempts to greedily decrease the value of the candidate CLF and the one-step cost on the
input. As we shall see below, when intermediate discount factors are used, optimal policies
may instead decrease the value of W over the course of several steps.

Using the new cost function (7.10), each policy must satisfy the new difference equation:

Ṽ π
γ (x) = γṼ π

γ

(
F (x, π(x))

)
+ W

(
F (x, π(x))

)
−W (x) + ℓ(x, π(x)). (7.13)

In our stability analysis, we will use the following composite function as a candidate CLF
for (7.1):

Ṽπ

γ(x) = W (x) + γṼ π
γ (x). (7.14)

We provide an interpretation of this curious candidate CLF in Remark 7.4 below, but first
perform an initial analysis similar to the one presented in the previous section. Defining for
each π ∈ Π̂, γ ∈0,1 and x ∈ X the new optimality gap:

ε̃πγ(x) = Ṽ ∗
γ (x) − Ṽ π

γ (x), (7.15)

and following steps analogous to those taken in (7.7)-(7.9), we can obtain the following:

Ṽπ

γ

(
F (x, π(x))

)
− Ṽπ

γ(x) = −ℓ(x, π(x)) + (1 − γ)Ṽ π
γ (x) (7.16)

= −ℓ(x, π(x)) + (1 − γ)
[
Ṽ ∗
γ (x) + ε̃πγ(x)

]
(7.17)

≤ −Q(x) + (1 − γ)
[
Ṽ ∗
γ (x) + ε̃πγ(x)]. (7.18)

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 87

Similar to the analysis in the previous section, we will aim to understand when the right-hand
side of (7.18) is negative, as this will characterize when π stabilizes the system. One key
difference between the inequalities (7.9) and (7.18) is that, while the original value function
V ∗
γ is necessarily positive definite, Ṽ ∗

γ can actually take on negative values since the addition
of the CLF term allows the new running cost in (7.10) to be negative. As we shall see, this
forms the basis for the stability and robustness properties our cost formulation enjoys when
W is designed properly.

Remark 7.4. (Learning Corrections to W) When the right hand side of (7.18) is negative
for each x ∈ X \ {0}, inequality (7.18) demonstrates that Ṽπ

γ is in fact a CLF for (7.1)
and that π stabilizes the system (see Theorem 7.1). We can think of W as an ‘initial guess’
for a CLF for the system, while γṼ π

γ is a ‘correction’ to W that is implicitly made by a
learned policy π. Roughly speaking, the larger the discount factor, the larger this correction.
Thus, the user can trade-off how much the learned policy is able to correct the candidate
CLF W against the additional complexity of solving a problem with a higher discount factor,
depending on how ‘good’ they believe the CLF candidate to be.

We first state a general stability result for suboptimal policies associated to the new cost,
and then discuss how the choice of W affects the stability of suboptimal control policies:

Assumption 7.2. For each γ ∈0,1 there exists C̃γ ∈R such that Ṽ ∗
γ (x) ≤ C̃γQ(x) for each

x ∈ X .

Because the reshaped one-step cost W (F (x, u)) − W (x) + ℓ(x, u) can take on negative
values, so can the C̃γ constants. Moreover, in this case it is possibe to have C̃γ′ ≥ C̃γ′′
when γ′ ≤ γ′′. This is because when larger discount factors are used, the optimal policy can
benefit from decreasing W further into the future. The following stability result is analogous
to Proposition 7.1:

Theorem 7.1. Let Assumption 7.2 hold and let γ ∈0,1 and π ∈ Π̂ be fixed. Further assume
that there exists δ̃ > 0 such that for each x ∈ X we have i) ε̃πγ(x) ≤ δQ(x) and ii) C̃γ + δ̃ <
1

1−γ . Then, π asymptotically stabilizes (7.1).

The proof is conceptually similar to the proof of Proposition 1; we delegate the proof to
Appendix D for brevity. Indeed, note that the conditions for stability under the new cost
are essentially identical to those for the previous cost in Proposition 7.1.

As alluded to in Remark 7.3, we will primarily focus on comparing how large the constants
Cγ ≥ 1 and C̃γ ∈ R are for the two problems, as they control the discount factor required to
learn a stabilizing policy and also the ‘robustness’ of the cost to suboptimal controllers. We
provide two characterizations which ensure that C̃γ < Cγ. The first condition is taken from
the model-predictive control literature [71, 52], where CLFs are used as terminal costs for
finite-horizon prediction problems. Proof of the following result can be found in Appendix
D:

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 88

Lemma 7.1. Suppose that for each x ∈ X the following condition holds:

inf
u∈U

W (F (x, u)) −W (x) + ℓ(x, u) ≤ 0. (7.19)

Then Assumption 7.2 is satisfied with constant C̃γ ≤ 0.

The hypothesis of Lemma 7.1 implies that i) W is a true CLF for the system and ii)
W dominates the running cost ℓ, in the sense that W can be decreased more rapidly than
ℓ accumulates. Effectively, this condition implies that it is advantageous for polices to
myopically decrease W at each time step. Consequently, when this condition holds optimal
polcies associated to the reshaped costs (7.10) will stabilize the system for any choice of
discount factor.

The following definition generalizes this condition to cases where W may not be a true
CLF for the system but can be decreased over several time-steps:

Definition 7.2. We say that the candidate CLF W γ̄-dominates the running cost ℓ if for
each discount factor γ̄ ≤ γ ≤ 1 and x ∈ X we have Ṽ ∗

γ (x) ≤ V ∗
γ (x).

The condition in (7.2) effectively provides a way of characterizing how ‘close’ W is to
being a true CLF for the real-world system. In particular, the larger γ̄ the further into
the future RL algorithms must look to see the benefits of decreasing W . Our previous
discussion, which showed that Ṽ ∗

1 = V ∗
1 − W , demonstrates that every candidate CLF 1-

dominates the cost. Moreover, clearly W can only 0-dominate the original cost if it is a CLF
for the system. While this condition is more difficult to verify for intermediate values of γ̄, it
provides qualitative insight into how even approximate CLFs for the system can still make
it easier to obtain stabilizing controllers.

Remark 7.5. (Robustness of reshaped cost) When the condition of Lemma 7.1 is satisfied
we will have C̃γ ≤ 0 < Cγ, implying the new cost enjoys the desirable robustness properties
discussed above. When W satisfies the ‘approximate CLF’ condition in Definition (7.2), it
will only enjoy these benefits when the discount factor is large enough. We leave it as a matter
for future work to provide quantitative estimates for the C̃γ constants in these regimes, and
to provide sufficient conditions which ensure W γ̄-dominates the running cost.

7.4 Examples and Practical Implementations

We summarize the main results for each of our examples, but leave most details and plots
to Appendix E. In every experiment we report, the soft actor-critic algorithm (SAC) [56] is
used as the learning algorithm to optimize the various reward structures we investigate.

Velocity Tracking for A1 Quadruped: We apply our approach to train a neural network con-
troller which augments and improves a nominal model-based controller [34] for a quadruped

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 89

Figure 7.2: (Left) Plot illustrating improved velocity tracking of the learned policy (in dark green)
compared to the nominal locomotion controller (in pink) to track a desired velocity profile (in
dashed black line) using our proposed method on the Unitree A1 robot hardware. (Right) Plot
from the simulated benchmark study illustrating cumulative velocity tracking error (lower is better)
over 10s rollouts at different stages of the training. In orange, we show the results of fine-tuning
using SAC with a standard RL cost. In blue, we fine-tune using SAC with our reward reshaping
method, with a candidate CLF designed on a nominal linearized model of the robot. In both cases,
we plot the results using the discount factor that achieved the best performance.

robot using real-world data. As illustrated by the pink curve in Figure 7.2 (left), the nominal
controller fails to accurately track desired velocities specified by the user. We design a CLF
around the desired gait using a linearized reduced-order model for the system. We then
collect rollouts of 10s on the robot hardware with randomly chosen desired velocity profiles,
and solve an RL problem using our cost and a discount factor γ = 0. Our approach is
able to learn a policy which significantly improves the tracking performance of the nominal
controller within 5 minutes (30 episodes) of hardware data, as shown in Figure 7.2 (left). A
video of these results can be found in https://youtu.be/l7kBfitE5n8, and more details
are provided in Appendix E. Furthermore, in Figure 7.2 (right) we benchmark our approach
in simulation against an RL agent trained with a ‘standard’ cost which penalizes the squared
error with respect to the desired velocity. As this figure demonstrates, our method is able to
rapidly decrease the average tracking error in only around 2 thousand steps from the envi-
ronment. In contrast, the benchmark approach is only able to reach this level of performance
for the first time after around 24 thousand steps.

A1 Quadruped Walking with an Unknown Load: We attach an un-modeled load to
the A1 quadruped, that is equivalent to one-third the mass of the robot. Fine-tuning on
hardware the same base controller from the previous set-up where the CLF is designed to
stabilize to the target gait, our approach is able to significantly decrease the tracking error
to about one-third its nominal value with only one minute of data collected on the robot

https://youtu.be/l7kBfitE5n8

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 90

hardware as illustrated in Figure E.1 in Appendix E. Additionally, in Appendix E, we run
a simulated benchmark comparison and verify that our method clearly out-performs the
‘standard’ cost baseline for this task.

Fine-tuning a Learned Policy for Cartpole Swing-Up: We fine-tune a swing-up con-
troller for the Quanser cartpole system [114] using real-world data and an initial policy which
was pre-trained in simulation but that does not translate well to the real system. Due to
the underactuated nature of the system, synthesizing a CLF by hand is challenging. Thus,
as alluded to previously, we use a ‘typical’ cost function of the form (7.3) and a discount
factor of γ = 0.999 to learn a stabilizing neural network policy πϕ for a simulation model
of the system. Given the discussion in Remark 7.2, we use the value function Vθ associated
with the simulation-based policy as the candidate CLF (W = Vθ) for our reward reshaping
formulation (7.10). When improving the simulation-based policy πϕ with real-world data,
we keep the parameters of this network fixed and learn an additional smaller policy πψ (so
that the overall control action is produced by πϕ + πψ) using our proposed CLF-based cost
formulation. We solve the reshaped problem with a discount factor γ = 0 and collect rollouts
of 10s on hardware. Our CLF-based fine-tuning approach is able to successfully complete
the swing-up task after collecting data from just one rollout. After collecting data from an
additional rollout, the controller is reliable and robust enough to recover from several pushes.
A video of these experiments can be found in https://youtu.be/l7kBfitE5n8, and more
details and plots of the results are provided in Appendix E. Furthermore, in Appendix E
we provide a simulation study comparing a standard fine-tuning approach to our method,
showing that our approach is able to more rapidly learn a reliable swing-up policy than the
baseline and also achieves a higher reward.

Fine-tuning a Bipedal Walking Controller in Simulation: We also apply our design
methodology to fine-tune a model-based walking controller [12] for a bipedal robot with large
amounts of dynamics uncertainty. Model uncertainty is introduced by doubling the mass of
each link of the robot. The nominal controller fails to stabilize the gait and falls within a few
steps. To apply our method, we design a CLF around the target gait as in [12] to be used in
our reward formulation. As a benchmark comparison, we also train policies with a reward
which penalizes the distance to the target motion (no CLF term), as is most commonly
done in RL approaches for bipedal locomotion which use target gaits in the reward [84].
Our approach is able to significantly reduce the average tracking error per episode after only
40000 steps of the environment (corresponding to 40 seconds of data), while the baseline
does not reach a similar level of performance even after 1.2 million steps, as illustrated in
Figure E.5 of Appendix E.

Inverted Pendulum with Input Constraints: Our final example demonstrates the util-
ity of our method even when W is a crude guess for a CLF for the system, through the use
of moderate discount factors. We illustrate this for a simple inverted pendulum simulator
by varying the magnitude of the input constraints for the system. We use the procedure
from [12] to design a candidate CLF for the system. Like many CLF design techniques,

https://youtu.be/l7kBfitE5n8

CHAPTER 7. LYAPUNOV DESIGN FOR ROBUST AND EFFICIENT ROBOTIC
REINFORCEMENT LEARNING 91

this approach assumes there are no input constraints and encourages the pendulum to swing
directly up. As the input constraints are tightened, W becomes a poorer candidate CLF, as
there is not enough actuation authority to decrease W at each time step. Even in this case,
in line with the discussion of Remark 7.5, if a proper discount factor is used, the addition of
the candidate CLF in the reward enables our method to rapidly learn a stabilizing controller
for each setting of the input bound. These results are presented in Appendix E.

7.5 Chapter Summary

As we have mentioned previously, our approach has several limitations. The cost-shaping
technique we introduce in Section 7.3 only provides benefits when W is in-fact a reasonable
guess for a CLF for the true system. This requires that the user has a dynamics model
which captures the primary features of the environments which affect the structure of CLFs
for the system. While the cart-pole simulations we provide in the Appendix E provide some
intuition for when this will be the case, further research is needed to better understand
in what scenarios we can see significant benefits from our method. Nonetheless, our two
hardware experiments provide encouraging initial results which indicate that our method
can rapidly learn stabilizing controllers using CLFs which are constructed using a nominal
dynamics model. More broadly, there are many exciting avenues for further incorporating
Lyapunov design techniques with RL, especially offline learning [82].

92

Chapter 8

Conclusion and Future Work

This chapter provides a summary of the work presented in this dissertation, concluding
remarks, and directions for future work. This dissertation developed planning algorithms
and feedback controllers inspired by model-based techniques to achieve stable, safe, and
robust dynamic locomotion for legged robots such as quadrupeds and bipeds.

Navigating challenging terrain with discrete footholds requires precise foot placement
and the satisfaction of physical constraints on the contact wrench exerted by the ground.
Moreover, agile maneuvers such as running and jumping are required when the distance
between these footholds is large. This thesis presented a controls and planning technique
for a planar bipedal robot to achieve the task of running over a field of randomly placed
stepping stones. The proposed method was validated through several numerical simulations.
Specifically, a library of two-step-periodic trajectory libraries was developed for running
at various step lengths. An HZD-based controller was then implemented to achieve stable
running. A key observation for running was that the choice of output variables to control was
crucial to obtain precise foot placement. The two-step periodic gaits presented in Chapter
3 also prove to be effective on other legged robots such as quadrupeds, as was demonstrated
in Chapter 5.

One of the drawbacks of the HZD method presented in Chapter 3 is its inability to encode
physical constraints such as friction in the feedback controller. Additionally, the method lacks
predictive capabilities. This dissertation developed a coordinate-free MPC method based on
the rigid body reduced-order model, which evolves on the SE(3) manifold. The method was
validated on several legged robotic hardware platforms, including the Unitree A1 quadruped
as well as Cassie biped. Several indoor and outdoor experiments were performed on a wide
range of rough terrain to test the robustness of the proposed approach.

To navigate challenging terrain, robots need to be able to perceive the surrounding en-
vironment and plan trajectories in real-time to achieve safe navigation. Additionally, when
perception systems fail, the underlying feedback controller must be robust to uncertainties in
the environment. To address these challenges, the method of two-step-periodic gait library is

CHAPTER 8. CONCLUSION AND FUTURE WORK 93

extended to a quadruped robot. The trajectories are stabilized by the proposed coordinate-
free MPC developed in Chapter 4 to navigate a field of stepping stones using visual feedback
through a depth camera. Several experiments and ablation studies are performed to demon-
strate the efficacy of the proposed approach.

While model-based techniques provide fine-grained control around a desired behavior of
the system, their performance degrades in the presence of model uncertainty. Learning-
based techniques like RL, on the other hand, are able to synthesize complex behaviors for
highly dynamic systems but suffer from poor sample complexity. Moreover, for tasks that
require precise control, such as stepping stones, it is difficult to characterize the reliability
of such methods. This dissertation develops novel cost-shaping methods inspired by CLFs
and CBFs from model-based literature for RL to learn safe, robust, and efficient policies for
legged robots. Through numerous simulations and experiments on hardware, the proposed
method is able to quickly learn stabilizing and safe policies even under significant model
uncertainty. The proposed method allows one to quickly finetune model-based as well as
RL-based policies using only a few seconds to a few minutes of real-world data.

Directions for Future Work

Having presented a summary of this thesis, we now present some limitations of our work and
future directions.

Two-Step-Periodic Gait Library and Nonlinear Model Predictive Control

One of the primary motivations of the two-step-periodic gait library approach was that it
reduced the computational burden of finding trajectories online for legged robots, which can
be computationally intractable. However, a major drawback of this approach is that the
controller is restricted to the motions and gaits within the library.

Recent results have shown that it is possible to implement Nonlinear Model Predictive
Control (NMPC) on 2D bipedal robots utilizing the whole-body dynamical model [45] as
well as on quadrupedal robots utilizing a kino-dynamic model [49]. These methods leverage
recent advances in optimization-based control. These methods have the ability to plan for
the full joint configuration in real-time and partially or completely eliminate the requirement
of trajectories generated offline.

Extensions to Rigid Body Model and Higher Dimensional Robots

The rigid body model presented in Chapter 4, provides a concise and effective reduced order
model for quadruped and bipedal robots such as Cassie. The method can be easily extended
to higher dimensional robots like Digit. Figure 8.1 illustrates simulation results on the Digit
humanoid robot for balancing utilizing the proposed Geomertric MPC from Chapter 4. We
use a planar surface contact model (2.24) instead of a line contact model for Cassie.

CHAPTER 8. CONCLUSION AND FUTURE WORK 94

Figure 8.1: Simulation results in MuJoCo for (Top) Digit squatting in-place and (Bottom)
re-orienting its body using the proposed geometric MPC in Chapter 4.

A primary motivation for using such a centroidal model without explicitly modeling the
limbs is that they weigh significantly less compared to the mass of the main body and can
be considered inertialess. However, this assumption breaks when the limbs are moving too
quickly or if the mass and inertia of the legs is significant. Recent works have suggested
using a kino-dynamic model based on the centroidal momentum dynamics. In this line of
work, a kinematic model relating the joint velocities to the centroidal momentum is utilized,
along with a dynamical model describing the evolution of the centroidal linear and angular
momentum.

Extending from our approach in Chapter 4, we can capture the effect of the limbs on the
change in inertia and centroidal momentum by explicitly modeling the limbs as additional
rigid bodies. We can also capture change in inertia from the torso (due to arm swing, for
example), by considering a variable inertia model.

CHAPTER 8. CONCLUSION AND FUTURE WORK 95

Planning through Contacts and Mode Sequences

Another limitation of the approaches presented in this thesis is the inability to plan through
contacts and mode sequences. From a model-based perspective, this is a challenging control
problem due to the nonlinear and hybrid nature of the underlying system. This is a growing
area of research, and several recent works [15, 29] have introduced frameworks to tackle
this problem. Another possible approach is to use tools from reachability to such as in
[28] where we extend the Hamilton-Jacobi reachability framework to account for changing
contact conditions. Through this framework, we are able to compute a bigger Region of
Attraction as well as a stabilizing controller that accounts for mode switches.

Combining Wheels with Legged Locomotion

While legged robots can enable locomotion on rugged terrain, on flat terrain, wheeled robots
can outperform them in both speed and energy efficiency. To bridge this performance gap,
several researchers [5, 13, 20, 83] have looked at combining wheeled platforms with legged
robots to achieve locomotion on rough terrain as well as energy efficiency and speed on flat
ground.

96

Bibliography

[1] Ananye Agarwal et al. “Legged locomotion in challenging terrains using egocentric
vision”. In: arXiv preprint arXiv:2211.07638 (2022).

[2] Agility Robotics Digit. https://agilityrobotics.com/robots. Accessed: 2022-11-
30.

[3] Ayush Agrawal and Koushil Sreenath. “Bipedal Robotic Running on Stochastic Dis-
crete Terrain”. In: European Control Conference (ECC). Naples, Italy, June 2019,
pp. 3564–3570.

[4] Ayush Agrawal and Koushil Sreenath. “Discrete Control Barrier Functions for Safety-
Critical Control of Discrete Systems with Application to Bipedal Robot Navigation.”
In: Robotics: Science and Systems. Vol. 13. Cambridge, MA, USA. 2017.

[5] Ayush Agrawal et al. “Experimental gait analysis of waveboard locomotion”. In: Dy-
namic Systems and Control Conference. Vol. 50701. American Society of Mechanical
Engineers. 2016, V002T22A011.

[6] Ayush Agrawal et al. “First steps towards translating HZD control of bipedal robots
to decentralized control of exoskeletons”. In: IEEE Access 5 (2017), pp. 9919–9934.

[7] Ayush Agrawal et al. “Vision-aided dynamic quadrupedal locomotion on discrete
terrain using motion libraries”. In: 2022 International Conference on Robotics and
Automation (ICRA). IEEE. 2022, pp. 4708–4714.

[8] Anayo K Akametalu et al. “Reachability-based safe learning with Gaussian processes”.
In: IEEE Conference on Decision and Control. 2014, pp. 1424–1431.

[9] A. D. Ames et al. “Control Barrier Function Based Quadratic Programs for Safety
Critical Systems”. In: IEEE Transactions on Automatic Control 62.8 (2017), pp. 3861–
3876.

[10] Aaron Ames and Matthew Powell. “Towards the Unification of Locomotion and Ma-
nipulation through Control Lyapunov Functions and Quadratic Programs”. In: Lec-
ture Notes in Control and Information Sciences 449 (Jan. 2013), pp. 219–240. doi:
10.1007/978-3-319-01159-2_12.

[11] Aaron D Ames. “Human-Inspired Control of Bipedal Walking Robots.” In: IEEE
Trans. Automat. Contr. 59.5 (2014), pp. 1115–1130.

https://agilityrobotics.com/robots
https://doi.org/10.1007/978-3-319-01159-2_12

BIBLIOGRAPHY 97

[12] Aaron D Ames et al. “Rapidly exponentially stabilizing control lyapunov functions
and hybrid zero dynamics”. In: IEEE Transactions on Automatic Control 59.4 (2014),
pp. 876–891.

[13] Jonathan Anglingdarma et al. “Motion Planning and Feedback Control for Bipedal
Robots Riding a Snakeboard”. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2021, pp. 2818–2824.

[14] Zvi Artstein. “Stabilization with relaxed controls”. In: Nonlinear Analysis: Theory,
Methods & Applications 7.11 (1983), pp. 1163–1173.

[15] Alp Aydinoglu and Michael Posa. “Real-time multi-contact model predictive control
via admm”. In: 2022 International Conference on Robotics and Automation (ICRA).
IEEE. 2022, pp. 3414–3421.

[16] Suneel Belkhale et al. “Model-based meta-reinforcement learning for flight with sus-
pended payloads”. In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 1471–
1478.

[17] Felix Berkenkamp et al. “Safe model-based reinforcement learning with stability guar-
antees”. In: NeurIPS. 2017, pp. 908–918.

[18] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena
Scientific, 1996.

[19] John T Betts. “Survey of numerical methods for trajectory optimization”. In: Journal
of guidance, control, and dynamics 21.2 (1998), pp. 193–207.

[20] Marko Bjelonic et al. “Keep rollin’—whole-body motion control and planning for
wheeled quadrupedal robots”. In: IEEE Robotics and Automation Letters 4.2 (2019),
pp. 2116–2123.

[21] Boston Dynamics Atlas. https://www.bostondynamics.com/atlas. Accessed: 2022-
11-30.

[22] Francesco Bullo and Andrew D Lewis. Geometric control of mechanical systems: mod-
eling, analysis, and design for simple mechanical control systems. Vol. 49. Springer,
2019.

[23] Fernando Castañeda et al. “Gaussian Process-based Min-norm Stabilizing Controller
for Control-Affine Systems with Uncertain Input Effects and Dynamics”. In: 2021
American Control Conference (ACC). 2021, pp. 3683–3690.

[24] Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. “Heuristic-guided re-
inforcement learning”. In: Advances in Neural Information Processing Systems 34
(2021), pp. 13550–13563.

[25] Christine Chevallereau et al. “Rabbit: A testbed for advanced control theory”. In:
IEEE Control Systems Magazine 23.5 (2003), pp. 57–79.

https://www.bostondynamics.com/atlas

BIBLIOGRAPHY 98

[26] Matthew Chignoli and Patrick M Wensing. “Variational-based optimal control of un-
deractuated balancing for dynamic quadrupeds”. In: IEEE Access 8 (2020), pp. 49785–
49797.

[27] Jason Choi et al. “Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions”. In:
Robotics: Science and Systems. Corvalis, OR, July 2020.

[28] Jason J Choi et al. “Computation of Regions of Attraction for Hybrid Limit Cy-
cles Using Reachability: An Application to Walking Robots”. In: IEEE Robotics and
Automation Letters 7.2 (2022), pp. 4504–4511.

[29] Simon Le Cleac’h et al. “Fast contact-implicit model-predictive control”. In: arXiv
preprint arXiv:2107.05616 (2021).

[30] Erwin Coumans. Motion Imitation. https://github.com/google-research/motion imitation.
2021.

[31] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simulation
for games, robotics and machine learning. http://pybullet.org. 2016–2019.

[32] Noel Csomay-Shanklin, Victor D Dorobantu, and Aaron D Ames. “Nonlinear Model
Predictive Control of a 3D Hopping Robot: Leveraging Lie Group Integrators for
Dynamically Stable Behaviors”. In: arXiv preprint arXiv:2209.11808 (2022).

[33] Xingye Da, Ross Hartley, and Jessy W Grizzle. “Supervised learning for stabilizing
underactuated bipedal robot locomotion, with outdoor experiments on the wave field”.
In: 2017 IEEE International Conference on Robotics and Automation. 2017, pp. 3476–
3483.

[34] Xingye Da et al. “Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion”. In: Conference on Robot Learning. PMLR. 2021, pp. 883–894.

[35] Min Dai, Xiaobin Xiong, and Aaron Ames. “Bipedal Walking on Constrained Footholds:
Momentum Regulation via Vertical COM Control”. In: arXiv preprint arXiv:2104.10367
(2021).

[36] Robin Deits and Russ Tedrake. “Footstep planning on uneven terrain with mixed-
integer convex optimization”. In: IEEE-RAS International Conference on Humanoid
Robots. 2014, pp. 279–286.

[37] Jared Di Carlo et al. “Dynamic locomotion in the mit cheetah 3 through convex
model-predictive control”. In: 2018 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE. 2018, pp. 1–9.

[38] Johannes Englsberger, Pawel Koz lowski, and Christian Ott. “Biologically inspired
deadbeat control for running on 3D stepping stones”. In: IEEE-RAS 15th Interna-
tional Conference on Humanoid Robots. 2015, pp. 1067–1074.

http://pybullet.org

BIBLIOGRAPHY 99

[39] Péter Fankhauser, Michael Bloesch, and Marco Hutter. “Probabilistic Terrain Map-
ping for Mobile Robots with Uncertain Localization”. In: IEEE Robotics and Automa-
tion Letters (RA-L) 3.4 (2018), pp. 3019–3026. doi: 10.1109/LRA.2018.2849506.

[40] Péter Fankhauser et al. “Robot-Centric Elevation Mapping with Uncertainty Esti-
mates”. In: International Conference on Climbing and Walking Robots (CLAWAR).
2014.

[41] Vincent François-Lavet, Raphael Fonteneau, and Damien Ernst. “How to discount
deep reinforcement learning: Towards new dynamic strategies”. In: arXiv preprint
arXiv:1512.02011 (2015).

[42] Randy Freeman and Petar V Kokotovic. Robust nonlinear control design: state-space
and Lyapunov techniques. Springer Science and Business Media, 2008.

[43] Vladimir Gaitsgory, Lars Grüne, and Neil Thatcher. “Stabilization with discounted
optimal control”. In: Systems & Control Letters 82 (2015), pp. 91–98.

[44] Vladimir Gaitsgory et al. “Stabilization with discounted optimal control: the discrete
time case”. In: (2016).

[45] Manuel Y Galliker et al. “Bipedal Locomotion with Nonlinear Model Predictive
Control: Online Gait Generation using Whole-Body Dynamics”. In: arXiv preprint
arXiv:2203.07429 (2022).

[46] Scott Gilroy et al. “Autonomous navigation for quadrupedal robots with optimized
jumping through constrained obstacles”. In: 2021 IEEE 17th International Conference
on Automation Science and Engineering (CASE). IEEE. 2021, pp. 2132–2139.

[47] Yukai Gong et al. “Feedback control of a cassie bipedal robot: Walking, standing,
and riding a segway”. In: 2019 American Control Conference (ACC). IEEE. 2019,
pp. 4559–4566.

[48] Ruben Grandia et al. “Multi-layered safety for legged robots via control barrier func-
tions and model predictive control”. In: arXiv preprint arXiv:2011.00032 (2020).

[49] Ruben Grandia et al. “Perceptive locomotion through nonlinear model predictive
control”. In: arXiv preprint arXiv:2208.08373 (2022).

[50] Philippe Greiner et al. “Continuous Modulation of Step Height and Length in Bipedal
Walking, Combining Reflexes and a Central Pattern Generator”. In: IEEE Interna-
tional Conference on Biomedical Robotics and Biomechatronics. 2018, pp. 342–349.

[51] Gene Grimm et al. “Examples when nonlinear model predictive control is nonrobust”.
In: Automatica 40.10 (2004), pp. 1729–1738.

[52] Gene Grimm et al. “Model predictive control: for want of a local control Lyapunov
function, all is not lost”. In: IEEE Transactions on Automatic Control 50.5 (2005),
pp. 546–558.

[53] Jessy W Grizzle et al. “Models, feedback control, and open problems of 3D bipedal
robotic walking”. In: Automatica 50.8 (2014), pp. 1955–1988.

https://doi.org/10.1109/LRA.2018.2849506

BIBLIOGRAPHY 100

[54] Shixiang Gu et al. “Deep reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates”. In: 2017 IEEE international conference on robotics and
automation (ICRA). IEEE. 2017, pp. 3389–3396.

[55] Tuomas Haarnoja et al. “Learning to walk via deep reinforcement learning”. In: arXiv
preprint arXiv:1812.11103 (2018).

[56] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor”. In: CoRR abs/1801.01290 (2018).
eprint: 1801.01290.

[57] Matthew Harding et al. “Augmented Neuromuscular Gait Controller Enables Real-
time Tracking of Bipedal Running Speed”. In: IEEE International Conference on
Biomedical Robotics and Biomechatronics. 2018, pp. 364–371.

[58] Charles R Hargraves and Stephen W Paris. “Direct trajectory optimization using non-
linear programming and collocation”. In: Journal of guidance, control, and dynamics
10.4 (1987), pp. 338–342.

[59] Omar Harib et al. “Feedback control of an exoskeleton for paraplegics: Toward ro-
bustly stable, hands-free dynamic walking”. In: IEEE Control Systems Magazine 38.6
(2018), pp. 61–87.

[60] Ross Hartley et al. “Contact-aided invariant extended Kalman filtering for robot state
estimation”. In: The International Journal of Robotics Research 39.4 (2020), pp. 402–
430.

[61] Ayonga Hereid and Aaron D Ames. “FROST: Fast robot optimization and simulation
toolkit”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 2017, pp. 719–726.

[62] Ayonga Hereid et al. “3D dynamic walking with underactuated humanoid robots:
A direct collocation framework for optimizing hybrid zero dynamics”. In: 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2016, pp. 1447–
1454.

[63] Ayonga Hereid et al. “Dynamic humanoid locomotion: A scalable formulation for
HZD gait optimization”. In: IEEE Transactions on Robotics 34.2 (2018), pp. 370–
387.

[64] Ayonga Hereid et al. “Rapid trajectory optimization using c-frost with illustration on
a cassie-series dynamic walking biped”. In: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 4722–4729.

[65] Jessica K Hodgins and MN Raibert. “Adjusting step length for rough terrain loco-
motion”. In: IEEE Transactions on Robotics and Automation 7.3 (1991), pp. 289–
298.

1801.01290

BIBLIOGRAPHY 101

[66] Seungwoo Hong, Joon-Ha Kim, and Hae-Won Park. “Real-Time Constrained Non-
linear Model Predictive Control on SO (3) for Dynamic Legged Locomotion”. In:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2020, pp. 3982–3989.

[67] Zhao Huihua, Shishir Nadubettu Yadukumar, and Aaron D Ames. “Bipedal robotic
running with partial hybrid zero dynamics and human-inspired optimization”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012, pp. 1821–
1827.

[68] J. Hwangbo et al. “Control of a Quadrotor With Reinforcement Learning”. In: Robotics
and Auto. Letters 2.4 (Oct. 2017), pp. 2096–2103.

[69] Koji Ishihara, Takeshi D Itoh, and Jun Morimoto. “Full-body optimal control toward
versatile and agile behaviors in a humanoid robot”. In: IEEE Robotics and Automation
Letters 5.1 (2019), pp. 119–126.

[70] Ali Jadbabaie and John Hauser. “On the stability of receding horizon control with
a general terminal cost”. In: IEEE Transactions on Automatic Control 50.5 (2005),
pp. 674–678.

[71] Ali Jadbabaie, Jie Yu, and John Hauser. “Receding horizon control of the Caltech
ducted fan: A control Lyapunov function approach”. In: Proceedings of the 1999 IEEE
International Conference on Control Applications (Cat. No. 99CH36328). Vol. 1.
IEEE. 1999, pp. 51–56.

[72] Ali Jadbabaie, Jie Yu, and John Hauser. “Unconstrained receding-horizon control
of nonlinear systems”. In: IEEE Transactions on Automatic Control 46.5 (2001),
pp. 776–783.

[73] Nan Jiang et al. “The dependence of effective planning horizon on model accuracy”.
In: Proceedings of the 2015 International Conference on Autonomous Agents and
Multiagent Systems. Citeseer. 2015, pp. 1181–1189.

[74] Ryan Julian et al. “Efficient adaptation for end-to-end vision-based robotic manipu-
lation”. In: (2020).

[75] Ryan Julian et al. “Never stop learning: The effectiveness of fine-tuning in robotic
reinforcement learning”. In: arXiv preprint arXiv:2004.10190 (2020).

[76] Shuuji Kajita et al. “Biped walking pattern generation by using preview control of
zero-moment point”. In: IEEE International Conference on Robotics and Automation.
Vol. 3. 2003, pp. 1620–1626.

[77] Christopher M Kellett and Andrew R Teel. “Results on discrete-time control-Lyapunov
functions”. In: 42nd IEEE International Conference on Decision and Control (IEEE
Cat. No. 03CH37475). Vol. 6. IEEE. 2003, pp. 5961–5966.

[78] Ashish Kumar et al. “Rma: Rapid motor adaptation for legged robots”. In: arXiv
preprint arXiv:2107.04034 (2021).

BIBLIOGRAPHY 102

[79] Joonho Lee et al. “Learning quadrupedal locomotion over challenging terrain”. In:
Science robotics 5.47 (2020), eabc5986.

[80] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. “Control of complex maneu-
vers for a quadrotor UAV using geometric methods on SE (3)”. In: arXiv preprint
arXiv:1003.2005 (2010).

[81] Sergey Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In: Journal
of Machine Learning Research 17.1 (Jan. 2016), pp. 1334–1373. issn: 1532-4435.

[82] Sergey Levine et al. “Offline reinforcement learning: Tutorial, review, and perspectives
on open problems”. In: arXiv preprint arXiv:2005.01643 (2020).

[83] Junheng Li, Junchao Ma, and Quan Nguyen. “Balancing Control and Pose Opti-
mization for Wheel-legged Robots Navigating Uneven Terrains”. In: arXiv preprint
arXiv:2109.09934 (2021).

[84] Zhongyu Li et al. “Reinforcement Learning for Robust Parameterized Locomotion
Control of Bipedal Robots”. In: arXiv preprint arXiv:2103.14295 (2021).

[85] Bo Lincoln and Anders Rantzer. “Relaxing dynamic programming”. In: IEEE Trans-
actions on Automatic Control 51.8 (2006), pp. 1249–1260.

[86] Wen-Loong Ma et al. “Efficient hzd gait generation for three-dimensional underac-
tuated humanoid running”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2016, pp. 5819–5825.

[87] Zhao Mandi, Pieter Abbeel, and Stephen James. “On the Effectiveness of Fine-tuning
Versus Meta-reinforcement Learning”. In: arXiv preprint arXiv:2206.03271 (2022).

[88] Gabriel B Margolis et al. “Learning to Jump from Pixels”. In: arXiv preprint arXiv:2110.15344
(2021).

[89] Carlos Mastalli et al. “Crocoddyl: An efficient and versatile framework for multi-
contact optimal control”. In: 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2020, pp. 2536–2542.

[90] Tad McGeer et al. “Passive dynamic walking”. In: Int. J. Robotics Res. 9.2 (1990),
pp. 62–82.

[91] Takahiro Miki et al. “Learning robust perceptive locomotion for quadrupedal robots
in the wild”. In: Science Robotics 7.62 (2022), eabk2822.

[92] Mohamad Shafiee Motahar, Sushant Veer, and Ioannis Poulakakis. “Composing limit
cycles for motion planning of 3D bipedal walkers”. In: IEEE Conference on Decision
and Control. 2016, pp. 6368–6374.

[93] Rémi Munos and Csaba Szepesvári. “Finite-Time Bounds for Fitted Value Iteration.”
In: Journal of Machine Learning Research 9.5 (2008).

[94] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical introduction
to robotic manipulation. CRC press, 2017.

BIBLIOGRAPHY 103

[95] Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy invariance under reward
transformations: Theory and application to reward shaping”. In: International con-
ference on machine learning. Vol. 99. 1999, pp. 278–287.

[96] Q Nguyen et al. “Dynamic walking on stepping stones with gait library and control
barrier”. In: Workshop on Algorithimic Foundations of Robotics. 2016.

[97] Quan Nguyen and Koushil Sreenath. “Exponential control barrier functions for enforc-
ing high relative-degree safety-critical constraints”. In: American Control Conference.
2016, pp. 322–328.

[98] Quan Nguyen and Koushil Sreenath. “Robust Safety-Critical Control for Dynamic
Robotics”. In: IEEE Transactions on Automatic Control (2021).

[99] Quan Nguyen and Koushil Sreenath. “Safety-Critical Control for Dynamical Bipedal
Walking with Precise Footstep Placement”. In: IFAC Analysis and Design of Hybrid
Systems. Atlanta, GA, Oct. 2015.

[100] Quan Nguyen and Koushil Sreenath. “Safety-critical control for dynamical bipedal
walking with precise footstep placement”. In: The IFAC Conference on Analysis and
Design of Hybrid Systems. Vol. 48. 27. 2015, pp. 147–154.

[101] Quan Nguyen et al. “3D dynamic walking on stepping stones with control barrier
functions”. In: IEEE Conference on Decision and Control. 2016, pp. 827–834.

[102] Quan Nguyen et al. “Dynamic Bipedal Locomotion over Stochastic Discrete Terrain”.
In: International Journal of Robotics Research (IJRR) (Aug. 2018), pp. 1–17.

[103] Quan Nguyen et al. “Dynamic bipedal locomotion over stochastic discrete terrain”.
In: The International Journal of Robotics Research 37.13-14 (2018), pp. 1537–1553.

[104] Quan Nguyen et al. “Dynamic Walking on Randomly-Varying Discrete Terrain with
One-step Preview”. In: Robotics: Science and Systems (RSS). Boston, MA, July 2017.

[105] Quan Nguyen et al. “Dynamic Walking on Randomly-Varying Discrete Terrain with
One-step Preview.” In: Robotics: Science and Systems. Vol. 2. 3. 2017, pp. 384–399.

[106] Quan Nguyen et al. “Dynamic walking on stepping stones with gait library and con-
trol barrier functions”. In: Algorithmic Foundations of Robotics XII. Springer, 2020,
pp. 384–399.

[107] Xue Bin Peng, Glen Berseth, and Michiel Van de Panne. “Dynamic terrain traversal
skills using reinforcement learning”. In: ACM Transactions on Graphics 34.4 (2015),
p. 80.

[108] Xue Bin Peng et al. “Learning agile robotic locomotion skills by imitating animals”.
In: arXiv preprint arXiv:2004.00784 (2020).

[109] Xue Bin Peng et al. “Sim-to-real transfer of robotic control with dynamics random-
ization”. In: 2018 IEEE international conference on robotics and automation (ICRA).
IEEE. 2018, pp. 3803–3810.

BIBLIOGRAPHY 104

[110] Marek Petrik and Bruno Scherrer. “Biasing approximate dynamic programming with
a lower discount factor”. In: Advances in neural information processing systems 21
(2008), pp. 1265–1272.

[111] Romain Postoyan et al. “Stability analysis of discrete-time infinite-horizon optimal
control with discounted cost”. In: IEEE Transactions on Automatic Control 62.6
(2016), pp. 2736–2749.

[112] Romain Postoyan et al. “Stability guarantees for nonlinear discrete-time systems con-
trolled by approximate value iteration”. In: 2019 IEEE 58th Conference on Decision
and Control (CDC). IEEE. 2019, pp. 487–492.

[113] Jerry E Pratt and Russ Tedrake. “Velocity-based stability margins for fast bipedal
walking”. In: Fast Motions in Biomechanics and Robotics. Springer, 2006, pp. 299–
324.

[114] Quanser. Linear servo base unit with inverted pendulum. Apr. 2021. url: https:

//www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/.

[115] Marc H Raibert. Legged robots that balance. MIT press, 1986.

[116] Unitree Robotics. A1. url: https://www.unitree.com/products/a1/.

[117] Robert M Sanner and J-JE Slotine. “Gaussian networks for direct adaptive control”.
In: IEEE Transactions on Neural Networks 3.6 (1992), pp. 837–863.

[118] Shankar Sastry. Nonlinear systems: analysis, stability, and control. Vol. 10. Springer
Science & Business Media, 1999.

[119] Shankar Sastry and Marc Bodson. Adaptive control: stability, convergence and robust-
ness. Courier Corporation, 1989.

[120] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[121] Jonah Siekmann et al. “Blind bipedal stair traversal via sim-to-real reinforcement
learning”. In: arXiv preprint arXiv:2105.08328 (2021).

[122] Jonah Siekmann et al. “Sim-to-real learning of all common bipedal gaits via peri-
odic reward composition”. In: 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2021, pp. 7309–7315.

[123] Avinash Siravuru et al. “Deep visual perception for dynamic walking on discrete
terrain”. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids). IEEE. 2017, pp. 418–424.

[124] Avinash Siravuru et al. “The Reaction Mass Biped: Geometric Mechanics and Con-
trol.” In: J. Intell. Robotic Syst. 89.1-2 (2018), pp. 155–173.

[125] Laura Smith et al. “Legged Robots that Keep on Learning: Fine-Tuning Locomotion
Policies in the Real World”. In: arXiv preprint arXiv:2110.05457 (2021).

https://www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/
https://www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/
https://www.unitree.com/products/a1/

BIBLIOGRAPHY 105

[126] Eduardo D. Sontag. “A ‘universal’ construction of Artstein’s theorem on nonlinear
stabilization”. In: Systems and Control Letters 13.2 (1989), pp. 117–123.

[127] B. Stellato et al. “OSQP: an operator splitting solver for quadratic programs”. In:
Mathematical Programming Computation 12.4 (2020), pp. 637–672. doi: 10.1007/
s12532-020-00179-2. url: https://doi.org/10.1007/s12532-020-00179-2.

[128] Andrew Taylor et al. “Learning for safety-critical control with control barrier func-
tions”. In: L4DC. 2020, pp. 708–717.

[129] Andrew J Taylor et al. “A control lyapunov perspective on episodic learning via
projection to state stability”. In: 2019 IEEE 58th Conference on Decision and Control
(CDC). IEEE. 2019, pp. 1448–1455.

[130] Andrew J. Taylor et al. Episodic Learning with Control Lyapunov Functions for Un-
certain Robotic Systems. 2019. arXiv: 1903.01577 [cs.RO].

[131] Sangli Teng et al. “An Error-State Model Predictive Control on Connected Matrix
Lie Groups for Legged Robot Control”. In: arXiv preprint arXiv:2203.08728 (2022).

[132] Chen Tessler and Shie Mannor. “Reward Tweaking: Maximizing the Total Reward
While Planning for Short Horizons”. In: arXiv preprint arXiv:2002.03327 (2020).

[133] Vassilios Tsounis et al. “Deepgait: Planning and control of quadrupedal gaits using
deep reinforcement learning”. In: IEEE Robotics and Automation Letters 5.2 (2020),
pp. 3699–3706.

[134] Octavio Villarreal et al. “MPC-based controller with terrain insight for dynamic
legged locomotion”. In: 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2020, pp. 2436–2442.

[135] Tyler Westenbroek et al. “Combining model-based design and model-free policy op-
timization to learn safe, stabilizing controllers”. In: IFAC-PapersOnLine 54.5 (2021),
pp. 19–24.

[136] Tyler Westenbroek et al. “Learning min-norm stabilizing control laws for systems
with unknown dynamics”. In: 2020 59th IEEE Conference on Decision and Control
(CDC). IEEE. 2020, pp. 737–744.

[137] Eric R Westervelt, Jessy W Grizzle, and Daniel E Koditschek. “Hybrid zero dynamics
of planar biped walkers”. In: IEEE Transactions on Automatic Control 48.1 (2003),
pp. 42–56.

[138] Eric R Westervelt et al. Feedback control of dynamic bipedal robot locomotion. CRC
press, 2007.

[139] Georg Wiedebach et al. “Walking on partial footholds including line contacts with
the humanoid robot atlas”. In: IEEE-RAS International Conference on Humanoid
Robots. 2016, pp. 1312–1319.

https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://arxiv.org/abs/1903.01577

BIBLIOGRAPHY 106

[140] Alexander W Winkler et al. “Gait and trajectory optimization for legged systems
through phase-based end-effector parameterization”. In: IEEE Robotics and Automa-
tion Letters 3.3 (2018), pp. 1560–1567.

[141] Guofan Wu and Koushil Sreenath. “Variation-based Linearization of Nonlinear Sys-
tems Evolving on SO(3) and S2”. In: IEEE Access 3 (Sept. 2015), pp. 1592–1604.

[142] Zhaoming Xie et al. “ALLSTEPS: Curriculum-driven Learning of Stepping Stone
Skills”. In: Computer Graphics Forum. Vol. 39. 8. Wiley Online Library. 2020, pp. 213–
224.

[143] Zhaoming Xie et al. “Feedback control for cassie with deep reinforcement learning”. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2018, pp. 1241–1246.

[144] Zhaoming Xie et al. “GLiDE: Generalizable Quadrupedal Locomotion in Diverse En-
vironments with a Centroidal Model”. In: arXiv preprint arXiv:2104.09771 (2021).

[145] Xiangru Xu et al. “Robustness of control barrier functions for safety critical control”.
In: IFAC-PapersOnLine 48.27 (2015), pp. 54–61.

[146] Chenyu Yang et al. “Dynamic legged manipulation of a ball through multi-contact
optimization”. In: 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2020, pp. 7513–7520.

[147] Wenhao Yu et al. “Visual-Locomotion: Learning to Walk on Complex Terrains with
Vision”. In: 5th Annual Conference on Robot Learning. 2021.

107

Appendix A

Proof of Theorem 6.1

The overall loss can be written as

Ex∼XL(λ1,λ2)(x, θ) = Mu(θ) + λ1M1(θ) + λ2M2(θ). (A.1)

For convenience we write

Mu = max
θ∈Θ

Mu(θ) Mu = min
θ∈Θ

Mu(θ) (A.2)

M1 = max
θ∈Θ

M1(θ) M1 = min
θ∈Θ

M1(θ) (A.3)

M2 = max
θ∈Θ

M2(θ) M2 = min
θ∈Θ

M2(θ) (A.4)

We first demonstrate that there exists C1, C2 ≥ 0 such that if λ1 ≥ 1
ε1
C1λ2 + 1

ε1
C2 then

for each global optimizer θ∗ ∈ Θ of P(λ1,λ2) we must have θ∗ ∈ Θε1 . To show this consider
two points θ1 ∈ Θ0 and θ2 ̸∈ Θε1 . Let Lk = Ex∼XL(λ1,λ2)(x, θk) for k ∈ {1, 2}. We have that:

L1 ≤ Mu + λ2M2 and Mu + λ1ε1 + λ2M2 ≤ L2.

Here, the first inequality follows from the fact that M1(θ1) = 0 and the second inequality
follows from the fact that M1(θ2) ≥ ε1. Combining the inequalities yields:

L1 ≤
(
Mu −Mu

)
− λ1ε1 + λ2

(
M2 −M2

)
+ L2

Thus, we see that if we set λ1 > 1
ε1
C1λ2 + 1

ε1
C2 with C1 = M2 −M2 and C2 = Mu −Mu,

then we must have that L1 < L2. Thus, any θ2 ̸∈ Θε1 cannot be a global minimizer if we
choose the constants C1, C2 ≥ 0 as above.

Next, we demonstrate that when we fix λ1 ≥ 1
ε1
C1λ2 + 1

ε1
C2 as we vary λ2, then there

exists C3 ≥ 0 such that if we choose λ2 ≥ 1
ε2
C3 then any global optimizer θ∗ of P(λ1,λ2)

must lie in Θε1,ε2 . As established above, we already know that all optimizers of P(λ1,λ2)

APPENDIX A. PROOF OF THEOREM 6.1 108

must lie in Θε1 in this case. Thus, we will now consider the two points θ3 ∈ Θ0,0 and

θ4 ∈
{
θ ∈ Θε1 : M2(θ) > M̃2 + ε2

}
, with M̃2 defined as in (6.10), so that θ4 satisfies the

desired tolerance for the CBF constraint but not the desired tolerance for the CLF constraint.
Again let Lk = Ex∼XL(λ1,λ2)(x, θk) for k ∈ {3, 4}. We then have that

L3 ≤ Mu + λ2M̃2 and Mu + λ2(M̃2 + ε2) ≤ L4

where we have used the fact that M1(θ3) = 0, M2(θ3) = M̃2 and M2(θ4) ≥ M̃2 + ε2. Again
combining the inequalities and rearranging terms we see that

L3 ≤
(
Mu −Mu

)
− λ2ε2 + L4.

Thus, we see that if we select C3 = Mu−Mu and put λ2 ≥ 1
ε2
C3 then it must be the case that

L3 < L4 so that θ4 is not a minimizer. Thus, we see that if we choose λ1 ≥ 1
ε1
C1λ2 + 1

ε1
C2

and λ2 ≥ 1
ε2
C3 with all of the constants chosen as above then all minimizers of P(λ1,λ2) must

lie in Θε1,ε2 , as desired.

109

Appendix B

Additional Literature Review

Model Predictive Control: We briefly review stability results from the model predictive
control (MPC) literature, focusing our discussion on the benefits of using a CLF as the
terminal cost. In their simplest form, MPC control schemes minimize a cost functional of
the form

inf
û∈UN

JNMPC(xk, û) =
N−1∑
k=0

(
Q(x̂k) + R(ûk)

)
+ Ŵ (x̂N)

s.t. x̂k+1 = F (x̂k, ûk), x̂0 = xk,

where xk is the the current state of the real-world system, N ∈ N is the prediction horizon,
{x̂k}Nk=0 and û = {ûk}N−1

k=0 ∈ UN are a predictive state trajectory and control sequence,

Q and R are as above, and Ŵ : Rn → R≥0 is the terminal cost which is assumed to be a
proper function. The MPC controller then applies the first step of the resulting open loop
control and the process repeats, implicitly defining a control law uMPC(x). The MPC cost
JNMPC(xk, ·) can be thought of as a finite-horizon approximation of the original cost (7.3)
(except that it is defined over an open-loop sequence of control inputs instead of being a cost
over policies).

Stability results from the MPC literature focus primarily on the effects of the prediction
horizon N and the choice of terminal cost Ŵ . Under mild conditions, for any choice of
terminal cost (including Ŵ (·) ≡ 0), the user can guarantee that the MPC scheme stabilizes
the system on any desired operating region by making the prediction horizon N sufficiently
large [70, 52]. Thus, there is a clear connection between the explicit prediction horizon N in
MPC schemes and the discount factor γ, as both need to be sufficiently large if a stabilizing
controller is to be obtained (since trajectory optimization problems with longer time horizons
are generally more difficult to solve). Indeed, in [111] it was pointed out that the implicit
prediction horizon 1

1−γ , a factor which shows up in the stability conditions in Proposition
7.1, plays essentially the same role in stability analysis as N for an MPC scheme with no
terminal cost when the running cost is ℓ = Q + R. Thus, much like the ‘typical’ policy

APPENDIX B. ADDITIONAL LITERATURE REVIEW 110

optimization problems discussed in Section 7.2, MPC schemes with no terminal cost (or one
which is chosen poorly) may require an excessively long prediction horizon to stabilize the
system.

Fortunately, the MPC literature has a well-established technique for reducing the predic-
tion horizon needed to stabilize the system: use an (approximate) CLF for the terminal cost
Ŵ [72, 70, 52]. Indeed, roughly speaking, these results guarantee that for any prediction
horizon N ∈ N the MPC scheme will be stabilizing if Ŵ is a valid CLF for the system. Ex-
tensive empirical evidence [71] and formal analysis [72] has demonstrated that well-designed
CLF terminal costs reduce the prediction horizon needed to stabilize the system on a desired
set and increase the robustness of the overall MPC control scheme [51]. Thus, in many ways
our cost-reshaping approach can be seen as a way to obtain these benefits in the context of
infinite horizon model-free reinforcement learning.

111

Appendix C

Asymptotic Stability and Lyapunov
Theory

C.1 Asymptotic Stability and Lyapunov Theory

Next, we briefly introduce the elements from stability theory and Lyapunov theory which
we use extensively throughout this chapter.

C.2 Notation and Terminology

We say that a function W : Rn → R is positive definite if W (0) = 0 and W (x) > 0 if x ̸= 0.
Let α : [0,∞) → [0,∞) be a continuous function. We say that α is in class K (denoted
α ∈ K) if α(0) = 0 and α is strictly increasing. If in addition we have α(r) → ∞ as r → ∞
when we say that α is in class K∞ (denoted α ∈ K∞). Let β : [0,∞)× [0,∞) be a continuous
function. We say that β is in class KL if for each fixed t ∈ [0,∞) the function β(·, t) is in
class K and for each fixed r ∈ [0,∞) we have β(r, t) → 0 as t → ∞.

C.3 Basic Stability Results

Definition C.1. We say that the closed loop system xk+1 = F (xk, π(xk)) is asymptotically
stable on the set D ⊂ Rn if there exists β ∈ KL such that for each initial condition x0 ∈ D
and k ∈ N the closed-loop trajectory satisfies:

∥xk∥2 ≤ β(∥x0∥2, k). (C.1)

Analogously, if the preceding condition holds then we say that π asymptotically stabilizes
(7.1).

APPENDIX C. ASYMPTOTIC STABILITY AND LYAPUNOV THEORY 112

In words, the definition says that π asymptotically stabilizes (7.1) if all trajectories of
the closed-loop system xk+1 = F (xk, π(xk)) converge to the origin. Asymptotic stability
is a difficult property to verify directly as it requires reasoning about the infinite-horizon
behavior of trajectories. Lyapunov functions are a powerful analysis tool which can verify
asymptotic stability with a ‘one-step’ criterion:

Definition C.2. We say that the positive definite function W : Rn → R is a Lyapunov
function for the closed-loop system xk+1 = F (xk, π(xk)) if for each x ∈ Rn we have:

W (F (x, π(x))) −W (x) < 0. (C.2)

Intuitively, the Lyapunov function W can be thought of as an energy-like function for
the closed loop system xk+1 = F (xk, π(xk)). In this light, the condition (C.2) ensures that
the ’energy’ of the closed-loop system is decreasing at each point in the state-space. This
condition guarantees that the closed-loop system is asymptotically stable [118], and is a
simple algebraic condition. Note that while control Lyapunov functions are defined formally
for the open-loop dynamics (7.1), a Lyapunov function is defined for a particular set of closed-
loop dynamics. That is, a control Lyapunov function W for xk+1 = F (xk, uk) becomes a
Lyapunov function for the closed-loop dynamics xk+1 = F (xk, π(xk)) after we apply a control
law π which satisfies W (F (x, π(x))) −W (x) < 0 for each x ∈ X .

113

Appendix D

Missing Proofs and Intermediate
Results

Lemma D.1. The composite function Ṽπ

γ = W + γṼ π
γ : X → R ∪ {∞} is positive definite.

Proof. Note that we can re-write the reshaped cost (7.10) as

Ṽ π
γ (x0) =

∞∑
k=0

γk
(

[W (xk+1) −W (xk) + ℓ(xk, π(xk))]

)
, (D.1)

where {xk}∞k=0 is the state trajectory generated by the policy π from the initial condition
x0 ∈ X . By rearranging terms we can rewrite this expression as:

Ṽ π
γ (x0) = −W (x0) + (1 − γ)

∞∑
k=0

γkW (xk+1) +
∞∑
k=0

γkℓ(xk, π(xk)) > −W (x0) + Q(x0) (D.2)

where we have used the fact that W and ℓ are both non-negative, and that ℓ(x0, π(x0)) >
Q(x0). Thus, using this expression we see that

Ṽπ

γ(x0) = W (x0) + γṼ π
γ (x0) > (1 − γ)W (x0) + γQ(x0), (D.3)

Since Q and W are assumed to be positive definite functions this demonstrates that Vπ
γ is

in fact positive definite, since a convex combination of positive definite functions is positive
definite. The proof is concluded by noting that the choice of γ and π is arbitrary, and thus
the conclusion that Vπ

γ is positive definite holds for all policies and discount factors.

D.1 Proof of Theorem 7.1

Proof. Lemma D.1 demonstrates that Ṽπ

γ = W + γṼ π
γ : X → R ∪ {∞} is a positive definite

function. Using the hypotheses of the results with the inequality (7.18) we obtain

Ṽπ

γ

(
F (x, π(x))

)
− Ṽπ

γ(x) ≤ (−1 + (1 − γ)[C̃ + δ̃])Q(x). (D.4)

APPENDIX D. MISSING PROOFS AND INTERMEDIATE RESULTS 114

Note that if C̃ + δ̃ < 1
1−γ then the right hand side of (7.2) will be negative definite, which

establishes that π asymptotically stabilizes the system.

D.2 Proof of Lemma 7.1

Proof. Consider a policy π̄ ∈ Π defined for each x ∈ X by:

π̄(x) ∈ arg inf
u∈U

W (F (x, u)) −W (x) + ℓ(x, u) ≤ 0, (D.5)

where the preceding inequality follows directly from the assumptions made in the Lemma.
Next, for a given initial condition x0 ∈ X let {xk}∞k=0 be the state trajectory generated by
π̄. The corresponding reshaped cost is given by

Ṽ π̄
γ (x0) =

∞∑
k=0

γk
(

[W
(
F (xk, π̄(xk))

)
−W (xk)] + ℓ(xk, π̄(xk))

)
(D.6)

≤
∞∑
k=0

γk(0) (D.7)

≤ 0, (D.8)

which demonstrates the desired result, since the initial condition and discount factor were
chosen arbitrarily.

115

Appendix E

Additional Experiment Details

We now provide more details of the experimental results reported in Section 7.4 and also
additional evaluations. While we have chosen to minimize costs in the main portion of the
chapter, as this is more consistent with the notation used in the literature on Lyapunov
theory and the stability of dynamic programming, most RL algorithms take in rewards that
are to be maximized. Thus, for the sake of consistency with practical implementations, in
this section we report the reward functions used in our code, which are simply the costs from
before with the sign flipped.

For training from hardware data, we used asynchronous off-policy updates, similar to the
framework presented in [54]. In particular, we have two separate threads, with one running
episodes on the hardware system with the latest available policy and adding the transition
data to the replay buffer, and the other one sampling from this buffer and performing the
actor and critic updates. We only synchronize the policy network weights at the beginning
of each episode.

E.1 A1 Quadruped Results

To illustrate the efficacy of our approach, we run two sets of experiments with the A1 robot:
1) accurately tracking a target velocity when the gains kp and kd are not well tuned (Section
7.4); and 2) accurately tracking the height of the robot with an unknown load attached
to it. Here we provide additional details of experiments related to these experiments. For
both settings, we use the locomotion controller presented in [34, Section 3.2] as our nom-
inal baseline controller. This controller uses a linearized rigid-body model to formulate a
quadratic-program (QP)-based controller to track a desired body pose of the robot. Specifi-
cally, the following QP is solved to obtain the ground reaction forces f for the feet in contact
with the ground:

APPENDIX E. ADDITIONAL EXPERIMENT DETAILS 116

min
f

∥Mf − g̃ − q̈d∥Q + ∥f∥R (E.1)

s.t. fz ≥ 0,

− µfz ≤ fx ≤ µfz,

− µfz ≤ fy ≤ µfz,

where M is the inverse inertia matrix of the rigid body, g̃ := [0, 0, g, 0, 0, 0] denotes the
acceleration due to gravity and q̈d ∈ R6 are the desired pose accelerations of the robot’s
body. In particular, the desired accelerations are obtained using a PD controller,

q̈d = −kp(q − qd) − kd(q̇ − q̇d), (E.2)

with q ∈ R6 denoting the robot’s body pose.

Next, we provide further details for each set of experiments on the A1 robot.

Velocity Tracking for A1 Quadruped

When the feedback gains kp, kd ∈ R6 are not well tuned, large tracking errors in the forward
speed of the robot can persist as illustrated in Fig. 7.2 (left). To compensate for the
increased tracking error, we learn a policy πθ (MLP with two hidden layers of size 32 × 32)
that outputs an additional acceleration term in (E.2), making the final desired acceleration
q̈d = −kp(q− qd)−kd(q̇− q̇d) +πθ. πθ can therefore be viewed as a learned fine-tuning policy
with respect to a model-based controller. The observations for the RL agent include the
forward and lateral velocity, the roll and pitch orientation and the desired forward velocity
of the robot. The actions include offsets to the desired forward and lateral accelerations.

The policy πθ is learned directly on the robot hardware using a CLF W designed for
the nominal rigid body dynamics of the robot following the procedure described in [12].

For training, we use SAC [56] with the reward rk = (W (F (xk,uk))−W (xk))
∆tk

+ λ∥uk∥2. The CLF
term in the reward allows us to use a discount factor γ = 0, which considerably reduces the
complexity of the learning problem. Indeed, within only 5 minutes of data collected from the
robot hardware, our method is able to significantly reduce the tracking error in the forward
velocity compared to the nominal locomotion controller, as shown in Figure 7.2 (left).

Height Tracking with an Unknown Load

In this experiment, we use the same base controller and an equivalent offset policy πθ as in
the previous set-up and attempt to track a target gait. The CLF is designed to stabilize
to the target gait as in the previous experiment. Figure E.1 plots the tracking error of the
learned controller versus the nominal controller after only 1 minute of training data. As
the figure demonstrates, our approach is able to significantly decrease the error to about
one-third its nominal value with only a small amount of data.

APPENDIX E. ADDITIONAL EXPERIMENT DETAILS 117

Figure E.1: Comparison between nominal controller and learned policy after training on 60s of real-
world data on the A1 robot with an added 10lb weight. The learned policy is able to significantly
reduce the tracking error caused by the added weight.

Figure E.2: Cumulative gait tracking error (lower is better) over 10s rollouts at different
stages of the simulated fine-tuning benchmark comparison of the A1 quadruped with an
unknown load. In orange, we show the results of fine-tuning using SAC with a standard
RL cost which penalizes the distance to the desired gait with a discount factor of γ = 0.99.
In blue, we plot the performance of our cost reshaping method with SAC and a discount
factor of γ = 0. For both cost formulations, we plot the discount factor that led to the best
performance.

APPENDIX E. ADDITIONAL EXPERIMENT DETAILS 118

To verify that our method out-performs the baseline for this task, we run a simulated
benchmark comparison similar to the A1 simulation study for velocity tracking that was
presented in Section 7.4 of the chapter. For this case, we reproduce the unknown load
hardware experiment in simulation by adding a 10lb weight to the robot. When testing our
method, we again use SAC with the same reward formulation from the hardware experiments
above. For the baseline reward, we penalize the distance to the target that we want to track.
Figure E.2 depicts the best results that we have been able to obtain for each cost formulation
across different discount factors and training hyper-parameters. As Fig. E.2 depicts, our
approach quickly converges to a stable walking controller which closely tracks the references
after only around 22 thousand steps of the environment. The baseline does not match this
performance until it has had access to around 48 thousand steps, and takes much longer to
consistently approach the performance of our method.

E.2 Cartpole Results

We first provide plots and give additional details for the cartpole experiments presented in
Section 7.4. Then, we present a comparison of the performance of our approach with respect
to a typical fine-tuning method on a simulator of the cartpole system.

Additional Details of the Cartpole Hardware Fine-tuning
Experiments

For the cartpole experiments presented in Section 7.4, we used a Quanser Linear Servo Base
Unit with Inverted Pendulum [114], with a pendulum length of 60cm. The system has 4
states, x = [p, α, ṗ, α̇] ∈ R4, corresponding to the cart position p, the pendulum angle α,
and their respective velocities. The control input is the voltage applied to the motor that
actuates the cart u ∈ R.

We first train a SAC agent in simulation using a ‘conventional’ RL reward that penalizes
the distance to the equilibrium, control effort, and includes a penalty if the cart goes off-
bounds r(xk, uk) = −0.1 (5α2

k + p2k + 0.05u2
k) − 5 · 103 · 1(|pk| ≥ 0.3). The observations of

the RL agent are state measurements, the actions are direct voltage commands with limits
set to |u| < 10V as specified by the manufacturer, and the simulation is run at 100Hz. In
order to obtain a stabilizing swing-up policy with this traditional reward, a high discount
factor is needed, so we use γ = 0.999. After around 15 thousand seconds of simulation data
with a learning rate of 5 ·10−4, the RL agent learns to consistently swing-up and balance the
pendulum at the upright position in simulation. However, when deployed on the cartpole
hardware system, the policy from simulation fails to obtain successful swing-up behaviors
due to the sim-2-real gap, as shown in the attached video.

To tackle these issues, we exploit the fact that SAC uses a feedforward neural network
to approximate the discounted value function of the problem, and we use this approximate

APPENDIX E. ADDITIONAL EXPERIMENT DETAILS 119

Figure E.3: Experimental plots of the cart position and pendulum angle of the cartpole
system. (left) The policy trained only in simulation fails to bring the real cartpole system
to the upright position; (right) by fine-tuning the learned policy with 20s of real-world data
using our CLF-based reward function, we obtain a successful policy.

value function (after 18,600 seconds of data) as a CLF candidate to fine-tune the learned
policy directly on hardware.

Thus, we learn on hardware a fine-tuning policy uψ (MLP with 2 hidden layers of 64×64)
whose actions are added to the ones of the policy trained on simulation uϕ (MLP with 2
hidden layers of 400×300). The episodes are 10 seconds long, and the policy is run at 500Hz,
with each episode consisting of 5000 data points. The action space limits for this new policy
are set to |uψ| < 4V but we still have a saturation of the total voltage |uϕ + uψ| < 10V.
The reward for this new policy is r̂(xk, uk) = ∆Vθ(xk, uk) − 0.1 · (5α2

k + p2k + 0.05u2
k), where

Vθ is the value function network of the SAC agent that was trained in simulation. This
allows us to set the discount factor γ = 0 for the offset policy learned on hardware and
therefore greatly reduce the complexity of the learning problem. After only one episode of
10 seconds of real-world data we obtain a policy that manages to swing-up the pendulum
to the upright position, and stabilizes it at the top. However, the behavior near the top is
not smooth, and it fails for some different initial conditions. After training with another
episode of 10 seconds of data, we obtain a policy that consistently manages to swing-up
and balance the pendulum at the top, while the cart stays in-bounds. The plots in Fig.
E.3 (right) show the cart position and the pendulum angle when deploying the fine-tuned
policy in the real Quanser cartpole system. The plots in Fig. E.3 (left) show the results
when using the policy that has been only trained in simulation, and how its performance is
very different when deployed in simulation vs in hardware. A video with the results of the
cartpole experiments can be found in https://youtu.be/l7kBfitE5n8, and a sequence of

https://youtu.be/l7kBfitE5n8

APPENDIX E. ADDITIONAL EXPERIMENT DETAILS 120

Figure E.4: Comparison of the simulation results of fine-tuning a cartpole swing-up policy
after adding model mismatch. A policy trained on a nominal dynamics model of the cartpole
fails when deployed on the new dynamics. In blue, we show the results of continuing to
train the agent with the original costs and discount factor. In orange, we fine-tune using
our reshaping method with the pre-trained value function and a discount factor of γ = 0.
For each episode of training on the new dynamics model, we compare the performance of
both methods when running the cartpole from 10 initial conditions: (on the left) the average
original reward without the CLF term, and (on the right) the cumulative number of successful
swing-ups. The plots show the mean and standard deviation of the results over 10 different
training random seeds.

snapshots of a successful experiment that uses the fine-tuned policy can be found in Figure
7.1.

Cartpole Simulation Baseline Comparison with a Typical Fine-tuning Method

As explained at the beginning of the chapter, previous work has shown that using hardware
data to fine-tune a policy that has been pre-trained in simulation is a powerful approach
to tackle the sim-2-real gap problem (e.g. [125, 75, 74, 87]). These methods typically take
the RL agent trained in simulation and continue its learning process using hardware data,
the original cost function and discount factor (see e.g. [125]). In contrast, our proposed
approach stops the simulation training of uϕ and learns a smaller offset policy uψ from
hardware data using a separate learning process that has a different reward function r̂ (with
the CLF candidate being the learned value function in simulation) and a smaller discount
factor (in this case γ = 0).

In Figure E.4, we compare in simulation the results of using this standard fine-tuning
approach with those obtained with our method. For both approaches, we first pre-train a

APPENDIX E. ADDITIONAL EXPERIMENT DETAILS 121

policy πϕ and value function Vθ on a nominal set of dynamics using SAC and the reward
r(xk, uk) = −0.1 (5α2

k +p2k +0.05u2
k)−5 ·103 ·1(|pk| ≥ 0.3), and then perturb the parameters

of the simulator to introduce model mismatch for the fine-tuning phase. Specifically, we
increase the weight and friction of the cart by 200%; and the mass, inertia and length of the
pendulum by a 25%. After doing this, we randomly sample 10 initial conditions around the
downright position (−0.05m ≤ p0 ≤ 0.05m, −π + 0.05rad ≤ α0 ≤ π− 0.05rad, −0.05m/s ≤
ṗ0 ≤ 0.05m/s, −0.05rad/s ≤ α̇0 ≤ 0.05rad/s). We label a trial as success if within 10
seconds of simulation, the pendulum is stabilized in the set −0.12rad < α < 0.12rad,
−0.3rad/s < α̇ < 0.3rad/s and the cart never gets out of bounds (|p| < 0.3). The policy uϕ
trained with data from the nominal dynamics model does not succeed for any of the 10 initial
conditions due to the model mismatch. The baseline in Figure E.4 is obtained by emptying
the replay buffer and using data from the new environment to continue the training process
of uϕ with the same reward r(xk, uk). On the other hand, as with the hardware experiments,
our method takes the learned value function Vθ from the nominal dynamics model and learns
an offset policy uψ using the modified reward r̂(xk, uk) = ∆Vθ(xk, uk)−0.1·(5α2

k+p2k+0.05u2
k).

In Figure E.4, we plot for 10 training random seeds the average original reward r(xk, uk) and
the cumulative number of successes of the validation episodes ran from the initial conditions
mentioned above. The x axis is the number of rollouts of fine-tuning data (each rollout
consists of 10 seconds of data). As this figure clearly demonstrates, our approach is able to
more rapidly learn a reliable swing-up controller than the baseline. Moreover, as the plot on
the left displays, even though we are no longer optimizing for the original reward, by rapidly
converging to a stabilizing controller our method still performs better on the original reward
than the benchmark.

The above results show that our approach effectively serves to fine-tune policies when the
dynamics of the system change. In fact, we have artificially added a severe model mismatch
and shown that we can adapt to the new dynamics with a discount factor of 0. This is because
the original value function is still a ‘good’ CLF candidate for the new system. However, if the
change in the dynamics is drastic, or if the overall shape of the motion required to complete
the task has to be greatly modified, then the value function from the original dynamics
may not be a good CLF candidate, and our method might fail. We have observed that for
the cartpole example our method is very robust to variations in the parameters of the cart
dynamics (in fact, in the above example we are multiplying both friction and mass of the
cart by a factor of 3), but that if we drastically reduce the length and mass of the pendulum
by a 50%, our method fails. We hypothesize that this might be related to the underactuated
nature of the pendulum dynamics. An interesting direction for future work would therefore
be to study under which conditions the original value function retains the CLF properties
for a new set of dynamics.

APPENDIX E. ADDITIONAL EXPERIMENT DETAILS 122

Figure E.5: (Top) Snapshots of RABBIT [25], a five-link bipedal robot, successfully walking
with our learned controller in the PyBullet simulator [31]. (Bottom-Left) Average tracking
error (lower is better) per episode at different stages of the training process when fine-tuning
a model-based walking controller under model mismatch. In blue, using our CLF-based
reward formulation and SAC, the robot learns a stable walking gait with only 40k steps (40
seconds) of training data. In orange, with a baseline that uses a typical reward penalizing the
tracking error to the target gait, the training takes longer to converge and does not achieve
the same performance. The results show the best performance for both method across
different discount factors and training hyper-parameters. (Bottom-Right) Comparison of
the tracking error of roll-outs of different learned walking policies. In blue, a policy learned
with 40k steps of the environment using our CLF-based reward. In dashed green, a policy
learned using the baseline reward with 40k steps of the environment. In orange, a policy
learned using the baseline reward with 620k steps of the environment (best baseline policy).
The jumps in tracking error occur at the swing-leg impact times. The policy learned with
our reward formulation clearly outperforms the baseline, even when the baseline has 15 times
as much data.

APPENDIX E. ADDITIONAL EXPERIMENT DETAILS 123

Bipedal Walking Results

In this section, we provide further details on applying our design methodology to fine-tune
a model-based walking controller for a bipedal robot. As mentioned in Section 7.4, we
first design a CLF around the target gait using the nominal model as in [12] to be used in
our reward formulation. As a benchmark comparison, we also train policies with a typical
reward which penalizes the distance to the target motion. For both approaches we use the
SAC algorithm to optimize the policy. We plot the best performance we have been able
to obtain from each method by sweeping across different discount factors and algorithm
hyper-parameters in Figure E.5. In particular, the top of this Figure depicts snapshots of
the stable walking controller our method obtains after only 40k steps of the environment,
which corresponds to only 40 seconds of data given the 1kHz frequency of the controller.
The bottom left depicts the average tracking error during the training process for both
methods. Finally, the bottom-right plots the tracking error over a few representative rollouts.
Note that the tracking error for both methods ‘jumps’ each time one of the feet impacts
the ground. These jumps occur when the swing-foot impacts with the ground and are an
unavoidable feature of the environment. Thus, in this context a stable walking controller
needs to rapidly converge to the target motion over the course of the next step to maintain
stability of the walking motion. As the learning curve demonstrates, our approach is able
to significantly reduce the average tracking error per episode after only 40k steps of the
environment, while the baseline does not reach a similar level of performance even after 1.2
million steps. As the rollouts in the bottom-right demonstrate, our method learns a desirable
tracking controller which smoothly decreases the tracking error between each impact event
after only 40 thousand steps. In contrast, after 40 thousand steps the baseline controller
diverges from the target motion, corresponding to a fall after only a few steps. After 620
thousand steps, the baseline controller is able to maintain the stability of the walking motion,
yet the tracking performance is notably worse than our method at 40 thousand steps, despite
having access to around 15 times as many samples.

Inverted Pendulum Results

The states of the system are x = (θ, θ̇) ∈ R2, where θ is the angle of the arm from the
vertical position, and the input u ∈ R is the torque applied to the joint. In each of the
reinforcement learning experiments reported in Section 7.4 for this system we sample initial
conditions over the range −π ≤ θ ≤ π and −0.1 < θ̇ < 0.1.

We first train a stabilizing controller using a ‘typical’ cost function of the form rk =
−∥xk∥22 − 0.1∥uk∥22, and then train a controller using the reshaped cost

rk = − [W (F (xk, uk)) −W (xk)] − ∥xk∥22 − 0.1∥uk∥22.

We use the soft actor critic (SAC) algorithm [55] and each training epoch consisted of
5 episodes with 100 simulation steps each, where each time step for the simulator is 0.1
seconds. For both forms of cost function, we sweep across different values of discount factors

APPENDIX E. ADDITIONAL EXPERIMENT DETAILS 124

Figure E.6: Learning curves for an inverted pendulum system under different input con-
straints. The curves plotted correspond to the smallest discount factors that led to stabi-
lizing policies. On the left, the obtained learning curves use a CLF in the reward. On the
right, the reward does not include the CLF term. The black dots denote the first stabilizing
policy for each training. For each setting we plot the learning curve for the discount factor
that achieved the best performance.

(from γ = 0 to γ = 0.95 in increments of 0.05 and also tried γ = 0.99) to 1) determine which
values of discount factors lead to stabilizing policies and 2) which discount factor allows the
agent to learn a stabilizing controller most rapidly. To determine whether a given controller
stabilizes the system we randomly sample 20 initial conditions and see if each trajectory
reaches the set {x ∈ Rn : ∥x∥2 < 0.05} within 20 seconds of simulation. For each scenario,
the smallest discount factor that lead to a stabilizing controller was also the discount factor
that cause the agent to learn a stabilizing controller with the least amount of data.

Training curves for each of the critical values of the discount factor are depicted in Figure
E.6 for each of the cost formulations and input constraints. Each curve indicates the average
reward per epoch across 10 different training runs and reports the best results for each
scenario after an extensive hyper-parameter sweep. We normalize each training curve so
that a reward of 0 indicates the average reward during the first epoch, while a reward of 1
is the largest average reward obtained across all epochs. On each of the training curves the
black dot denotes the first training epoch at which a stabilizing controller was obtained.

As illustrated by the plots in Figure E.6 (a), the addition of the CLF enables our method
to more rapidly learn a stabilizing controller in each setting and consistently decreases the
amount of data that is needed to learn a stabilizing controller, even when W is not a global
CLF for the system. However, the effects are more pronounced when the input constraints
are less restrictive and W is a better candidate CLF. For example, when |u| < 20 our
approach is able to learn a stabilizing controller in 5 iterations, whereas it takes 92 iterations
with the original cost (our approach takes ∼ 5.4% as many samples). Meanwhile when

APPENDIX E. ADDITIONAL EXPERIMENT DETAILS 125

|u| < 4 our approach takes 198 iterations while the original cost takes 389 iterations (our
approach takes ∼ 51% as many samples).Moreover, we observe that larger discount factors
are required when |u| ≤ 7 and |u| ≤ 4, as W becomes a poorer candidate CLF for these
cases.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Challenges
	Legged Locomotion Research over the Years
	Contributions
	Thesis Organization
	Chapter Summary

	Robot Dynamics and Trajectory Optimization
	Dynamical Models for Legged Locomotion
	Robot Description
	Chapter Summary

	Model-Based Locomotion Control
	Bipedal Robotic Running on Stochastic Discrete Terrain
	Introduction
	Dynamical Model for Running
	Hybrid Zero Dynamics Based Control
	Numerical Validation
	Chapter Summary

	Geometric Variational Model Predictive Control
	Related Work
	Geometric Model Predictive Control
	Experiments
	Chapter Summary

	Vision-Aided Dynamic Quadrupedal Locomotion on Discrete Terrain using Motion Libraries
	Introduction
	Hybrid Model of Trotting
	Approach
	Experiments
	Chapter Summary

	Combining Model-Based Control with Model-Free Policy Optimization
	Combining Model-Based Design and Model-Free Policy Optimization to Learn Safe, Stabilizing Controllers
	Introduction
	Control Lyapunov Functions and Control Barrier Functions
	Learning Safe, Stabilizing Controllers for Uncertain Systems
	Simulations
	Chapter Summary

	Lyapunov Design for Robust and Efficient Robotic Reinforcement Learning
	Introduction
	Background and Problem Setting
	Lyapunov Design for Infinite Horizon Reinforcement Learning
	Examples and Practical Implementations
	Chapter Summary

	Conclusion and Future Work
	Bibliography
	Proof of Theorem 6.1
	Additional Literature Review
	Asymptotic Stability and Lyapunov Theory
	Asymptotic Stability and Lyapunov Theory
	Notation and Terminology
	Basic Stability Results

	Missing Proofs and Intermediate Results
	Proof of Theorem 7.1
	Proof of Lemma 7.1

	Additional Experiment Details
	A1 Quadruped Results
	Cartpole Results

