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Abstract— In continuous-time optimal control, evaluating
the Hamiltonian requires solving a constrained optimization
problem using the system’s dynamics model. Hamilton-Jacobi
reachability analysis for safety verification has demonstrated
practical utility only when efficient evaluation of the Hamil-
tonian over a large state-time grid is possible. In this study,
we introduce the concept of a data-driven Hamiltonian (DDH),
which circumvents the need for an explicit dynamics model by
relying only on mild prior knowledge (e.g., Lipschitz constants),
thus enabling the construction of reachable sets directly from
trajectory data. Recognizing that the Hamiltonian is the optimal
inner product between a given costate and realizable state
velocities, the DDH estimates the Hamiltonian using the worst-
case realization of the velocity field based on the observed
state trajectory data. This formulation ensures a conservative
approximation of the true Hamiltonian for uncertain dynamics.
The reachable set computed based on the DDH is also ensured
to be a conservative approximation of the true reachable set.
Next, we propose a data-efficient safe experiment framework
for gradual expansion of safe sets using the DDH. This is
achieved by iteratively conducting experiments within the
computed data-driven safe set and updating the set using newly
collected trajectory data. To demonstrate the capabilities of our
approach, we showcase its effectiveness in safe flight envelope
expansion for a tiltrotor vehicle transitioning from near-hover
to forward flight.

I. INTRODUCTION

Data-driven safety verification is needed to ensure the
safety of various real-world systems that involve uncertain
dynamics. Such uncertainty, which may be impossible to
model or require extensive modeling efforts, can result from
various sources—complex aerodynamics in unconventional
aircraft, robot manipulation of non-rigid objects, learning-
enabled components in an autonomy stack, interaction with
unstructured environments, and many others.

Hamilton-Jacobi (HJ) reachability, rooted in model-based
optimal control, provides a rigorous and flexible framework
for verifying safety by computing the maximal safe set within
constraints, as well as an associated safe policy [1]. However,
its practical applicability is limited by the need to evaluate
the Hamiltonian, which is the optimal directional derivative
of the value function along the dynamics. Evaluating the
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Hamiltonian involves solving a constrained optimization
problem in the control input space. Consequently, both
the lack of an accurate dynamics model as well as any
computational challenges in the optimization can hinder the
implementation of HJ reachability analysis in practice.

Existing data-driven approaches address these challenges
indirectly by using supervised learning to approximate com-
ponents needed to evaluate the Hamiltonian. For instance, [2]
employs Gaussian processes to learn the dynamics, while
[3] fits a neural network to approximate the Hamiltonian.
However, these methods rely heavily on the quality of
the learned model and may introduce inefficiencies due to
misalignment between model learning and safety verification.
Alternative data-driven methods outside the HJ framework
primarily focus on forward reachability [4], [5], [6], [7].

We propose a new data-driven approach by approximating
the Hamiltonian used in HJ reachability directly from data.
The constrained optimization involved in computing the orig-
inal Hamiltonian is replaced with an efficient data-enabled
approximation, which computes its best approximation under
the worst-case realization of the dynamics inferred from the
data. Using this approximate Hamiltonian in HJ reachability
allows the safe set to be computed directly from trajectory
data without any intermediate supervised learning step.

Our main contributions are summarized below:
• We propose the data-driven Hamiltonian (DDH), a novel

concept enabling direct data-driven reachability analysis
for uncertain dynamics under mild assumptions of knowl-
edge of the system’s Lipschitz constants.

• We prove that using this DDH in HJ reachability com-
putations guarantees a conservative approximation of the
true safe set.

• We present a safe set expansion framework built upon
the DDH-based reachability method, which can iteratively
update a data-driven safe set while running experiments
that safely collect more data.

• We demonstrate the effectiveness of our approach in
safe longitudinal flight envelope expansion for a tiltrotor
vehicle transitioning from near-hover to forward flight.
Notations. The norm ∥·∥ being used is the l2 norm, and |·|

denotes an absolute value. An l2 hypersphere centered at the
origin with radius r will be notated as B(r) = {x | ∥x∥ ≤ r}.
A hyperrectangle centered at the origin with element-wise
radii r ∈ Rnx will be denoted as Rect(r) = {x | |xj | ≤
rj ,∀j=1, · · · , nx}. The symbol ⊕ indicates the Minkowski
sum of two sets. The superscript i denotes the index of a
data point and the subscript j denotes the j-th element of a
vector unless noted otherwise.



II. PROBLEM FORMULATION & BACKGROUND

A. Problem Formulation

We consider nonlinear system dynamics

ẋ(s)=f(x(s),u(s)) for s∈ [−t, 0], x(−t) = x, (1)

with state x(s) ∈ Rnx , control u(s) ∈ U ⊂ Rnu , and initial
state x at time −t, where t > 0 and U is the control input
set. The vector field f is assumed to be Lipschitz continuous
in the state, which is required for the forward completeness
of the trajectory [8]. We consider various forms of Lipschitz
continuity:
(i) uniform Lipschitz constant Lx, satisfying

∥f(x, u)− f(x′, u)∥ ≤ Lx ∥x− x′∥ , (2)

(ii) input-element-wise constant vector Lin satisfying

∥f(x, u)− f(x′, u)∥ ≤
nx∑
j=1

Lin
j |xj − x′

j | (3)

(iii) output-element-wise constant vector Lout satisfying for
i=1,· · ·,nx,

|fi(x, u)− fi(x
′, u)| ≤ Lout

i ∥x− x′∥ (4)

(iv) nx×nx sensitivity matrix Lio satisfying for i=1,· · ·,nx,

|fi(x, u)− fi(x
′, u)| ≤

nx∑
j=1

Lio
ij |xj − x′

j | (5)

for all x, x′ ∈ X , u ∈ U .
While the dynamics f itself is deemed uncertain and

unknown, we assume that (i) a dataset of trajectories from
this uncertain system is given as D = {(xi, ui, vi)}Ni=1,
where vi := f(xi, ui) denotes “state velocity”, and (ii) we
know at least one of the Lipschitz constants of f above.
The dataset is collected from experiments, where the state,
control, and state velocity are sampled at various time steps
of the trajectories of (1). The Lipschitz constants may come
from prior knowledge or can be estimated directly from the
dataset D. While access to a valid constant indicates that our
method is not completely model-free and requires basic sys-
tem knowledge, the required modeling effort is significantly
less than accurately characterizing the full dynamics f .

The safety specification is given as an unsafe region in the
state space we want to avoid, denoted as XU . We consider
two notions of a safe set:
1. Avoid Backward Reachable Tube (BRT): The Avoid BRT
is the set of initial states from which the system can avoid
reaching the unsafe set XU over the time horizon t:
Avoid(t;XU )={x∈Rnx | ∃u(·) s.t. ∀s∈ [−t, 0],x(s) /∈XU}.

2. Reach-Avoid BRT: The ReachAvoid BRT is the set of
initial states from which the system can reach a target set,
specified as XT , while avoiding the unsafe set XU :
ReachAvoid(t;XT ,XU )={x ∈ Rnx | ∃u(·) s.t.

∃s ∈ [−t, 0],x(s) ∈ XT & ∀τ ∈ [−t, s],x(τ) /∈ XU} .

Here, s corresponds to the time at which the system reaches
XT , and τ indexes over the previous times to ensure that the
system does not enter the unsafe set before reaching XT .

Our goal is to answer two questions: (i) Safe set con-
struction from data: how can we estimate these safe sets
directly from the trajectory data of the uncertain dynamical
system? (ii) Safe experiment design: how can we design
a sequence of safe experiments that gathers data safely in
order to expand the safe set?

B. Hamilton-Jacobi Reachability

HJ reachability encodes the safety problem by first defin-
ing a value function whose sign indicates which states
are included in the reachable set, and then uses dynamic
programming to compute this value function. In this work,
we focus on solving the two backward reachability problems
described in Section II-A, and other standard reachability
problems are detailed in [9]. We first represent the unsafe
and target sets as level sets of Lipschitz continuous functions,
g(·) and l(·), such that

XU = {x | g(x) ≤ 0}, XT = {x | l(x) ≥ 0}. (6)

Then, we can define the value functions whose zero-
superlevel sets represent the Avoid and ReachAvoid BRTs:

Value function for Avoid BRT:

V (x, t) := sup
u(·)

min
s∈[−t,0]

g(x(s)) (7)

⇒ Avoid(t;XU ) = {x | V (x, t) ≥ 0}.

Value function for ReachAvoid BRT:

V (x, t) := sup
u(·)

max
s∈[−t,0]

min

{
l(x(s)), min

τ∈[−t,s]
g(x(τ))

}
(8)

⇒ ReachAvoid(t;XT ,XU ) = {x | V (x, t) ≥ 0}.

The optimization problem in (7) seeks a control that max-
imizes the closest distance to the unsafe set boundary, and
in (8), a control that minimizes the distance to the target set
while avoiding XU .

By applying the dynamic programming principle, the
value functions become the viscosity solutions [10] to the
following HJ partial differential equations (PDEs) that are in
the variational inequality (VI) form [11]:

HJ-VI for Avoid BRT:

0=min {g(x)−V (x, t), −DtV (x, t)+H(x,DxV (x, t))} ,
(9)

with terminal condition V (x, 0) = g(x).

HJ-VI for ReachAvoid BRT:

0=min
{
g(x)−V (x, t), (10)

max{l(x)−V (x, t),−DtV (x, t)+H(x,DxV (x, t))}
}
,

with terminal condition V (x, 0) = min{l(x), g(x)}.

In (9) and (10), the Hamiltonian H(x, p) is defined as

H(x, p) = max
u∈U

p⊤f(x, u). (11)



To solve (11) directly, we require knowledge of the dynamics
f . Even when f is known, (11) may be a nonconvex
optimization problem, without further restrictive assumptions
such as the control-affineness of f and the convexity of U .

Remark 1. The BRTs guarantee the safety constraint x(s) /∈
XU only for a finite horizon. Two measures can be taken
to guarantee safety for an indefinite horizon. First, we can
compute the Avoid BRT for a sufficiently long horizon until
the BRT converges to the maximal control invariant set in
X c

U . However, to avoid the issue of discontinuity or non-
uniqueness of the HJ-VI solution, a discount factor must be
introduced to the value function [12], [13], [14]. An alterna-
tive approach is to design the target set in the ReachAvoid
BRT as a control invariant set, which results in the finite-time
ReachAvoid BRT also being control invariant. We employ
the second approach in Section IV for the iterative safe set
expansion algorithm.

III. DATA-DRIVEN HAMILTONIAN

Our goal is to find a data-driven estimate of the true
reachable sets while providing rigorous guarantees on the
states included within these sets. Towards this end, we
first present the concept of the data-driven Hamiltonian
(DDH), which is a lower bound of the Hamiltonian in (11)
constructed using the collected trajectory data. We then prove
that computing the value function based on DDH yields a
conservative estimate (inner-approximation) of the BRTs.

A. Concept

The general idea in our approach is to represent the explicit
dynamics abstractly as a state velocity vector v := f(x, u),
and adopt a geometric viewpoint of the reachability problem.
We define the vector field bound (VFB) as the set of possible
velocities at a given state x ∈ Rnx :

F (x) = {f(x, u) | u ∈ U}. (12)

Under this abstraction, the dynamics in (1) can be equiva-
lently represented as the differential inclusion [15],

ẋ(s) ∈ F (x(s)), (13)

and the Hamiltonian in (11) can be written as

H(x, p) := max
v∈F (x)

p⊤v, (14)

where the objective function in (14) becomes a linear objec-
tive in v. We denote v∗ := argmaxv∈F (x) p

⊤v.
Next, given a single observation in our dataset D,

(xi, ui, vi), we reason about what information we have at
the state x. Let the true velocity at the state x resulting from
the observed control ui ∈ U be

ṽi := f(x, ui) ∈F (x).

Since we have observed vi = f(xi, ui), we can construct an
uncertain estimate of ṽi around vi by considering the notion
of an uncertainty set E(x;xi). This set bounds how much
the velocity could have changed between xi and x to satisfy
the following requirement:
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Fig. 1: Illustration of Data-driven Hamiltonian. (left) Velocity
space indexed by state. The trajectory data consist of state
velocities vi indexed by states xi (blue). The true VFB at
a query state x, F (x), is unknown (red). We can estimate
F (x) by mapping data vi at xi to true velocity ṽi at x. (right)
Velocity space at x (top-down view of the left). ṽi lies in
an uncertainty set E(x;xi) propagated from xi to x (blue
circle). Given the costate p, the DDH Ĥ(x, p) in (16) takes
the best guess v̂∗ among v̂i◦’s, the worst-case realization of
ṽi ∈ E(x;xi). This procedure ensures Ĥ(x, p) ≤ H(x, p).

Assumption 1 (Valid Uncertainty Sets). The uncertainty set,
represented as a set-valued map E : Rnx × Rnx → 2R

nx ,
whose output is a closed set in the velocity space, satisfies

ṽi − vi ∈ E(x;xi) (15)

or equivalently, ṽi ∈ vi ⊕ E(x;xi), for all (xi, ui, vi) ∈ D
and x ∈ Rnx .

Under this assumption, we construct a lower bound on the
Hamiltonian by evaluating the minimum of the linear objec-
tive p⊤v over the uncertainty set around each observation.
This yields our proposed DDH:

Data-driven Hamiltonian (DDH):

Ĥ(x, p) := max
i∈{1,··· ,N}

min
v̂i∈vi⊕E(x;xi)

p⊤v̂i (16)

The min operation considers the worst-case realization of
the uncertainty associated with each data point and the max
operation reasons about what data point provides the best
estimate of the Hamiltonian despite the uncertainty.

Notice that for all i∈{1, · · · , N}, since ṽi ∈ vi⊕E(x;xi)
and also ṽi ∈ F (x),

min
v̂i∈vi⊕E(x;xi)

p⊤v̂i ≤ p⊤ṽi ≤ max
v∈F (x)

p⊤v = H(x, p).

This yields the following proposition:

Proposition 1. If E satisfies Assumption 1, the DDH is a
guaranteed lower bound of the true Hamiltonian:

Ĥ(x, p) ≤ H(x, p). (17)

Fig. 1 provides a visual explanation of this lower bound
mechanism.



B. Practical Implementation

In this section, we describe several instantiations of the un-
certainty set and the resulting DDHs by using various levels
of system knowledge described in Section II-A. In each case,
the DDH is computed by i∗ = argmaxi={1,...,N} p

⊤v̂i◦

where v̂i◦ = argminv̂i∈vi⊕E(x;xi) p
⊤v̂i.

1) l2-ball DDH: Here we consider the uncertainty sets
we can obtain from knowing the uniform Lipschitz constant
Lx or the input-element-wise Lipschitz constant vector Lin.
With Lx, we can use ELx(x;xi) := B(Lx

∥∥x− xi
∥∥), and

with Lin, we can use ELin(x;xi) := B(Lin⊤|x− xi|), which
guarantees Assumption 1 based on (2) and (3), respectively.
Since minimizing a linear objective over an l2-ball has a
closed-form solution, the l2-ball DDH can be found with

v̂i◦ = vi − ri(x)
p

∥p∥
, (18)

where ri(x) corresponds to the radius of ELx(x;xi) or
ELin(x;xi) respectively.

2) Hyperrectangle DDH: Here we consider the un-
certainty sets we can obtain from knowing the output-
element-wise Lipschitz constant vector Lout or the sensi-
tivity matrix Lio. With Lout, we can use ELout(x;xi) :=
Rect(Lout

∥∥x− xi
∥∥), and with Lio, we can use ELio(x;xi) :=

Rect(Lio|x−xi|). Since minimizing a linear objective over a
hyperrectangle has a closed-form solution, both element-wise
DDHs can be found with

v̂i◦j =

{
vij − rij(x) if pj ≥ 0,

vij + rij(x) otherwise,
(19)

where ri(x) corresponds to the radii of ELout(x;xi) and
ELio(x;xi) respectively.

Remark 2. (Computational cost) Fast computation of the
DDH is essential since it must be conducted at all state-
time grid points for the HJ reachability computation. The
DDH computation scales linearly with the number of data
points, as it involves solving the inner optimization problem
independently for each data point and taking the maximum.
The cost of the inner optimization for both the l2-ball and
hyperrectangle DDH scales linearly with the state dimen-
sion, as computing the uncertainty set and evaluating the
optimization problem are both linear in the state dimension.
Therefore, the DDH at a given state x can be computed in
O(Nnx) operations.

C. Additional System Knowledge

We propose additional modifications to the DDH in (16)
for when we have further information about the system in
order to reduce the gap between Ĥ and the true H . For
example, physical systems are subject to a reasonable range
of state velocities, and we can use this velocity bound to
refine our DDH. Suppose we know that a set-valued map
G(x) bounds the VFB, satisfying F (x) ⊆ G(x), for all states
x within the computation domain. Then,

min
v∈G(x)

p⊤v ≤ min
v∈F (x)

p⊤v ≤ max
v∈F (x)

p⊤v = H(x, p).

As a result, we can improve the DDH to ĤG(x, p) where

Ĥ(x, p)≤ĤG(x, p) :=max

{
min

v∈G(x)
p⊤v, Ĥ(x, p)

}
≤H(x, p).

If G(x) consists of simple shapes like hyperspheres or hyper-
rectangles, minv∈G(x) p

⊤v is computationally inexpensive to
evaluate. Using ĤG can be an efficient way to reduce the
approximation error of our approach in regions where data
is scarce and as a result E is large.

Finally, the DDH can be applied modularly if only a partial
component of the system dynamics is uncertain. For instance,
if the dynamics consists of two subsystems,[

ẋ1(s)
ẋ2(s)

]
=

[
f1(x1(s),x2(s), u1(s))
f2(x1(s),x2(s), u2(s))

]
,

where f1 is unknown and f2 is known, the Hamiltonian can
be decomposed into H(x, p) = maxu1

p⊤1 f1(x1, x2, u1) +
maxu2

p⊤2 f2(x1, x2, u2). We can replace only the first term
with the DDH and keep the second term, which can be
computed based on the known model of f2.

D. Data-driven Value Functions & Safe Sets

Define the data-driven value functions, V̂ (x, t), as the
solution of the HJ-VIs in (9) and (10), where H is replaced
with the DDH Ĥ in (16). For instance, V̂ for the Avoid BRT
is defined as the solution to

DDH-based HJ-VI for Avoid BRT:

0=min
{
g(x)−V̂ (x, t), −DtV̂ (x, t)+Ĥ(x,DxV̂ (x, t))

}
,

(20)
with terminal condition V̂ (x, 0) = g(x).

We can similarly define the data-driven value function for
the ReachAvoid BRT. Presented next is the main theoretical
result of this paper.

Theorem 1. The data-driven value function V̂ (x, t) is a
guaranteed lower bound of the true value function of the
BRT problems in (7) and (8):

V̂ (x, t) ≤ V (x, t). (21)

Proof. The main idea of the proof is to reveal the inverse
optimality of the DDH. We define a fictitious dynamics that
captures a differential game between the leader that selects its
action among the observed velocities in D, and an adversarial
follower that selects its action as the worst-case realization
of the uncertain dynamics. Then, we prove that the value
function of this game is the viscosity solution of the DDH-
HJ-VI (20), V̂ . Finally, we show that the true dynamics is
always the outcome of a less adversarial follower strategy.
See Appendix for the full proof.

Theorem 2. We define the safe set S(t) := {x | V (x, t) ≥
0} and the data-driven safe set Ŝ(t) := {x | V̂ (x, t) ≥
0}. The safe set S(t) can be either Avoid(t;XU ) or
ReachAvoid(t;XT ,XU ). Then, Ŝ(t) is a guaranteed inner-
approximation of S(t):

Ŝ(t) ⊆ S(t). (22)
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Fig. 2: Random Polynomial Systems. (a) Example of the vector field bound F (x) at various states and argmaxv∈F (x) p
⊤v,

illustrating the nonconvexity of the optimization. (b) Data-driven safe sets (Avoid BRT) computed using the DDH: (1)
hyperrectangle DDH using tight sensitivity matrix Lio (blue), (2) l2-ball DDH based on Lipschitz constant Lx (red), (3)
hyperrectangle DDH with doubled matrix Lio (yellow), and (4) hyperrectangle DDH with fewer data points (purple).

Proof. This is a direct result from (21).

Finally, the data-driven value function can also provide a
safe control policy within the computed safe set Ŝ(t). Define

πV̂ (x,−t) = ui∗, (23)

where

i∗ = argmax
i∈{1,··· ,N}

min
v̂i∈vi⊕E(x;xi)

DxV̂ (x, t)⊤v̂i

is the solution of the optimization in (16). When we try
to maximize V̂ , if we take ui∗ as our control, we are
guaranteed to do better than the worst-case instantiation of
the uncertainty. That is,

Ĥ(x,DxV̂ (x, t)) ≤ DxV̂ (x, t)⊤f(x, ui∗).

This means that πV̂ (x(s), s) can maintain safety, x(s) /∈
XU for s ∈ [−t, 0]. For the reach-avoid problem, we are
guaranteed to reach the target set no later than t under πV̂
for any initial state in ReachAvoid(t;XT ,XU ).

E. Running Example: Random Polynomial Systems

We consider a system with nx = nu = 2 with dynamics
fi(x) = pi(u1, u2)+qi(u1, u2)x1+ri(u1, u2)x2, for i = 1, 2,
where pi, qi, ri are quadratic polynomials in u with randomly
generated coefficients in [−2, 2]. The constant terms of pi
are set to zero so that x=0 is an equilibrium under u=0.
The randomness in the coefficients yields various nonconvex
shapes for the VFB F (x) at each state. Using the first-
order optimality condition, we analytically solve for the true
Hamiltonian (Fig. 2 (a)), from which we compute a true
safe set to validate our DDH-based safe sets. Tight Lips-
chitz constants can also be computed analytically from the
coefficients. In applying our methods, we assume no explicit
knowledge of the dynamics, treating them as a black-box
model. The dataset D is obtained by uniform sampling across
the state domain and control bounds. In practice, collecting
such data safely is challenging; we address realistic safe data
collection further in the next section.

Fig. 2 (b) shows safe sets computed using the Avoid
BRT formulation with four DDH instantiations. In all cases,
the resulting sets correctly under-approximate the true safe
set. Tighter Lipschitz bounds and larger datasets generally
produce less conservative safe sets. However, not only the
amount but also the informational content of the data signif-
icantly influences the safe set construction. Careful balancing
between required prior information (e.g., Lipschitz bounds),
data quantity and quality, and the resulting conservatism
remains an important direction for future investigation.

IV. ITERATIVE SAFE SET EXPANSION

In this section, we introduce an algorithm for iteratively
updating a data-driven ReachAvoid BRT while maintaining
safety throughout the data collection process. Our algorithm
is motivated by the test procedure of real-world systems
for safety verification—such as flight envelope expansion,
which will be illustrated in Section V—where experiments
start from an initial conservative safe region, designed with,
for instance, local linear analysis. As such, we make the
following assumption:

Assumption 2. The target set XT must be forward invariant
under a backup policy πbackup(x) and must not intersect with
the unsafe set, XT ∩ XU = ∅.

The target set is by definition contained in the safe set (the
ReachAvoid BRT) even when no data is collected. Thus, we
can safely initiate the data collection by setting the initial
estimate of the safe set Ŝ0 as XT and using πbackup for the
initial experiments.

Overview (Algorithm 1). At each iteration k, we start the
procedure by sampling initial conditions {xj

0}n
traj

j=1 from the
current data-driven safe set Ŝk. We then roll out trajectories
from each initial condition using a policy that is guaranteed
to maintain the trajectory within Ŝk, denoted by πk. The
data from these rollouts are appended to the current dataset,
yielding a new dataset Dk+1 which is then used to compute
the next iteration’s data-driven safe set Ŝk+1. A data reduc-
tion step is applied at the end of each iteration to reduce



Algorithm 1: Safe experiments for safe set expansion

Input: XT = {l(x) ≥ 0}: Control invariant target set,
XU = {g(x) ≤ 0}: Unsafe set,
πbackup: Backup policy, πexp: Exploration policy,
niter: Number of iterations,
ntraj: Number of experiments per iteration,
T: Time length of each rollout, ∆t: sampling time,
GetInit(S;ntraj,D, V ): Selects initial states within the
safe set S, given the dataset D and value function V ,
Rollout(π;x0): Obtains trajectory under policy π by
running experiment with initial state x0,
PruneData(D, V ): Conducts data reduction based on
the value function V .
Output: Final safe set Ŝniter

1 Initialization: D0 = {}, Ŝ0 ← XT , πsafe
0 ← πbackup

2 for k ← 0 to niter do
3 {xj

0}n
traj

j=1←GetInit(Ŝk;n
traj,Dk, V̂k)

4 Dk+1 ← Dk

5 for j ← 1 to ntraj do
6 πk(x)← (24) based on πbackup, πsafe

k , πexp.
7 {xi, ui, vi}⌊T/∆t⌋

i=0 ← Rollout(πk;x
j
0)

8 Dk+1 ← Dk+1 ∪ {xi, ui, vi}⌊T/∆t⌋
i=0

9 end
10 V̂k+1 ← Compute (20) with Dk+1

11 Ŝk+1, π
safe
k+1 ← Update from V̂k+1,Dk+1

12 Dk+1 ← PruneData(Dk+1, V̂k+1)
13 end

the computational expense of the process and retain only the
data most relevant to safety.

Initial States. The initial states are sampled near the
boundary of the data-driven safe set Ŝk. Sampling initial
states close to the boundary reduces the conservatism of the
DDH at the boundary, thus helping to expand the safe set.
The existing data in D can also guide the selection of the
initial states, for example by encouraging the selection of
states in regions with less data.

Safe Exploration Policy. The safe exploration policy πk is
defined as

πk(x) =


πbackup(x) if l(x) ≥ 0,

πsafe
k (x) if l(x) < 0 & V̂k(x, t) < ϵ,

πexp(x) otherwise,
(24)

with safety threshold ϵ > 0, where t is the time horizon of
the ReachAvoid BRT. If the system is in the target set, we
apply the backup controller, which is guaranteed to keep it
within the set by Assumption 2. If the state is outside the
target set and away from the safe set boundary (V̂k(x, t) ≥ ϵ),
we apply an exploration policy πexp which does not need
to satisfy any particular safety constraint. Finally, when the
state is close to exiting the safe set (V̂k(x, t) < ϵ), we
apply the safety controller of the current data-driven safe
set, πsafe

k (x) = πV̂k
(x,−t), where πV̂k

is defined in (23).
Regardless of the exploration policy πexp, the system under
this switching safety filter can stay within Ŝk due to its
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(a) Hover (b) Mid-transition (c) Cruise

(d) Free body diagram

Fig. 3: (a)-(c) NASA-Army-Bell XV-15 tiltrotor aircraft in
various rotor configurations (Source: NASA). (d) Free body
diagram of XV-15 for its longitudinal dynamics in (25).

control invariance noted in Remark 1 [16].

Proposition 2. If Ŝ0 = XT and πbackup satisfy Assumption 2,
the trajectories in Algorithm 1 never enter XU .

Proof. Consider an arbitrary iteration k, with current data-
driven safe set Ŝk from dataset Dk. The initial state is
contained in Ŝk. As a result, since πk renders Ŝk forward
invariant, the resulting trajectory will be contained in Ŝk.
Since Ŝk is a ReachAvoid BRT, Ŝk ∩ XU = ∅.

Data Reduction. We apply a data reduction that removes
data points irrelevant to safety. This consists of keeping only
the data whose indices show up as the optimal i∗ for the
DDH evaluated during the computation of the value function
V̂k. These data points are the ones actually used in the
computation of V̂k and the resulting data-driven safe control.
This reduction significantly helps the computation time with
negligible impact on the resulting safe set.

Design Decisions. A variety of design choices influence
the outcome of the algorithm. In particular, the sampling
strategy for initial states and the exploration policy πexp

have been empirically shown to be decisive factors in the
efficiency of the safe set expansion. Additional parameters,
including ntraj and the experiment length T, also affect the
result. A more in-depth investigation into the varying effects
of these design choices is left for future work.

V. APPLICATION TO TILTROTOR SAFETY VERIFICATION

Recent progress in electric propulsion technologies has
enabled various novel vertical take-off and landing (VTOL)
aircraft designs to emerge. However, verifying the flight
envelope of these vehicles is challenging due to their flight
mode transitions between hover and cruise. During these
transitions, the vehicle faces a precarious balance between
rotor propulsion and aerodynamic lift, alongside highly un-
certain aerodynamic interactions between the rotors and the
airframe, significantly increasing the risk of loss of control
[17]. This vulnerability becomes particularly apparent during
flight tests in product development, where experiments to
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Fig. 4: XV-15 safe set expansion conducted for 20 iterations under Algorithm 1, during its flight mode transition from near-
hover (β = 90◦) to cruise (β = 0◦). (a) Data-driven safe sets at various iterations, shown as 2D slices in v-γ at various tilt
angles β. (b) The safe sets shown in 3D state space at iterations k = 0, 4, 19. At each iteration, the trajectories are collected
under the data-driven safety-filtered exploration policy, ensuring that they stay within the previous iteration’s safe set. After
the safe set is updated based on new data, data reduction is conducted to prune data irrelevant for safe set computation.

expand the vehicle’s flight envelope must be conducted
without an accurate model available a priori. This motivates
applying our framework in Section IV to VTOL vehicle flight
envelope verification while treating the underlying dynamics
as uncertain. Previously, HJ reachability was adopted in [18],
[19], [20] to verify the flight envelope of aircraft using
explicit dynamics models.

We consider the XV-15 [21], a tiltrotor vehicle (Fig. 3),
transitioning from vertical to forward flight. Its mathematical
model in [22] is used for simulation and validating our
results. We construct the ReachAvoid BRT from which safe
recovery to a near-hover trim condition is guaranteed. Our
algorithm gradually expands the BRT while ensuring safety
during experiments for new data collection, analogous to the
procedure of flight envelope expansion in flight tests.

Implementation Details. We consider the reduced-order
longitudinal dynamics of the vehicle detailed in [22], [23].
The state consists of x=[v, γ, β]⊤, where v is the airspeed,
γ is the flight path angle, and β is the rotor tilt angle (β=0◦

in cruise configuration), and the control input is u=[T, α, δ],
where T is the rotor thrust, α is the angle of attack, and δ is

the rotor tilt angle rate. The equation of motion is given as[
v̇
γ̇

]
=−g

[
sin γ
cos γ
v

]
+

1

m

([
cos (α+ β)
sin(α+β)

v

]
T+

[
−D(v, α, β)
L(v,α,β)

v

])
, (25)

where L and D are the lift and drag forces that vary with
respect to v, α, β, which constitutes the main nonlinearity
and uncertainty source in the dynamics. For the true safe set
computation, since the true Hamiltonian involves a noncon-
vex optimization, we approximately solve it by evaluating it
over a set of discretized control inputs and then taking the
maximum. For the DDH, we treat β̇=δ as a known portion of
the dynamics and apply the technique in Section III-C. We
use the hyperrectangle DDH based on a sensitivity matrix
whose values are estimated from the flight data in [22].

We consider γ ∈ [−15◦, 15◦] as our primary safety con-
straint, restraining the vehicle from extreme vertical speed,
and an additional lower-bound on airspeed at each tilt angle
varying from 5m/s (near-hover) to 50m/s (cruise). The initial
safe set (i.e. the target set) is designed based on the LQR
funnel around the transition trim corridor of the vehicle,
detailed in [23]. If the vehicle can reach this trim corridor,
it can successfully recover to the near-hover trim state. The



associated LQR control at each trim point on the corridor
serves as the backup controller πbackup that maintains the
target set forward invariant. For the exploration policy πexp,
we apply a control input with Gaussian noise centered around
a mean value randomly selected for each experiment. The
mean bias term incentivizes trajectories to explore various
directions. We use ntraj = 50 for k = 0, and ntraj = 20 for
subsequent iterations, with each trajectory length T=1s and
sampling time ∆t=0.01s.

The DDH solution and the numerical solver of the DDH-
based HJ-VI are implemented in PyTorch, based on the level
set method in [24]. Using GPU for parallel computation, each
iteration takes around 40 minutes on Nvidia RTX 4090, for
the state grid with size (191×50×101), time horizon t = 1s,
and the number of data points N around 5,000.

Results. The data-driven safe sets resulting from conduct-
ing the experiments under Algorithm 1 are visualized in Fig.
4. After 20 iterations, we recover 51.6% of the volume of the
true safe set within the verified data-driven safe set, and each
data-driven safe set is a successful inner-approximation. We
also observe that the safe exploration policy designed in (24)
guarantees the safety of all experiments. Finally, by applying
the data reduction technique, we reduced 43,000 data points
sampled from trajectories to 4,294 points in the final result.

VI. CONCLUSION & FUTURE WORK

We propose a direct data-driven framework for construct-
ing safe sets from trajectory data. This framework produces
safe sets that are guaranteed to be subsets of the true safe
set while only requiring knowledge of a Lipschitz constant
of the dynamics. We also present an approach to iteratively
expand these safe sets while maintaining safety. The core
of this framework and our main contribution is the data-
driven Hamiltonian (DDH), a data-driven lower bound of
the Hamiltonian used in Hamilton-Jacobi (HJ) reachability
analysis. Without needing an explicit dynamics model, the
DDH provides a new paradigm for how model-based analysis
and prior knowledge can be integrated with data-driven
approaches in order to ensure safety.

Our proposed approach has several limitations. The nu-
merical methods used in this work for the reachability
computation suffer from the curse of dimensionality, and
our DDH scales linearly with the number of data points,
which can lead to the problem being intractable in higher
dimensions or on large datasets. While we mitigate this
through parallelization on GPUs and data reduction, further
studies are required to improve the scalability of the com-
putation. The DDH also relies on knowledge of a Lipschitz
constant, whose tight value may be challenging to estimate
in advance. Finally, our switching filter is rudimentary and
may have issues in practice like chattering. In future work,
we plan to investigate the effects of the design choices in
the iterative safe set expansion algorithm, explore the use of
more advanced safety filters, and extend the DDH to other
control problems.
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APPENDIX: PROOF OF THEOREM 1
For conciseness, we only conduct the proof for the Avoid

BRT value functions. Proof for the ReachAvoid value
function can be done similarly. We consider three dynamical
systems and their corresponding BRT value functions:
1) The original dynamics x(·) in (1) and (13), and its value

function V (x, t) in (7).
2) The original dynamics but whose control is confined to

the ones in the dataset, ˙̃x(s)=f(x̃(s), ũ(s)), x̃(−t) = x,
with ũ(s) ∈ Du := {ui}Ni=1. The BRT value function is
given as Ṽ (x, t) = supũ(·) mins∈[−t,0] g(x̃(s)).

3) A fictitious dynamics that captures a differential Stack-
elberg game between the leader v and the follower w,
whose trajectory is defined as

˙̂x(s) = v(s) +w(s), x̂(−t) = x. (26)
The leader’s action is confined by v(s)∈Dv := {vi}Ni=1,
and the follower’s action is confined based on the current
state and the leader’s action, w(s) ∈W (x̂(s),v(s)). The
follower’s action set is defined as the uncertainty sets for
DDH in (15), i.e., W (x, vj) ≡ E(x;xj), when v(s) =
vj ∈ Dv . In other words, the leader selects the velocity in
the dataset, and the follower selects the uncertainty vector
within the uncertainty set associated with each data.

The BRT value function of this game is defined as
V̂ (x, t) := inf

ξw
sup
v(·)

min
s∈[−t,0]

g(x̂(t)), (27)

where ξw is the follower’s non-anticipative strategy [25],
in response to the leader, a mapping from v(·) to w(·).

Theorem 1 is proved by showing that a) V̂ in (27) is the
unique viscosity solution of the HJ-VI in (20) (Theorem 3),
and b) V̂ (x, t) ≤ Ṽ (x, t) ≤ V (x, t) (Theorem 4). □

Theorem 3 (Viscosity solution theorem). V̂ defined in (27)
is the unique viscosity solution to the HJ-VI in (20).

Proof. We first see that the Hamiltonian of V̂ in (27) is
indeed the DDH:
max
v∈Dv

min
w∈W (x,v)

p⊤(v + w) = max
i∈{1,··· ,N}

min
w∈W (x,vi)

p⊤(vi + w)

= max
i∈{1,··· ,N}

min
v̂i∈vi⊕E(x;xi)

p⊤v̂i = Ĥ(x, p),

where v̂i=vi+w. The rest of the proof can be adopted from
the viscosity solution theorem for differential games in [25,
Thm. 4.1], as similarly done in [26], [11] for the HJ-VIs.
The noticeable differences in our assumptions from those of
[25, Thm. 4.1] are 1) Dv is not a compact set in our case,
and 2) the follower’s action space W (x, v) is conditioned
on the leader’s action v. This requires the adoption of [25,
Lemma 4.3], used for the proof of [25, Thm. 4.1], to our
settings as Lemma 1 below. The lemma is the crucial step
that translates the inf-sup leader and follower objectives in
V̂ to max-min objectives in Ĥ . The uniqueness follows from
[27, Thm. 4.2].



Lemma 1. (Adoption of [25, Lemma 4.3]) For ϕ(x, t) ∈ C1,
(a) If ∃θ > 0, ∃(x0, t0) ∈ Rn × R<0 such that
max
v∈Dv

min
w∈W (x,v)

Dtϕ(x, t)+Dxϕ(x, t)
⊤(v+w) ≤ −θ, (28)

then there exists a small enough δ > 0, and the follower’s
non-anticipative strategy ξw such that for all v(·),

ϕ(x̂(t0 + δ), t0 + δ)− ϕ(x0, t0) ≤ −
θ

2
δ. (29)

(b) If ∃θ > 0, ∃(x0, t0) ∈ Rn × R<0 such that
max
v∈Dv

min
w∈W (x,v)

Dtϕ(x, t) +Dxϕ(x, t)
⊤(v + w) ≥ θ,

there exists a small enough δ > 0, such that for all follower’s
non-anticipative strategy ξw, there exists the leader’s control
signal v(·) such that ϕ(x̂(t0 + δ), t0 + δ)− ϕ(x0, t0) ≥ θ

2δ.

Proof. Proof of (a): Due to condition (28), for each vi ∈ Dv ,
there exists w = ŵ(vi) such that

Dtϕ(x0, t0) +Dxϕ(x0, t0)
⊤(vi + ŵ(vi)) ≤ −θ.

Due to the C1 property of ϕ, we have

Dtϕ(x̂(s), s) +Dxϕ(x̂(s), s)
⊤(vi + ŵ(vi)) ≤ −

θ

2
, (30)

for small enough δ > 0, and s ∈ [t0, t0 + δ]. Consider the
follower’s disturbance strategy ξw that satisfies ξw[v](s) =
ŵ(v(s)) for s ∈ [t0, t0 + δ]. From (30), we have

Dtϕ(x̂(s), s) +Dxϕ(x̂(s), s)
⊤(v(s) + ξw[v](s)) ≤ −

θ

2
,

∀s∈ [t0, t0+δ]. Integration from t0 to t0+δ results in (29).
Proof of (b) can be adopted directly from [25].

Theorem 4. V̂ (x, t) ≤ Ṽ (x, t) ≤ V (x, t) ∀x∈Rn, t≥0.

Proof. The second inequality is trivial by observing that
Du ⊂ U . We consider a non-anticipative strategy of the
follower, ξ̃w, selecting its action as:

ξ̃w[v(s)] ≡ f(x̂ξ̃w(s), û(s))− v(s), (31)
where û(s) = uj for v(s) = vj ∈ Dv at each s ∈ [−t, 0],
and x̂ξ̃w(s) solves (26) with w(s) ≡ ξ̃w[v(s)]. Note that
this strategy is non-anticipative since we don’t use any
information of the follower’s action in τ ∈ (s, 0]. More
importantly, it is a feasible strategy because for v(s) = vj ,

f(x̂ξ̃w(s), uj)− vj ∈ E(x̂ξ̃w(s);xj) = W (x̂ξ̃w(s),v(s)).

Under this follower strategy ξ̃w, (26) becomes
˙̂xξ̃w(s) = v(s) + ξ̃w[v(s)] = f(x̂ξ̃w(s), û(s)).

Intuitively, the follower always selects its action so that the
fictitious dynamics (26) become identical to the original
dynamics. As a result, we can see that with ũ ≡ û,

sup
v(·)

min
s∈[−t,0]

g(x̂ξ̃w(t)) ≡ Ṽ (x, t),

Since V̂ minimizes the identical cost function over all
possible follower strategies, we get V̂ (x, t) ≤ Ṽ (x, t).
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