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Abstract

Geometric Control for Dynamic Legged Robots -

Most successful dynamic walkers today use either decoupled forward and sideways models or
use locally-defined Euler formulations to model the combined 3D dynamics. While decoupling
may lead to stability conflicts, local parametrizations of the orientation dynamics trades-off dy-
namism and shortens the stabilizable range of motion. Through a rigorous empirical study of the
3D pendulum stabilization problem, we show that Euler-parametrization based orientation control
in 3D requires greater input to stabilize on average, not just for large-error situations.

To resolve these issues, we present novel geometric bipedal robot models and design suitable
geometric controllers by extending commonly used non-linear control design techniques to non-
Euclidean Lie-group manifolds. The dynamics and control actions thus obtained are very compact,
singularity-free, and more importantly, they naturally capture the inherent coupling between the
rotational degrees-of-freedom.

The presented models are the fully-actuated Reaction Mass Biped (RMB) and the geometric
Cassie robot model both evolving on SO(3) product manifolds. The RMB model uniquely allows
for modeling of the torso with variable inertia. Additionally, in the Cassie robot model the dy-
namics are augmented to capture the transverse plane dynamics generated while riding a pair of
Hovershoes. Further, the RMB dynamics are also discretized using variational principles. Finally,
suitable geometric variational integrators for numerical integration of the RMB dynamics while
preserving its manifold structure and conservation properties for long time-scales.

On the control design front, for fully-actuated models like RMB, we define geometric motion
plans for walking on straight and curved paths along with suitable trajectory tracking controllers
that afford almost-global stability guarantees. Motivated by these promising theoretical results, we
leveraged the geometric model of Cassie to plan and control highly dynamic behaviors like turning
in place on a 20 degree-of-freedom bipedal robot, Cassie standing on a pair of Hovershoes.

Learning for Dynamic Legged Robots -

Deep learning has been widely used to develop smooth control policies for robotic systems. In
the field of bipedal locomotion, gait libraries are a powerful tool to update gait parameters step-
by-step via interpolation to render the bipedal system approximately neutrally stable. A discrete
set of optimal gaits in the gait library is generated offline through nonlinear trajectory optimization
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using the full-order hybrid robot model and satisfies all the associated unilateral ground contact
and friction constraints, joint limits and motor limits. However, the gaits are locally stable around
the specific gait parameter choice. Moreover, the interpolation time-complexity grows linearly and
gait library space-complexity grows exponentially with the number of gait parameters.

Considering these factors, we combine model-based gait library design and deep learning to
yield a near constant-time and constant-memory policy for fast, stable and robust bipedal robot
locomotion. To achieve this, we design a custom network, called Gait-Net, using an autoencoder-
based architecture to jointly learn both a gait-parameter to gait mapping and a gait-parameter re-
construction mapping. The reconstruction mapping is used to assess the quality of the learned gait.
It can also be provided to the high-level planner to search for alternate plans that can result in bet-
ter quality gait predictions to ensure stable and sustained locomotion. We validated our Gait-Net
performance on a high-fidelity physics simulator that is custom-built for the bipedal robot Cassie.

A popular application of gait libraries is to walk on discrete terrain where the robot has to
constantly modulate its step length to accurately step on discrete footholds. In such scenarios, it is
also very important to sense and estimate the distance to the next valid foothold apriori to leverage
the gait library for step length modulation. A perception module can be developed for this task
but it must be very fast at detection and accurate at localization. The latest deep-learning fueled
advances in computer vision make this possible. However, these neural network models need a lot
of data.

Generating large datasets for every possible locomotion task is impractical. Alternatively, a
graphics simulator capable of generating photo-realistic images can be used to rapidly generate
synthetic datasets with desired diversity in visual features to mimic real-world situations. We take
the latter approach.

A convolutional neural network, called SL-CNN is designed for predicting step-length from
a synthetic dataset of monocular images rendered from the robot’s point-of-view. Further, the
network architecture is customized to minimize the worst-case prediction error keeping in mind
the safety-critical nature of the task. Finally, the visual simulator and estimator thus developed
are integrated into the physical model of the robot and the gait-library-based controller to realize
autonomous planar walking in simulation.
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Chapter 1

Introduction

1.1 Geometric Control for Dynamic Legged Robots
To build versatile robots suitable for operating in almost all environments designed by and for
human motion, it is natural to lean towards bipedal robots or humanoids. A lot of prior research
has made walking with two legs stable [2, 3, 4, 5], fast [6, 7] and very energy efficient [8, 9, 10].
Now, active attempts are focused towards extending these gains to unstructured terrain [11, 12, 13]
and to other related locomotion tasks like running [14], climbing, turning, etc.

Humans have a remarkable ability of generating highly dynamic motions that are characterized
by arbitrarily large swing and/or stance leg rotations, as shown in Fig 1.1. This is a very critical
requirement if robots are to replace humans in disaster missions. However, in the DARPA Robotics
Challenge (DRC), the biggest competition held to demonstrate disaster response, the performance
of humanoid robots was underwhelming [15, 16]. It is interesting to note that, 10 of the 17 robot
falls in [16] were sideways, highlighting the poor lateral stability properties of the current state-
of-the-art. So far, true dynamic 3D coupling, that is inherent in human maneuvering, has not been
fully extended to humanoids. Most humanoid controllers are designed for straight (planar) walking
and allow for slow turns, to avoid significantly deviating from the planarity assumptions. This is
due to their local and relatively small domains of convergence, and their sensitivity to kinematic
singularities. Bipedal robots can potentially emulate human motion if we can develop controllers
that are able to harness the inherent coupling between forward, leaning and turning motions, and
possess the ability to recover from large orientation errors.

Figure 1.1: This sharp turning maneuver is an important part of tactical play in football. Its a very
commonly seen skill in humans with varying degrees of proficiency.
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1.2 Learning for Dynamic Legged Robots

1.2.1 Learning a Unified Walking Policy from Gait Libraries
Bipedal robot locomotion is an active area of research with several control design challenges like
high degrees-of-freedom, nonlinear dynamics, underactuation, and persistent impacts. Despite the
control complexity, they have many potential applications ranging from disaster response, ware-
house automation, last-mile delivery, elderly care, etc. Unlike wheeled robots, for these tasks,
legged robots can be more versatile as they are better equipped to accomodate terrain elements in
urban settings that are customized for human usage like stairs, escalators, narrow corridors, sharp
corners, etc. Therefore, it can be argued that by achieving robust legged locomotion, and integrat-
ing it with advances in manipulation and perception, we can offer a better value proposition for
robot deployments in our homes, hospitals, office spaces, factories, etc. Control design to realize
dynamic and versatile motions still remains a challenge for bipedal robots. Specifically, explicit
modeling of ground contact is not possible. Even if the robot can be stabilized within stride (while
stepping forward), the impact at the end of the step could potentially destabilize the robot. Further,
any within stride perturbation or a drastic change in the desired velocity or steering rate post impact
only aggravates this problem. However, on a positive note, we have made considerable progress in
developing stable limit-cycle walkers ([7]). i.e., robots that can maintain the commanded velocity
or step length, while also stabilizing and absorbing intermittent impacts. This periodic motion is
called a gait and the velocity or step length parameters used to develop it are called gait param-
eters. The objective of this work is to leverage this prior work and enhance the ability of these
limit-cycle walkers to smoothly transition between velocity-specific limit cycles to realize a con-
tinuum of velocities and step lengths. This is achieved via learning a smooth policy by regressing
over the finite set of pre-optimized and stable limit-cycle policies. The resulting learned policy can
be used by a high-level planner to realize full range navigation.

1.2.2 Deep Perception for Autonomous Walking
Human-sized dynamic bipedal robots, like ATRIAS [17], are expensive and cannot be used for
data generation for long duration without risking some form of hardware damage, especially for
the problem of walking on discrete terrain. Even tele-operation of the robot to correctly step
on discrete footholds - for the purpose of data generation - is very hard. Therefore, a realistic
visual simulator is desired to rapidly generate synthetic data and train the robot to estimate key
gait parameters on that. Additionally, similar to how we managed to narrow the gap between
robot motion as indicated by a physical simulator and when tested on the real robot, we also wish
to narrow the gap between predictive performance of the deep perception model in the visual
simulator and the real world. Consider the simulated stepping stones terrain shown in Fig. 1.2.
The objective is to train the deep visual perception model on such synthetic images but guarantee
operable performance when tested on Fig. 1.3 assuming camera intrinsic and extrinsic parameters
are consistent across the two settings.
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Figure 1.2: A popular discrete terrain example is stepping stones [1] most commonly seen while
crossing rivers, swamps, creeks, etc.

Figure 1.3: An example simulated stepping stones terrain.

1.3 Contributions
Considering the above-mentioned research objectives, this dissertation has made the following
contributions:

1.3.1 Geometric Control for Dynamic Legged Robots
1. Empirical Evaluation of Euler-based and Geometric Controllers for 3D Pendulum Stabiliza-

tion:
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Pendulum dynamics are widely utilized in robotics control literature to evaluate novel con-
trol design techniques. While exhibiting many features commonly seen in real-world non-
linear systems, they are still simple enough to allow deeper analysis, quick prototyping and
benchmarking. In this work, we study the impact of pendulum attitude parametrization on
the nonlinear control performance. Mainly, for orientation control problems, we show that
global coordinate-free formulations of dynamics and control are not only singularity-free
but they are also more input-efficient. They are able to leverage the inherent manifold-space
curvature and flow along geodesics for efficient stabilization. We validate this empirically by
running over 700 stabilization simulations across the full configuration space of a 3D pen-
dulum and compare the performances of the geometric and Euler-parametrized controllers.
This work was presented in [18] and yet to be published.

2. Geometric Modeling and Control:

• A novel reduced order model, called Reaction Mass Biped, is proposed. Unlike other
popular models like LIPM, SLIP, etc., the RMB explicitly considers a variable inertia
torso and models leg inertia. A Hybrid Geometric Model is developed using variational
principles directly on the configuration manifold of the robot. The dynamics are said to
be coordinate-free and have no singularity issues. Assuming full actuation, a trajectory
tracking controller is developed for walking and turning with almost-global stability
properties. Its worth noting that the controller can track circular walking trajectories
with torso lean angles going up to 30 degrees. Note that, preliminary results of this
work were reported in [19]. This dissertation adds to the original contribution in the
following ways: First, the controller’s working performance is more critically analyzed
by enforcing unilateral ground contact and friction cone constraints at the stance foot.

• A new Geometric Model is developed for the Cassie-Hovershoes multimodal robot [20]
to plan and control dynamic motions like turning in place. Note that, this is a challeng-
ing maneuver to execute using a high center-of-gravity bipedal robot standing on Hov-
ershoes. Essentially, the system is a like a pair of 3D cart-poles connected by the pelvis.
The robot is only dynamically stable. Motion plans are devised in the transverse plane
for the turning in place and geometric controllers are designed to stabilize the erect
robot pose while executing dynamic transverse plane motions. These controllers are
numerically and experimentally realized.

3. Geometric Variational Integrator for RMB:
A coordinate-free discrete mechanical model of the RMB is developed using variational prin-
ciples. Additionally, the discrete model is used to build a Geometric Variational Integrator
(GVI). GVIs preserve important mechanical properties like energy conservation (for con-
servative systems), momentum conservation (when symmetries exist), while ensuring that
the dynamics evolve on the configuration manifold of the system. This structure preserving
property is also useful while building controllers using energy-like quantities like Lyapunov
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functions, as shown in this work. Only through the use of GVIs preservation of the above-
mentioned structures or properties can be guaranteed for long simulation times. This work
has been published in [21].

1.3.2 Learning for Dynamic Legged Robotics
1. Learning a Unified Walking Policy from Gait Libraries:

A data-driven smooth policy, called Gait-Net, is developed to generate gait parameter based
walking plans for a bipedal robot called Cassie. The policy is faster and memory-efficient
while maintaining performance better than or comparable to the currently used interpolation-
based techniques. The network was trained to jointly learn the pre-optimized control param-
eters and to reconstruct the input (gait parameters) using an autoencoder-based architecture.
The input reconstruction error can be used to evaluate and improve the quality of gait pre-
dictions at test-time. This work was presented in [22] and yet to be published.

2. Custom Deep Perception Module for Step Length Prediction:
In this dissertation, we developed a custom deep neural network to estimate the step length
(distance to the next stepping location) using a single camera image that is obtained at the
beginning of each step. Detecting footholds and estimating distance is a classic object lo-
calization problem similar to object grasping in robotic manipulation, however in the case
of locomotion there are additional challenges due to the time-critical and safety-critical na-
ture of the problem. Failures can lead to very adverse consequences and there is very slim
scope for recovery as the robot is operating in a dynamic regime around an unstable equilib-
rium. The deep neural network was customized keeping these challenges in mind and with
an objective to minimize its worst-case performance. This work has been published in [23].
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Chapter 2

Literature Review

Wheeled robot locomotion remains the most popular choice for most autonomous urban naviga-
tion tasks, with famous instances like self-driving cars [24] in outdoor, and personal robots like
HERB [25], Pepper [26], etc. in indoor settings. However, usage of these robots is limited to flat-
surfaced environments. For traversing on non-flat surfaces - that include common indoor settings
like stairs, stages, etc. and outdoor settings like hills, rubble, stepping stones, etc. - legs are a su-
perior choice as a locomotion mode. This has resulted in the emergence of an active subdomain in
robotics for legged robot locomotion research. Within this sub-domain hexapedal (or) six-legged,
quadrupedal (or) four-legged and bipedal (or) two-legged robots are more dominant.

Quadrupeds and Hexapeds strike a sweet balance between stability and terrain-adaptable me-
chanics. To further elaborate, stability comes from a much larger contact area and leg mechanics
allow stepping over obstacles and even climbing in some instances. These features induce natu-
ral robustness to disturbances during unstructured terrain navigation [27], making them ideal for
load-carrying or exploratory applications. Popular examples are RHex, BigDog, Spot, etc. Un-
fortunately, all the limbs of a quadruped are invested in locomotion, and therefore, they cannot
be used for doing additional tasks (manipulation, brachiation, etc.). Attempts are being made to
equip them with manipulators. However, even a simple task of opening a door can be arduous for
such a robot. This was one of the prime reasons for apes to graduate from quadrupedal to bipedal
locomotion in nature.

Note that, freeing some limbs for doing additional tasks comes at a cost i.e., a) fewer limbs
implies smaller area of contact, therefore less robustness to disturbances, and b) the body center
of mass goes up and increases sensitivity to terrain disturbances. This makes bipedal locomotion
a much more challenging problem. It is worth pointing out though that there are some locomotion
advantages to bipedalism. Stepping on discrete footholds with very small surface areas is easier
with two legs. These are most commonly seen when crossing rivers, creeks, etc., or while climbing
hills and mountains.

2.1 A Brief Introduction to Bipedal Robot Locomotion
Bipedal locomotion mechanics and control has been an active area of research across the robotics
and bio-mechanics communities over the last half century and many valuable scientific and prac-
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tical insights gained thereof have inspired the ongoing work presented in this thesis. An important
consequence of understanding bipedal mechanics and control is the opportunity to apply them in
the development of exoskeletons ([28, 29]) for persons suffering from locomotor impairments.

In order to design mechanisms or control techniques, we need to first understand the underlying
physics in walking. Suitable physical models need to be devised that capture all the necessary
degrees-of-freedom and kinematics that characterize walking motion. This is discussed in detail in
the next sub-section.

2.1.1 Types of Bipedal Robot Models
Physical modeling of bipedal robot can be studied through two lenses namely a) Lens of Complex-
ity and b) Lens of Parametrization. Next, we discuss each type in more detail.

Lens of Complexity

Bipedal robots are very high degree-of-freedom systems, have non-trivial mass distribution, in-
volve intermittent to prolonged phases of under-actuation, and are more sensitive to falls (and
physical damage) than most other robot classes. Therefore, even if accurate modeling of such
systems is possible, understanding its highly complex dynamics itself is very difficult, let alone de-
signing controllers for it. When control design is possible, testing its performance across a range
of terrain interactions could offer another set of challenges. As an alternative, several simpler
reduced-order models are proposed in literature. Through these reduced-order models, we can
keep the focus of control design on particular elements of the model that are directly responsible
for walking and nullifying (either by explicit omission or through separate control action) unrelated
model elements. This way, a spectrum of bipedal robot models exist that can be broadly divided
into two types: (a) Reduced-order Robot Model, (b) True (or) Full Robot Model.

Reduced-Order Models: Since legs are primary elements responsible for generating walking
motions, most reduced order models are just physical descriptions of robot legs that either have no
torso or assume the torso as a point-mass fixed at the hip. The simplest reduced-order model is the
Linear Inverted Pendulum Model (LIPM) [3] where the leg itself is assumed to be massless with
all the mass concentrated at the hip. Additionally, the dynamics is assumed to be linear. Here, we
assume the stance leg to be pinned to the ground and behaving like an inverted pendulum. The
objective is to model walking as the transfer of hip mass from one location to another in order to
make the robot take a step. This motion is called a stride. Assuming nonlinear dynamics for the
stance leg instead gives the Inverted Pendulum Model (IPM). Now, to model foot placement, one
can stick a pendulum at the hip to describe the swing leg evolution. Since the legs are assumed
to be mass-less, at the end of the step, one can simply switch the legs, and with proper book-
keeping of the impact effect, the same LIPM or IPM model can be used to describe the motion of
the other leg. Walking is then simply the exchange of leg behaviours from inverted pendulum to
pendulum on repeat. Now, more complexity is added by assuming legs to have mass concentrated
at their respective COMs and torso mass concentrated at the hip. This model is called a Compass-
Gait Biped (CGB) [30]. Another popular model is the Spring Loaded Inverted Pendulum Model
(SLIP) [31] which adds spring compliance to legs. This is a very useful abstraction to describe
running motion and also to model fast walking using knees (spring compression is mapped to
knee-joint compression). Other reduced-order models include three link walker, five link walker,
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etc., where other links like torso, shin, thigh are also explicitly modeled as pendulums. Finally,
for planar walking studies, these links are assumed to be in 2D and for spatial studies, they are
assumed to be in 3D.

Full-Order Models: As we mentioned earlier, full robot models feature all the elements con-
tained in the actual robot - legs with non-trivial mass distribution, torso, hands, etc. Examples
include Rabbit [32], ATRIAS [33, 34], Cassie , ATLAS [5, 4], VALKYRIE , etc.

Remark 2.1.1. There are many instances where reduced-order models, which were primarily con-
ceived for modeling and analysis, have also been built physically. We call any such instance
as a reduced-order model realization. Popular reduced-order model realizations are McGeer’s
Walker [35], MIT Toddler [8], Cornell Ranger [10], among others. It is worth noting that, in this
case, there is no distinction anymore between the reduced-order model and true robot model. These
robots are primarily designed to experimentally validate reduced-order models and characterize
their behavior more rigorously and thereby inspire future humanoid design.

Lens of Parametrization

Conventionally, the orientations of robot links used in bipedal robot models are defined using Eu-
ler angles. It is a convenient and very useful design choice to describe and analyze the diverse
behaviors exhibited by these models. This choice allows one to fully utilize the wealth of math-
ematical techniques from linear algebra, functional analysis and non-linear control developed to
be applicable in Euclidean spaces (also called flat spaces), which are denoted by Rn, where n is
the robot’s degrees-of-freedom. We call the models using Euler angles to define their orientations
as Euler Models. All the robot models described in this literature survey (except where described
as otherwise) are Euler Models. Despite their immense advantage, there are some limitations to
this choice of orientation parametrization. Unlike linear motions, angular motions are not flat.
They can be flattened in a closed range of operation. This restriction is justified mostly because
of mechanical constraints (for example, knee joint only folds inwards, torso cannot rotate through
the legs, etc.) that come from the design itself. However, imagine the case of a whirling ballerina
(while performing a pirouette for example) who is turning on one foot. Such motions are charac-
terized by the property of returning to their initial positions after completing a cycle. Unlike linear
motions, rotations live in space that is compact and cyclic. This space (also called a manifold)
is non-euclidean and attempts to flatten them always comes at a price, called singularity. This
makes the design and control of such motions very difficult, if not impossible, on euclidean man-
ifolds. Additionally, from a more practical standpoint, the equations of motion for Euler Models,
while easy to derive, become very complex and cumbersome (filled with numerous trigonometric
expressions) to visualize and intuit for non-trivial robot models.

These problems inspire us to introduce Geometric Models for bipedal robots. We define Ge-
ometric Models as those using not Euler angles but angle-free definitions of link orientations.
Instead of using Euler angle based parametrizations, the links orientations are defined in their na-
tive manifolds i.e., either on S2 or SO(3). These manifolds are called Lie Groups . This choice
makes the dynamics singularity-free and the equations of motion become very compact and the
inherent dynamical couplings are more easily discernible. To obtain these models, we leverage
recent advances in differential geometry, lie group theory and geometric mechanics. More details
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on this will follow in Section 2.2 where we review the general motivation and application of ge-
ometric models and control in robotics. Finally, based on parametrization, bipedal robot models
can be classified as: (a) Euler Model, (b) Geometric Model. Having outlined the various types of
bipedal robot models, in the next subsection, we similarly describe the various prevalent control
paradigms used in bipedal robot locomotion research.

2.1.2 Control Design Types for Walkers
Broadly, three prevailing schools of thought exist in bipedal locomotion control design as listed
below:

• Biomechanics-based

• Learning-based

• Physics-based

Biomechanics-based control design assumes either the actuator to be modeled after the hu-
man muscle-model [36, 37], the control logic to be modeled after biologically motivated neuronal
structures like Central Pattern Generators [38, 39], or both. Next, in learning-based control, the
physical robot model is considered either inadequate or too complex for policy design using tra-
ditional approaches. Therefore, the control design in this case assumes no prior knowledge of the
model (called model-free). Popular learning-based controllers include [40, 41, 42, 43]. Finally, we
have physics-based control design where the robot’s dynamics knowledge is exploited for control
design purposes. The focus of this thesis is on Physics-based controllers. Next, we further sub-
classify physics-based controllers and briefly comment on their relative merits and demerits. For
a higher level summary-view of the space of bipedal robot modeling and control, see Fig. 2.1. We
first begin by classifying physics-based Bipedal Walkers 1 as either being a) Static or b) Dynamic.
Later, we classify Dynamic Walkers as either being a) Passive or b) Active. Going further, Active
Dynamic Walkers can be further resolved into being either a) Fully-actuated or b) Under-actuated.
Finally, Under-actuated Active Dynamic Walkers can use either a) Euler-Parametrized physical
robot model or b) Geometric physical robot models. For a pictorial overview of this classification,
see Fig. 2.1.

Note that, the focus of the first part of this thesis will be on control design, and for that purpose,
we use a) Geometric physical models. However, for the second part of this thesis, where the
primary focus is on designing a perception module for Under-actuated Dynamic Walkers, we will
build on existing prior work on b) Euler-parametrized Under-actuated Dynamic Walkers. We will
again remind the readers of this distinction in the respective chapters for convenience. For the sake
of brevity, we will only summarize at a higher-level the walking principles used in Static Walkers,
Passive Dynamic Walkers and Fully-actuated Dynamic Walkers. We point interested readers to
the attached references to obtain a more detailed understanding. However, for Under-actuated
Dynamic Walkers, we shall also review the related control design principles to sufficient detail to
aid in fully appreciating the novel modeling and control design choices presented in this thesis.

1Throughout the rest of this thesis we will use the term Walker as a short form for a legged robot designed to walk.
In the same spirit, a legged robot designed for running will be termed a Runner. Here, design implies mechanism
and/or control design.
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Figure 2.1: The classification of prior work in bipedal locomotion modeling and control research
is pictorially summarized here.

2.1.3 Static Walkers
Earliest attempts to achieve walking on bipedal robots took a more conservative approach. The
objective in this class of control design focuses on generating walking motion with the robot kept
upright at all possible times, even if it were stopped mid-way. This implies the walking motion is
slow and it generates minimal accelerations and body moments in the process, and parallely, all
the external forces acting on the robot are balanced. This results in static stability (it is quasi-static
in practice) and therefore the term Static Walker.

There is a key requirement to ensure this form of quasi-static motion. The projection of the
center-of-mass (COM) of the robot to the ground must always remains within the support polygon.
The support polygon is defined as the convex hull formed by the vertices of the robot’s foot that
is always connected flatly to the ground, also called stance foot. Consequently, with a bigger foot
the COM of the robot has a larger range of motion possible without violating the static stability
constraints. This point of projection of the COM to the ground is called the Zero Moment Point
(ZMP) [2]. The implementation details are comprehensively reviewed in [143], where they con-
clude that as long as the ZMP stays within the support polygon, the robot is stable. This technique
has been applied successfully to many popular humanoid robots like Honda’s ASIMO [44], Sony’s
QRIO [45], HRP [46], and Toyota’s humanoid [47] among others [48].

The advantage of this approach is that its very intuitive and allows the use of full-actuation (in-
cluding the ankle joint as the foot is locked to the ground) at all times. However, the disadvantage
is the need for big and heavy feet (to offer more robustness), slow walking (to remain quasi-static),
and as a consequence, have very low energy efficiency [49]. Finally, later studies showed that the
need of enforcing ZMP criterion is neither sufficient [50] nor necessary [51, 7] for ensuring stable
walking.
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2.1.4 Dynamic Walkers
As described in the previous section, static walkers walk slowly, keep inertial effects to the min-
imum and ensure that the CoM is carefully transferred from one leg to another while ensuring it
always remain within the support polygon. Bent knees, small step-lengths characterize this form
of walking (also popularly called robotic walking ).

To obtain better energy efficiency and faster motion, some of the restrictions like the need for
static stability need to be relaxed. The center-of-mass of the robot is allowed to go beyond the sup-
port polygon (allows for longer step lengths) and even generate inertial forces/moments (therefore
called dynamic) and take advantage for them for quicker motion. Walking in the dynamic sense is
redefined as stepping quickly enough to catch the robot from falling and being able to repeat this
feat indefinitely. Remarkably, this dynamic nature of walking was first demonstrated using robots
that had no actuation! They were called Passive Dynamic Walkers and they are summarized next.

Passive Dynamic Walkers

In his seminal work [35], Tad McGeer showed a bipedal robot walking down a shallow slope with
no actuation at all. This demonstrated the most energy efficient walking ever possible ( using only
potential energy). This was subsequently extended to a three-dimensional walker with arms [49].
Despite the great energy efficiency and faster walking, passive walkers fail on one count. They
are very sensitive to perturbations and they can’t be deployed on flat ground where there is not
potential energy change. While the former still remains an issue, the latter was actively researched
within the past two decades. Several smart control techniques emerged that attempted to inject
energy into the robot through minimal actuation.

Active Dynamic Walkers

Active dynamics walkers borrow from efficient walking principles from passive walkers but don’t
suffer from the limitation of needing a slope for walking. They inject required amount energy
using actuators. Popular examples of Active Dynamic Walkers include Ranger [10], MIT Tod-
dler [8, 40]. The concept of injecting exactly the amount of energy (potential energy difference
between flat-ground and slope) required to execute sloped walking on flat ground is called Con-
trolled Symmetries [52].
Fully-actuated Dynamic Walkers: A totally different way to achieve active dynamics walking is
through the use of reduced order [4, 5] or full-robot models [53, 54] and optimizing over the non-
linear dynamics of the robot to discover stable walking trajectories. These robots are faster than
Static Walkers and more energy-expending than active walkers inspired from passive dynamical
techniques. However, they are comparatively more robust to perturbations. Unfortunately, this
control design methodology assumes full actuation. However, several practical walking situations
exist (like toe-off) where the robot is under-actuated at the foot and has not control over the toe’s
rolling motion. Any perturbation of the above-mentioned Walkers in such situations will invariable
lead to a fall.
Underactuated Dynamic Walkers: In order to address this issue, alternately, robot models along-
with some under-actuation (specifically at the foot) are considered for control design. Unlike the
previous Walkers, these robot models are no longer fully controllable but only stabilizable [51].
Additionally, using reduced-order models might not be a good idea in control design in this case as
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the strong stability arguments that can translate from reduced-order to full robot model cannot be
made in the face of under-actuation. In order to address this issue, instead of simplifying the robot
model, virtual constraints [55, 12] may be enforced on all the actuated degrees of freedom. These
virtual constraints control the motion of the joints to evolve along specific trajectories that lead to a
non-trivial walking motion. Finally, as the last piece in this puzzle, the under-actuation can be used
to our advantage to serve as a timing variable for this virtually constrained evolution of actuated
joints. This way, reflexes are naturally encoded into the system’s dynamics. Finally, to also achieve
energy efficiency, the virtual constraints design itself is posed as an optimization problem whose
objective is to minimize energy. Popular underactuated dynamic walkers include MABEL [7, 56],
ATRIAS [12, 57], DURUS [58, 59], etc. The robot models and controllers studied in this work are
Under-actuated Dynamic Walkers. In the next chapter, we will go into the details of control design
for this class of robots.

2.2 Geometric Modeling and Control in Robotics
The ATLAS robots in DRC used popular reduced-order models like ZMP [2] and LIPM [3] to
develop optimal walking policies [5] for slow walking. On the other hand, there exist dynamic
walkers like RABBIT [32], MABEL [6, 7], AMBER [60], demonstrating more versatile and faster
walking gaits. However, this has been demonstrated mostly for planar robots.

In [61], frontal plane stabilization during walking is presented, decoupled from the sagittal
plane dynamics for modest roll angles and angular velocities. Other related works include sta-
bilization of 3D walking using techniques based on controlled symmetries and Routhian reduc-
tion [62, 63], and on hybrid zero dynamics [51, 64]. These methods have been extended to yaw
steering of 3D robots [65]. None of these techniques have been provably extended for large angular
deviations in leg position.

Parallely, great progress has been made in the application of geometric control techniques to
the UAV load carrying problem [66, 67], spacecraft attitude control [68, 69, 70]. Exponentially
stable tracking controllers have been built to cancel arbitrarily large attitude errors in the load
and UAV positions. This was achieved by the application of variational mechanics principles to
their dynamic modeling and control design [71, 72]. Human-like maneuvering, push recovery and
periodic gaits with large domains of attraction in 3D, with under-actuation, still remain as open
problems [51].

2.3 Deep Perception in Robotics
One of the key challenges for building robust autonomous navigation and manipulation systems is
the development of a strong intelligence pipeline that is able to efficiently gather incoming sensor
data and take suitable control actions with good repeatability and fault-tolerance. In the past, this
was addressed in a modular fashion, where specialized algorithms were developed for each sub-
system and integrated with fine tuning. More recent trends show a revival of end-to-end approaches
that learn complex mappings directly from the input to output by leveraging large volume of task-
specific data and the remarkable abstraction abilities afforded by deep neural networks. Large
amounts of data available for network training and significant advances in parallel computation
hardware helped accelerate this effort. Before delving into deep perception for robotics, we briefly
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describe the emergence of deep learning as a very powerful computational abstraction tool and
review its impact in the related domains of Computer Vision and Graphics.

The fields of Computer Vision and Graphics where the greatest beneficiaries of deep learning
advances for their pattern recognition tasks. Instead of painstakingly hand-engineering features
of interest to reduce computational overhead for traditional machine learning techniques, now
with deep learning, the pipelines could be automated and data could be used to learn features
of interest automatically and more appropriately to the task at hand. Object Classification [73],
Scene Understanding , Human Pose Estimation [74], learning dynamics visually [75, 76], etc.,
are all possible today, and in some cases, even exceed human performance levels. Computer
Graphics [41], Games [77] and Computer-aided Design (CAD) [78, 79][41, 151] have all seen
improvements in the learning rich, high-dimensional models which were never before possible.

The dramatic gains in research outcomes through the use of deep learning techniques in related
domains led to a natural surge of interest in robotics as well. From learning end-to-end visuomotor
policies for object manipulation [80], to learning to fly UAVs in cluttered environments [81], or in
self-driving cars [82, 83], deep learning is impacting all major robotics sub-domains. In humanoid
robotics also, CNNs were used for innovative applications like surface friction estimation from
images, to help in slip prediction [84]. However, it is very challenging to build end-to-end fully
data-driven policies for stable and safe limit cycle walking, let alone on discrete terrain. Keeping
this in mind we limit the use of data-driven visual perception modules for suitable observer design
only in this work.

2.3.1 Simulation-to-Reality in Robotic Vision
It is a standard practice in robotics to build simpler but characteristic models of real systems and/or
settings, and extensively test potential solutions (control policies) before deploying in the real
world. This helps in quickly iterating through multiple potential solutions without wearing out
the robot or risk getting into unforeseeable accidents (when the robot or environment models used
are not fully accurate). The DARPA Virtual Robotic Challenge [85] is a classical example of this
practice. Fueled by this need, researchers have developed several high-fidelity numerical simula-
tors [86] that can pretty accurately model robot mechanics, robot-environment interaction (touch,
grasp, collision, etc.), etc. With the advent of OpenAI-Gym [87], it is now also possible to rigor-
ously test and improve data-driven physics models and control policies within the secure confines
of a simulation. The current bottleneck in robotics is dearth of simulators that can simulate real-
world scenes to photo-realistic detail in order to leverage the use of visual feedback to close the
loop. Great strides have been made in Computer Vision in the last decade, and yet, very little has
trickled down to enhance visual perception abilities of modern day robots. Recently, researchers
began addressing this issue by building visually realistic simulators like Microsoft AirSim [88] for
drones, Udacitys Self-Driving Car Simulator [89] for cars, etc. While these models are available to
rapid development of visual perception modules the jury is still out on how well they can perform
when tested in the real-world. Put differently, it still remains to be seen how much the reality gap
can be narrowed using these visual simulators. A related question is, what can the designer do
from his end to further this cause.

Typically in computer vision, in order to narrow this performance gap, a little amount of real-
world data is used to modify the learned representation in a way that it can be reliably used in the
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real-world. This process is called domain adaptation and it is an active area of research [90, 91, 92].
There were some attempts to extend this idea to robotics as well [93], where an inverse dynamics
model was learned to adapt the policy, designed in simulation, to the real-world model in face of
modeling error. Note that, real-world data is not used to learn the representation of interest but
just to account for discrepancy in the data used for training and testing. For example, in a classical
domain adaptation problem, one attempts to learn face detection in simulation and uses additional
real-world data purely to adapt the learned face detector to also work with the changes in lighting,
color and texture seen in the real-world. The gist here is that understanding what is a face is a
harder problem, needing more data, and therefore relegated to simulation. However, learning the
color distribution changes, lighting changes, etc., is easier and needs lesser data.

Alternately, there is also an active exploration of mixing simulated and real-world data [94]
to eliminate the additional domain adaptation step. The deep network’s heavy data demand is
fractionally addressed using real-world data and mostly through rapidly generated synthetic data.
However, both these approaches still need a decent amount of real-world data, in the order of tens
of thousands instead of hundreds. This is still hard to generate for some robotic applications. For
the case of a bipedal robot stepping on stones, it is not even clear how to generate this data. First
of all, meticulously setting up thousands of stones at specific measured locations is very laborious
and impractical. Even if that was possible, it is hard to tele-operate the robot and guarantee it steps
on the stones.

Recently, there is an active interest to explore the possibly of learning purely in simulation and
check if it can be applied to real-world tasks directly without any domain adaption or mixing of
real and simulated data. This is aggressively being pursued in the context of autonomous driving
to offer smaller players a quick entry point even if they don’t have a huge corpus of driving data
available. In both [95], researchers showed that this is indeed possible given a photo-realistic
visual simulator and large enough dataset. In contrast, more recently, researchers working on
robot manipulation tasks [96] and a visually-servoing UAV [81] have shown that it is possible to go
from simulation-to-reality without needing photo-realism as well! In order to do this, in the former
work, they introduced a new technique called domain randomization whose working principle is to
randomize all visual properties while creating the synthetic dataset. Here, the objective is to make
any real world instance of the scene as just a sampling from this vastly randomized distribution.
This technique offers a practical solution to the problem of building a deep perception module for
a bipedal robot to walk on discrete terrain. However, this is a safety-critical task, and unlike object
manipulation, failure is not an option even for once. Therefore, additional customization of the
presented deep networks needs to be carried out to adapt to our safety-critical requirements.

2.4 Perception in Legged Locomotion
Perception for bipedal locomotion primarily focused on foot-step planning for statically stable or
linear dynamical model based walkers. Usually, LIDAR-camera combination is preferred in this
case. Accurate high resolution depth data obtained from LIDAR is used for safe footstep detection
and planning [97, 98]. Unlike these walkers, dynamics robots have point feet, move much faster
and therefore need faster execution and the ability to pick footholds of any size. This makes the
search problem harder on the full 3D map.
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Visual Perception for Walking

Visual Perception, as opposed to other forms of sensing, is cheap, readily available and very in-
formation dense. However, the space is very high-dimensional and computationally expensive to
operate in. Moreover, information is noisy due to changes in lighting conditions, weather, time of
the day, etc. Yet, the advantages of visual perception are far more significant.Conventionally, robot
perception involves parsing the entire scene, labeling objects of interest, and feeding this informa-
tion for planning and control. This technique, called Mediated Perception, is used extensively in
self-driving cars [99] with some extensions to legged robots [100]. Usually, this technique is built
over LIDAR and Stereo Camera datasets, requiring large processing overhead. For some tasks, on
the other hand, information necessary for taking a suitable control action can be compacted to a
few critical state and environment descriptors, called affordances, and doesn’t require knowledge
of the entire scene. In Robot Perception, the philosophy of converting a visual input directly into
actionable affordances is called Direct Perception [83] and this is inspired from popular human
psychological studies [101]. As the number of tasks increase and the decision-making time drops,
searching the entire scene for all tasks is expensive and trade-offs are inevitable. Reactive vision-
in-the-loop control for sub-tasks, wherever possible, reduces overhead on higher-level planners
and injects more dynamism into the system. The objective of this work is to serve this need for
the sub-task of walking safely on discrete terrain. Searching over very high-dimensional spaces
simultaneously for all the tasks becomes intractable and is also arguably unnecessary. Consider
the situation of full-fledged autonomous dynamic robot walking on a discrete terrain with speeds
in excess of 0.6 m/s. The robot needs to decide exactly where to step, monitor it’s eventual target
position, constantly remain mindful of obstacles and avoid them, etc. Significant computational
overhead needs to be invested in target tracking and collision avoidance, leaving lesser time and
resource for accurate foothold detection.

In fact, experiments with humans and cats have shown that during over 50 − 60% time of the
gait cycle, gaze is invested in target detection and the higher-level spatial navigation problem [102].
When required to walk on complex terrain requiring accurate foot placement, humans operate with
intermittent visual samples of the foothold location and use the information in a feed-forward
manner to adjust step length just 1 − 2 steps a priori [102, 103]. For walking on discrete terrain,
the key finding here is that, instead of active modulation of gait through visual feedback during
the entire stance phase, humans prefer to adjust their gait one-two step ahead using an intermittent
visual preview and execute an energy-efficient ballistic motion [104]. If the foothold remains
constant, continuous visual feedback may even be unnecessary. Our work is inspired by these
biological findings and we wish to elicit similar behavior from the dynamic bipedal robot ATRIAS.

Vision-in-the-loop walking with gait adjustment (comparable to our approach) was imple-
mented on a Quadruped in [100] to operate on steep slopes and dense vegetation. However, the
problem of discrete terrain is not addressed. We believe our solution is complimentary to their
effort and a combined solution could pave the way for true rough terrain navigation.

2.5 Summary
An attempt has been made here to cover a wide range of topics relevant to this work spanning
major domains like robotics, control theory, machine learning and computer vision. We believe
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understanding and connecting suitable topics from across the board is not only useful but very
important to fully appreciate the results shown in this work.

In the first section, we begin by introducing bipedal robots and highlight their importance
in unstructured terrain navigation tasks often seen during search and rescue situations or space
exploration. Going further, we summarize the various well-studied bipedal robot modeling choices
and we broadly classify them through the lenses of complexity and parametrization choice. Next,
we embark on a similar exercise but from the controller design standpoint. This classification is
done in finer detail by introducing several sub-classifications that are characterized either by the
amount of actuation available, extent to which the robot model is simplified, etc. We end this
section with the brief review of under-actuated bipedal robot control using HZD-technique. We
save the detailed exposition of this technique for the next chapter.

In the second section, we shift our attention towards geometric modeling and control and its
applicability to robots. We begin by first highlighting limitations in existing Euler-based robot
configuration parametrization. This was briefly explained in the context of bipedal robots in the
previous section as well. Later, we review prior work which used geometric control to correct large
attitude error, especially in UAVs. Finally, we connect it to bipedal robots again by referencing our
recent work (RMB [19]) where these techniques were used.

In the last section, we review various perception techniques used in bipedal locomotion. In
doing so, we focus our attention eventually to deep perception related work, and later, zoom
out to more generally review the use of deep learning in robotics and computer vision. A good
overview of these recent advances across other domains helps further motivate this particular per-
ception module choice in our work. Finally, we address the need for large data and the issue
with data-generation for the stepping on stones problem and thereby highlighting the need for a
visual simulator. Now, in relation to this proposition, we review recent advances in the realm
of simulation-to-reality transfer learning in robotics. We finally conclude by indicating the most
suitable sim-to-reality transfer learning technique for this work.
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Chapter 3

Background on ATRIAS and Cassie Robots

In Part III of this thesis we will introduce two learning techniques: (a) in Chapter 8, we learn a
unified walking policy from a dataset of gaits generated for the Cassie Robot, and (b) in Chap-
ter 9, we automate discrete terrain walking using a deep perception module that detects upcoming
footholds to enable accurate step length regulation. Here, we used walking gaits developed for the
ATRIAS robot. The learning techniques in both these chapters use prior work on modeling and
control design of these two robots. In this chapter, we briefly summarize them to provide the full
picture. However note that ATRIAS robot model and gait library design is summarized before that
of Cassie. This is in the increasing order of model complexity as a planar model used for ATRIAS
whereas the 3D model is used for Cassie.

3.1 ATRIAS Robot

Figure 3.1: Biped coordinates. The world frame pitch angle is denoted by qT , while (q1, q2) are
body coordinates. The model is assumed left-right symmetric.

The bipedal robot shown in Fig. 3.1 is a planar representation of ATRIAS. Its total mass is
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Figure 3.2: Periodic walking gait has the resulting step length (l1) similar to the initial step length
(l0), or in other words l1 = l0.

63 kg, with approximately 50% of the mass in the hips and 40% in the torso, and with light legs
formed by a four-bar linkage. The robot is approximately left-right symmetric.

The configuration variables for the system are defined as q := (qT , q1R, q2R, q1L, q2L) ∈ R5.
The variable qT corresponds to the world frame pitch angle, and (q1R, q2R, q1L, q2L) refer to the
local coordinates for linkages. Each of the four linkages are actuated by a DC motor behind a
50:1 gear ratio harmonic drive, with the robot having one degree of under-actuation. The four-bar
linkage mechanism comprising of the leg coordinates (q1, q2) map to the leg angle and knee angle
(qLA, qKA), as qLA := 1

2
(q1 + q2) and qKA := q2− q1. The state x denotes the generalized positions

and velocities of the robot and u denotes the joint torques. A hybrid model of walking can be
expressed as {

ẋ = f(x) + g(x)u x /∈ S
x+ = ∆(x−) x ∈ S, (3.1)

where S is the impact surface and ∆ is the reset or impact map. A more complete description of
the robot and a derivation of its model are given in [105].

3.1.1 Gait Library Overview
Having described the dynamical model of ATRIAS in Section 3.1, we will now present the back-
ground on optimization for periodic gait design using virtual constraints and input-output lineariza-
tion, a nonlinear feedback controller to exponentially stabilize the closed-loop system.

Periodic Gait Design Using Virtual Constraints

The nominal feedback controller is based on the virtual constraints framework presented in [106].
Virtual constraints are kinematic relations that synchronize the evolution of the robot’s coordinates
via continuous-time feedback control. One virtual constraint in the form of a parametrized spline
can be imposed for each (independent) actuator. Parameter optimization is used to find the spline
coefficients so as to create a periodic orbit satisfying a desired step length, while respecting phys-
ical constraints on torque, motor velocity, and friction cone. Since the gait is periodic, the initial
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Table 3.1: Optimization constraints

Motor Toque |u| ≤ 7 Nm

Impact Impulse Fe ≤ 15 Ns

Friction Cone µ ≤ 0.6

Vertical Ground Reaction Force F v
st ≥ 200 N

Mid-step Swing Foot Clearance hf |s=0.5 ≥ 0.1 m

step length and the resulting step length must be the same (see Fig. 3.2). The optimizer used here is
based on the direct collocation framework from [107], although other optimization methods, such
as [108] or fmincon can be used as well.

The virtual constraints are expressed as an output vector

y = h0(q)− hd(s(q), α), (3.2)

to be asymptotically zeroed by a feedback controller. Here, h0(q) specifies the quantities to be
controlled

h0(q) =


qstLA
qstKA
qswLA
qswKA

 , (3.3)

where st and sw designate the stance and swing legs, respectively, and hd(s, α) is a 4-vector of
Beziér polynomials in the parameters α specifying the desired evolution of the h0(q), where s is a
gait phasing variable defined as

s :=
θ − θinit

θfinal − θinit
, (3.4)

with θ = qT + qstLA being the absolute stance leg angle.
The cost function and constraints for the optimization are formulated as in [106] [Chap. 6.6.2],

with the constraints given in Table 3.1 and the cost taken as the integral of squared torques over
step length:

J =

∫ T

0

||u(t)||22 dt. (3.5)

In addition to the above constraints, we also need to guarantee the periodicity in the gait:

• The initial state at start of the first step is given by x = x+
0 with corresponding (initial) step

length of l0.
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• The state at end of the first step (before impact) is given by x = x−1 with corresponding
(resulting) step length of l1.

• Impact constraints at the end of the step are enforced as x+
1 = ∆(x−1 ).

• Periodic constraints are then enforced as x+
1 = x+

0 , resulting in l1 = l0.

Here, the superscript ‘+’ and ‘−’ represent the state right before and right after the impact, and ∆
is the reset or impact map from (3.1).

Input-output linearization

The optimization results in a desired walking gait encoded through hd(s(q), α) in (3.2) and there-
fore our control goal is to drive y(q) → 0. In our method, we use input-output linearization, a
nonlinear feedback controller to enforce exponential stability for the system [109]. If y(q) has
vector relative degree 2, then the second derivative takes the form

ÿ = L2
fy(q, q̇) + LgLfy(q, q̇) u. (3.6)

We can then apply the following pre-control law

u(q, q̇) = u∗(q, q̇) + (LgLfy(q, q̇))−1 µ, (3.7)

where

u∗(q, q̇) := −(LgLfy(q, q̇))−1L2
fy(q, q̇), (3.8)

and µ is a stabilizing control to be chosen. Defining transverse variables η = [y, ẏ]T , and using
the IO linearization controller above with the pre-control law (3.7), we have,

ÿ = µ. (3.9)

The exponential convergence of the control output y then can be easily derived using PD controller:

µ = −Kpy −Kdẏ. (3.10)

Having presented the background on periodic gait optimization using Hybrid Zero Dynamics
and input-output linearization, we now introduce our proposed approach using 2-step periodic gait
optimization to handle randomly-varying discrete terrain resulting in consecutive changes in step
length and step height at each walking step.

2-Step Periodic Gait Design Using Virtual Constraints

Inspired by the main issue of step transition on stepping stones [110], we develop an optimization
framework to design 2-step periodic walking gaits, taking into account not only the desired footstep
location of the next step but also the current configuration of the robot. The method combines
virtual constraints, parameter optimization, and an interpolation strategy for creating a continuum
of gaits from a finite library of gaits. The notion of 2-step periodic gait means that the robot states
are designed to be converge back to the initial condition after 2 walking steps. To be more specific,
we will start off with the problem of changing step length only or walking on flat ground with
varied step length.
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Figure 3.3: 2-Step periodic walking with changing step lengths only. The walking gait is 2-step
periodic therefore the step length of the second step and that of the initial condition are the same
(l2 = l0).

Changing Only Step Lengths

In the nominal problem of periodic optimization presented in Section 3.1.1, we need to optimize
for only one walking step with the constraint on the resulting step length (l1) to be equal to the
initial step length (l0) (see Fig. 3.2). For this problem, we use the same optimization framework
discussed in 3.1.1, but we will optimize for 2 walking steps while following additional constraints
that allows us to have different step lengths during transition (see Fig.3.3):

• The initial state at start of the first step is given by x = x+
0 with corresponding (initial) step

length l0.

• The state at the end of the first step (before impact) is x = x−1 with (resulting) step length l1.

• Impact constraints at the end of the first step are enforced as x+
1 = ∆(x−1 ).

• The initial state at start of the second step is given by x = x+
1 with corresponding (initial)

step length of l1.

• The state at the end of the second step (before impact) is x = x−2 with (resulting) step length
of l2.

• Impact constraints at the end of the second step are enforced as x+
2 = ∆(x−2 ).

• Periodic constraints are then enforced as x+
2 = x+

0 , resulting in l2 = l0.
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Figure 3.4: Gait interpolation for the problem of changing step length only.

The optimization problem is then used to generate a gait library with different values of l0 and
l1. In this work, we optimize four different gaits corresponding to:

(l0, l1) = (0.3, 0.3) m

(l0, l1) = (0.3, 0.7) m

(l0, l1) = (0.7, 0.3) m

(l0, l1) = (0.7, 0.7) m.

(3.11)

It is similar to precomputing four gait primitives corresponding to walking with small steps ((l0, l1) =
(0.3, 0.3) m), switching from a small step to a large step ((l0, l1) = (0.3, 0.7) m), switching from
a large step to a small step ((l1, l0) = (0.7, 0.3) m) and walking with large steps ((l0, l1) =
(0.7, 0.7) m). Having a gait library with different gaits representing for some general motion
primitives, we then do gait interpolation to get the desired walking gait with an arbitrary set of
(ld0, l

d
1).

Let α(ld0, l
d
1) be the Beziér coefficients (defined in (3.2)) of the desired walking gait that has the

initial step length ld0 and the resulting step length ld1. If ld0 ∈ [0.3 : 0.7] m and l1 ∈ [0.3 : 0.7] m,
we will compute α(ld0, l

d
1) using bilinear interpolation of the coefficients from the four nominal gait

parameters precomputed using optimization. A detailed explanation for bilinear interpolation can
be found in [111] or Fig. 3.4. In this work, we use the MATLAB function ”interp2” to implement
the algorithm.

Remark 3.1.1. If l0 /∈ [0.3 : 0.7] m or l1 /∈ [0.3, 0.7] m, we can use extrapolation to compute the
gait parameters for the desired gait.

The gait library and gait interpolation are used to update the walking gait for every walking
step based on the desired footstep placement of the next step (l1) and the current configuration of
the robot (l0). They are then incorporated using input-output linearization to control the robot to
follow the updated walking gait. The closed-loop control diagram is shown in Fig. 3.5.
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I-O 
Controller

Gait Library

2D ATRIAS

Figure 3.5: Diagram of the controller structure for the problem of changing step length only, inte-
grating the gait library and I-O linearization controller. Solid lines represent signals in continuous
time; dashed lines represent signals in discrete time.

Remark 3.1.2. Note that the proposed method has a resemblance to MPC. While we use a 2-step
periodic gait, we switch the gait at the end of each step, i.e., half-way into the 2-step periodic gait.
For instance, with current step length being l0, and subsequent step lengths being l1, l2, we use a
gait with (l0, l1) and switch at the end of the first step to (l1, l2) so that there is an overlap of one
step between the gaits. This easily address gait transitions that typically cause large violations in
unilateral force constraints, friction constraints, and torque constraints.

Remark 3.1.3. Also note that the authors of [110] use control barrier functions to handle gait
transitions. While this appears to work well, the feasibility of the quadratic program that enforces
the control barrier constraint is not guaranteed. In this present work, as we will see, we achieve
better results without using control barrier functions. We can easily add control barrier functions
on top of the current method to further enforce these safety-critical constraints. Since the under-
lying method achieves the foot placement without requiring the barriers, the barriers will remain
inactive most of the time, leading to better feasibility of the quadratic program.

3.2 Cassie Robot
Cassie is a highly dynamic, under-actuated bipedal robot. Cassie has twenty DOFs as listed in
(3.12):

q = [qx, qy, qz, qyaw, qpitch, qroll,

q1L, q2L, q3L, q4L, q5L, q6L, q7L,

q1R, q2R, q3R, q4R, q5R, q6R, q7R]T .

(3.12)

where, (qx qy qz) and (qyaw qpitch qroll) are the Cartesian coordinates of the pelvis and the Euler
Angles in the Z-Y-X order, and (q1L, ..., q7L), (q1R, ..., q7R) are the generalized coordinates of the
left and right legs, respectively. These correspond to the DOFs for each leg and are defined in
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Figure 3.6: Kinematic model of Cassie showing the robot’s generalized coordinates in the body
frame.

(3.13). 

q1

q2

q3

q4

q5

q6

q7


=



hip roll
hip yaw
hip pitch
knee pitch
shin pitch
tarsus pitch
toe pitch


. (3.13)

Fig. 3.6 shows the generalized coordinates of Cassie’s pelvis and right leg. The generalized
coordinates of Cassie’s left leg are similar to the right leg states. Each of Cassie’s legs has seven
DOFs with five of them being actuated: q1, q2, q3, q4, and q7. The corresponding motor torques are
u1, u2, u3, u4, and u5. The other two DOFs, q5 and q6, are passive, corresponding to stiff springs.

The dynamics of Cassie can then be expressed in the following Euler-Lagrange dynamics:

D(q)q̈ +H(q, q̇) = Bu+ JTs (q)τs + JTc (q)Fc, (3.14)

where q is the generalized coordinate vector as defined in (3.12), D(q) is the mass matrix, H(q, q̇)
contains the centripetal, Coriolis, and gravitation terms, B is the motor torque matrix, u is the
motor torque vector of dimension 10 corresponding to the actuators on the two legs, Js(q) is the
Jacobian for the spring torques, τs is the spring torque vector, Jc(q) is the Jacobian for the ground
contact forces, and Fc is the ground contact force vector.

3.2.1 Gait Library Overview
For this work, we use the gait library previously generated in [112]. Here, a gait library of 1331
gaits were generated using C-FROST for the following gait parameters:
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Figure 3.7: Snapshot of an experiment of the bipedal robot Cassie autonomously riding on Hover-
shoes. Experimental videos are at https://youtu.be/b2fKBb 0iTo.

• 11 forward/backward walking speeds Vx in the range [−1, 1] m/s;

• 11 left/right side-stepping speeds Vy in the range [−0.3, 0.3] m/s; and

• 11 stepping heights SH in the range [−0.15, 0.15] m per step.

Using their open-source code, we replicated this gait library. In addition to the above-mentioned
desired gait parameters, additional constraints are enforced to obtain stability and respect physical
limitations of the robot. For completeness, we summarize them below:

• Step Duration is fixed at 0.4 s;

• Swing foot clearance at mid-step is at least 15 cm;

• Ground reaction forces must respect the friction cone and ZMP conditions defined in [113];

• Left and right stance components must be symmetric for straight-line walking;

• Hip abduction and rotation motors have tighter bounds for walking straight; and

• The torso pitch and roll must remain within [−3, 3] degree range.

Using this gait library, we develop a learning-based control policy, called GaitNet in the next
section.

3.2.2 Cassie Robot with Hovershoes
Legged locomotion is efficient when traveling over rough or discrete terrain, as discussed in the last
section. On the other hand, wheeled locomotion is more efficient when traveling over flat continu-
ous terrain [114]. Infact, since the discovery of wheel, we have significantly altered the landscape
around us to make it very wheel-friendly. Now, Humans are able to optimize locomotion efficiency
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using a healthy mix of riding micro-mobility platforms, such as Segways and Hovershoes along
with running and walking. Enabling legged robots to autonomously ride on various personal mo-
bility platforms will offer multi-modal locomotion capabilities to these robots which could be very
useful in a time-sensitive scenario.

Autonomous robots with multi-modal locomotion capabilities can be game-changing in ap-
plication ranging from package delivery to search and rescue [115]. Recently, the Cassie bipedal
robot developed by Agility Robotics demonstrated autonomous Hovershoes riding capabilities [20]
(see Fig. 3.7) using simple PD controllers applied to decoupled elements of the system dynamics.

3.3 Summary
In this chapters, we briefly summarized dynamical modeling and HZD-based control design for
the ATRIAS and Cassie robots. Both of them use gait libraries, or a library of gaits, to achieve
robust and versatile walking motions. Examples of versatility include accurate foot placement to
walk on discrete terrain, speed regulation to walk on uneven surfaces, etc. In Chapter 8, a novel
deep learning architecture is introduced to learn a unified policy from a gait library. Its utility is
validated using the Cassie robot model and gait library. Further, in Chapter 9, a Deep Perception
Module is developed and integrated with the gait-library-based controller built for ATRIAS robot
to automate discrete terrain walking.
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Part II

Geometric Control for Dynamic Legged
Robots
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Chapter 4

Euler v/s Geometric Formulations for 3D
Pendulum Modeling and Control

4.1 3D Pendulum
Pendular systems are widely studied in the robotics and control community to discover and char-
acterize nonlinear dynamical phenomena like symmetries, bifurcations, orbital stability, etc. ([116,
117, 118]). The deeper understanding of these behaviors helps control theorists devise nonlinear
control techniques for effective stabilization and tracking ([119, 120, 121]). The impact of pendular
systems in robotics cannot be understated. Most complex robotic systems commonly apply pen-
dular abstractions to model and control their dominant behaviors. For example, see pendulum-like
models in robotic manipulation ([122, 123, 124]), inverted pendulum models in legged locomo-
tion ([3, 125, 126]), and multi-link pendular models in brachiation ([127, 128]). To date, multi-link
pendula, remain the best nonlinear system models for benchmarking performance of new control
algorithms on typical real-world challenges like underactuation, model uncertainity, stochasticity,
etc.

Traditionally, nonlinear control design techniques used for stabilization or swinging up of a
3D or spherical pendulum (a.k.a 3D pendulum that cannot yaw) used Euler angles to define
the pendulum configuration ([121, 129, 130]). However, more recently, coordinate-free formu-
lations have been proposed to define pendulum configuration and corresponding dynamical mod-
els ([117, 118, 131]) and suitable control laws ([132, 133]) have been devised. These globally-
defined dynamical formulations are singularity-free, i.e., they are devoid of kinematic singularities
like gimbal-lock seen in locally-defined formulations like Euler angles (For example, the ZXY -
ordering Euler-angles ([φ θ ψ]T ) exhibit a singularity when φ = π/2). The singularity-free property
of global formulations has implications in control design, particularly, recovery from large angle
disturbances is possible and the controllers can be designed to be almost-globally attractive (as
opposed to weaker local attractivity properties of Euler-based control designs). A new sub-field
in nonlinear control, called geometric control has emerged that exploits these control laws and its
been heavily applied in UAV literature, see [66, 67, 134, 135].

Most of this prior literature on geometric control has primarily focused on providing mathemat-
ical rigor and experimental validation to geometric control, specifically for almost-global attractiv-
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ity property and the freedom from singularities. While these two properties are more meaningful
for developing UAV maneuvers to quickly recover from large disturbances, for legged robots and
other systems, the use of geometric control needs further motivation. Large angle recoveries are
uncommon (restricted to acrobatic motions) and may be impractical during regular locomotion
tasks like walking, running, etc. due to limited control authority, finite time (to impact) and narrow
region-of-attraction.

4.2 Mathematical Modeling
To define the mathematical model of the 3D pendulum, we first need to define a stationary fixed
frame (inertial frame) about which the pendulum configuration is measured. Denote this frame as
{I} and fix it at the origin, which is also the pivot for the pendulum. Second, we attach a moving
frame (body frame), denoted as {B}, to the center-of-mass (CoM) of the pendulum. Having de-
fined the frames, the next step is to choose a suitable parametrization to represent a 3D rotation -
this translates to estimating the orientation of {B}w.r.t. {I}, as shown in Fig. 4.1. In this work, we
use two methods, 1) Euler-based (ZYX ordering): q ∈ R3, and 2) Geometric: R ∈ SO(3). Other
model parameters used for modeling and control design are defined and summarized in Table 4.1.

Figure 4.1: A 3D pendulum is a rigid body pinned at one end (pivot) restricting its motion to be
purely rotational.

4.2.1 3D Pendulum Dynamics
Pendulum dynamics using both Euler and SO(3) formulations can be compactly expressed as,

De(q)q̈ + Ce(q, q̇)q̇ + Ge(q) = Beue, (4.1)

where q = [φ θ ψ]T , q̇ = [φ̇ θ̇ ψ̇]T , and ue ∈ R3;

Ds(R)Ω̇ + Cs(R,Ω)Ω + Gs(R) = Bsus, (4.2)

where R ∈ SO(3), Ω ∈ TRSO(3), and us ∈ T ∗RSO(3). Here, TRSO(3) and T ∗RSO(3) are tangent
and co-tangent spaces on SO(3) at the configuration R.
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{I} Inertial frame fixed to the pivot.
{B} Body frame fixed at the CoM of pendulum.
e3 ∈ R3 Standard unit vector along the gravity

direction (pointing upward).

m ∈ R Mass of the pendulum link.
J ∈ R3×3 Inertia of the pendulum expressed in frame {B}.
l ∈ R Length of the pendulum w.r.t the pivot.
lc ∈ R Length of the pendulum CoM w.r.t the pivot.

R ∈ SO(3) Rotation matrix from {B} to {I}.
Ω ∈ R3 Angular velocity of the pendulum expressed in the body frame {B}.
φ, θ, ψ Roll, Pitch and Yaw angles used in Euler parametrization.

(̂.) hat map is a linear mapping from R3 to so(3).
(.)∨ vee map is a linear mapping from so(3) to R3.

Table 4.1: Symbols and parameter definitions for 3D Pendulum modeling and control design.

The Euler dynamics can be easily derived and we omit it here for brevity. However, De(q)
will be used later to check for singularities and to define suitable mappings to go back and forth
between Euler and geometric inputs, etc. SO(3) dynamics equations of motion are compact, as
shown below:

Ṙ = RΩ̂, (4.3)

Ω̇ = J−1(−Ω̂JΩ +mgl̂cR
T e3 + u). (4.4)

For the derivation of these equations, see [71] and [117]. Note that the dynamics cannot be
directly compared and we need to define suitable mapping between the Euler angles, rates and
inputs to their counterparts in SO(3).

4.2.2 Transfer Maps
Using the ZXY ordering of Euler angles, we defineR(q) : R3 → SO(3) whose expression is given
as,

R(q) =

 cθ cψ − sφ sθ sψ −cφ sψ cψ sθ + cθ sφ sψ
cθ sψ + cψ sφ sθ cφ cψ sθ sψ − cθ cψ sφ
−cφ sθ sφ cφ cθ

 . (4.5)

Here, we compact cos(α) and sin(α) as cα and sα, respectively, and α is a placeholder for any
Euler angle in q.

Next, we define Tq̇(q) : R3 → R3×3 to convert Euler rates (q̇) to angular velocities (Ω) as shown

31



below:

Tq̇(q) =

 cθ 0 −cφ sθ
0 1 sφ
sθ 0 cφ cθ

 , s.t. Ω = Tq̇(q)q̇. (4.6)

Finally, to convert Euler input (ue) to SO(3) input (us), we define Tu(q, R) : R3 × SO(3) →
R3×3 as,

Tu(q, R) = (D−1
s Bs)

−1Tq̇(D−1
e Be), s.t us = Tuue . (4.7)

Tq̇ Derivation:

Since we are using ZXY Euler sequencing, for w ∈ [Z X Y ]T , i ∈ [3 1 2]T , and α ∈ [ψ φ θ]T , we
define Rw(α) : R→ SO(3) as a mapping from an Euler angle α to its corresponding axis-specific
rotation matrix Rw. Accordingly, we have Ṙw = Rw

̂̇αei. Using this notation, we express R as
a product of its individual axis-wise rotation elements Rz(ψ), Rx(φ), and Ry(θ). We can then
compute its first derivative, Ṙ as a function of Euler angles q and their Euler rates q̇, as shown
below:

R = RzRxRy,

R = ṘzRxRy +RzṘxRy +RzRxṘy,

Ṙ = Rz
̂̇ψe3RxRy +RzRx

̂̇φe1Ry +RzRxRy
̂̇θe2.

From equation (4.3)), we know that Ω = (RT Ṙ)∨. Therefore,

Ω̂ = RT
yR

T
xR

T
z Rz

̂̇ψe3RxRy +RT
yR

T
xR

T
z RzRx

̂̇φe1Ry +RT
yR

T
xR

T
z RzRzRxRy

̂̇θe2,

= RT
yR

T
x
̂̇ψe3RxRy +RT

y
̂̇φe1Ry + ̂̇θe2,

= ̂RT
yR

T
x ψ̇e3 + R̂T

y φ̇e1 + ̂̇θe2.

Finally, we apply a vee map on both sides to get,

Ω = [RT
y e1 e2 RyTRxT e3]

 φ̇

θ̇

ψ̇

 , (4.8)

Tq̇(q) = [RT
y e1 e2 RyTRxT e3] =

 cθ 0 −cφ sθ
0 1 sφ
sθ 0 cφ cθ


Tu Derivation:

We can obtain Tu by taking a time derivative of equation (4.6), then substituting the dynamics from
equations (4.10) and (4.11) for q̈ and Ω̇. Finally, we equate the input vector fields on both sides to
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finish the derivation.

Ω = Tq̇(q)q̇,
Ω̇ = Ṫq̇ q̇ + Tq̇ q̈

fs︸︷︷︸
=:Ae

+ gsus︸︷︷︸
=:Be

= Ṫq̇ q̇ + Tq̇fe︸ ︷︷ ︸
=:As

+ Tq̇(geue)︸ ︷︷ ︸
=:Bs

(4.9)

Note that, the equality in (4.9) must hold for all ue and us. Setting ue = us = 0 results in Ae = As.
Eliminating, Ae and As, we can define,

us = (g−1
s Tq̇ge)︸ ︷︷ ︸
Tu

ue

Tu = (D−1
s Bs)

−1Tq̇(D−1
e Be)

Using these transfer maps it is easy to compare the Euler and geometric control laws which are
going to be defined in the next section.

4.2.3 Pendulum State Sampling:
In the following sections, we empirically evaluate kinematic and dynamical defects like singu-
larities, control design attributes like error metrics, input profiles, etc. for both SO(3) and Euler
models for a wide range of pendulum configurations/states. The main emphasis of this work is
to use this comprehensive empirical evaluation to highlight the benefits of geometric control and
complement mathematically rich previous works.

The states are sampled from a [−π, π] range of φ, θ, and ψ values with a resolution of π/4. The
corresponding SO(3) states can be obtained using transfer map R. For dynamic and kinematic
studies, these configurations can be treated as a potential intermediate state in the pendulum motion
trajectory. For control studies, they are used as initial conditions from which the pendulum is
stabilized to its hanging equilibrium position. Some of these state samples are shown in Fig. 4.2
along-with the sample numbers to be used in plots that follow.

Remark 4.2.1. Note that, both Tq̇ and De lose rank φ = π/2. This is the singularity issue that
plagues Euler parametrization. Singular states are littered all over the configuration space, as
shown in Fig. 4.2, making large disturbance recovery challenging using Euler parametrization.

4.3 Control Laws
In this work, we choose Feedback Linearization (FL) for pendulum stabilization. We begin by
rewriting equations (4.1) and (4.2) in the control-affine form as,

ẋe = fe(xe) + ge(xe)ue, (4.10)
ẋs = fs(xs) + gs(xs)us, (4.11)
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Figure 4.2: The figure shows a coarse grid of the sampling points used in this study along with their
sample number. The starting and final experiment indices are highlighted in red, and correspond
to (φ = θ = ψ = −π) and (φ = θ = ψ = π), respectively. To better visualize the control
studies, the desired final position (hanging equlibrium) is also shown in green and corresponds to
(φ = θ = ψ = 0).

where, xe = [q q̇]T and xs = [R Ω]T . The Feedback Linearization schemes for both models are
summarized below:

Euler:

For the Euler case, it is fairly straightforward to derive an appropriate feedback linearizing
policy by defining a suitable output as ye = he(q) = q − qd. Here, qd(t) can be time-varying and
the control problem transitions to tracking from regulation. The output is relative degree 2. The
control goal is to drive he(q)

ye := he(q) = q − qd(t)→ 0, (4.12)
ẏe := Lfehe = q̇ − q̇d(t), (4.13)
ÿe := L2

fehe + (LgeLfehe)ue = q̈ − q̈d(t), (4.14)

where, Lfh(q) is the lie derivative and Lfh = d
dt
h(q) = ∂h

∂q
f , assuming q̇ = f(q). Now lets define

suitable feedforward and feedback terms,

uffe := −(LgeLfehe)
−1(L2

fehe), (4.15)

ufbe := −(LgeLfehe)
−1(Kpye +Kdẏe). (4.16)

Applying ue := uffe + ufbe in equation (4.14) results in a closed-loop linear system,

ÿe +Kdẏe +Kpye = 0. (4.17)
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Figure 4.3: A scatter plot of Ds(q) matrix condition number (on the log scale) for all the state
samples from Section 4.2.3. All the yellow points are singular.

SO(3):

Feedback Linearization for SO(3) dynamics is non-trivial. Here we use geometric PD error
functions previously introduced in [136, 133] and presented in (4.18). Here eR is the configuration
error akin to position error in the euclidean space. Similarly, eΩ is angular velocity error. The
extra term (RTRd) in eΩ is called a transport map. Since the tangent space on SO(3) changes with
configuration (Ω ∈ TRSO(3) & Ωd ∈ TRd

SO(3)), the transport map helps project desired angular
velocities onto the tangent space at the current configuration (TRd

SO(3) → TRSO(3)) for correct
comparison.

Error Functions on SO(3)

eR =
1

2
[RT

dR−RTRd]
∨ (4.18a)

eΩ = Ω− (RTRd)Ωd (4.18b)

ėR =
1

2
[tr(RTRd)I −RTRd]︸ ︷︷ ︸

=:T (R,Rd)

eΩ (4.18c)

Similar to the Euler case, we design a relative degree two output, ys using the eR error function.
We can feedback linearize the systems to result in a desired closed-loop dynamics of the form

35



ÿs +Kdẏs +Kpys = 0 (or) ëR +KdėR +KpeR = 0. Accordingly, we have the control goal as,

ys = hs(R) := eR(R,Rd)→ 0, (4.19)
ẏs := Lfhs = ėR = T (R,Rd)eΩ. (4.20)

At this point, it’s worth noting that ||ėR|| <= ||eΩ|| as ||T || <= 1 (for proof, see [137]
Appendix 1(a)). Therefore, it is sufficient to choose only eΩ as the relative degree one output
instead of ėR. Note that this is a conservative approximation and eΩ → 0 guarantees ėR → 0.
Now, we take the second derivative,

ÿs = L2
fhs + (LgLfhs)us = T ėΩ. (4.21)

Lastly, we define

uffs := −(LgLfhs)
−1(L2

fhs), (4.22)

ufbs := −(LgLfhs)
−1(KpeR +KdeΩ), (4.23)

us = uffs + ufbs . (4.24)

Here, L2
fhs = fs− (RTRd)Ω̇d− (ṘRd)Ωd and LgLfhs = gs. Applying us results in a closed-loop

linear system,

ÿs +Kdẏs +Kpys = 0, (4.25)
=⇒ ėΩ +KdeΩ +KpeR = 0

Error Metrics: Before executing the proposed controllers and testing their performance, it is
worth defining suitable error metrics for the euclidean and SO(3) spaces to measure error growth
between desired and actual pendulum states as they spread apart. This metric is directly propor-
tional to the control expense involved. This helps us visualize apriori configurations that are harder
to control.

Euler: Define non-negative function Ψe : R3 × R3 → R as,

Ψe =
1

2

√
(q − qd)T (q − qd) (4.26)

SO(3) Define Ψs : SO(3)× SO(3)→ R as,

Ψs =
1

2
tr[I −RT

dR] (4.27)

Assuming the hanging equilibrium configuration is desired, we pick q from all the states defined
in the earlier section (Fig. 4.2) and plot Ψe in Fig. 4.5 and Ψs in Fig. 4.4.

From the two figures, it is clear that all the configurations where either one or two Euler angles
are ≈ π (antipodal configurations), have higher errors. These configurations are the cross-type
bands around face centers on the samples cube in Fig. 4.4. While this makes sense, as these are
the farthest points from the desired configuration, in Fig. 4.5 however, the highest error points are
configurations with all the three Euler angles≈ π (depicted as the edges of the samples cube). This
is very non-intuitive as these points are actually very close to the desired configuration and should
require minimal effort to reach qd. Even before evaluating the controller performance, the error
metric plotting exercise gives an insight into the potential failure modes of Euler-based controller.
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Figure 4.4: Ψs for Rd = I and for all R in Section 4.2.3.

Figure 4.5: Ψe for qd = [0 0 0]T and for all q in Section 4.2.3.

4.4 Results and Discussion
The control objective in this study is to stabilize the 3D pendulum to its hanging equilibrium
position, i.e. qd = [0 0 0]T or Rd = I . Velocities q̇d and Ωd are both randomized for each trial
with a max of 4 rads/s per state. The initial condition of the pendulum could be any state from
the samples defined in Section 4.2.3. All the experiments are run for a fixed time T . For the
pendulum model, we chose, mass as m = 1 kg, length as l = 0.5 m, and inertia w.r.t body-frame
as J = diag(0.1625, 0.1625, 0.01) kg m2. The controller gains are kept same for both the Euler
and geometric controllers (as Kp = 100, Kd = 20) to better visualize and compare performance.
We applied an Euler controller for the Euler dynamics and a geometric controller for the SO(3)
dynamics and logged key performance metrics like, input integral over time, power integral over
time, max input, max power, etc.
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Figure 4.6: Individual joint input integrals for each experiment.

How to compare the two? After applying the two controllers and logging performance data
across a range of initial conditions, we compare both of them in the Euler-space. We use the maps
defined in Section 4.2.2 to map R(t), Ω(t), and us(t) to q̃(t), ˙̃q(t), and ũe, respectively. Therefore,

q̃ = R−1(R), ˜̇q = T −1
q̇ (Ω), ũe = T −1

u (us). (4.28)
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Figure 4.7: The top plot shows normed input integral and the bottom plot shows power integral for
each experiment. Note that orange points indicate ũe and blue points indicate ue.
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Figure 4.8: The top plot shows max input norm and the bottom plot shows max power for each
experiment.

4.4.1 Geometric Control is more efficient
Having logged both ue and ũe, we plot joint-wise integrals for each experiment in Fig. 4.6. Note
that, ũφ is particularly very efficient compared to uφ. The existence of singularity in the φ direction
impacts all trajectories in the Euler model with large φ errors. Next, we evaluate metrics for full
attitude control performance. We show normed input integral and power integral plots in Fig. 4.7
and max input and max power plots in Fig. 4.8. Note that both over time and in magnitude the
geometric controllers are consistently more efficient.

However, it’s worth noting that the power integral is comparable between the two. The error
functions eR and eΩ have a peculiar issue that is also highlighted in [135]. The farther the current
configuration from the desired the lower proportional controller stiffness causing the pendulum
to stall for too long and accumulate error and spiking up velocities. This could be the cause for
power integral to be comparable even though lower input was being used. In [135], alternate error
function choices are proposed to mitigate this issue. Also, note that the max input and power values
for Euler controller are particularly high in some cases. This is mainly caused while crossing the
singularity configuration and the numerical integrator applying arbitrarily large inputs. However,
on a real system with strict input saturations the difference would be less severe.

4.5 Summary
In this work, we presented two formulations for modeling and control of a 3D pendulum - one
is Euler-parameterized and the other is coordinate-free and evolves on the manifold space SO(3).
Moreover, through comprehensive empirical evaluation, we demonstrate that geometric controller
is generally more efficient than the traditional Euler-parametrized one for all configurations and
not just for large error recovery as was mainly shown so far.
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Chapter 5

Geometric Modeling and Control of a
Reaction Mass Biped

5.1 Reaction Mass Biped Model
Inverted Pendulum based reduced-order models offer many valuable insights into the much harder
problem of bipedal locomotion. While they help in understanding leg behavior during walking,
they fail to capture the natural balancing ability of humans that stems from the variable rotational
inertia on the torso. In an attempt to overcome this limitation, we introduce a new Reaction Mass
Biped (RMB) model. It is a generalization of the previously introduced Reaction Mass Pendulum
(RMP), which is a multi-body inverted pendulum model with an extensible leg and a variable
rotational inertia torso. The dynamical model for the RMB is hybrid in nature, with the roles of
stance leg and swing leg switching after each cycle. It is derived using a variational mechanics
approach and is therefore coordinate-free. The RMB model has thirteen degrees of freedom, all of
which are assumed to be actuated.

(a) RMB Model (b) Rotations (c) Actuation

Figure 5.1: A schematic of the RMB model.
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Physical description of the RMB Model

As shown in Fig.5.1(a), RMB consists of two extensible legs whose lengths are ρ1 and ρ2 as
measured from the RMB CoM. The CoM of both the legs is assumed to coincide with the RMB
CoM. Moreover,for some nominal length ρ0, the moment of inertia for the legs is given by JL0.
The legs can extend up to a max distance r from ρ0. The torso is made up of three pairs(depicted
in green) of reaction masses s1,s2,s3,respectively. Each pair is arranged along an orthogonal axis
ei of the torso’s body-fixed frame. With one each on either side of the RMB CoM , they are
constrained to move equidistantly so that the torso CoM always coincides with the RMB CoM. In
Fig. 5.1(b), the frames of reference used in this study are depicted and they are defined in Table
5.1. We assume full actuation for the RMB model, as shown in Fig. 5.1(c). τ1 rotates the ankle
joint at the stance foot along pitch, roll and yaw directions w.r.t. the inertial frame {I}. f1 is the
force used to extend the telescopic stance leg. τD1 ∈ R3 rotates torso frame {P}w.r.t the stance leg
frame {L1}. Similarly, τD2 ∈ R3 rotates swing leg frame {L2} w.r.t the torso frame {P}. Finally,
us ∈ R3 actuates the reaction masses pairs on the torso. It is the motion of these point-masses that
induces variability into the torso’s inertia.

Stance Dynamics (or) Fixed-base Robot Model

We develop a coordinate-free dynamic model for the stance phase of the Reaction Mass Biped,
as shown in Fig. 5.1(a), by using rotation matrices to represent the attitudes of the two legs,
R1, R2, and the torso, RP , along with scalars ρ1, ρ2 to represent the length of the two legs, and
si to represent the position of the ith pair of reaction masses. Note that, there are three pairs of
reaction-masses, all of which are mutually orthogonal. During the stance phase, the stance-leg is
assumed to be pinned to the ground. The configuration manifold of the system is then given by
Qs = C × SO(3) × SO(3) × SO(3) × S × C, with ρ1, ρ2 ∈ C = [0, r], R1, RP , R2 ∈ SO(3),
s =

[
s1 s2 s3

]T ∈ S = [0, rs]× [0, rs]× [0, rs]. The symbols used in this section are tabulated
in Table 5.1.

We have the following kinematic relations in the system, Ṙ1 = R1Ω×1 , ṘP1 = RP1Ω×P1,
ṘP = RPΩ×P , Ṙ2P = R2PΩ×2P , Ṙ2 = R2Ω×2 , where, Ω1,Ω2,ΩP are the respective body angu-
lar velocities, and are related by

ΩP = ΩP1 +R
T

P1Ω1, where, RP1 = R
T

1RP , (5.1)

Ω2 = Ω2P +R
T

2PΩP , where, R2P = R
T

PR2. (5.2)

Here, the (.)× is called the hat operator and it is used to map angular velocities from R3 to so(3)
(the Lie algebra of SO(3)). Next, we derive an expression for the kinetic energy of the system,
Ts : TQs → R. We do this by first finding the position of the center-of-mass (COM) of the stance
leg, b, and the positions of the reaction mass pairs, pi±, in the inertial frame {I} as follows,

b = ρ1R1e3, pi± = b± siRP ei.

The dot product of their velocities can then be respectively computed as,

||ḃ||2 = ρ̇2
1 − ρ2

1ΩT
1 (e×3 )2Ω1 (5.3)

||ṗi+||2 + ||ṗi−||2 = 2
(
||ḃ||2 + ṡ2

i − s2
iΩP (e×i )2ΩP

)
, (5.4)
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where (·)× : R3 → so(3) is the skew operator, defined such that x×y = x × y,∀x, y ∈ R3. The
kinetic energy of the system is then given by Ts = T1 + TP + T2, where, T1, T2 are the kinetic
energies of the two legs respectively, and TP is the kinetic energy of the torso, computed as,

T1 =
1

2
mL||ḃ||2 +

1

2
ΩT

1 JL0Ω1,

TP =
1

2
mP

(
3∑
i=1

||ṗi+||2 + ||ṗi−||2
)

+
1

2
ΩT
PJP0ΩP ,

T2 =
1

2
mL||ḃ||2 +

1

2
ΩT

2 JL0Ω2.

Thus, the total kinetic energy of the system is,

Ts =
1

2
mρ̇2

1 +
3∑
i=1

mP ṡ
2
i +

1

2
ΩT

1 J1(ρ1)Ω1 +
1

2
ΩT
PJP (s)ΩP +

1

2
ΩT

2 JL0Ω2, (5.5)

where,

J1(ρ1) = JL0 +K1(ρ1), K1(ρ1) = −mρ2
1(e×3 )2, m = 2mL + 6mP ,

JP (s) = JP0 +KP (s), KP (s) = −2
∑3

i=1mP s
2
i (e
×
i )2.

Remark 5.1.1. Note that, the length of the swing leg, ρ2 does not appear in the kinetic energy of the
system, and as we will consequently see, it will not appear in the dynamics either. This is because
of representing COM of the swing leg at the hip. Moving COM location to half-way along the
leg will ensure the swing leg length velocity appears in the kinetic energy, thereby introducing an
additional dynamical equation for ρ2. The dynamical model and the controller developed here can
easily be extended to incorporate a variable swing leg length, at the cost of adding another degree
of freedom and some complexity to the dynamics. Here we treat the simpler case by assuming the
swing leg length to be constant. The swing leg’s rotation does appear in the kinetic energy through
Ω2.

Having developed an expression for the kinetic energy, we next compute the Potential Energy,
Us : Qs → R, as,

Us = −mgρ1R
T
1 e3 · e3. (5.6)

Note that the negative sign arises due to our convention of e3 being along the direction of uniform
gravity.

The Lagrangian of the system Ls : TQs → R is then given by Ls = Ts−Us. The equations of
motion can then be computed through the Lagrange-d’Alembert principle by writing the variation
of the action integral as,∫ (

δLs + η1 · τ1 + δρ1f1 + ηP1 · τD1 +
3∑
i=1

δsiusi + ηP2 · τD2

)
, (5.7)
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mL ∈ R Mass of either Leg at Hip Joint
mP ∈ R Mass of Reaction masses
m ∈ R Mass of the entire system
JL0 ∈ R3×3 Inertia matrix of either leg with respect to the body-fixed frame when

leg length is its nominal value ρ0

JP0 ∈ R3×3 Inertia matrix of the torso with respect to the body-fixed frame
{I} Inertial frame at the stance foot
{L1} Body frame of the stance leg at the hip joint
{P} Body frame of the torso at the hip joint
{L2} Body frame of the swing leg at the hip joint
ρ1 ∈ C ⊂ R Distance between CoM of the stance leg and its ankle
ρ0 ∈ C ⊂ R Constant distance between CoM of the swing leg and the hip joint
R1 ∈ SO(3) Rotation matrix of the stance leg from the body-fixed frame to the

inertial frame {I}
RP ∈ SO(3) Rotation matrix of the torso from the body-fixed frame to the inertial

frame {I}
R2 ∈ SO(3) Rotation matrix of the swing leg from the body-fixed frame to the

inertial frame {I}
RP1 ∈ SO(3) Rotation matrix of the torso from the body-fixed frame {P} to the

stance leg body-fixed frame {L1}
R2P ∈ SO(3) Rotation matrix of the swing leg from the body-fixed frame {L2} to

the torso body-fixed frame {P}
Ω1 ∈ R3 Angular velocity of the stance leg in the body-fixed frame
Ω2 ∈ R3 Angular velocity of the swing leg in the body-fixed frame
ΩP ∈ R3 Angular velocity of the torso in the body-fixed frame
si ∈ S ⊂ R Position of the i’th reaction mass
e3 ∈ R3 Standard unit vector along the gravity direction (downward) in the

inertial frame

Table 5.1: Enumeration of the symbolic notation used to develop RMB Model.

where the first term in the integral represents the variation of the Lagrangian, computed using the
following variations on SO(3),

δR1 = R1η
×
1 , η1 ∈ R3, δΩ1 = Ω×1 η1 + η̇1, (5.8)

δRP = RPη
×
P , ηP ∈ R3, δΩP = Ω×PηP + η̇P , (5.9)

δR2 = R2η
×
2 , η2 ∈ R3, δΩ2 = Ω×2 η2 + η̇2, (5.10)

and, all the other subsequent terms in the integral representing the infinitesimal virtual work, where,

ηP1 = ηP −RT
PR1η1, ηP2 = η2 −RT

2RPηP .

For more details and illustrations of the actuators, please refer to Fig. 5.1(c). The dynamical
equations of motion can then be obtained by setting the above integral to zero for all possible
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variations, resulting in,

mρ̈1 = −mρ1ΩT
1 (e×3 )2Ω1 +mgeT3R

T
1 e3 + f1, (5.11)

J1(ρ1)Ω̇1 = −Ω1 × J1(ρ1)Ω1 + 2mρ1ρ̇1(e×3 )2Ω1

+ mgρ1e
×
3 R

T
1 e3 + τ1 −RT

1RP τD1 , (5.12)

JP (s)Ω̇P = −ΩP × JP (s)ΩP −N(s, ṡ)ΩP

+ τD1 −RT
PR2τD2 , (5.13)

2mP s̈ = −L(s,ΩP ) + us, (5.14)

JL0Ω̇2 = −Ω2 × JL0Ω2 + τD2 , (5.15)

where, N(s, ṡ) =
d

dt
KP (s) = 4mP diag {s2ṡ2 + s3ṡ3, s1ṡ1 + s3ṡ3, s1ṡ1 + s2ṡ2},

and, L(s,ΩP ) =
∂

∂s
(
1

2
ΩT
P KP ΩP ) = 2mP

s1(Ω2
P2

+ Ω2
P3

)
s2(Ω2

P3
+ Ω2

P1
)

s3(Ω2
P1

+ Ω2
P2

)

 .
We can rewrite the above dynamical equations in a matrix form (useful for the impact model)

by defining qs =
(
ρ1, R1, RP , s, R2

)
, and ωs =

[
ρ̇1 Ω1 ΩP ṡ Ω2

]T . Thus, using qs,ωs, the
equations of motion can be rewritten as

Ds(qs)ω̇s = Hs(qs,ωs) + Bsus,

where, Ds(qs) = diag (m, J1(ρ1), JP (s), 2mP I, JL0), and

Hs(qs,ωs) =


−mρ1ΩT

1 (e×3 )2Ω1 +mgeT3R
T
1 e3

−Ω1 × J1(ρ1)Ω1 + 2mρ1ρ̇1(e×3 )2Ω1 +mgρ1e
×
3 R

T
1 e3

−ΩP × JP (s)ΩP + 4
∑3

i=1mP siṡi(e
×
i )2ΩP

−L(s,ΩP )
−Ω2 × JL0Ω2

 ,

Bs(qs) =


I 0 0 0 0
0 I −RT

1RP 0 0
0 0 I 0 −RT

PR2

0 0 0 I 0
0 0 0 0 I

 ,us =


f1

τ1

τD1

us
τD2

 .
Remark 5.1.2. Note that the stance dynamics of the Reaction Mass Biped is fully actuated due to
the ankle torque τ1 at the stance foot.

Extended Dynamics or Floating-base Robot Model

Having derived the stance dynamics of the Reaction Mass Biped system, where the stance leg is
pinned to the ground, we now develop the extended model, where the foot is no longer pinned to
the ground. This model is required to formulate the discrete-time impact model that captures the

44



Figure 5.2: Reaction Mass Biped Model for the Extended Dynamics or the Floating base case.
Here, xP is the hip position while xF1, xF2 are the stance and swing leg positions, respectively. In
the flight phase, we assume that both ρ1 = ρ2 = ρ0 i.e., both legs don’t extend but only rotate.

dynamics of swing foot impact with the ground. The extended model is illustrated in Figure 5.2,
and has the configuration manifold Qe = R3 × SO(3) × SO(3) × S × SO(3). The kinetic and
potential energies, Te : TQe → R,Ue : Qe → R can be derived in a similar manner as in the stance
dynamics, resulting in,

Te =
1

2
mẋP · ẋP +

3∑
i=1

mP ṡ
2
i +

1

2
ΩT

1 JL0Ω1 +
1

2
ΩT
PJP (s)ΩP +

1

2
ΩT

2 JL0Ω2, (5.16)

Ue = −mgxP · e3. (5.17)

The dynamics of motion can be obtained through application of the Lagrange-d’Alembert
principle as outlined earlier. We will directly write this in matrix form by first defining, qe =(
R1, RP , s, R2, xP

)
, and ωe =

[
Ω1 ΩP ṡ Ω2 ẋP

]T , where xP is the position of the hip in the
inertial frame. We then have,

De(qe)ω̇e = He(qe,ωe) + Be(qe)ue,

where, De(qe) = diag (JL0 , JP (s), 2mP I, JL0 ,m),

He(qe,ωe) =


−Ω1 × JL0Ω1

−ΩP × JP (s)ΩP + 4
∑3

i=1mP siṡi(e
×
i )2ΩP

−L(s,ΩP )
−Ω2 × JL0Ω2

mge3

 , (5.18)
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Be(qe) =


−RT

1RP 0 0
I 0 −RT

PR2

0 I 0
0 0 I
0 0 0

 , ue =

τD1

us
τD2

 . (5.19)

Remark 5.1.3. Note that the extended dynamical model of the reaction mass biped is under-
actuated. This is in contrast to the stance dynamical model, which is fully actuated.

Impact Model

We will next develop the discrete-time impact model that captures the impact of the swing foot
with the ground. The impact model results in an instantaneous change in the joint velocities of the
system. In order to capture this, we will first need to map the stance coordinates to the extended
coordinates, perform the impact in the extended coordinates, map the extended coordinates to the
stance coordinates while accounting for the relabeling that occurs as the old swing leg becomes
the new stance leg.

First, to map the stance coordinates to the extended coordinates, we need to find xP , ẋP in
terms of the stance coordinates. Since the stance foot is on the ground, xP = ρ1R1e3. From this
we obtain, ẋP = ρ̇1R1e3 + ρ1R1Ω×1 e3. We will write this as the following map,

qe = Υq
s→e(qs), ωe = Υω

s→e(ωs).

For later use, we will denote the map from the extended coordinates to the stance coordinates
(assuming the first leg’s foot is in contact with the ground) as,

qs = Υq
e→s(qe), ωs = Υω

e→s(ωe).

This map essentially computes ρ1 from xP as, ρ1 = ||xP ||.
Next we model the impact map. By considering (q−e ,ω

−
e ) to be the state prior to impact, and

(q+
e ,ω

+
e ) to be the state post impact, and Fext representing the external force, we have the following

relation from [138],
D(q+

e )ω+
e −D(q−e )ω−e = Fext.

Further, the swing foot position and velocity are given as,

xF2 = xP + ρtd2 R2e3, ẋF2 = ẋP − ρtd2 R2(e3)×Ω2,

where ρtd2 is the value of ρ2 at touchdown (note that ρtd2 is a constant and has no dynamics since ρ2

can instantaneously change.) We require the post impact swing foot velocity ẋ+
F2

= 0, since this
foot now becomes the new stance foot. This can be expressed as Aω+

e = 0, where,

A =
[
0 0 0 −ρtd2 R+

2 (e3)× I
]
.

Further, denoting IR as the impact force at the swing foot, we have Fext = AT IR. The above
equations can then be expressed in matrix form to solve for ω+

e and IR,[
ω+
e

IR

]
=

[
De(q

+
e ) −AT

A 0

]−1 [−De(q
−
e )ω−e

0

]
. (5.20)
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We can then define a map Γ such that ω+
e = Γ(ω−e ).

The impact map can then be defined by the map ∆s→s : S → TQ, where S = {xs ∈
TQs | (ρ2R2e3 − ρ1R1e3) · e3 = 0} is the switching surface representing the contact of the swing
leg toe with the ground. We have,

∆s→s :=

[
∆q
s→s

∆ω
s→s

]
,

where, the components ∆q
s→s and ∆ω

s→s define the transition maps for the configuration variables
and their velocities, respectively. These are obtained from the above equations as follows:

∆q
s→s := Υq

e→s ◦ R ◦Υq
s→e,

∆ω
s→s := Υω

e→s ◦ R ◦ Γ ◦Υω
s→e,

whereR represents a coordinate relabeling transformation such that the old swing leg is labeled as
the new stance leg and vice-versa.

Hybrid System Model

The hybrid model for walking is based on the stance dynamics and the impact model developed in
the previous sections, and can be represented as follows:

Σ :

{
Dsω̇s = Hs(qs,ωs) + Bs(qs)us, (q−s ,ω

−
s ) /∈ S,

(q+
s ,ω

+
s ) = ∆s→s(q

−
s ,ω

−
s ), (q−s ,ω

−
s ) ∈ S.

5.1.1 Discrete Mechanics and Variational Integrator for RMB
In general, for hybrid dynamical models like the RMB, conventional numerical integrators, based
on explicit Runge-Kutta method, are used for determining the system’s flow based on the continuous-
time Euler-Lagrange equations that were derived in Section 5.1. However, this procedure results
in the loss of some fundamental geometric properties of the system such as, inherent manifold
structure, symplecticity, and the momentum map. Special integrators exist to either preserve man-
ifold structure of the configuration space [139, 140] or simplecticity [141, 142]. Recently, Lee et
al [143, 144] integrated these two techniques and devised Geometric Variational Integrators (GVI)
that are capable of preserving both geometry and structure of the discrete flow. In this section, we
develop a discrete mechanics model of the RMB by taking variations of the corresponding discrete
action sum. The resulting update rules form the discrete equations of motion and they used to
construct a GVI for the RMB system.

Discrete Lagrangian

The Lagrangian is discretized with a fixed step size, h ≥ 0, and the subscript k determines the
value at any iteration, as tk = kh. Therefore, the configuration manifold of the RMB at any
time tk is given as Qs = C × SO(3) × SO(3) × SO(3) × S × C, with configuration variables
ρ1k , ρ2k ∈ C = [0, r], R1k , RPk

, R2k ∈ SO(3), sk =
[
s1k s2k s3k

]T ∈ S.
For the discrete-time kinematic relations, the linear velocity ẋk at tk can be approximated as

shown
ẋk ≈

∆xk
h

=
xk+1 − xk

h
. (5.21)
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Similarly, from the rotational kinematic relations in Section 5.1, the discrete analogue of angular
velocity is

Fk = ehΩ×
k , so that Rk+1 = RkFk. (5.22)

Using (5.22) and (5.21), we get the following first order discrete equations for the RMB,

R1k+1
= R1kF1k , RPk+1

= RPk
FPk

, R2k+1
= R2kF2k , (5.23)

ρ1k+1
= ρ1k + hρ̇1k , sk+1 = sk + hṡk. (5.24)

F1k ∈ SO(3) Rotation matrix that shifts the stance leg from configuration R1k to
R1k+1

during kth time-step
FPk
∈ SO(3) Rotation matrix that shifts the torso from configuration RPk

to RPk+1

during kth time-step
F2k ∈ SO(3) Rotation matrix that shifts the swing leg from configuration R2k to

R2k+1
during kth time-step

Table 5.2: Notations used in the discrete mechanics of RMB
The symbols specific to the discrete mechanics are tabulated in Table 5.2. We derive the discrete

versions of both kinetic (Ts) and potential (Us) energies of the system next. The discrete version
of potential energy Usk : Qs → R is given as Usk = −mgρ1ke

T
3R

T
1k
e3, and the kinetic energy,

defined as Tsk : TQs → R, is given as,

Tsk =
1

2
(mρ̇2

1k
+

3∑
i=1

mP ṡ
2
ik

+ ΩT
1k
J1(ρ1k)Ω1k + ΩT

Pk
JP (sk)ΩPk

+ ΩT
2k
JL0Ω2k). (5.25)

The discrete Lagrangian Lk approximates the path of least action, which is obtained by inte-
grating the Lagrangian along the exact solution of the equations of motion for a single time step,

Lk ≈
∫ h

0

Ldt = L(ρ1k , sk,Ω1k ,ΩPk
,Ω2k)h = Tsk − Usk . (5.26)

Substituting (5.25) in (5.26) gives

Lk = h
2
[ρ̇1k ṡk Ω1k ΩPk

Ω2k ]T


m

2mP I
J1(ρ1k)

JP (sk)
JL0



ρ̇1k

ṡk
Ω1k

ΩPk

Ω2k

+

hmgρ1ke
T
3R

T
1k
e3, (5.27)

where J1(ρ1k) = JL0−mρ2
1k

(e×3 )2, JP (sk) = JP0−2
∑3

i=1mP s
2
ik

(e×i )2. Similar to its continuous-
time counterpart, the discrete-time version of the Lagrange-d’Alembert principle states that the
action sum, which approximates the action integral, is invariant to the first order of all possible
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variations, as shown in (5.28). Integrators that maintain this invariance are called Variational In-
tegrators. Additionally, if they also maintain the structure of the configuration manifold, they are
called GVIs.

δSd =
N−1∑
k=0

δLk + δWk = 0, where N =
tF − t0
h

. (5.28)

Here, t0, tF are the start and end times of the integration, respectively. To compute the above,
we have to first determine the infinitesimal variations for Rk and Ωk, as shown in [70],

δRk = lim
ε→0

Rk exp (εη×k ) = Rkη
×
k , (5.29)

δFk = hδΩ×k exp (hΩ×k ) = hδΩ×k Fk, (5.30)

=⇒ δΩ×k =
1

h
δFkF

T
k =

1

h
((Fkηk+1)× − η×k ),

∴ δΩk =
1

h
((Fkηk+1)− ηk). (5.31)

Additionally, the variations of ρ̇1k and ṡk are,

δ ˙ρ1k =
δρ1k+1

− δρ1k

h
, δṡk =

δsk+1 − δsk
h

. (5.32)

The infinitesimal virtual work done and Lagrangian can be discretized using the discrete in-
finitesimal variations obtained above as follows:

δWk = h(f1kδρ1k + uTskδsk + τT1kη1k + τTD1k
ηP1k + τTD2k

ηP2k),

δLk = h[ρ̇1k ṡk Ω1k ΩPk
Ω2k ]T


m

2mP I
J1(ρ1k)

JP (sk)
JL0



δρ̇1k

δṡk
δΩ1k

δΩPk

δΩ2k


−hmρ1kΩT

1k
(e×3 )2Ω1kδρ1k − h2mP

∑3
i=1 sikΩT

Pk
(e×i )2ΩPk

δsik
+hmgδρ1ke

T
3R

T
1k
e3 + hmgρ1ke

T
3 δR

T
1k
e3. (5.33)

Now, we map all the velocities to their corresponding momentum terms and continue the
rest of this derivation in terms of the momenta. Let, pρ1k = mρ̇1k , psk = 2mP ṡk, Π1k =
J1(ρ1k)Ω1k , ΠPk

= JP (sPk
)ΩPk

, and Π2k = JL0Ω2k . Accordingly, the discrete action sum in
(5.28) can be rewritten using (5.33) as,

δSd =
∑N−1

k=0 [ΠT
1k
δΩ1k +MT

k δR1k + ΠT
Pk
δΩPk

+ ΠT
2k
δΩ2k +

pρ1k (δρ1k+1
− δρ1k)− hmρ1kΩT

1k
(e×3 )2Ω1kδρ1k +Nkδρ1k +∑3

i=1 psik (δsik+1
− δsik)− h2mP sikΩT

Pk
(e×i )2ΩPk

δsik + δWk] = 0. (5.34)
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where, Mk =
∂Usk
∂R1k

and Nk =
∂Usk
∂ρ1k

. We can substitute (5.33), and the variations (5.29),(5.31), and
(5.32) in (5.34) to obtain the discrete action sum in terms of the variations δυk := [η1k ηPk

η2k δρ1k δsk].
The fact that variations vanish at end points, i.e., δυk = 0 if k = {0, N}, and an appropriate re-
indexing of terms allows us to reformulate (5.34) as,

N−1∑
k=1

[(F T
1k−1

Π1k−1
− Π1k +MT

k R1k + hτ1k − hRP1kτD1k)Tη1k

(F T
Pk−1

ΠPk−1
− ΠPk

+ hτD1k − hRP2kτD2k)Tηpk +

(F T
2k−1

Π2k−1
− Π2k + hτD2k)Tη2k +

(pρ1k−1
− pρ1k − hmρ1kΩT

1k
(e×3 )2Ω1k +Nk + hf1k)δρ1k +

3∑
i=1

(psik−1
− psik − h2mP sikΩT

Pk
(e×i )2ΩPk

+ huik)δsik ] = 0. (5.35)

Since (5.35) is true for any δυk, we require that the expressions each of in the parentheses to
be equal to zero. They are indeed the discrete-time equations of motion for the RMB in terms of
the momenta. Finally, we can map back from the momentum terms to the velocity terms to get the
equations of motion in terms of the velocities as shown below:

J1k+1
Ω1k+1

= F T
1k

(J1kΩ1k) + hmgρ1k+1
e×3 R

T
1k+1

e3 + hτ1k+1
− hRP1k+1

τD1k+1
(5.36)

JPk+1
ΩPk+1

= F T
Pk

(JPk
ΩPk

) + hτD1k+1
− hRP2k+1

τD2k+1
(5.37)

JL0Ω2k+1
= F T

2k
(JL0Ω2k) + hτD2k+1

(5.38)

mρ̇1k+1
= mρ̇1k − hmρ1k+1

ΩT
1k+1

(e×3 )2Ω1k+1
+ hmgeT3R

T
1k+1

e3 + hf1k+1
(5.39)

2mP ṡk+1 = 2mP ṡk − hL(sk+1,ΩPk+1
) + huk+1 (5.40)

The discrete-time Lagrangian flow map takes us from
(Ω1k ΩPk

Ω2k ρ̇1k ṡk) 7→ (Ω1k+1
ΩPk+1

Ω2k+1
ρ̇1k+1

ṡk+1), and this process is repeated for N steps.
Note that, unlike in [143, 144], this is an explicit method and doesn’t require custom Rodrigues
formula-based gradient descent methods, and is therefore faster.

Advantages of Geometric Variational Integrators are listed below.

1. GVIs preserve important mechanical properties like energy conservation (for conservative
systems), momentum conservation (where there is symmetry), while ensuring that the dy-
namics evolves in the configuration manifold of the system.

2. They can be easily implemented in hardware and the equations are inherently discrete-time.

3. This structure preserving property is also useful when building controllers based on energy-
like Lyapunov functions, as shown in this work.

4. Moreover, the performance does not degrade even for long simulation times.
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5.1.2 Motion Planning and Control
Motion Planning for Moving between Ground Locations

Consider a trajectory connecting two ground points with known initial and final velocities; there are
many ways to generate this trajectory while avoiding fixed obstacles. The motion of the torso center
of mass, when projected on the horizontal (ground) plane, should closely follow this generated
trajectory. Assuming that this trajectory is known a priori, a stride length that is optimal (or natural)
for the RMB is used to determine the number of steps required to cover the path length. If ls is the
optimal stride length and pl is the path length of the trajectory, then the nearest integer to pl/ls can
be used as the number of strides required to cover this trajectory.

Desired trajectories (motion primitives) for variables associated with the RMB legs in time
interval [0, T ] are:

ρd1 = ρ0 + ρ̄ sin(ωt), ω =
π

T
, ρ0 > ρ̄ > 0,

Rd
1 = R10 exp

(
ζ×1 sin(ωt/2)

)
,

ρd2 = ρ0,

Rd
2 = R20 exp

(
ζ×2 sin(ωt/2)

)
.

(5.41)

Note that the constant vectors ζ1, ζ2 ∈ R3 for the leg rotations could be equal, and something
similar could be said for R10 , R20 ∈ SO(3) when the biped is standing erect. Also, ρ0 and ρ̄ are
related to the optimal stride length for the biped. The desired trajectories for variables associated
with the torso over the time interval [0, T ] are:

Rd
P = Rd

1 exp
(
γ log

(
(Rd

1)TRd
2

))
, γ ∈ [0, 1],

sd = s0 + s̄ sin(ωt),
(5.42)

where s0, s̄ ∈ R3 are designed to have the appropriate inertia distribution for the torso as mentioned
earlier with |s0i| > |s̄i|, log : SO(3)→ so(3) is the logarithm map that is inverse of the exponential
map (given by the matrix exponential), and γ is a weight factor. Note that Rd

P = Rd
1 when γ =

0 and Rd
P = Rd

2 when γ = 1. The reasoning behind introducing these weights is to mimic
human bipedal gait, where the body (torso) becomes more closely aligned with the alignment
of the stance leg as the speed of bipedal motion increases. By making γ and ω time-varying, one
can even transition between different speeds of bipedal motion. This is one of the future goals of
this research.

The stride length is given by the horizontal distance traversed by the ankle joint of the swing
leg in one cycle. The desired stride length can be obtained from the above desired motions for the
swing leg, considering that the inertial position of the ankle/foot of the swing leg at an instant is
given by

aL2 = aL1 + ρ1R1e3 − ρ2R2e3, (5.43)

where aL1, aL2 denote the positions of the ankles of the stance and swing leg, respectively. With
the coordinate frames as illustrated in Fig. 5.1 and substituting equation (5.41) for the desired
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motion trajectories, the starting and end positions of the swing leg ankle during a cycle are:

asL2 = aL1 + ρ0R10e3 − ρ0R20e3,

aeL2 = aL1 + ρ0R10 exp(ζ×1 )e3 − ρ0R20 exp(ζ×2 )e3

(5.44)

Therefore the stride length is given by

aeL2 − asL2 = ρ0R10

(
exp(ζ×1 )− I

)
e3 + ρ0R20

(
I − exp(ζ×2 )

)
e3. (5.45)

Using Rodrigues’ rotation formula, the above expression can be simplified to

vds = ρ0R10

{
ζ̂×1 sin ‖ζ1‖+

(
ζ̂×1
)2

(1− cos ‖ζ1‖)
}
e3

− ρ0R20

{
ζ̂×2 sin ‖ζ2‖+

(
ζ̂×2
)2

(1− cos ‖ζ1‖)
}
e3, (5.46)

where vds denotes the desired stride vector, and ζ̂1, ζ̂2 denote the unit vectors along ζ1, ζ2 respec-
tively. This sets the desired stride length to lds = ‖vds‖. Note that the constraint eT3 v

d
s = 0 must be

satisfied, which imposes certain constraints on R10 , R20 , ζ1 and ζ2. Substituting (5.46) for vds , this
constraint is expressed as

ΓT10
{
ζ̂×1 sin ‖ζ1‖+

(
ζ̂×1
)2

(1− cos ‖ζ1‖)
}
e3 =

ΓT20
{
ζ̂×2 sin ‖ζ2‖+

(
ζ̂×2
)2

(1− cos ‖ζ1‖)
}
e3, (5.47)

where Γ10 = RT
10
e3, Γ20 = RT

20
e3.

Expression (5.47) can be satisfied by setting

ζ1 = ζ2 and R20 = exp(θe×3 )R10 , (5.48)

for θ ∈ S1. The second equality in (5.48) guarantees that Γ10 = Γ20; physically, it means that
the initial orientations of the stance and swing legs during start of a cycle are related by a rotation
about the inertial third axis that points up. Substituting (5.48) in (5.42) to simplify the expression
for Rd

P in (5.42), one obtains:

(Rd
1)TRd

2 = exp
(
− c(t)ζ×1

)
RT

10
R20 exp

(
c(t)ζ×1

)
= exp

(
− c(t)ζ×1

)
exp

(
θ(RT

10
e3)×

)
exp

(
c(t)ζ×1

)
= exp

(
θ
(

exp(−c(t)ζ×1 )RT
10
e3

)×)
, (5.49)

where c(t) = sin(ωt/2). The above simplification uses the following relation multiple times:

RT exp(φe×)R = exp
(
φ(RT e)×

)
,

where e ∈ S2 is a unit vector. This leads to the following simplified expression for Rd
P :

Rd
P = Rd

1 exp
(
γθ
(

exp(−c(t)ζ×1 )RT
10
e3

)×)
, (5.50)

which can then be expanded using Rodrigues’ formula.
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Trajectory Tracking Control Scheme

Define the trajectory tracking errors:

ρ̃1 = ρ1 − ρd1, ˙̃ρ1 =
d

dt
ρ̃1,

Q1 = R1(Rd
1)T , Ω̃1 = Ω1 − Ωd

1,

QP = RP (Rd
P )T , Ω̃P = ΩP − Ωd

P ,

s̃ = s− sd, ˙̃s =
d

dt
s̃,

Q2 = R2(Rd
2)T , Ω̃2 = Ω2 − Ωd

2.

(5.51)

The trajectory tracking control scheme is a generalization of the control scheme in [145]. The
Lyapunov function candidate for the stance leg is:

VL1(ρ1, ρ̃1, Q1, ˙̃ρ1, Ω̃1) =
1

2
m ˙̃ρ2

1 +
1

2
Ω̃T

1 J1(ρ1)Ω̃1 +
1

2
kρ̃2

1

+ Φ
(
tr(A− AQ1)

)
, (5.52)

where k > 0, A = diag(a1, a2, a3) with a1 > a2 > a3 > 0, and Φ : R → R is a C2 function that
satisfies Φ(0) = 0 and Φ′(x) > 0 for all x ∈ R+. Furthermore, let Φ′(·) ≤ α(·), where α(·) is a
Class-K function [146]. The Lyapunov function candidate for the torso of the RMB is:

VP (QP , Ω̃P , s, s̃, ˙̃s) =
1

2
Ω̃T
PJP (s)Ω̃P +mP

˙̃sT ˙̃s+
1

2
s̃TP s̃

+ Φ
(
tr(A− AQP )

)
. (5.53)

The Lyapunov function candidate for the swing leg is:

VL2(Q2, Ω̃2) =
1

2
Ω̃T

2 JL0Ω̃2 + Φ
(
tr(A− AQ2)

)
, (5.54)

where JL0 is the inertia of swing leg at its nominal length (ρ0), which is kept constant during
swing phase, and P,Q1, QP , Q2 are suitable positive definite matrices that are use to build valid
Lyapunov functions. The time derivative of these Lyapunov functions along the stance dynamics
of the RMB system are evaluated next.

The time derivative of VL1 along dynamics (5.11)-(5.12) is:

d

dt
VL1(ρ1, ρ̃1, Q1, ˙̃ρ1, Ω̃1) = ˙̃ρ1

[
f1 −mρ1ΩT

1

(
e×3
)2

Ω1

+mgeT3 Γ1 −mρ̈d1 + kρ̃1

]
+ Ω̃T

1

[
− Ω1 × J1(ρ1)Ω1 + 2mρ1ρ̇1

(
e×3
)2

Ω1 +mgρ1e
×
3 Γ1

+ τ1 −RT
1RP τD1 − J1(ρ1)Ω̇d

1 −mρ1ρ̇1

(
e×3
)2

Ω̃1

+ Φ′
(
tr(A− AQ1)

)
(Rd

1)TS(Q1)
]
, (5.55)
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where Γ1 = RT
1 e3 is the inertial z-axis direction (upwards) in the stance leg’s body-fixed frame

and S : SO(3)→ R3 is defined by

S(Q) =
3∑
i=1

aiQ
T ei × ei. (5.56)

After some partial cancellations of terms, this expression can be rewritten as

d

dt
VL1(ρ1, ρ̃1, Q1, ˙̃ρ1, Ω̃1) = ˙̃ρ1

[
f1 −mρ̈d1 −mρ1Ω1

(
e×3
)2

Ω1 +mgeT3 Γ1 + kρ̃1

]
+ Ω̃T

1

[
τ1 −RT

1RP τD1 − Ωd
1 × J1(ρ1)Ω1 +mρ1ρ̇1

(
e×3
)2(

Ω1 + Ωd
1

)
+mgρ1e

×
3 Γ1 + Φ′

(
tr(A− AQ1)

)
(Rd

1)TS(Q1)
]
. (5.57)

The time derivative of VP along the dynamics (5.13)-(5.14) is:

d

dt
VP (QP , Ω̃P , s, s̃, ˙̃s) = Ω̃T

P

[
JP (s)ΩP × ΩP + τD1 −N(s, ṡ)ΩP −RT

PR2τD2

− JP (s)Ω̇d
P +

1

2
N(s, ṡ)Ω̃P + Φ′

(
tr(A− AQP )

)
(Rd

P )TS(QP )
]

+ ˙̃sT
[
L(s,ΩP )− 2mP s̈

d + P s̃+ us

]
, (5.58)

where N(s, ṡ) = d
dt
KP (s) and ṡTL(s,ΩP ) = 1

2
ΩT
PN(s, ṡ)ΩP . After some partial cancellation of

terms, one can simplify expression (5.58) to

d

dt
VP (QP , Ω̃P , s, s̃, ˙̃s) = Ω̃T

P

[
τD1 −RT

PR2τD2 − JP (s)Ω̇d
P − Ωd

P × JP (s)ΩP

− 1

2
N(s, ṡ)

(
ΩP + Ωd

P

)
+ Φ′

(
tr(A− AQP )

)
(Rd

P )TS(QP )
]

+ ˙̃sT
[
us + L(s,ΩP )− 2mP s̈

d + P s̃
]
. (5.59)

Finally, the time derivative of VL2 along dynamics (5.15) is

d

dt
VL2(Q2, Ω̃2) =

1

2
Ω̃T

2

(
− Ωd

2 × JL0Ω2 + τD2 − JL0Ω̇
d
2

+ Φ′
(
tr(A− AQ2)

)
(Rd

2)TS(Q2)
)
. (5.60)

Theorem 5.1.1. Let ` > 0 and let D1, DP , D2, P,Q ∈ R3×3 be positive definite matrices. Then
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the tracking control laws

f1 = mρ̈d1 +mρ1ΩT
1

(
e×3
)2

Ω1 −mgeT3 Γ1 − kρ̃1 − ` ˙̃ρ1, (5.61)

τ1 = RT
1RP τD1 + J1(ρ1)Ω̇d

1 + Ωd
1 × J1(ρ1)Ω1 −mgρ1e

×
3 Γ1

−mρ1ρ̇1

(
e×3
)2(

Ω1 + Ωd
1

)
− Φ′

(
tr(A− AQ1)

)
(Rd

1)TS(Q1)−D1Ω̃1, (5.62)

τD1 = RT
PR2τD2 + Ωd

P × JP (s)ΩP + JP (s)Ω̇d
P −DP Ω̃P

+
1

2
N(s, ṡ)

(
ΩP + Ωd

P

)
− Φ′

(
tr(A− AQP )

)
(Rd

P )TS(QP ), (5.63)

us = 2mP s̈
d − L(s,ΩP )− P s̃−Q ˙̃s, (5.64)

τD2 = Ωd
2 × JL0Ω2 + JL0Ω̇

d
2 −D2Ω̃2 − Φ′

(
tr(A− AQ2)

)
(Rd

2)TS(Q2), (5.65)

asymptotically stabilize a desired state trajectory of the form given by equations (5.41)-(5.42).
Further, the trajectory’s domain of convergence is almost global in the state space in the absence
of control constraints, force/torque disturbances.

Proof: Consider the Lyapunov function

V (ρ̃1, Q1, ˙̃ρ1, Ω̃1, QP ,ΩP , s, ṡ, Q2, Ω̃2) = VL1(ρ1, ρ̃1, Q1, ˙̃ρ1, Ω̃1)

+ VP (QP , Ω̃P , s, s̃, ˙̃s) + VL2(Q2, Ω̃2), (5.66)

which captures the three coupled components: the stance leg, torso, and swing leg, of the RMB.
The time derivative of this Lyapunov function is obtained by substituting expressions (5.67), (5.68)
and (5.69) for the time derivatives of VL1 , VP , and VL2 respectively. Further substitutions of the
control laws (5.61)-(5.65) in these expressions gives the time derivatives along trajectories of the
feedback tracking system

V̇L1( ˙̃ρ1, Ω̃1) = −` ˙̃ρ2
1 − Ω̃T

1L1Ω̃1, (5.67)

V̇P (Ω̃P , ˙̃s) = −Ω̃T
PLP Ω̃P − ˙̃sTQ ˙̃s, (5.68)

V̇L2(Ω̃2) = −Ω̃T
2L2Ω̃2. (5.69)

This makes the time derivative of the overall Lyapunov function negative semi-definite:

V̇ ( ˙̃ρ1, Ω̃1, Ω̃P , ˙̃s, Ω̃2) = −` ˙̃ρ2
1 − Ω̃T

1L1Ω̃1 − Ω̃T
PLP Ω̃P − ˙̃sTQ ˙̃s− Ω̃T

2L2Ω̃2. (5.70)

Assuming that the desired motion trajectories are bounded and continuous, as is the case with
the desired motions given by (5.41)-(5.42), then V as given by (5.66) is positive definite and is
bounded above and below by suitably chosen positive definite functions of the trajectory tracking
error states. Therefore, invoking invariance-like principle given by Theorem 8.4 in [146], one can
conclude that V̇ converges asymptotically to zero. Therefore, the positive limit set for the feedback
tracking control system is a subset of

V̇ −1(0) =
{

(ρ̃1, Q1, ˙̃ρ1, Ω̃1, QP ,ΩP , ˙̃s,Q2, Ω̃2) : ˙̃ρ1 = 0,

Ω̃1 = 0, Ω̃P = 0, ˙̃s = 0, Ω̃2 = 0
}
. (5.71)
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The feedback dynamics can be expressed in terms of the tracking errors as follows:

m ¨̃ρ1 = −` ˙̃ρ1 − kρ̃1, (5.72)

J1(ρ1) ˙̃Ω1 = −Ω̃1 × J1(ρ1)Ω1 +mρ1ρ̇1

(
e×3
)2

Ω̃1 −D1Ω̃1

− Φ′
(
tr(A− AQ1)

)
(Rd

1)TS(Q1), (5.73)

JP (s) ˙̃ΩP = −Ω̃P × JP (s)ΩP −
1

2
N(s, ṡ)Ω̃P −DP Ω̃P

− Φ′
(
tr(A− AQP )

)
(Rd

P )TS(QP ), (5.74)

2mP
¨̃s = −Q ˙̃s− P s̃, (5.75)

JL0

˙̃Ω2 = −Ω̃2 × JL0Ω2 −D2Ω̃2

− Φ′
(
tr(A− AQ2)

)
(Rd

2)TS(Q2). (5.76)

Therefore in the set V̇ −1(0), the feedback dynamics is restricted to

ρ̃1 = 0, Φ′
(
tr(A− AQ1)

)
= 0, Φ′

(
tr(A− AQP )

)
= 0,

s̃ = 0, and Φ′
(
tr(A− AQ2)

)
= 0, (5.77)

which characterizes the positive limit set of the feedback tracking system. Note that within the set
of four critical points Ec of Φ

(
tr(A − AQ)

)
, it can be shown, as in [69, 68, 147], that Q = I is

the minimum, while the other points (Q ∈ Ec \ I) are non-degenerate critical points. Therefore, as
V̇ ≤ 0 along the trajectories of the feedback system, the only stable subset of the positive limit set
is when the actual motion is tracking the desired motion, i.e.,

ρ̃1 = 0, Q1 = I, QP = I, s̃ = 0, and Q2 = I. (5.78)

The other subsets (corresponding to Q1, QP , Q2 ∈ Ec \ I) are unstable, although they may have
stable subsets. Except for trajectories that start on these stable subsets of the positive limit set, all
other trajectories in the state space converge asymptotically to the desired state trajectory. This
means that the set SL is asymptotically stable and its domain of attraction is almost-global. �
Note that, this trajectory tracking control scheme can be applied in general to track all C2 desired
state trajectories, provided that actuator constraints are not violated. In practice, the desired state
trajectories can be designed keeping in mind known actuator constraints for the RMB or for a
humanoid robot being modeled by the RMB.

5.2 Numerical Results
Having developed a geometric controller for asymptotically tracking trajectories, we now validate
the proposed controller through a numerical simulation of the hybrid model developed in Section
5.1.

To illustrate the capability of the controller, we will demonstrate (a) walking in a straight line,
(b) walking towards a goal location, and (c) walking in a circle. In all cases, we choose a constant
desired torso angle leaning forward, this is in contrast to (5.42) to simplify velocity and acceleration
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Figure 5.3: Numerical simulations of the controller for (a) Walking along a straight line, (b) Walk-
ing towards a goal location by changing the yaw-angle in an event-based step-to-step manner, and
(c) Walking in a circle while leaning inwards, with the hip trajectory shown in green. For all these
cases, first row shows simulation snapshots. The second row shows error plots to study controller
behavior. The errors include those defined in (5.51). Third row shows ground reaction force plots.
Since the legs have point contact with the ground, we assume the friction forces (Fx and Fy) to be
isotropic, and |Fx|

Fz
≤ 0.6 and |Fy |

Fz
≤ 0.6. Assuming the coefficient of static friction to be greater

than 0.6, RMB satisfies the no slip condition at the stance leg for all the three trajectories. Fourth
row shows the energy plots for the closed-loop dynamics of the RMB walking. Finally, in the the
fifth row, we show the ankle torque (τ1) generated for the three walking trajectories. The x-axis for
all the plots is Time(in seconds).
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computation. The mass and inertia properties of the reaction mass biped are chosen to be similar
to that of a NAO robot, as done in [145], in particular,

mL = 0.882kg, JL0 = 0.5diag{0.98, 0.91, 0.63}kg-m2,

mP = 0.32kg, JP0 =

 0.2126 0.0004 −0.0002
0.0004 0.2042 0.0010
−0.0002 0.0010 0.2246

 kg-m2.

Motion Primitive Parameters
ρ0 = 0.9, ρ̄ = 0.1, s = 0.125, s̄ = 0.025.

Controller Tuning Parameters
ε = 0.25, k = 16

ε2
, l = 8

ε
, A = 1

ε2
diag(1.2, 1.5, 1.8), L = (1.5)(1.2)diag(1, 1, 1),

D1 = 2
ε
diag(1, 1, 1), D2 = 0.5

ε
diag(1, 1, 1), P = 1.2

ε2
diag(1, 1, 1), Q = 1.5

ε
diag(1, 1, 1).

Table 5.3: List of various tuning parameters used in the Motion Primitive and Controller designs.

Walking in a straight line : We chose ζ1 = ζ2 = e2, R10 = R20 = I , and T = 1s as in (5.41).
Moreover, we introduce a constant phase offset in the angles for Rd

1, R
d
2 to enable the swing legs

to swing from −15◦ to 15◦. For all other motion design and controller gain parameters, see Table
5.3. Figure 5.3a illustrates a snapshot and the tracking errors.

Walking towards a goal : We employ the walking in a straight line controller as above, however,
we perform an event-based modification of R10, R20 at each impact to change the heading of the
biped. Figure 5.3b illustrates a snapshot and the tracking errors. Note that at each impact, the
desired yaw instantaneously changes and the controller is able to regulate the errors asymptotically
within a step.

Walking in a circle : We employ the walking towards a goal controller as above, however we
modify R10, R20 by a fixed amount at each impact. Moreover, R10, R20 are also chosen to lean the
body into the turn. Figure 5.3c illustrates a snapshot (along with the hip position demonstrating
the body lean) and the tracking errors. Note that instead of modifying R10, R20, we could have
modified ζ1, ζ2 too.

For all these motions, it is important to verify that the unilateral ground contact constraints
and the friction constraints are satisfied during the walking, i.e., we need to ensure |Fx| ≤ µFz
and |Fy| ≤ µFz, where µ is the coefficient of static friction. The ground reaction forces were
computed as, FG = mẍcm − mge3, where FG := [Fx Fy Fz] and xcm is the center-of-mass of
the RMB. It is equally critical to verify these constraints for the impact forces (IR in Section
2.3) generated at the end of every step. Note that, the above-mentioned three motions namely
a) ’walking in a straight line’, b) ’walking towards a goal’ and c) ’walking in a circle’, take 10,
13, 19 steps respectively. In all these impact situations, we note that IRz is always positive (≥
1.6019 N ). Moreover, the maximum values of |IRx |

IRz
and

|IRy |
IRz

are 0.5872 and 0.5888, respectively,
both occurring while walking in a circle.
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Combining the impact-force data with the stance leg ground reaction force information, as
shown in the third row of Fig. 5.3a, 5.3b, 5.3c, we can conclude that, for µ ≥ 0.6, the ground
reaction force and the impact force respect the unilateral and friction cone constraints, thereby
validating the assumptions that 1) stance leg is pinned to the ground during stance-phase and 2)
No slip occurs at impact.
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Figure 5.4: Comparing the performance of GVI with Runge-Kutta 45 based Integrator. In (a)
RMB starts along the desired walking trajectory and a nominal controller is in action for tracking
purposes. However, in (b), RMB starts with an initial error in its configuration.

In addition to testing the trajectory tracking controller on the continuous-time dynamics model
of the RMB, it was also tested on the Discrete-time model developed in Section 5.1.1. Figure 5.4
shows the performance of the GVI in comparison to the traditional Runge-Kutta(4,5)-based in-
tegrator (RK45). RK45 is a very popular numerical integration algorithm based on the explicit
Runge-Kutta formula [148]. It is also part of Matlab’s ODE suite [149].

In Fig. 5.4(a), the two integrators are compared for a two-step walking scenario where the
robot is initialized along the desired nominal trajectory(here, we chose the ’walking in a circle’
trajectory) given by (5.41) and (5.42): qs0 = (ρ0, R10 , RP0 , s0, R20). On the other hand, in 5.4(b),
we start with a perturbed initial conditions: qperts0

= (ρ0 + 0.1, Rx(π/10)R10 , RP0 , s0, R20) and
ωperts0

= (ρ̇0,Ω10 ,ΩP0 + 0.01, ṡ0 − 0.03,Ω20). Here Rx(θ) denotes a rotation along the x-direction
by an angle θ. For both these cases, we plot (a) the desired leg extension tracking error (ρ̄) as
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obtained from (5.51) , (b) discrete Lyapunov function (obtained by discretizing (5.52), (5.53) and
(5.54)) given by (5.79), and (c)-(d) R1, R2 norm errors. The norm errors are computed as ||I −
RT
i Ri|| ∀i ∈ {1, 2}. If the group structure (R ∈ SO(3)) of R1 and R2 is preserved during the

numerical integrations, the norm errors must be closer to zero.

Vk(ρ̃1k , Q1k ,
˙̃ρ1k , Ω̃1k , QPk

,ΩPk
, s̃k, ˙̃sk, Q2k , Ω̃2k) = VL1k

(ρ1k , ρ̃1k , Q1k ,
˙̃ρ1k , Ω̃1k)

+ VPk
(QPk

, Ω̃Pk
, sk, s̃k, ˙̃sk) + VL2k

(Q2k , Ω̃2k) (5.79)

where,

VL1k
(ρ1k , ρ̃1k , Q1k ,

˙̃ρ1k , Ω̃1k) =
1

2
m ˙̃ρ2

1k
+

1

2
Ω̃T

1k
J1(ρ1k)Ω̃1k +

1

2
kρ̃2

1k
+ Φ

(
tr(A− AQ1k)

)
,

VPk
(QPk

, Ω̃Pk
, sk, s̃k, ˙̃sk) =

1

2
Ω̃T
Pk
JP (sk)Ω̃Pk

+mP
˙̃sTk ˙̃sk +

1

2
s̃TkP s̃k + Φ

(
tr(A− AQPk

)
)
,

VL2k
(Q2k , Ω̃2k) =

1

2
Ω̃T

2k
JL0Ω̃2k + Φ

(
tr(A− AQ2k)

)
. (5.80)

Note that, for this study the step size chosen for the GVI and RK45 was h = 10−3. From the
third and fourth rows of Fig. 5.4, it is can be noted that the variational integrator maintained the
group structure much better than the RK45 Integrator. On further examination, it was found that the
GVI kept the norm error within 10−12 which is orders of magnitude better than RK45. Moreover,
other parameters like configuration errors(ρ̄), energies, etc., as computed using the discrete GVI-
based system model, track the continuous dynamics as accurately as the discrete-model based on
RK45, if not better.

5.3 Summary
In this chapter, we introduced a new reduced-order legged robot model, called the RMB, to study
bipedal motions that leverage variable torso inertia to exhibit non-trivial and human-like rotational
maneuvers in 3D. A Hybrid Geometric Model is developed by applying variational principles
directly on the configuration manifold of the robot. The resulting dynamics are coordinate-free
with no singularity issues. The variable torso inertia helps to capture the dynamics involving
torso rotation, arm movements, etc. which are omitted in existing reduced-order models. We
also outlined a geometric and variational discretization procedure for the RMB that guarantees
preservation of critical structural properties during integration even for long simulation cycles. The
preserved properties include physical ones like energy conservation (for conservative systems),
momentum conservation (when there is symmetry in the Lagrangian), and geometric ones like
the manifold structure of the robot’s configuration space. This structure preserving property is
also useful when building controllers based on energy-like Lyapunov functions, as shown in this
work. On the control design front, we defined geometric motion plans for the RMB model to
walk straight and in a circle (with a significant torso lean-in angle of 300). We also developed
tracking controllers to achieve these desired motions using control lyapunov functions and showed
that they are asymptotically stable. Additionally, the geometric control policy is also discretized
variationally to highlight the preservation of the energy-like Lyapunov function structure that is
critical to the controller’s performance. Finally, we note that the controllers introduced for the
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RMB can only be applied to robot models assuming full actuation, i.e. any flat-footed humanoid
robot.
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Chapter 6

Geometric Modeling and Control of Cassie
Robot

Cassie is one of the more popular bipedal robot platforms in active research today. Recently, re-
searchers have developed controllers for standing and 3D walking [150] for this robot. The latest
in this line of work is multi-modal locomotion using Cassie [20]. Here, the objective is speed-up
Cassie on flat terrains using wheeled platforms with an eye towards time-sensitive applications.
This approach is also more energy-efficient. Walking is therefore limited to climbing steps or nav-
igating unstructured terrain. Our current objective is to develop suitable model-based controllers
to realize a diverse range of transverse plane motions using this wheeled-leg-platform.

6.1 Geometric Model of Cassie Robot

mb ∈ R Pelvis Mass
mhr ∈ R Mass at the right hip
mhl ∈ R Mass at the left hip
mkr ∈ R Mass at the right knee
mkl ∈ R Mass at the left knee
m ∈ R Total robot mass m = mb +mhr +mhl +mkr +mkl

Jb ∈ R3×3 Pelvis Inertia
Jr ∈ R3×3 Inertia of right leg
Jl ∈ R3×3 Inertia of left leg

e1 ∈ R3 Unit vector along X-axis in the Inertial frame
e2 ∈ R3 Unit vector along Y-axis in the Inertial frame
e3 ∈ R3 Unit vector along Z-axis in the Inertial frame

Table 6.1: List of notations used in this section and their definitions

As a first step, we develop a free-floating, coordinate-free bipedal model with almost the same
kinematic structure as Cassie, as shown in Fig. 6.1. We strike a balance between geometric mod-
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Figure 6.1: The geometric model schematic of Cassie robot.

eling complexity and real world applicability by modeling knees as prismatic joints, similar to the
Linear Inverted Pendulum model [3]. Second, we do not model the toe joints and feet as their mass
and inertia are negligible. Following the mass-less toe assumption, we fix the leg length to be twice
that of the leg center of mass length (from the hip). The leg lengths as denoted as ρr and ρl for the
right and left legs, respectively. Next, we denote the base center-of-mass position as xb.

The leg and pelvis (base) orientations are represented using rotation matrices, Rr, Rl, Rb, re-
spectively, where the subscripts r and l stand for right and left legs. Accordingly, The configuration
manifold of the robot is Q = SE(3) × SO(3) × SO(3) × R+ × R+. The robot has 14 degrees
of freedom in total of which only 8 are actuated. Mass and inertia parameters are defined with
notations in Table. 6.1

6.1.1 Floating-base Dynamics
Having described the salient attributes of this robot, we now derive it’s kinematics,

Ṙb = RbΩ̂b, Ṙrb = RrbΩ̂rb, Ṙlb = RlbΩ̂lb, (6.1)

where, Ωb, Ωr, Ωl are the respective body angular velocities. Ωlb is the body angular rate of the left
leg relative to the base. It is given by,

Ωlb = Ωl −RT
lbΩb,where, Rrb = RT

l Rr. (6.2)

Here, RT
lb is called the transport map and is used to correctly compare two velocities that are

evolving on different tangent spaces. This is characteristic to non-euclidean manifolds.
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Using these kinematic relations, and using forward kinematics, we compute hip (phr/phl) and
knee positions (pkr/pkl) and velocities for each leg. Having obtained the position kinematics of
all the states with masses, we can compute the kinetic and potential energies accordingly and
finally formulate the system Lagrangian. Using calculus of variations on the SO(3) manifold
space and invoking the Lagrange-d’Alembert principle, we can obtain the equations of motion.
The equations can be compacted by defining q = [xb Rb Rr Rl ρr ρl], ω = [ẋb Ωb Ωr Ωl ρ̇r ρ̇l]

T ,
and u = [τrb τlb fr fl]

T , to get,

D(q)ω̇ = C(q, ω) +G(q) +B(q)u, (6.3)

where,

B =


0, 0, 0, 0
−RT

rb, −RT
lb, 0, 0

I, 0, 0, 0
0, I, 0, 0
0, 0, 1, 0
0, 0, 0, 1

 , G =


mge3

03×3

mkrgρkrê3R
T
r e3

mklgρklê3R
T
l e3

mkrge
T
3Rre3

mklge
T
3Rle3

 ,

C =



mkrρrcRrΩ̂rê
T
3 Ωr +mklρlcRlΩ̂lê

T
3 Ωl + 2mkrρ̇rcRrê

T
3 Ωr + 2mklρ̇lcRlê

T
3 Ωl,

Ω̂bJ̃bΩb + 2mkrρbρ̇rcê2Rrbê
T
3 Ωr − 2mklρbρ̇lcê2Rlbê

T
3 Ωl+

mkrρbρrcê2RrbΩ̂rê
T
3 Ωr −mklρbρlcê2RlbΩ̂lê

T
3 Ωl,

Ω̂rJrΩr +mkrρ
2
rcê3Ω̂rê

T
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T
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Ω̂lJlΩl +mklρ
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T
3 Ωl + 2mklρlcρ̇lcê3ê

T
3 Ωl +mklρlcρbê3R
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l RbΩ̂bê

T
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T
l RbΩ̂bê
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2 Ωb


,

D =



mI, 03×3, D13, D14, D15, D16

03×3, J̃b, D23, D24, D25, D26

DT
13, DT

23, J̃r, 03×3, 03×1, 03×1

DT
14, DT

24, 03×3, J̃l, 03×1, 03×1

DT
15, DT

25, 01×3, 01×3, mkr, 0
DT

16, DT
26, 01×3, 01×3, 0, mkl

 ,

D13 = mkrρrcRrê
T
3 , D23 = mkrρbρrcê2Rrbê

T
3 ,

D14 = mklρlcRlê
T
3 , D24 = mklρbρlcê

T
2Rlbê

T
3 ,

D15 = mkrRre3, D25 = mkrρbê2Rrbe3,

D16 = mklRle3, D26 = mklρbê
T
2Rlbe3.
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Here, J̃b = Jb + mρ2
b ê2ê

T
2 , J̃r = Jr + mkrρ

2
krê3ê

T
3 , J̃l = Jl + mklρ

2
klê3ê

T
3 are the effective

inertias experienced by the pelvis, right and left legs, respectively.

6.1.2 Holonomic Constraints
After obtaining the dynamical model, we define suitable holonomic constraints to restrict the dy-
namics to satisfy the unilateral ground contact constraints. These constraints need to be applied on
the floating-base dynamics for model both walking and riding (on Hovershoes) motions.

Foot Positions and Velocities

To obtain the constraint jacobian, we use forward kinematics to first obtain foot positions and
velocities. They are,

pfr = xb − ρbRbe2 + ρrRre3,

pfl = xb + ρbRbe2 + ρlRle3,

ṗfr = ẋb − ρbRbê
T
2 Ωb + ρ̇rRre3 + ρrRrê

T
3 Ωr,

ṗfl = ẋb + ρbRbê
T
2 Ωb + ρ̇lRle3 + ρlRlê

T
3 Ωl.

(6.5)

Next, we define ṗf = [ṗfr ṗfl]
T and express the forward kinematics in the matrix form as,

ṗf =

[
I −ρbRbê

T
2 ρrRrê

T
3 0 2Rre3 0

I ρbRbê
T
2 0 ρlRlê

T
3 0 2Rle3

]
︸ ︷︷ ︸

=:Jc

ω, (6.6)

∴ ṗf = Jc ω. (6.7)

Ground Contact Constraints

For the robot to always remain on the ground, we need that the z-component of all the positions in
pf to be zero. This can be imposed as,

hc(q) := eT3 pf ≡ 0, (6.8)

ḣc := eT3 Jc ω = 0, (6.9)

ḧc := eT3 (J̇c ω + Jc ω̇) = 0, (6.10)

ḧc := J̇cz ω + J̇cz ω̇ = 0, s.t. Jcz = eT3 Jc. (6.11)

Upon imposing the ground contact constraints, the constrained dynamics have the form,

D(q)ω̇ = C(q, ω) +G(q) +B(q)u+ JTczλ. (6.12)

By substituting (6.11) in (6.12), we can calculate λ in terms of q, ω, u,

λ = −(JczD
−1JTcz)

−1(JczD
−1(C(q, ω) +G(q) +B(q)u) + J̇cz ω̇). (6.13)

Note that, we also need to ensure that λ ≥ 0 as the constraint is unilateral. To guarantee that
our inputs preserve these holonomic constraints, we only use the constrained dynamics in control
design. The constrained dynamics are,
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Dc(q)ω̇ = Cc(q, ω) +Gc(q) +Bc(q)u, (6.14)

where, Dc = JczD, Cc = JczC, Gc = JczG, Bc = JczB, respectively. In other words, we operate
strictly in the null space of JTcz.

Having defined the coordinate-free constrained dynamical model of Cassie, in the next section,
we define suitable propulsion forces at the foot to complete our Cassie-Hovershoes modeling.

6.1.3 Cassie with Hovershoes
Here, we first briefly summarize the Hovershoe dynamics which will be used later to model the
combined system.

Figure 6.2: Hovershoe model with pitch(uθ) and yaw(uψ) actuation.

Dynamical Model of Hovershoes

Hovershoe is a sensitive wheeled platform. It has an internal controller that regulates the pitch
to zero degrees when external force is zero. The internal parameters and states of the Hovershoe
are unknown. Moreover, system identification was not possible to estimate model parameters.
Keeping this in mind, we mainly focused on identifying the structure of its dynamics to use in the
control design. To develop a closed-loop dynamical model, we consider θ, ψ, uθ, uψ to be the pitch
and yaw angles and the corresponding torques in the body frame, and x, y to be the x, y positions
in the global frame, and lastly, v to be the scalar speed along the e1 direction in the body frame.
Accordingly the dynamics are,

Jθθ̈ = −c1θ − c2θ̇ + uθ, (6.15)

Jψψ̈ = −c3ψ̇ + uψ, (6.16)
ẋ = v cos(ψ), (6.17)
ẏ = v sin(ψ), (6.18)

mv̇ = c4θ. (6.19)

Here, the parameters (c1, c2, c3) correspond to the Hovershoe internal controller, and c4 corre-
sponds to the contact model between the Hovershoe and the ground. The same dynamics are used
for both the left and right Hovershoes.
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Nonholonomic Constraints

In addition to the unilateral ground contact constraints, the Hovershoes attachment adds two more
constraints to the full system dynamics. At the feet, no instantaneous velocities are allowed in the
lateral direction. Unlike ground contacts, these constraints are nonholonomic and bilateral. Using
the foot kinematics defined in (6.5), we express these velocity constraints as,

hnh(q, ω) := eT2

[
RT
r

RT
l

]
ṗf ≡ 0. (6.20)

Similar to (6.11), in order to impose these constraints, we also set ḣnh to zero and derive the
corresponding constraint forces λnh and the jacobian Jnh that must be added to the dynamics in
(6.14). Therefore we have,

ḣc :=
(∂hnh
∂q

)
︸ ︷︷ ︸
=:∂qJnh

q̇ +
(∂hnh
∂ω

)︸ ︷︷ ︸
=:Jnh

ω̇. (6.21)

Here, Jnh = ∂hnh

∂ω
or the term that corresponds to ω̇. Observe that, the first partial derivative,

∂qJnh, in (6.21) is non trivial. Unlike in (6.11), this extra term is not a function of ω but of q̇. Here,
q̇ depends on both q and ω i.e., q̇ = [ẋb RbΩ̂b RrbΩ̂rb RlbΩ̂lb ρ̇r ρ̇l]

T . It has the same state size as q.
Further upon deriving the Jacobians, we have,

Jnh = eT2

[
RT

r −ρbRT
rbê

T
2 ρrê

T
3 0 2e3 0

RT
l ρbR

T
lbê

T
2 0 ρrê

T
3 0 2e3

]
,

∂qJnh =

[
0 −ρb(Ω̂be2)T ⊗RT

r −ρb(e2)T ⊗ (Ω̂T
b R

T
r ) 03×9 2Ω̂re3 0

0 ρb(Ω̂be2)T ⊗RT
l 03×9 ρb(e2)T ⊗ (Ω̂T

b R
T
l ) 0 2Ω̂le3

]
.

(6.22)

Here, ⊗ operator is a kronecker product between a vector in R3 and a matrix R3×3. We can
calculate λnh as,

λnh = −(JnhD
−1JTnh)

−1(JnhD
−1(C(q, ω) +G(q) +B(q)u) + ∂qJnhq̇). (6.23)

Finally with a slight abuse of notation, we redefine the constrained dynamics as in (6.14). How-
ever, the new constraint jacobian used is Jc = [Jcz; Jnh]. After applying both the holonomic and
nonholonomic constraints the Cassie-Hovershoes system’s effective degrees-of-freedom reduces
from 14 to 10. As a next step, we add propulsive forces at Cassie’s feet to abstract Hovershoes
actuation in the body-frame e1 direction.

Propulsive Forces at the Feet

We add Hovershoes propulsion forces to Cassie based on Assumption 6.1.1.
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Assumption 6.1.1. Assume a rigid contact between Cassie’s feet and the Hovershoes such that
Cassie’s toe pitch and the hip rotation inputs can be equated to uθ, uψ of the Hovershoe. This
assumption is valid when λ > 0 and there is no slip at the Cassie-Hovershoe contact interface.

Note that, our Cassie geometric model in (6.3) doesn’t consider either feet or toe joint actuation.
We add this to the model in the form of a force at the foot. This is inspired from equation (6.19)
in the Hovershoe dynamics. This force, fv, is directly proportional to toe pitch angle from equa-
tion (6.19) assuming a rigid contact between Cassie’s foot and the Hovershoe. Accordingly, we
define two forces fvr and fvl for the right and left feet. Note that, these forces are always acting
along the x-direction (along e1) in the Hovershoe local frame. By including these additional forces,
we define an augmented input vector ū = [τrb τlb fr fl fvr fvl]

T and the corresponding new input
matrix B̄ = [B J̄Tc ], where J̄c = eT1 Jc. Finally, the constrained Cassie-Hovershoe dynamics are,

Dc(q)ω̇ = Cc(q, ω) +Gc(q) + B̄c(q)ū, s.t. B̄c = JczB̄ (6.24)

In the next section, we use this dynamical model to develop a geometric controller that can be
used to both stabilize Cassie on Hovershoes or track desired transverse plane trajectories.

6.2 Motion Planning and Control
The Cassie-Hovershoes system can be treated as a car-like system capable of all transverse-plane
motions. Additionally, it can also change body height (crouch to pass through a low ceiling) and
step-width (to ride over low-height ground obstacles). Simple PD controllers that exhibit these be-
haviors have been presented in [20]. Another key-feature desired from Cassie-Hovershoes system
is the ability to turn in place to retrace its path when it stumbles upon a dead-end. This is useful
while performing exploratory mapping tasks and the current controllers fail to turn in place. More-
over, current methods [20] control joints independently and mainly rely on heavy gain-tuning and
accurate initialization to achieve expected performance. In contrast, a systematic control design
for whole-body motion of the Cassie-Hovershoes system with convergence guarantees and ability
to recover from large initialization errors is attempted here.

6.2.1 Motion Planning
For turning in place, we define a suitable turning velocity for the pelvis along the e3 axis as Ωd

bz,
keeping the angular velocities about e1 and e2 zero. Therefore, we have Ωd

b = [0 0 Ωd
bz]

T , where
Ωd
bz can be proportional to number of turns desired in a given time duration. Further, we desire

that the relative angular velocities of both legs w.r.t the pelvis remain zero i.e., Ωd
rb = Ωd

lb = 0.
We keep the leg lengths, pelvis and leg configurations constant during the motion. Therefore, the
desired trajectories (or motion primitives) for the Cassie-Hovershoes systems turning in place in a
time interval [0, T ] are:

Ωb = [0 0
2πk

T
]T ,Ωrb = 0,Ωlb = 0, (6.25)

Additionally, we keep Rd
b , R

d
rb, R

d
lb, x

d
b , ẋ

d
b constant. Having defined suitable motion plans to

generate in place turning motions, we can design a suitable controller that can track them next.
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6.2.2 Control Design
As a fist step, we transform (6.24) into its control-affine form as,

ω̇ = D−1
c (Cc +Gc)︸ ︷︷ ︸

=:fc

+D−1
c (B̄c)︸ ︷︷ ︸
=:gc

ū (6.26)

where, fc and gc are defined above to represent the dynamics in the control affine form. According
to the motion plans specified in (6.25) a total for 10 outputs are defined, one for pelvis height
and three each for the pelvis, right leg and left leg angular velocities, respectively, as summarized
below:

y := h(q, qd) = H(q)−Hd(qd)→ 0. (6.27)

where, h = [h1, h2, h3, h4], and each hi is defined as follows:

• Desired Vertical Height: h1 = eT3 (xb − xdb),

• Desired Pelvis Angular Velocity: h2 = Ωb − (RT
b R

d
b)Ω

d
b ,

• Desired Right Leg Angular Velocity w.r.t Pelvis: h3 = Ωrb − (RT
rbR

d
rb)Ω

d
rb,

• Desired Left Leg Angular Velocity w.r.t Pelvis: h4 = Ωlb − (RT
lbR

d
lb)Ω

d
lb.

Note that, to define the outputs h2, h3, and h4, we used the geometric error functions introduced
earlier in Section 4.3 (see (4.18)). We can use the same here to complete the control design
defining a geometric PD scheme for tracking outputs y.

y = v, s.t. v =


kp1(xb − xdb) + kd1(ẋb − ẋdb)
kp2eR(Rb, R

d
b) + kd2eΩ(Ωb,Ω

d
b)

kp3eR(Rrb, R
d
rb) + kd3eΩ(Ωrb,Ω

d
rb)

kp4eR(Rlb, R
d
lb) + kd4eΩ(Ωlb,Ω

d
lb)

 , (6.28)

where, eR = 1
2
[RT

dR−RTRd]
∨ and eΩ = Ω− (RTRd)Ωd are geometric configuration and angular

rate errors introduced in [136, 133, 137]. Note that, by choosing a PD controller over a feedback
linearization based controller, we trade-off efficiency for greater robustness [13, 58]. This is par-
ticularly useful as we have sufficient model uncertainty in the form unknown Hovershoes internal
model parameters and simplified leg dynamics of Cassie (i.e., using piston-like legs instead of
knees).

6.2.3 Simulation Results
We numerically test the model and controller performance by using Cassie robot model params
obtained from [151]. We desire a rest-to-rest in place turning manuever which can be made time-
varying. Accordingly, set Ωd

b(t) = 2πk
T
t where k is the number of turns we desire. Similarly, we

can also vary body height over time to make the motion more dynamic, xdb = 1− 0.4 sin(2πt
T

). The
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total simulation time T is set to 2.5 seconds. Simulation snapshots are shown in Fig. 6.3. Base
states and their time evolution is plotted in Fig. 6.4. Note the exponential convergence to Ωd

b . The
time evolution of leg states was as expected and visualized in Fig. 6.3 and the plots are omitted for
brevity.

Figure 6.3: Snapshots of the robot turning in place.
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Figure 6.4: Base trajectories evolution in time: base orientation Rb(expressed using Euler angles)
and Ωb are shown on the left while position xb and velocity ẋb trajectories are shown on the right.

Having validated the controller performance in simulation, we will discuss experimental testing
and results in the next section.

6.3 Robot Experiments
This section briefly summarizes preliminary experimental results using geometric controllers on
the Cassie Robot and the Cassie-Hovershoes System.

6.3.1 State Estimation
We use the onboard IMU to obtain the pelvis (base) angular rates expressed in the body-frame
i.e., Ωb. We don’t use any sensing for base configuration. Stock controllers are used to initialize
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the robot at a desired standing pose and therefore we assume zero base configuration error at
initialization. Further, joint encoders are used to measure all the leg joint angles q defined in
Section 3.2 equation (3.13). To convert the desired leg heights ρr and ρl into corresponding knee
pitch (q4R, q5R) and shin (q4L, q5L) pitch angles, we use the inverse kinematics mappings provided
in the Cassie software release [151].

To convert the leg orientations and rates (w.r.t. base) from their Euler parametrizations to
coordinate-free representations we use the transfer maps R and Tq̇ defined in Section 4.2.2, equa-
tions (4.5) and (4.6).

6.3.2 Cassie Standing in place

Figure 6.5: Cassie standing.

As a first experiment, we test the geometric control laws on Cassie
for the task of standing in place. For this task, we only use the
feedback laws defined in (6.28). Here, the desired leg lengths
and toe pitch angles are set to their nominal values, the configu-
rations as Rd

b = Rd
rb = Rd

lb = I, and the angular velocities as
Ωd
b = Ωd

rb = Ωd
lb = 0. A snapshot of the robot standing using

this control implementation is shown in Fig. 6.5. Controller ro-
bustness was tested by providing minor pushes to the robot in the
lateral and forward directions. Note that, the same gains used in
the earlier Euler-parametrized controllers [20] were used here to
compare sensitivity to perturbations. For our pushing experiments,
we noted that the geometric PD controller had a greater error tol-
erance range than its Euler-parametrized counterpart. This simple
experiment served as an experimental sanity check for geometric
controller use.

(a) t = 0s (b) t = 2s (c) t = 4s (d) t = 6s (e) t = 8s (f) t = 10s

Figure 6.6: Snapshots of Cassie making two turns in place.

6.3.3 Cassie-Hovershoes turning in place
For the Cassie riding Hovershoes experiment, we use the same con-
trol structure mentioned above. We modify the desired Ωd

bz to 1.5 radians per second. Further, the
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desired toe pitch angles are proportional to the desired tangential velocities of the Hovershoes.
The velocity magnitudes are same but applied in opposite directions. For example, for turning
clockwise, left toe pitch is positive while the right toe pitch negative and vice versa. Finally,
|vd| = pdfyΩ

d
bz, where pdfy is the desired constant y-distance from the base to each foot in the base-

frame. Snapshots for the robot turning in place are shown in Fig. 6.6. Note that, for successful
execution of turns, the robot was very carefully made to stand on the Hovershoes such that its line
feet align perfectly with the center axes of the Hovershoes. The system is particularly sensitive to
these initialization errors as there is no means for the robot to correct them on-the-fly. Note that we
assume the legs to be pinned to the Hovershoes. There was also some body oscillation around the
standing pose while turning. The controller gains need to be tuned further to dampen this behavior.

6.4 Summary
A new Geometric Model is developed for the Cassie-Hovershoes multimodal robot to capture
motion dynamics that involve dramatic orientation changes like turning in place. Note that, this
is a challenging manuever to execute using a high center-of-gravity bipedal robot standing on
Hovershoes. Essentially, the system is a like a pair of 3D cart-poles connected by the pelvis.
Motion plans are devised in the transverse plane for the turning in place and geometric controllers
are designed to stabilize the erect robot pose while executing dynamic transverse plane motions.
These controllers are numerically and experimentally realized.
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Chapter 7

Part II Conclusions and Future Work

In Part II, Geometric Control for Dynamic Legged Robots, we first highlighted the advantages of
using geometric or coordinate-free formulations in modeling and control of robots. Specifically,
through exhaustive empirical testing of geometric and Euler-parametrized controllers for set-point
regulation of a 3D pendulum, we demonstrated that geometric controllers are generally more ef-
ficient. This was presented in Chapter 4. Building on this result, we introduced two new legged
robot models, (a) the Reaction Mass Biped (RMB) model and (b) the Cassie geometric model.

In Chapter 5, the RMB model was introduced to study bipedal motions that leverage variable
torso inertia to exhibit non-trivial and human-like rotational maneuvers in 3D. A Hybrid Geomet-
ric Model was developed by applying variational principles directly on the configuration manifold
of the robot. The resulting dynamics are coordinate-free with no singularity issues. The variable
torso inertia helps to capture the dynamics involving torso rotation, arm movements, etc. which are
omitted in existing reduced-order models. We also outlined a geometric and variational discretiza-
tion procedure for the RMB that guarantees preservation of critical structural properties during
integration even for long simulation cycles. The preserved properties include physical ones like
energy conservation (for conservative systems), momentum conservation (when there is symme-
try in the Lagrangian), and geometric ones like the manifold structure of the robot’s configuration
space. This structure preserving property is also useful when building controllers based on energy-
like Lyapunov functions, as shown in this work. On the control design front, we defined geometric
motion plans for the RMB model to walk straight and in a circle (with a significant torso lean-in an-
gle of 300). We also developed tracking controllers to achieve these desired motions using control
lyapunov functions and showed that they are asymptotically stable. Additionally, the geometric
control policy is also discretized variationally to highlight the preservation of the energy-like Lya-
punov function structure that is critical to the controller’s performance. Finally, we note that the
controllers introduced for the RMB can only be applied to robot models assuming full actuation,
i.e. any flat-footed humanoid robot.

Later, in Chapter 6, a geometric model was developed for the Cassie robot riding a pair of
Hovershoes. We used this model to plan and control challenging transverse-plane motions like
turning in place standing on Hovershoes. Note that the robot has a high center-of-gravity and
the it’s full 3D pose has to be stabilized while turning. The system is akin to a pair of 3D cart-
poles connected through the pelvis. The in place tuning motion plan and the geometric controllers
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designed to track it are both numerically and experimentally validated.

7.1 Future Directions
Several interesting directions emerge for extending this work. They are briefly summarized below:

7.1.1 Fast Navigation through Cluttered Environments
The RMB model can be used to generate walking motion plans involving body leans, aggressive
turning, etc. for humanoids like HRP [46], ATLAS [33] and ASIMO [44]. Similarly, the Cassie
robot model paired with Hovershoes can be used to generate faster and aggressive transverse plane
motions to quickly navigate through narrow corridors and other cluttered indoor environments.

7.1.2 Extend to other Legged Motions
In addition to bipedal robots, geometric modeling and control design can be applied to quadrupedal
robots as well to realize acrobatic motions like the back flip, somersault, etc. In [152], the authors
an MPC controller using a geometric lumped rigid body model of a quadruped using the ground
reaction forces as input. This can be expanded by modeling leg orientations as well (similar to
the bipedal robot models introduced in the previous chapters). This allows mid-air reorientation
planning and control unlike [152].

7.1.3 Trajectory Optimization
In Part II, the main emphasis was on modeling and control design. Motion plans were hand-
designed to highlight the advantages of our novel modeling choice and the corresponding control
design. However, to actually utilize these models and controllers on robots navigating in the real
world while avoiding obstacles, we require a more systematic approach. A promising line of future
work is trajectory optimization on manifolds for motion planning.

Trajectory optimization on Manifolds is currently an active area of research. It was applied for
optimal collision-free motion planing of a free-floating rigid body in [153] and subsequently ex-
tended to UAVs in [154]. Parallely, it has received much attention in the manipulation community
as well [155, 156].

However, extending these ideas to legged robot motion planning is non-trivial. Bipedal robots
are hybrid models, not fixed-based and inherently unstable. These additional constraints could
severely impact optimization convergence.

7.1.4 Geometric Control to Underactuated Legged Robots
The RMB model is fully actuated and the Cassie model, though underactuated in general, is fully
actuated for the specific case of riding on Hovershoes (after imposing the necessary holonomic and
nonholonomic constraints). However, in general, the continuous phase of dynamic walking can be
fully or partially underactuated (when there is a point or a line contact with the ground). This
makes control design and trajectory optimization even more challenging. HZD controllers [51]
leverage this underactuation to design and track virtual constraints that render the resulting zero
dynamics stable leading to limit cycle walking behaviors.
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These HZD controllers can be enhanced using geometric control formulations. For example,
consider a 3D legged robot with point feet and a torso. During stance phase, we can only control
the relative angles between the torso and either leg but not the absolute torso orientation. Instead
of treating the unactuated torso pitch and roll as independently evolving states, we can model the
torso orientation as a single state and stabilize it. We have already demonstrated that this is more
efficient using the 3D pendulum model in Chapter 4. The main challenge in extending geometric
control to HZD is the trajectory optimization part which is used to discover the lower dimensional
embedding where the zero dynamics is stable.
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Part III

Learning for Dynamic Legged Robots
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Chapter 8

Learning a Unified Walking Policy from
Gait Libraries

8.1 Introduction
Control design to realize dynamic and versatile motions still remains a challenge for bipedal robots.
Specifically, explicit modeling of ground contact is not possible. Even if the robot can be stabi-
lized within-stride (while stepping forward), the impact at the end of the step could potentially
destabilize the robot. Further, any within-stride perturbation or a drastic change in the desired ve-
locity aggravates this problem. However, we have made considerable progress in developing stable
limit-cycle walkers ([7]). i.e., robots that can maintain the commanded velocity or step length, in
addition to stabilizing while sustaining impacts. The objective of this work is to leverage this prior
work and enhance the ability of limit-cycle walkers to smoothly transit between velocity-specific
limit cycles, and thus, realize a continuum of velocities. This is achieved via learning a smooth
policy by regressing over the finite set of pre-optimized gaits. The resulting learned policy can be
used by a high-level planner to achieve full range navigation. Before going into the details of our
implementation, we first define the terms gait and gait parameter which will be used frequently in
the rest of this paper.

Definition 8.1.1. A gait parameter is a higher-level motion descriptor used for bipedal robot path
planning. Forward and lateral velocities, step length, step height, etc. are commonly used gait
parameters for legged robots. In this work, the chosen gait parameters are forward velocity, lateral
velocity and step height.

Definition 8.1.2. A gait ( [157]) is any locomotion behavior that is characterized by periodic
motion patterns. These motion patterns encode desired robot configurations that evolve in time.
Typically, gaits are parametrized using smooth curves, and particularly in this work, we use a
bézier curve parametrization for our gait.

In this work, we restrict our attention to hybrid zero dynamics (HZD) based gait design and
control which was introduced for 3D bipedal robots in [158]. This technique uniquely offers a
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general and mathematically rigorous procedure to generate asymptotically stable, fast and energy-
efficient gaits using the full robot model. It has been widely applied to a range of bipedal robots
like RABBIT ([32]), MABEL ([7]), DURUS ([159]), ATRIAS ([160]) and Cassie ([161]). For
a thorough review of this topic, see [113]. Note that, these periodic gaits are designed to achieve
either a fixed forward velocity or step-length while walking and running on a flat-ground. However,
to achieve robust walking over an uneven terrain, we desire a robust policy that can modulate
velocity by transiting between gaits. Recently, gait library method was proposed in [160] and
[162]. Similarly, to navigate on discrete terrain this technique was used to modulate step-length in
[163], both step-length and step-width in [164], and both step-length and step-height in [13]. In the
gait library method, a set of gaits are designed offline using a trajectory optimization toolbox like
FROST ([165]) and C-FROST ([112]) and the interpolation is used online to generate a continuum
of gaits from this set.

It was first proposed in [166] to learn a continuous control policy from gait libraries. Starting
from learning individual policies to command desired forward velocities, step-heights and lateral
velocities, they eventually learned a unified policy and successfully demonstrated robust walking
on uneven terrain using the ATRIAS bipedal robot in [166]. Additionally, they performed rigorous
analysis to offer stability and robustness guarantees on the learned policy in [167].

8.2 Learning-based Gait Policy
Cassie robot model and gait library design are already summarized in Section 3.2. In this section,
we build on that to present our gait library learning process. The objective is to learn a control
policy, GN : R3 → R120, to generate a dynamically feasible gait for the full robot model that is
parametrized using 120 bézier parameters. We call them gait features in the rest of this section. The
inputs are 3 gait parameters namely forward velocity, Vx, lateral velocity, Vy, and step height, SH .
These parameters encode a two-step gait, for each of the ten actuated robot joints using a degree
six bézier curve each. In addition to generating the gait prediction, Gait-Net is also jointly trained
to accurately reconstruct the gait parameters using the learned gait prediction. This serves two
purposes: 1) the reconstruction process serves as a regularization to the gait prediction process as
both errors are back-propagated during training, and, 2) the reconstruction loss at test-time serves
as a metric to evaluate gait prediction quality.

For clarity, we denote the gait parameters and gaits used for training as pi and bi, respectively.
Accordingly, we denote the gait prediction and the reconstructed gait parameters as p̃i and b̃i,
respectively. In both cases, the subscript i denotes the sample index. Finally, the training dataset
is denoted as P = [p1 pi . . .pn] for input data and B = [b1 bi . . .bn] for ground truth gait data.
Here, n is used to denote dataset size.

8.2.1 Gait-Net
The proposed autoencoder-based network architecture of the Gait-Net is shown in Fig. 8.1. The
fifth layer output of the Gait-Net is used as gait prediction and the last layer reconstructs the input.
A total of four layers are used to incrementally decode the resulting gait from the low-dimensional
gait parameters and symmetric four layer structure is used to compress the gait to its gait parameter
definition.
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Figure 8.1: Gait-Net Outline: The input layer is highlighted in green while the two jointly trained
output layers are highlighted in blue.

Remark 8.2.1. We use relu activations for all the intermediate layers except the two output layers
as both the gait features and gait parameters admit negative values. Therefore, no non-linear
activation is used for there two layers.

8.2.2 Performance Analysis
We benchmark Gait-Net’s accuracy and inference time against three baselines described below:

• Simple Network (SN): SN is a fully-connected network built using only the first five layers
of the Gait-Net. This denotes traditional supervised regression without the additional gait
parameter reconstruction component. Simple fully connected neural network was previously
used for gait learning in [166] and shown to be better than Interpolation.

• Principle Component Analysis (PCA): PCA is performed on the gait data B to obtain a
lower dimensional embedding B̂ ∈ R3. Further, a linear transformation W is obtained using
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ordinary least squares regression to fit B̂ = WP. Therefore, we get W = (B̂TB̂)−1B̂TP.
Finally, for a given any pi ∈ P, we reconstruct the corresponding bi ∈ B using Wpi ∈ B̂.

• Interpolation: Interpolation is a popularly used technique to generate a continuous policy
from gait libraries in [166, 163, 164, 13, 161].

Gait-Net SN PCA Interpolation

Interpolation MSE 0.00036 0.00032 0.00225 0.00023
Interpolation Max Error 0.06646 0.06547 0.11864 0.07070
Extrapolation MSE 0.00065 0.00056 0.00281 0.00678
Extrapolation Max Error 0.07683 0.07321 0.11791 23.2368
Average Inference Time (s) 0.00172 0.00113 0.00154 0.00038

Table 8.1: Benchmark of Online Gait Generation of Squared Error (SE) and Consumed Time

All the methods are evaluated in two tasks:

• Interpolation1: The test-set gait parameters are within the training-set range; and

• Extrapolation: The test-set is chosen to be outside the training-set range, specifically, test-set
is PTest = (V Test

x , V Test
y , SHTest) ∈ {±1,±0.8}×{±0.3,±0.27}×{±0.15,±0.12} while

the training-set is its complement.

We compare all the methods on two metrics for extrapolation and interpolation, 1) mean
squared error (MSE), and, 2) maximum test error. Additionally, we measure average inference
time for each method over 1000 runs. These results are tabulated in Table 8.1.

Remark 8.2.2. Note that, across all metrics, Gait-Net performance is close to that of the Simple
Network. While taking only a minor hit in prediction performance, Gait-Net offers an additional
metric to evaluate prediction quality. Note that, it still outperforms Interpolation method.

For both interpolation and extrapolation both PCA and Interpolation are on average an order of
magnitude worse than Gait-Net. While the dataset shows mostly linear trends, sharp nonlinearities
exist in some sub-spaces. The nonlinear function approximation ability of Gait-Net is able to
better approximate them. The maximum error values of PCA, and of Interpolation in particular,
underscore this fact. Finally, note that, Gait-Net is ten times faster than Interpolation. The time
complexity of Interpolation is O(k log(n)), where k denotes number of gait parameters and n is
the number of samples per gait parameter. Moreover, the space complexity is O(nk) which is
worse, especially on hardware. Clearly, with increase in features or data size in P, the real-time
performance gap will widen further between Interpolation and Gait-Net.

1To avoid confusion, hereafter, Interpolation refers to the task of predicting intermediate gaits whereas Interpola-
tion refers to the Linear Interpolation method.
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(a) (b)

Figure 8.2: MSE across gait features: (a) Interpolation MSE and (b) Extrapolation MSE across
the 120 gait features.

To further examine prediction performance we plot MSE for all the four methods at the indi-
vidual features level in Fig 8.2. These individual features of the predicted gait are the 120 bézier
parameters used to generate a two step walking motion, 60 each for right and left stance. At the
feature level too we notice similar trends, Gait-Net is slightly worse than Interpolation for within
range samples and consistently better at approximating for out-of-range samples.

As a final analysis step, we estimate the upper bounds of Lipschitz constants for both the Simple
Network and Gait-Net. Neural networks are well-known to be sensitive to well-chosen small
perturbations, often called adversarial attacks. This is a serious issue when they are being used to
predict gaits for a human-sized bipedal robot. Any failure mode during execution could not only
damage the robot but also endanger humans nearby. Lipschitz constant is an important metric to
evaluate policy smoothness. Recently, in [168], it was shown that for any k-layer feed-forward
network with ReLU or linear activations, the Lipschitz constant is upper bounded by,

L̂ =
k∏
i=1

||Mi||2, (8.1)

where, L̂ is the Lipschitz constant upper bound andMi is the weight matrix for layer-i. We compute
L̂ for both Simple Network and Gait-Net. We have L̂GN = 2366.5 whereas L̂SN = 3402.1.
Note that this are just upper bounds and still highlight the robustness of Gait-Net over the Simple
Network. For accurate estimation of Lipschitz constants, see [169].

Remark 8.2.3. The lower Lipschitz constant for Gait-Net is due to the natural regularization by the
auto-encoder’s reconstruction loss. In [170], the authors coined the term supervised autoencoders
to refer to architectures similar to the Gait-Net.
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Figure 8.3: Walking Policy Overview: Gait-Net provides gaits for the HZD based controller to
track in closed-loop. Here, q is the state vector defined in (3.12) and u is the input vector defined
in (3.14). The outer-loop regulates the de.

8.3 Cassie Walking Simulation
After training and evaluating the Gait-Net, we now proceed to validate its performance for robust
bipedal robot locomotion. Before deploying Gait-Net onto Cassie, we first test it using a high-
fidelity physical simulator of Cassie built in MATLAB Simulink. Further, we used an open-source
Cassie walking controller from [161] to implement the underlying HZD controller2. The high
bandwidth controller operates at 2kHz. The overall closed-loop walking control is outlined in Fig-
ure 8.3. Given an open-loop walking plan defined in terms of (Vx, Vy, SH), the Gait-Net describes
a walking gait. The HZD-based controller then executes this closed-loop walking behavior using
joint angle feedback.

The gait parameters from the walking controller were then fed into Gait-Net to online pre-
dict gait libraries. Figure 8.4 demonstrates preliminary simulation results of the Cassie bipedal
walking using the Gait-Net. In the snapshots, Cassie is able to transition from a standing in
place configuration to stepping in place (Vx = 0, Vy = 0, SH = 0) and then walking forward
(Vx = 0.5, Vy = 0, SH = 0). A numerical comparison between Gait-Net and online linear inter-
polation is presented in Figure 8.5. For the reference tracking task, the Gait-Net achieves a better
performance while the interpolation method has a steady state error.

8.4 Summary
In this chapter, we proposed GaitNet a data-driven policy to generate approximately stable walking
motions involving forward and lateral speed regulation and step height adaptation. Gait-Net is
learned from a Gait Library developed using full robot dynamics to execute a range of periodic
walking motions that respect strict joint and motor limits, unilateral ground contact and friction
constraints. Gait-Net was successfully tested on the Cassie bipedal robot in simulation.

2https://github.com/UMich-BipedLab/Cassie_FlatGround_Controller
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(a) (b) (c)

(d) (e) (f)

Figure 8.4: Walking Simulation Snapshots: From (a) to (c), the robot is seen stepping in place.
From (d) to (f), the robot transits to a forward walking gait.
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Figure 8.5: Forward velocity regulation plot. Gait-Net achieves a better performance while the
interpolation method has a steady state error.

8.4.1 Limitations
We have only demonstrated preliminary results of using Gait-Net on the robot. We still need to
fully evaluate Gait-Net’s prediction performance, particularly validating its extrapolation ability
on hardware. Further, we haven’t yet utilized the proposed gait estimation quality metric provided
by the autoencoder part of the Gait-Net. A high-level planner needs to be developed that can
leverage this information. Still, the autoencoder serves as a good regularization for better policy
learning. This needs to be ascertained formally or empirically. As future work, we wish to focus
on addressing these limitations.
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Chapter 9

Deep Perception for Autonomous Walking

Dynamic bipedal walking on discrete terrain, such as stepping stones, with a human-sized under-
actuated robot is a challenging problem needing sophisticated safety-critical controllers [13]. These
controllers in-turn need a fast, accurate, and reliable sensory feedback to guarantee safe landing of
the robot’s swing foot on the nearest foothold. We believe that recent advances in parallel com-
puting and deep learning could aid in achieving our goals of high speed and accuracy in visual
perception for bipedal locomotion. Having presented the robot’s dynamical model in 3.1 and the
gait-library-based controller (refer to 3.1.1) for walking on discrete terrain, we will now present
a systematic way to build and train a deep visual perception model that estimates the step length
from a single camera image. The system will take an input of the upcoming terrain through a
front-facing camera at the beginning of each step. This image is fed to a convolutional neural
network (CNN) to estimate the step length to the next step. Estimated step length is then fed to the
gait-library-based controller to enable the robot to precisely land on the next foothold.

This CNN-based deep perception model has two critical components. Firstly, we need a large
corpus of step-length annotated imagery of the robot’s front person view while walking. This
dataset is used to train the model for accurate step length estimation. The systematic methodology
used to create this synthetic dataset is described in the next subsection. Secondly, we need a suit-
able deep neural network architecture that can best approximate the complex non-linear mapping
from image to step length estimate. The network needs to be tuned methodically to not only obtain
the best test accuracy but also bound the worst-case prediction. These details are summarized after
the next subsection.

9.1 Visual Simulator for Synthetic Dataset Generation
To generate the image dataset, we use a popular open-source graphics software called Blender
[171] generate realistic scenes through scripting. To create a discrete terrain scene, we need four
key details: 1) Camera location and intrinsic parameters 2) Stepping stone location, 3) Lighting
model and location, and 4) Color and texture information of both the stepping stone and back-
ground. These parameters will be randomized in ranges larger than what the robot may encounter
in order to account for error accumulation over time.

The above four parameters are randomized for image generation in the following manner:
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(a) Background Textures

(b) Stone Textures

Figure 9.1: A collage of textures use for the synthetic outdoor dataset generation: (a) Background
Textures, (b) Stone Textures.
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Figure 9.2: Sample images from the Synthetic Outdoor Dataset (SOD).

Camera Location: The camera location is measured with respect to the stance foot position.
For each image, we randomly sampled from a range of [−10 : 20]× [−10 : 10]× [80 : 120] (cm) to
obtain the x, y, z offsets of the camera from the stance foot, respectively. The ZED Stereo Camera
[172] model is used for rendering the images. However, since we only focus on the step length, we
only generate monocular images for this study.

Stone Location: From [13], we note that, the robot was able to walk on a discrete terrain where
the step lengths ranged from [20 : 90] (cm). True step length is the distance from the robot’s stance
foot to the next stone’s center. For this work we uniformly sample step lengths from [15 : 95] (cm)
range and arrange the stones in a single column accordingly. Based on the width of the robot, we
spread out stones [30 : 35] (cm) away of the robot’s center-line. Moreover, they are alternately
positioned on either sides of the center-line, as shown in Fig. 9.2. Finally, the stone size itself
is varied randomly between [10 : 20] (cm) in length and [60 : 90] (cm) in width, respectively.
However, the stone height is kept fixed at 15 cm.
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Lighting Properties: The light source is always facing the current stepping stone. However,
its position is randomly chosen from a semi-spherical dome-like space above the robot with a 6
meters constant radius to the current stone-center.

Texture: Here we select real world textures for both stones and background. We chose 12
unique textures comprising of grass, sand, water, pebbled terrain, etc. for the background and
14 unique textures for the stone including granite, cement, brick, wood, etc. Texture samples are
shown in Fig. 9.1 Each scene is rendered by randomly sampling a texture pair from the available
collection.

The images are rendered with a resolution of 223 × 223 pixels. Additionally, we crop the left
and right 15% of the image to further reduce computational overhead. The final image resolution
is 223×149. We generate 40, 000 images and call it the Synthetic Outdoor Dataset (SOD). Sample
images are shown in Fig. 9.2. Having presented the dataset generation details, we will present the
neural network architecture design next.

9.2 Custom Deep Neural Network Design
For training our object detector, we propose a custom neural network architecture called SL-CNN.
It consists of six convolutional layers of 32 filters each, followed by two dense layers, both with
256 neurons each. Unlike traditional designs where the number of features maps increase with
depth, we found that, a constant number of feature maps throughout does better and needs fewer
parameters. The kernel size of each filter is (4 × 4). Batch Normalization and Max Pooling are
applied after every two convolutional layers. Additionally, we apply Batch Normalization just
before the final output layer as well. We use relu activations in all the layers except the last one,
where we use a linear activation function instead. Fig. 9.3 summarizes the CNN architecture.
The detector is trained using the Mean Squared Error loss and the Adam optimizer. We use a
learning rate of 1e − 4 along with a suitable learning rate decay policy. We use Keras API [173]
with TensorFlow backend [174] to build and train our model. We trained for 40 epochs with a
batch size of 50, on a Intel i7 machine with an NVIDIA Titan X GPU. The model has roughly 2.5
million trainable parameters. Finally we split the dataset into Training, Validation and Test sets,
each comprising of 28900, 5100, 6000 images, respectively.

The step length is estimated as follows: Using the joint encoders on the robot, location of the
camera is first estimated. The deep neural network only learns to predict the distance from camera
to the next stone center. Therefore, the predicted step length is the sum of these two distances.
Note that the camera position information is not used during training.

While deep networks have remarkable function approximation abilities, they have many hyper-
parameters whose fine-tuning critically impacts network performance and generalization ability.
In the next section, we systematically outline our network design and customization process while
examining the impact of each hyper-parameter on reducing worst-case test error.

9.2.1 Hyper-parameter Search
Deep neural networks have a very high dimensional hyper-parameter space, where almost every
single building block can be optimized. Most papers use existing architectures and leverage their
transfer learning properties. Few papers explain in sufficient detail, the impact of each hyper-
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Figure 9.3: A schematic of SL-CNN. Each convolution block consists of two layers followed
by a Max-Pool and Batch Normalization. Two identically sized fully connected layers are used.
Finally, the output activation function is linear. Sample output activation maps are overlayed on
each convolution block along on the learned filters.

parameter on the learning outcomes. Unfortunately, these choices don’t generalize well to all
problems and it is worthwhile to carefully tweak and specifically examine them for individual
problems. Important insights drawn from this exploration for our problem are summarized below.
Note that, all the results reported below are on the test set.

• Roughly 89% drop in error occurs within the first 20 epochs. Therefore, a wider hyper-
parameter coarse search was carried out on models trained for 20 epochs while for the finer
search, the models were trained for 40 epochs.

• As already identified in [96], Dropout with any probability or placement in the network
worsens performance.

• Batch Normalization improves learning and results in around 33% drop in mean absolute
error. More interestingly it leads to over 55% drop in the worst-case prediction error (or the
maximum error on the test set).

• Using L2 Regularization (default is 0.01) for only the fully connected layers helps further
reduce the worst-case prediction error.

• We tested the Architecture with 5 kernel sizes, (2, 2), (4, 4), (6, 6), (3, 3), (2, 4). We observed
that rectangular kernels had the largest worst-case error, followed by the (3, 3) kernel. Sur-
prisingly, even numbered kernels did a better job, against conventional wisdom. The best
kernel was (4, 4).
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Test Avg. Loss Std. Dev. of Loss % Above 5 cm Max Pred. Error
(in cm) (in cm)

1.618 1.32 2.116 10.38

Table 9.1: Summary of prediction performance on test data.
• Adding an extra convolution block (ie., two additional layers followed by a max pool and

a batch norm) increased the mean absolute error. Unlike classification tasks where depth
almost always helps, in regression tasks, localization accuracy is affected by max-pooling
layers beyond some depth. Therefore, for regression tasks one must find the sweet spot
between depth (complexity) and accuracy.

Finally, based on the above mentioned hyper-parameter search, an optimal network architecture
is designed and it is trained with the synthetic outdoor dataset. The qualitative and quantitative
results obtained are presented in the next section.

9.3 Results and Discussion
In this section, we analyze the performance of SL-CNN and later integrate it with a physics-based
simulator and gait-library based controller to numerically realize and analyze autonomous dynamic
walking on randomly generated discrete terrain.

9.3.1 Step Length Prediction Performance
Once trained, we expect the step length predictor to accurately detect the next stepping stone and
output it’s distance in centimeters. Note that, each image will have anywhere between 1 − 5
stepping stones. Therefore, even though they have the same texture and geometry, our perception
framework needs to overlook other stones and actively seek out the first one. In this situation, we
believe perspective distortion helps in better distinguishing the stone of interest. Further, due to
the safety-critical nature of this problem, in addition to describing network performance based on
mean squared error, we will also report the variance and the worst-case prediction.

Error is unavoidable in function approximation. However, in a safety-critical scenario like
discrete terrain walking, the default approach of choosing the network that gives the least mean
squared error could be detrimental as the worst-case estimate could still be off the safety limits.
In order to avoid this issue, in this work, hyper-parameters were tuned with the objective to find
the least possible worst-case estimate with the available dataset. The performance of the CNN was
evaluated on the 6000 sample test data and is visualized in Fig. 9.4 and summarized in Table 9.1.

Best and Worst predictions:

In addition to studying the qualitative learning outcomes like average loss, standard deviation of
loss, etc., we also visualize images of the best-8 and the worst-8 predictions in Fig. 9.5 to visually
interpret which parameters the model could and couldn’t generalize over. From the figure, it is
clear that the model is able to generalize over the various foreground and background textures,
including bright and dim lighting conditions. However, shadows contributed to some of the higher
estimation errors.
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(a) Predicted v/s Actual Step Length (b) Prediction Error Histogram

Figure 9.4: Visualizing step length prediction performance through plots of (a) Predicted versus
True Step Length values and (b) Prediction Error Histogram. Both plots are for the test data
obtained from the Synthetic Outdoor Dataset.

9.3.2 Simulation Results
In this section, we integrate SL-CNN with a physics-based robot simulator in 3.1 and the gait-
library based controller in 3.1.1 to evaluate the closed-loop autonomous operation of the robot. The
robot dynamics are simulated in Matlab. At the beginning of each step, robot’s current position
(specifically the camera position) is supplied to Blender to render a first-person-view synthetic
outdoor image using the information from the terrain generator. This image is in turn supplied to
the Convolution Neural Network (implemented in Keras and TensorFlow) to predict the step length
for the next step. Provided with this predicted step length, the closed-loop dynamics of the robot
and controller are simlated for one step to enable the robot to take the step forward. The process is
repeated for subsequent steps. A schematic of the numerical simulation pipeline is shown in Fig.
9.6.

Numerical simulations are carried out with stones randomly placed with the inter-stone distance
within the [45 : 85] cm range. Recall that the camera position and stone location were uniformly
sampled from dissimilar ranges in Section IV. The label used for training the CNN is the distance
to the camera which is difference of stone location and camera position. Therefore, the distribution
of labels used for training is no longer uniform. Accounting for this fact, the step length ranges
have been adjusted to only test the CNN in the range where there was enough data to guarantee a
good learning outcome.

In this study, we render images with light fixed in an overhead position and focus on carefully
examining sensitivity to potential failure modes like camera position or step length going outside
the range used for dataset generation during continuous simulation. (We have already noted earlier
that shadows are a failure mode.) Our evaluation is based on two metrics, 1) Perception Error
and 2) Foot Placement Error. Prediction Error is defined as the difference between Predicted Step
Length and True Step Length and it is purely an artifact of the perception module. Similarly, Foot
Placement Error is defined as the difference between foot-contact-point and stone-center. This
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(a) Best-8

(b) Worst-8

Figure 9.5: Snapshots of the best-8 and worst-8 predictions of the neural network alongwith the
corresponding prediction error in centimeters. The desired (red line) and predicted (blue line) step
lengths are marked along with pixel coordinates of the resulting foot placement location (yellow
dot).
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Figure 9.6: Simulation pipeline for autonomous dynamic walking on discrete terrain. The piple-
line integrates gait optimization, nonlinear control, vision, and deep learning. Simulation Video:
https://youtu.be/ijJAPapU7qI.
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(a) Prediction Error: Predicted Step Length - Desired Step Length
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(b) Foot Placement Error: Actual Step Length - Desired Step Length

Figure 9.7: (a) Prediction Error, and (b) Foot Placement Error plots for 100 step walking simulation
with step lengths varying within [45 : 75] cm. In (b) WOP indicates error without perception
while SOD indicates errors when step length is estimated using the synthetic outdoor dataset-
based image preview.
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error is the cumulative error of both perception and control.
The robot was simulated for 100 steps and these two errors are plotted, as shown in Fig. 9.7.

Note that the prediction error is bounded within an 8 cm range from the center for the most part
and doesn’t show significant accumulation of error over time. In Fig. 9.7(b), the foot placement
error is also plotted to compare stepping performance without (called WOP - With Out Perception)
and with perception (using SOD - synthetic outdoor dataset).

9.4 Sim2Real Performance Evaluation
The main objective of this work was to develop a synthetic dataset of discrete terrain images and
train a deep perception module with it such that its prediction performance can generalize to real
world data. In order to achieve this we used the Domain Randomization technique [96] for dataset
generation. Before porting the deep perception module onto the hardware, we first benchmark
its sim2real performance on a small real-world dataset generated using the ZED camera [172]
attached to a tripod. Sim2Real is a common term used in the learning community while referring
to generalization ability of data-driven models which are trained using synthetic data but applied
on real-world data at test time. For fair comparison, we kept the camera properties consistent for
both the synthetic and real datasets. Note that, the synthetic dataset was also generated using the
intrinsic properties of ZED camera. Each image contains a single tile placed between 35 to 85
centimeters away from the camera (distance is measured to the center of the tile). In each dataset
the tile moves further away from the camera from the first image to the last image. Individual step
length distances are randomly chosen. Further in the first dataset, called Batch-1, the camera is
oriented such that the tripod legs are visible in the image (mimicking the cases where the robot’s
legs are visible). In the second dataset, called Batch-2, the camera orientation is slightly adjusted
to minimize tripod visibility. Since the synthetic dataset was trained assuming zero visibility of the
legs, we wish to evaluate the sensitivity of this artifact in the prediction performance of the neural
network. Collages of both Batch-1 and Batch-2 are shown in Fig. 9.8a and Fig. 9.8b, respectively.
The prediction performance of SL-CNN on the two datasets is summarized in Table 9.2. As noted,

Metrics Batch-1 Batch-2

Error Mean (in cm) 17.743 14.451
Error Standard Deviation (in cm) 7.017 2.937

Table 9.2: Prediction error statistics using real world data.

the deep perception module generalizes poorly than expected onto real world data. In particular,
the presence of tripod legs further worsens performance (compare error statistics in between Batch-
1 and Batch-2 in Table 9.2). This should be another parameter to randomize during training. We
conclude that the sim2real performance transfer is still poor for the deep perception module. We
shall discuss potential improvements in the Future Work section.
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(a) Batch-1 (b) Batch-2

Figure 9.8: Snapshots of the real world datasets, Batch-1 and Batch-2, used for testing the deep
perception module performance. The prediction error on each image is added to the image title.

9.5 Summary
In this chapter, we first built a realistic visual simulator to generate the robot’s first person view
while walking over stepping stones and combined it with an accurate physics simulator of the
bipedal robot. The physics simulator also contains an inner-loop safety-critical controller that can
generate stable and safe limit cycle walking for a desired step length. Note that, we limited our at-
tention to only autonomous planar walking, and accordingly, only predict step length information.
This simplification allowed us to keep the focus on the visual simulator development, convolutional
neural network customization (in order to bound worst-case estimate) and perception-control in-
tegration. However, the pipeline can be extended to 3D walking without any loss of generality.
Note that, even though we used a planar robot model in the physical simulator, the deep percep-
tion module presented here takes an image rendered from a 3D scene as input without making any
geometric simplifications that stem from planar walking. Next, we trained a deep neural network
to estimate the step length (distance to the next stepping location) using a single sampled image
preview that is obtained at the beginning of each step. Detecting footholds and estimating distance
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is a classic object localization problem similar to object grasping in robotic manipulation, however
in the case of locomotion there are additional challenges due to the time-critical and safety-critical
nature of the problem. Failures can lead to very adverse consequences and there is very slim scope
for recovery as the robot is operating in a dynamic regime around an unstable equilibrium. The
deep neural network was customized keeping these challenges in mind and with an objective to
minimize its worst-case performance. Finally, we show promising results with the network pre-
dicting step length with the worst-case error capped at 11 cm. Moreover, when the perception
and control pipelines are integrated and tested in simulation, the robot was able to walk at least
100 steps without failure. Despite it’s promising performance in simulation, the deep perception
module generalizes poorly to real world data. We conjecture that a larger dataset using a wider
range of textures and colors, adding occlusions like robots legs, etc. can improve performance and
we will investigate it as a part of future work.s
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Chapter 10

Part III Conclusions and Future Work

In Part III, Learning for Dynamic Legged Robots, two data-driven models were presented to offer
greater versatility and autonomy to legged robots. In Chapter 8, we introduced Gait-Net, a data-
driven open-loop policy to generate stable walking motions involving forward and lateral speed
regulation and step height adaptation. Gait-Net is learned from a Gait Library developed using full
robot dynamics to execute a range of periodic walking motions that are dynamically feasible and
respect strict joint and motor limits, unilateral ground contact and friction constraints. Open-loop
walking policies generated by Gait-Net could enable Cassie to climb stairs, walk on uneven or
sloped terrain and safely navigate crowded urban environments. Later, in Chapter 9, a CNN-based
predictor, called SL-CNN, was developed to estimate step lengths for a dynamic bipedal walker
operating in discrete terrain from visual input. It was empirically shown that a feed-forward gait
adjustment based on intermittent visual feedback is sufficient to walk on a discrete terrain where
high-speed prediction and accurate foot placement are critical. Several visual factors that impact
the predictor’s performance are identified for further refinement.

10.1 Future Directions
Both Gait-Net and SL-CNN were developed in a robot agnostic fashion. Therefore, they can be
customized to other legged robots following the same design and development pipeline. However,
there is still room for improvement in both and that directs future work as follows:

10.1.1 Test on Hardware
Gait-Net and SL-CNN need to be tested on real robots. In Section 9.4, it was noted that the SL-
CNN prediction performance on real world data is still poor. There are multiple ways to improve
it.

1. Generate a much larger and more diverse synthetic dataset using Domain Randomization.
Particularly, add occlusions, like robot legs, increase color and texture distributions for the
stones and backgrounds, vary stone shapes and sizes.

2. Provide camera height and orientation also as inputs to the network in addition to the image.
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3. Leverage recent advances in object detection like [175] to first detect the stones and then
localize. This way, the neural network is provided more context during training to learn a
more robust predictor.

4. Since multiple steps are visible in an image, accuracy could be improved using Recurrent
Neural Networks. Instead of training the network with a single image from step N − 1, it
can be trained with images from steps N − 2 and N − 1 to predict the step length to step
N . Further, most bipedal robots used in research today are equipped with a range of other
sensors like IMUs, LiDARs, etc. Using mulit-modal data is yet another way to improve
predictive power.

10.1.2 Learning Visuomotor Policies for Walking
The Gait-Net and SL-CNN architectures could be combined and trained jointly to obtain an image-
to-gait mapping that can generate perception-driven open-loop walking policies. This serves as an
important first step towards emulating human locomotory behaviors. Here, we leverage physical
models for rapidly generating gait data and synthetic image data, and learned models to unify the
two via end-to-end training.

10.1.3 Gait-Net in DRL
Recently, [176] cast the HZD-based bipedal robot gait optimization as a deep reinforcement learn-
ing (DRL) problem, and later extended it to the Cassie robot in [177]. While successful at learning
stable and robust policies for planar walking in simulation, it’s subsequent extension to tackle the
complexities of full 3D walking remains to be seen. Our proposed Gait-Net can aid and speed up
learning in this DRL setting as well. More importantly however, we believe DRL is better suited
to learn robust gait transitions and higher-level plans using gait parameters. Note that the nonlin-
ear trajectory optimization is much faster at generating stable gaits that can strictly satisfy all the
friction, unilateral contact and torque limit constraints.
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