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ABSTRACT
Enforcing safety is critical for aerial robotics. In this paper

we consider the safety control problem for a 3D quadrotor with
limited sensing range subject to avoiding collisions with time-
varying obstacles. By using the concepts of Control Lyapunov
Functions (CLFs) and Control Barrier functions (CBFs), we pro-
pose a control algorithm that explicitly considers the nonlinear
and underactuated dynamics of a quadrotor to strictly guarantee
time-varying safety-critical constraints. We demonstrate the fea-
sibility of our proposed control design through numerical valida-
tion of (a) aerial flight through a region of dense cluttered obsta-
cles, and (b) aerial flight through a dense time-varying obstacle
field.

1 Introduction

Traditionally, dynamic motion of mobile robots is realized
through a strict decoupling of planning from control, wherein
dynamically feasible trajectories are generated offline to avoid
unsafe regions, while the controller will track these planned tra-
jectories online subject to various constraints. Although these
approaches work well when the characteristic speed of robot is
small, several challenges arise as the UAV is moving in a much
more aggressive manner. On one side, fast agile movement of
the UAV requires precise planning of dynamically feasible mo-
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FIGURE 1: Constrained Control of a 3D quadrotor. A refer-
ence trajectory (dashed line) and a obstacle are shown. The con-
trol goal is to track the reference trajectory while simultaneously
strictly enforcing that the state remains outside the safe region.
The proposed controller automatically relaxes tracking of the tra-
jectory to enforce strict safety, thereby requiring only an approx-
imate, potentially unsafe, trajectory plan.

tions and reliable feedback controller for tracking. On the other
hand, for high-speed UAVs operating in cluttered environments
with local information, planned trajectories become stale almost
immediately as new dynamic obstacles are constantly detected.

Faced with these challenges, researchers have come up with
faster and precise algorithms from the perspectives of both plan-
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ning and control. To boost the performance of planning algo-
rithms of UAVs subject to external obstacles, some researchers
propose computationally efficient methods which can convert
the planning problem into a convex programming or a mixed-
integer convex programming [10, 13]. By segmenting the free
space into convex polytopes and allocating an indicator variable
to each basis polynomial, R. Deits et al. [10] is able to let a
quadrotor UAV safely navigate through a cluttered environment
using mixed-integer semidefinite programming (MI-SDP). Al-
though this work is computationally efficient in addressing large
numbers of obstacles, the obstacles are assumed to be static and
global information of the environment is required.

For the same problem, M. Watterson et al. [13], proposed a
multi-scale planning method which can be divided into a global
planner and a local planner. The global planner provides im-
portant waypoints to track the goal through Delaunay triangula-
tion, while the local planner takes care of obstacle avoidance at
the lower level using local sensor information. Since both plan-
ners are based on quadratic programming (QP), this method is
also computationally efficient but a dynamically changing en-
vironment might deteriorate the speed and may not be strictly
enforced since the dynamics of the moving obstacles are not ex-
plicitly considered.

For control algorithms, a similar idea of using optimization
is employed for tracking control under constraints [11, 1, 3, 14,
15]. One of the approaches is model predictive control (MPC),
where all the constraints including system dynamics are directly
imposed in the optimization scheme. For instance, [11] proposes
a MPC controller which is based on mixed-integer linear pro-
gramming (MILP). However, other optimization-based control
methods focus on the system dynamics for simplification. By
employing the system’s structure, these control problems could
be directly converted to a convex optimization problem.

Control Barrier Functions (CBFs), as proposed in [1], is a
key concept for imposing dynamically-feasible constraints. The
underlying idea is to enforce forward invariance of a set in the
state space through a linear constraint on the control input. By
combining control Lyapunov function(CLF) and a CBF candi-
date, A. Ames et al. [1] is able to propose an adaptive cruise
controller based on an online QP. This CBF-CLF-QP controller
is elegant but a general CBF construction method is absent since
most constraints are imposed on the configuration variables only.
Furthermore, time-varying safety constraint are not considered.
G. Wu et al. [14] proposed a general CBF candidate, which
is called geometric CBF, wherein position constraints on Riem-
maninan manifolds are extended to the state space. Finally, work
in [15] proposes an augmented CBF for the planar quadrotor, not
only to account for the underactuated dynamics, but also to han-
dle time-varying safety-critical constraints.

Our approach addresses the safety-critical tracking control
of a 3D quadrotor, wherein, the goal is to track a desired trajec-
tory while enforcing safety-critical constraints to prevent colli-

sions while flying through a dense cluttered time-varying obsta-
cle field with only local environmental information. Aerial flight
through dense cluttered flight has been considered in the past
[9, 5, 2], however, the obstacles considered are all static.

Our approach employs a geometric CBF and CLF to en-
force strict non-collision safety constraints and ensure stability
of tracking of nominal planned trajectories in the absence of con-
flicting safety constraints. In particular, if an obstacle is sensed
directly on the desired path, the proposed controller automati-
cally relaxes tracking of the trajectory to enforce strict safety.
This enables the use of planners that provide fast and approxi-
mate plans with the controller directly accounting for obstacles
that were unknown when the plan was made. See Figure 1. In
comparison to previous work in [15, 14, 1], we make the follow-
ing contributions:

• We consider the full 3D underactuated dynamics of the
quadrotor evolving in T SE(3).
• We explicitly consider the presence of time-varying obsta-

cles and enforce that they can only be detected when within
a limited sensing range of the quadrotor.
• We propose an augmented coordinate-free geometric CBF

for the 3D quadrotor and use this with a geometric CLF ex-
pressed as a QP to realize safety-critical control.
• We show the safety guarantee for this controller in theory

and test the performance with two numerical simulations
comprising of aerial flight through dense cluttered (a) static
obstacles, and (b) dynamic time-varying obstacles.

The rest of the paper is structured as follows. Section
2 presents mathematical preliminaries on geometric CLFs and
CBFs. Section 3 presents the problem of constrained safety-
critical control for a quadrotor UAV with range-limited sens-
ing. Section 4 presents the construction of an augmented con-
trol Barrier function to convert position constraints to orientation
constraints. Section 5 presents the main algorithmic result of
this paper in the form of a sequential quadratic program. Sec-
tion 6 presents simulation results on a quadrotor UAV. Section 7
presents concluding remarks and thoughts on future directions.

2 Mathematical Preliminary

This section introduces control Lyapunov functions (CLFs),
control barrier functions (CBFs) and their corresponding geo-
metric versions. These concepts are well studied in recent work
[1, 14, 8]. Here, we will extend these concepts for the quadrotor
control problem in particular.
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m ∈ R Mass of the quadrotor

J ∈ R3×3 Inertia matrix of the quadrotor with respect to the body-fixed frame

R ∈ SO(3) The rotation matrix of the quadrotor from the body-fixed frame to the inertial frame

Ω ∈ R3 Angular velocity of the the quadrotor in the body-fixed frame

x,v ∈ R3 Position and velocity vectors of the center of mass of the quadrotor in the inertial frame

f ∈ R Thrust produced by the quadrotor

M ∈ R3 Moment produced by the quadrotor

V̂x ∈C∞(R6) Virtual control Lyapunov functions for position

V̂R ∈C∞(T SO(3)) Geometric control Lyapunov function for orientation

Bi,t ⊂ R3 A safe region for the quadrotor’s position denoted based on safety concerns

Ci,t ⊂ TSE(3) A safe region for the quadrotor’s position and orientation which is constructed using Bi

gi ∈C∞(R3) The region function for Ci, i.e, Ci = {x ∈ R3 : gi(x)≥ 0} is the safety region in position space

ĝi ∈C∞(SE(3)) Augmented region function including both position and orientation which preserves safety

ĥi ∈C∞(T SE(3)) Expansion of the augmented region function ĝi to the whole state space

Bi ∈C∞(T SE(3)) Augmented control Barrier function based on ĥi for safety

σ ∈C∞(R) Auxiliary function for the construction of ĝi

TABLE 1: Symbols used and their physical interpretation. Note that C∞(X) denotes the set of all smooth scalar functions on X .

2.1 Exponentially-Stabilizing Control Lyapunov
Function (ES-CLF)

Consider a control affine system shown below,

ẋ = f (x)+g(x)u, x(t0) = x0, (1)

where x ∈Rn and u ∈Rm are the states and control inputs, while
f (x),g(x) are the drift and control vector fields respectively. For
system (1), a smooth function V : [0,∞)×Rn→ R is called ex-
ponentially stabilizing control Lyapunov Function (ES-CLF) if
there exist constants c1,c2,c3 > 0 such that ∀t ∈ [0,∞), ∀x ∈ Rn

c1||x||2 ≤V (x)≤ c2||x||2,
inf

u∈Rm
{L fV +LgVu+ c3V} ≤ 0.

where L fV = ∂V/∂x · f , LgV = ∂V/∂x ·g are the Lie derivatives
of V with respect to f ,g respectively.

To apply a CLF-based controller to a quadrotor, which
evolves on a nonlinear manifold, we will extend the above Carte-
sian definition to the geometric setting next.

2.2 Geometric ES-CLF on SO(3)
The above concept of a ES-CLF is restricted to systems

whose configuration space is Cartesian space. The concept of
a geometric CLF is introduced to extend to a general nonlinear
manifold in [14]. Here, we focus on ES-CLFs for SO(3), where
SO(3) is a Lie group that represents the space of rotations. The
attitude dynamics of the quadrotor is given by:

Ṙ = RΩ̂, JΩ̇+Ω× JΩ = M, (2)

where R ∈ SO(3),Ω ∈ R3 represent the orientation and angular
velocity of the rigid body, and the hat map ·̂ : R3→ so(3) is de-
fined such that x̂y = x× y, ∀x,y ∈ R3. We also denote the vee
map

∨· : so(3)→ R3 as its inverse, such that (x̂)∨ = x,∀x ∈ R3.
Next, given a desired reference trajectory Rd(t),Ωd(t), a geo-
metric ES-CLF exists to stabilize the system in (2) to the above
desired trajectory. From [15], it can be written as:

V = αΨ(R,Rd)+ eT
ΩJeΩ + εeR · eΩ (3)

where α,ε > 0, Ψ(R,Rd) =
1
2 trace(I−RT

d R) is the configuration
error, eR = 1

2 (R
T
d R−RT Rd)

∨ is the position error and eΩ = Ω−
RT RdΩ is the velocity error.
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This geometric ES-CLF (3) is based on geometric control
theory [4] and is shown to be an almost global CLF in [15]. Since
it’s an almost global CLF, the set when it fails to be a CLF has
measure 0, and thus we can design tracking controllers using this
as a CLF for almost all states.

2.3 Time-varying Control Barrier Function (CBF)
A CBF is defined with respect to a region in the state space,

which might be potentially time-varying. For system (1), sup-
pose we have a smooth time-varying function h : [0,∞)×Rn→
R, with its super level set Ct = {x∈Rn : h(t,x)≥ 0} representing
a time-varying safe-set, i.e, we require the controller to keep the
state within Ct . If this set always has a non-empty interior, i.e.,
C ◦t 6= /0, for any time t ∈ [0,∞), then a smooth scalar function
B : R→ R∪{∞,−∞} is called a CBF of the set Ct if there exist
two class K function α1,α2 and η > 0 such that

1
α1(h(t,x))

≤ B(h(t,x))≤ 1
α2(h(t,x))

,

inf
u∈Rm
{B′(h)(∂h

∂ t
+L f h+Lgh ·u)− η

B
} ≤ 0, (4)

for any t ∈ [0,∞) and x ∈ C ◦t where L f h,Lgh are the Lie deriva-
tives of h with respect to f and g.

Note that this time-varying CBF condition in (4) is proposed
in [14] and can enforce the forward invariance of the safe set Ct .
Thus, once the system state starts within Ct , the state will always
remain within Ct as long as(4) is enforced for all time.

Having set up the necessary mathematical background, we
will next formally define the safety-critical control problem for
a 3D quadrotor with range-limited sensing and construct an aug-
mented CBF in Sec. 4.

3 Safety-Critical Control Problem for 3D Quadrotor
with Range-Limited Sensing
Consider a 3D quadrotor system shown in Fig. 2. The dy-

namics of this quadrotor is given by:

ẋ = v, mv̇ = FRe3−mge3,

Ṙ = RΩ̂, JΩ̇+Ω× JΩ = M,
(5)

where x ∈ R3 is the position of the quadrotor’s CoM, R ∈ SO(3)
is the rotation matrix of the body-fixed frame, g is the gravity
acceleration, m > 0,J ∈ R3×3 are the mass and inertia of the
quadrotor, and F ∈ R,M ∈ R3 are the scalar thrust force along
the body axis and moment in the body-fixed frame respectively.

The safety-critical control problem for the 3D quadrotor is
stated next. First, we assume the following are given:

FIGURE 2: Thrust f and moment M produced by a 3D quadrotor,
along with a range-limited omnidirectional sensor model with
range rs are shown. Two obstacles are shown (green circles),
with the detected obstacle that is within the sensing range high-
lighted.

A.1 A smooth reference trajectory (xd(t),Rd(t)) for (5), with
xd ∈ R3 and Rd ∈ SO(3) representing the desired position
and orientation of the quadrotor.

A.2 A list of time-varying safe regions in the position configura-
tion space, Bi,t = {x : gi(t,x) ≥ 0}, where x is the position
of the quadrotor and gi(t,x) = ||x− xi(t)||2−bi(t), bi(t) >
0, i = 1,2, · · · ,k, such that Bi defines the space outside a
closed ball centered about xi(t) ∈R3 of radius

√
bi(t), with

the overall safe region in position configuration-space de-
noted as Bt = ∩m

i=1Bi,t with non-empty interior.
A.3 A finite limited sensing range rs exists, such that the obsta-

cle Bi,t is detected whenever ||x− xi(t)|| ≤ rs.

Remark 1. Note that in A.1, since the system (5) is differentially
flat [7], we are able to obtain a smooth reference trajectory eas-
ily by choosing a set of flat outputs. Also, note that in A.3, a
sensor such as lidar, an omnidirectional camera, 3D IR proxim-
ity sensor, or even multiple pairs of stereo vision can provide a
full 360◦ sensing.

Constrained Control Problem: The control goal is then to de-
sign a feedback law for the inputs f ,M for the system (5) such
that the following constraints are satisfied:

(x,R)→ (xd ,Rd), when xd ∈Bt ,as t→ ∞ (Stability constraint)
x(t) ∈Bt ,∀t ∈ [0,∞) (Safety constraint)
0≤ F ≤ Fmax, |M j| ≤M j,max, j = 1,2,3 (Input constraint)

Remark 2. Note that this is a challenging control problem for
several reasons:
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1. We are considering the 3D quadrotor dynamics without typi-
cal local Euler angle parametrizations, requiring the control
to be directly computed on manifolds.

2. We can not assume the desired trajectory is safe, requiring
the controller to enforce strict safety constraints even when
the desired trajectory violates them.

3. Since the safety constraints are in terms of position con-
straints and the quadrotor can not arbitrarily change it’s
position (due to underactuation), respecting these position
safety constraints is non-trivial.

4. The time-varying safety constraints and limited sensing
range introduce additional challenges.

5. Requiring strict enforcement of actuator limits in addition to
all the above challenges makes this a hard control problem.

Having formulated the safety-critical control problem for 3D
quadrotor with range-limited sensing, we will next see how the
position-based safety constraints defined by the set Bi,t are ex-
tended to all of the configuration through the construction of an
augmented CBF.

4 Augmented Geometric CBF Construction
The quadrotor UAV is an underactuated system with 6 de-

grees of freedom and only 4 control inputs. Typically the at-
titude is controlled by the moment inputs while the position is
controlled through adjusting the attitude. Thus, the controller
has to consider both orientation and position at the same time
to avoid an obstacle (see Fig. 3.) Since the thrust can only be
positive, larger thrust can help Quadrotor Q2 escape the obstacle
while it would deteriorate the situation for Quadrotor Q1. Hence
we need a larger safety margin for Quadrotor Q1 so that it can ad-
just its orientation before colliding with the obstacle. To capture
this, we augment the definition of gi(t,x) to depend on the orien-
tation of the quadrotor as well to construct the augmented safety
function ĝi(t,x,R). The intuition is to actively adjust the size of
the safe set based on the quadrotor’s orientation and it’s ability to
prevent exiting the safe set. In the following, we present a CBF
construction method for a 3D quadrotor system (see [15] for a
detailed discussion for the case of a planar quadrotor.)

We will illustrate the construction of the augmented CBF for
a 3D quadrotor through a simple example. Given a safety region
for position, B = {x ∈ R3 : g(x) ≥ 0}, determined by an im-
plicitly time-varying smooth configuration safety function g(x)
below(we’ve dropped the explicit dependence of time on x,x0,b
for simplicity):

g(x) = ||x− xo||2−b≥ 0, b > 0,

we expand it to the whole configuration space by defining the

FIGURE 3: The ability of a quadrotor to avoid an obstacle
depends both on its position and orientation. In particular,
the Quadrotor Q1 is less capable of avoiding the obstacle than
Quadrotor Q2. This can be captured through s1 := r1 ·R1e3 <
0 < s2 := r2 ·R2e3.

augmented configuration safety function,

ĝ(x,R) := ||x− xo||2−βb−σ(s), (6)

where s = r ·q, r = x− xo, q = Re3, β > 1, and σ : R→ R is a
smooth function satisfying the following conditions:

σ
′(s)< 0, (Strictly decreasing) (7)
|σ(s)| ≤ σ0 < (β −1)b, ∀s ∈ R, (Boundedness) (8)

2s−σ
′(s)> 0,∀s ∈ (−

√
βb,0), (Local quadratic) (9)

Remark 3. Note that s is the inner product of the direction of the
quadrotor thrust and the distance vector between the quadrotor
and the center of the unsafe set R3\B. Intuitively, it reflects the
quadrotor’s ability to avoid a certain obstacle as shown in Fig. 3.

Lemma 1. If the system state always stays within B̂ = {(x,R) ∈
SE(3) : ĝ ≥ 0}, then the position state x would always remain
within B.

Proof. It is obvious that whenever (x,R) ∈ B̂, ||x− xo|| ≥ βb−
σ(s)≥ βb−σ0 > βb− (β −1)b = b, based on (8). This implies
that x ∈B, which guarantees safety in the position space.

The augmented safety function ĝ above is a function of
the configuration space and does not have relative degree 1.
To address this we construct a new safety constraint function
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ĥ : T SE(3)→ R as:

ĥ := γα(ĝ)+ ˙̂g

= γα(ĝ)+2(ẋ− ẋo) · (x− xo)−β ḃ−σ
′(s)ṡ, (10)

where ṡ = (ẋ− ẋo) ·Re3+(x−xo) ·R(Ω×e3). We can also define
a new safety region in the state space as

C = {(x,R, ẋ,Ω) ∈ T SE(3) : ĥ(x,R, ẋ,Ω)≥ 0}.

Lemma 2. If the safety region C is forward invariant, then the
safety region B is also forward invariant.

Proof. The proof follows from [14, Prop. 1] and Lemma
1. Suppose (x(0),R(0), ẋ(0),Ω(0)) ∈ C , then by for-
ward invariance of C , (x(t),R(t), ẋ(t),Ω(t)) ∈ C ,∀t ≥
0, i.e, ĥ(x(t),R(t), ẋ(t),Ω(t)) = γα(ĝ(x(t),R(t))) +
˙̂g(x(t),R(t), ẋ(t),Ω(t))≥ 0.

Then we could proceed through contradiction. Assume the
configuration variable at time t2 > 0 lies outside the region
B̂. Then since the function ĝ(x,R) is smooth, by intermediate
value theorem, there exists 0 < t1 < t2 such that ĝ(x(t1),R(t1)) =
0, ˙̂g(t1) < 0, or equivalently, the state would escape B at t1.
However, due to the above inequality, a contradiction arises
since ĝ(t1) ≥ −α(ĝ(x(t1),R(t1))) = 0. Thus the assumption is
not true, which implies that the region B̂ is also forward invari-
ant. Applying Lemma 1 yields that the region B is forward in-
variant.

Then select a candidate CBF B̂ := 1/ĥa with a > 0. We have the
following lemma regarding the safety:

Lemma 3. If the scalar function σ satisfies the conditions (7),
(8) and (9). Then the candidate function B̂ is an almost global
CBF for (5). Moreover, we can guarantee safety for the trajec-
tory of (5), provided that ĥ(0)≥ 0 and the thresholds Fmax,Mi,max
are sufficiently large.

Proof. Assume Fmax,Mi,max are unbounded. Then it holds that

Ḃ− γ

B
≤ 0⇔ − 1

ĥa+1
( ˙̂h+ γ ĥ2a+1)≤ 0, (11)

⇔ ˙̂h+ γ ĥ2a+1 ≥ 0.

Note that the time derivative of ĥ defined in (10) can be written

as

˙̂h = γα
′(ĝ) ˙̂g+2(x− xo) · (ẍ− ẍo)

+ 2(ẋ− ẋo) · (ẋ− ẋo)−β b̈−σ
′′(s)ṡ2

− σ
′(s)[(Re3) · (ẍ− ẍo)+2(ẋ− ẋo) ·R(Ω× e3)

+ (x− xo)
T RΩ̂

2e3− (x− xo)
T Rê3Ω̇]

=
1
m
(2s−σ

′(s))F +(σ ′(s)(RT r)T ê3J−1)M+Γ3

= Γ1F +Γ
T
2 M+Γ3 (12)

where the term Γ3 is independent of ẍ and Ω̇ and Γ1,Γ2 are the
coefficients of f and M respectively.

We can check several cases depending on the term Γ3. If
Γ3 6= 0, then we could assign the following control inputs:

F = 0, M =
−Γ3− γ ĥ2a+1

||Γ2||2
JΓ2

which means that we could always avoid the obstacle by adjust-
ing the altitude for this case.

When Γ2 = 0, it holds that rR̂e3 = 0 since σ ′(s) < 0 ac-
cording to (7) and the matrix J is nonsingular. Further, it holds
that e3×RT r = 0 which means that the vectors q and r are par-
allel. For the case when the directions of q and r coincide, we
have Γ1 = 2s−σ ′(s)> 2s = 2r ·q > 0 using condition (7). This
means that we could apply a large enough thrust to satisfy CBF
condition as:

F = m
−Γ3− γ ĥ2a+1

2s−σ ′(s)
, M = 0

When the directions q and r are contrary to each other,
whether the CBF condition holds depends on the range of s. The
only condition when CBF would fail is that s < −

√
βb. For-

tunately, the set {(x,R, ẋ,Ω) ∈ T SE(3) : s ≤ −
√

βb} is a sub-
manifold in T SE(3) and has Lebesgue measure zero. So B is an
almost global CBF. Consider the case when CBF condition fails,
we have that s≤−

√
βb which means that −s =−q · r = ||r|| ≥√

βb by condition (9). This means that g = ||r||2 ≥ βb > b, and
thus the system trajectory would remain within B. When the
condition of CBF is satisfied, the region C is forward invariant.
By Lemma 2, we have the original safety region B is forward in-
variant. Combining the previous argument, the system trajectory
will always remain within B for either case and thus stay safe.

Remark 4. Note that in the proof, we have not considered input
saturation. In particular, if the input constraints are too strin-
gent, its possible for the QP to become infeasible. If we assume
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the relative velocity of the obstacle entering the sensing range is
bounded, then we can choose the constant γ and the function σ to
still guarantee safety. In general, incorporating input saturation
into the construction of a Barrier is an open research problem.

5 Sequential CBF-CLF-QP Control with Limited Sens-
ing Range
Based on the augmented CBF constructed in Sec. 4, we pro-

pose a cascade optimization scheme for the CBF-CLF-QP con-
trol design. The underlying idea is inspired by the backstepping
method in geometric control [12], which makes a singular pertur-
bation argument to separate the fast orientation dynamics from
the slow translational dynamics. Similar to this, the scheme here
comprises of two levels: the first level is called position level QP
and the second level is called orientation level QP.

First, we construct an augmented CBF B̂i for each safety
region Bi,t as indicated in Eq.(6). The corresponding expanded
safe set is Ci,t = {(x, ẋ,R,Ω) ∈ T SE(3) : ĥi ≥ 0}. Then assume
that the underactuated part is “fully-actuated” with the virtual
dynamics:

v = ẋ, mv̇ = f (13)

Select a quadratic CLF for this virtual system as:

V̂x =
1
2

mev · ev +
1
2

k1ex · ex + ε1ex · ev (14)

where ex = x− xd ,ev = v− vd , and the value of k1,ε1 > 0 are
chosen specifically to make V̂ quadratic.

Then, we are able to compute a virtual force based on V̂
through the following QP based on (14):

Position Level QP (virtual force computation)

f ∗ = argmin
f∈R

1
2

f T Q f

s. t. ˙̂Vx( f )+η1V̂x ≤ 0,

where η1 > 0. The solution f ∗ is computed as a virtual force
and passed onto the lower orientation level of optimization as an
input parameter,

Then we decompose this input f ∗ into its norm Fc = | f ∗|
and direction b3c = f ∗/Fc. Then compute a desired rotation ma-
trix as below: Rc = [b1c,b3c × b1c,b3c] where the unit vector
b1c = −b̂2

3c×Rde1/||b̂2
3c×Rde1||. In this way, we can construct

a geometric CLF for the orientation part as:

V̂R =
1
2

eT
RJeR +

1
2

eT
ΩK2eΩ + ε2eR · eΩ (15)

Then, the orientation level QP is constructed to obtain our actual
control inputs F and M:

Orientation Level QP (virtual force tracking and safety guaran-
tee):

[F∗,M∗] = argmin
F∈R,M∈R3

1
2

λ1(F−Fc)
2 +

1
2

M2 +
1
2

λ2δ
2

subject to ˙̂VR(M)+η2V̂R ≤ δ

˙̂B j(F,M)≤
γ j

B̂ j
, j ∈ Is(t)

where Is(t) is the collection of indices corresponding to obsta-
cles that are detected by the quadrotor’s onboard range-limited
sensor, ˙̂B j(F,M) is as computed in (11) and λ1,λ2,η2,γ j are all
positive gain parameters.

Remark 5. Based on analysis in [6], the stability of a geometric
controller can be guaranteed roughly under the condition of a
fairly large proportional gain in the orientation control. Since
the convergence rate of CLF can be related to the proportional
gain, we here entail that η2 � η1. This can be shown in the
simulation parameters.

Regarding the safety property of this controller, we have the
following proposition:

Proposition 1. (Safety Guarantee of Sequential CBF-CLF-QP
Controller)

If the following assumptions are satisfied:

1. Suppose at any time t ∈ [0,∞), the sequential QP controller
always admits a solution F,M;

2. The conditions of Lemma 3 are satisfied;
3. There exists sequence {tn, n ∈ N} such that Is is constant

between [tn, tn+1]) for each n ∈ N, and B̂i(tn)≥ 0 for all i ∈
Is;

then the system trajectory would always remain within Ct .

Proof. First observe that only those obstacles within the sensing
range will affect the trajectory’s safety at each time t > 0. Fix
n∈N, consider the time interval [tn, tn+1]. By applying Lemma 3
to each function B̂i, the condition of every CBF can be enforced,
and thus the set Ci,t is forward invariant for each i ∈ Is. Thus,
the system trajectory would remain within every region Ci,t , and
the position trajectory would remain within Bi,t by Lemma 2
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for each i ∈ Is. This indicates the system position would remain
within Bt for [tn, tn+1) by the previous argument. Hence, over the
entire interval [0,∞), the system trajectory would always remain
within Ct and thus stay safe.

6 Simulation Results
To numerically validate the performance of the proposed

sequential QP controller, we have created a simulation frame-
work in Matlab 2015b. The simulator utilizes ode15s as the
solver since the problem is intrinsically stiff due to new ob-
stacles being sensed. Each level of QP is solved by ”interior
point method” with convergence tolerances 10−4 and 10−6 re-
spectively. The quadrotor model is an Asctec Hummingbird,
with a two meter sensing range. The mass parameters of this
quadrotor are provided by the company as m = 0.52kg,J =
diag[2.32,2.32,7.60]× 10−3kg ·m2. The function σ is given as
σ(s)=−a1 arctan(a2s+a3). As mentioned in Section. 3, we will
choose the positions xd and yaw angle φd as the flat outputs to
generate the reference (xd(t),Rd(t)). Given the above reference
trajectory, we then solve the control problem as described in Sec-
tion 3 of tracking the reference asymptotically when ever its safe
while ensuring the state is in the safe set by avoiding obstacles
and enforcing input constraints. We use the position and orien-
tation level QP controllers described in Section 5, however we
incorporate the input bounds, 0≤ f ≤ 50N, and |M| ≤ 0.038Nm.
With this controller, we next present the results of two simula-
tion experiments, where the quadrotor has to detect and avoid
randomly generated static and dynamic obstacles respectively.

6.1 Trajectory Tracking with Randomly Generated
Static Obstacles

In the first experiment, the reference of the flat outputs is
given as a straight line xd(t) = [0,0.75t,1.5]T , φd(t) = 0. This
straight line will pass through a box [−2.5,2.5]× [0,10]× [0,5]
where we put in randomly generated sphere-shaped obstacles.
These obstacles are generated offline from uniform distribution.
The positions of these obstacles are uniformly sampled within
the box while the corresponding radii are taken from an uniform
distribution over the interval [0.25,1]. We show the simulation
results graphically in Fig. 4. As shown, initially we plot out 40
obstacles to show the general setup in Fig. 4a. The rest of fig-
ures plot out the reference and actual trajectory of the quadro-
tor’s CoM in red dashed and black solid line separately. As can
be seen, the CBF-CLF-QP controller will help avoid the obsta-
cles while tracking the reference trajectory when it’s safe.

6.2 Trajectory Tracking with Randomly Generated Dy-
namic Obstacles

In the second experiment, the corresponding flat output is
xd(t) = [−sin(0.5t),5+ cos(0.5t),1.5]T , φd(t) = π

6 which is a

planar circle parallel to the XY plane. During the simulation
process, we randomly generate 12 obstacles near the wall of a
box and shoot them at the quadrotor with speed 1.5m/s every 2
seconds. The simulation results are shown in Fig. 5 and Fig.6.
Fig. 5 shows the error plot in position and orientation with re-
spect to reference. Since the obstacle will be constantly shot at
the quadrotor, asymptotic stability for the trajectory tracking is
only possible when there is no obstacle along the trajectory. The
controller attempts to track the reference in a stable manner when
the reference trajectory is safe, while the controller relaxes track-
ing the reference when it is no longer safe. This leads to the error
to fluctuate from converging to zero to going to non-zero values.
Fig. 6 also shows snapshots of the reference and actual trajectory,
using the same line pattern as in Fig. 4. In the static case, only
a few obstacles are sensed, however for the dynamic case, a lot
more obstacles are sensed since the obstacles are shot towards the
quadrotor. Due to the presence of numerous dynamic obstacles,
the quadrotor has to constantly oscillate around the reference to
avoid collision. Check the video link in the caption for a better
illustration.

FIGURE 5: Position error ex and orientation error eR plot. The
controller drives the error to zero when the reference trajectory is
safe. When the reference trajectory violates the safety constraint
(by passing through an obstacle), the controller automatically re-
laxes trajectory tracking to strictly enforce safety constraints. All
this is done without the need for re-planning.
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(a) Snapshot at t = 0 with the initial obstacles
setup. (b) Snapshot at t = 2.4s. (c) Snapshot at t = 4.8s.

(d) Snapshot at t = 7.2. (e) Snapshot at t = 9.6s. (f) Snapshot at t = 12s.

FIGURE 4: Numerical validation of 3D quadrotor flight through a dense cluttered static obstacle field. Snapshots of the simulation for
15 seconds, where we show all the obstacles in the first snapshot and only plot out the obstacles that are detected by the quadrotor in
subsequent snapshots. The black solid line is the actual trajectory and the red dashed line is the reference trajectory. The quadrotor
strictly guarantees non-collision with the obstacles and tracks the desired reference trajectory when feasible, all without the need for any
re-planning. Simulation video: https://youtu.be/LHNesE603us.

6.3 Discussion

In addition to the promising simulation results presented in
Figs. 4,6, we also want to add in a few comments regarding ad-
vantages and drawbacks of our controller. In particular, although
our controller can adapt to the changing environment rapidly to
avoid obstacles while tracking a reference trajectory, there is a
possibility that it can get trapped in nonconvex regions as it’s
only using local information, as described in [13]. However, this
can be easily addressed by combining this controller with a long
range planner, thereby enabling safe and efficient flight. As men-
tioned in Remark 4, there is a possibility that the QP becomes
infeasible for extreme situations with stringent torque saturation
constraints. However, bounding the relative velocity of the ob-
stacle on entering the sensing field and carefully selecting the
constant γ and the function σ , in practice we can still retain the
guarantees of safety. Finally, the presented σ function was cho-

sen arbitrary to satisfy certain properties. We believe that finding
a systematic way to search for a σ function would be an interest-
ing future direction.

Acknowledgment
This work is supported in part by the Google Faculty Re-

search Award and in part by NSF grants CMMI-1538869, IIS-
1464337, IIS-1526515.

7 Conclusion
In this paper, we address the constrained control problem

of a 3D quadrotor with limited sensing range navigating a dense
obstacle field. The control design is proposed as a sequential
QP controller that uses geometric CLFs and an augmented CBF.
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(a) Snapshot at t = 0. (b) Snapshot at t = 4s. (c) Snapshot at t = 8s.

(d) Snapshot at t = 12s. (e) Snapshot at t = 16s. (f) Snapshot at t = 20s.

FIGURE 6: Numerical validation of 3D quadrotor flight through a dense cluttered dynamic time-varying obstacle field. Snapshots
of the simulation process for 12 seconds are shown. The red dashed line is the reference trajectory while the black solid line is the
actual trajectory of the quadrotor’s CoM. The obstacles are dynamic and move with randomly generated velocities. Simulation video:
https://youtu.be/LHNesE603us.

Alongside with rigorous proof, we show the safety guarantee
through two numerical experiments of aerial flight through a
dense cluttered static and dynamic obstacle fields.
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