
 1

Abstract——As sensor networks become increasingly autonomous and grow to include mobility and actuation, the need

for predictability in the execution of complex missions becomes crucial. In this perspective, we propose a discrete event

controller (DEC) as an effective framework for modelling task constraints, priority orders and task schedules of mobile

sensor networks in charge of executing multiple missions. The focus of this paper is to show that for such systems risks of

deadlock arise and that the proposed DEC is able to easily implement effective deadlock avoidance algorithms. Several

simulations and experiments of coordination policies for mobile sensor networks with shared heterogeneous resources are

presented.

Index Terms——Mobile sensor network, deadlock avoidance, discrete event control

1. INTRODUCTION

A mobile sensor network (MSN) is a geographically distributed network whose heterogeneous nodes are

able to perform certain tasks, such as measuring, manipulating or moving [1, 10, 4, 15]. Applications range

from environmental monitoring to rescue operations in the event of calamities and exploration of dangerous

or unknown environments. As for generic multi-robot systems, the key research issue in this field is to

endow the MSN with the sufficient intelligence to automatically react to stimuli of external environments

according to a predefined set of cooperation rules. In related literature, given the distributed nature of MSN,

decentralized approaches are usually preferred [3, 5, 2, 6, 19]. All these approaches usually refer to the

achievement of a single mission and require substantial modifications if the mission goal changes. Also, a

MSN with homogeneous resources is usually considered.

If more complex scenarios are envisioned and multiple missions (i.e. multiple sequences of

interconnected tasks) with multiple goals have to be implemented, the risk that the system gets stuck into

deadlocks arises. In fact distributed MSN may have numerous heterogeneous resources that are shared by

different tasks in different missions. Task sequencing and resource assignment in such MSNs is challenging

and improper assignment of shared resources can lead to blocking phenomena and, in extreme cases, to

deadlock. The implementation of deadlock avoidance policies in autonomous distributed robotic systems

such as MSN has not been thoroughly investigated yet, even if it is apparent that a purely distributed control

approach cannot solve this problem.

In a previous paper [7], we have shown through simple simulation studies how a matrix-based discrete

event controller allows one to easily implement efficient deadlock avoidance policies for shared resources

in heterogeneous MSN with multiple missions. This control architecture also provides an intuitive tool for

easily programming the mission goals and priorities, which is a major concern in MSN if external

conditions change or more information are available to a human operator (e.g see [12]).

1 Supported by ARO grant DAAD 19-02-1-0366; ARO grant ARO W91NF-05-1-0314; NSF grant IIS-0326505; NSF grant CNS-0421282, Singapore SERC

TSRP grant 0421120028, NI Lead User grant

Avoiding shared resource conflicts in mobile

sensor networks with multiple missions
1

Koushil Sreenath, Vincenzo Giordano, Frank Lewis

Robotics and Automation Research Institute,

University of Texas at Arlington, J. Newell Blvd. 7300, Fort Worth, TX 76118 USA

 2

In this paper we will significantly extend our previous study to more challenging and realistic scenarios

that include circular wait relations among shared resources in different missions. If shared resources are not

appropriately assigned, such circular waits can lead to various blocking phenomena, especially deadlock

[18], where the MSN resources are occupied in such a manner that they will never be released, and all

activity in the MSN comes to a halt. Also we will show through experimental implementations on an actual

MSN test-bed (composed of mobile sensors and unattended ground sensors) the practical feasibility and

effectiveness of the proposed deadlock-free coordination policy for MSNs with heterogeneous resources in

charge of executing multiple complex missions.

2. MATRIX-BASED DISCRETE EVENT CONTROLLER

The matrix-based discrete event controller proposed in [17] provides a rigorous, yet intuitive mathematical

framework to represent the dynamic evolution of DE systems according to linguistic if-then rules:

Rule i: If <conditions
i
 hold > then <consequences

i
>

In particular for a MSN, we can define the mission planning in the following way:

Rule i: If <sensor1 has completed task1, robot2 is available and a chemical alert is detected > then <robot

2 starts task4>

We now show how our DE controller allows one to easily represent these linguistic rules in a rigorous

fashion.

Let r be the vector of resources used in the system (e.g. mobile robots and unattended ground

sensors(UGS)), v the vector of tasks that the resources can perform (e.g. go to a prescribed location, take a

measurement, retrieve and deploy UGS), u the vector of input events (occurrence of sensor detection

events, scheduled time instant, etc.) and y the vector of outputs (completed missions). Finally, let x be the

logical state vector of the rules of the DE controller, whose entry of ‘1’ in position i denotes that rule i of

the DE control policy is currently activated.

Then we can define two different sets of logical equations, one for checking the conditions for the

activation of rule i (matrix controller state equation), and one for defining the consequences of the

activation of rule i (matrix controller output equation). In the following, all matrix operations are defined to

be in the or/and algebra, where + denotes logical or and ‘times’ denotes logical and.

The matrix controller state equation is (see [17] for more details):

dudurv uFuFrFvFx +++= (1)

where x is the task or state logical vector, vF is the task sequencing matrix [16], rF is the resource

requirements matrix [9], uF is the input matrix. udF is the conflict resolution matrix and du is the conflict

resolution vector. The current status of the DE system includes task vector v, whose entries of ‘1’ represent

‘completed task’, resource vector r, whose entries of ‘1’ represent ‘resource (robot or UGS) currently

available’, and the input vector u, whose entry of 1 represent the occurrence of a certain predefined event

(fire alarm, intrusion etc.). The overbar in equation (1) denotes logical negation so that tasks complete or

resources released are represented by ‘0’ entries.

The activated rules determine the commands to the MSN that the DEC has to sequence in the next

iteration, according to the matrix controller output equations:

xSv v= (2)

xSr r= (3)

xSy y= (4)

Sv is the task start matrix, Sr is the resource release matrix and Sy is the output matrix (see [17] for more

details]). The task start equation (2) computes which tasks are activated and may be started, the resource

release equation (3) computes which resources should be released (due to completed tasks) and the mission

completion equation (4) computes which missions have been successfully completed.

 3

It is worth mentioning that all the coefficient matrices in equation 1-4 are composed of Boolean elements

and are sparse, so that real time computations are easy even for large interconnected DE systems.

Finally in order to provide a complete dynamical description of the DE system, we define the following

quantities (equivalent to the marking vector, the output incidence matrix and input incidence matrix of a

PN, see e.g. [14]):

[]')'(,)'(,)'(,)'()(tutrtvtutm d=

[]'',',',',' yurvu SSSSSS
d

=

[]'',',',',' yurvu FFFFFF
d

=

where t represents time. Then, in order to take into account the time durations of the tasks and the time

required for resource releases, we can split m(t) into two vectors, one representing available resources and

current finished tasks ()(tma) and the other representing the tasks in progress and busy resources ()(tmp)

)()()(tmtmtm pa += (5)

As a consequence, considering equations 1-4 which represent the rule-base of our DE supervisory

controller, we have

)()()1(txFtmtm aa ⋅′−=+ (6)

)()()1(txStmtm pp ⋅+=+ (7)

It results that when a rule is activated (equation 1) some tasks end and some resources become available

(equation 6), whereas some other tasks start and some other resources become busy (equation 7).

Equations (1), (6) and (7) represent a complete description of the dynamical behavior of the discrete event

system [17] and can be implemented for the purposes of computer simulations using any programming

language (e.g. MATLAB® or C). This is a crucial result for mobile wireless sensor networks where direct

experimentation on the hardware can be indeed challenging and expensive.

As shown in [8], the practical implementation of the DEC as a framework for coordination of MSN with

multiple concurrent missions follows few simple steps. For each mission i we implement the task

constraints (using Fv
i
 and Sv

i
), the schedule according to which certain missions have to be started (updating

vector u
i
), and any decentralized task allocation algorithm (updating Fr

i
 and Sr

i
 matrices). Multiple missions

are then implemented by conveniently stacking together the sets of vectors and matrices of each mission.

In this paper we will extend the results proposed in [8] to more complex scenarios, in which the

implementation of multiple missions determine shared resource conflicts (i.e. conflicts deriving by the

simultaneous activation of rules which start different tasks requiring the same resource) and deadlocks

which have to be avoided. In equation 1, matrix Fud and vector ud are used to resolve conflicts of shared

resources. Briefly, an entry of ‘1’ in position j in ud, determines the inhibition of logic state xi (rule i cannot

be fired). It results that, depending on the way one selects the conflict-resolution strategy to generate vector

ud, different dispatching strategies can be selected to avoid resource conflicts or deadlocks. As shown in

section 3, this result will be exploited in this paper to implement a real-time deadlock avoidance policy for

MSNs.

3. MATRIX-BASED DEADLOCK AVOIDANCE POLICY

As shown in [11, 13], the matrix constructions presented in section 2 can be efficiently used to implement

deadlock avoidance policies for discrete event systems. In the following we will consider the following

assumptions:

• No resource fails during a mission

• A resource always complete its current task before starting a new one

 4

• Every resource performs one task at a time

• After the task is completed, the resource is immediately available for a new task

• Each task requires one resource to be executed

For any two resources ri and rj, ri is said to wait for rj, denoted ri� rj, if the availability of rj is an

immediate requirements for the release of ri. Circular waits (CW) among resources are a set of resources ra,

rb,… rw whose wait relationship among them are ra�rb�…�rw and rw�ra. The simple circular waits

(sCW) are primitive CWs which do not contain other CWs. For a complete analysis of the deadlock

structures, all the CWs need to be identified, not only the sCWs.

The matrix formulation of (1)–(4) provides a very direct computational method for deadlock avoidance.

First of all, we need to calculate the digraph matrix

[]Trr FSW ⋅= (9)

which is a square matrix whose dimension is equal to the number of resources in the system. Each ‘1’ in the

wij elements in W, means that the digraph has an arc from resource i to resource j, indicating that resource i

waits for resource j. Using the digraph matrix W with the binary algorithm to identify loops and with

Gurel’s algorithm described in [13], we can obtain matrix Cout which provides the set of resources which

compose every CW (in rows). An entry of one on every (i,j) position of Cout means that resource j is

included in the i
th
 CW.

Since deadlock conditions depend on the number of available resources in every CW, we also need to

calculate the set of rules which, when fired, increase or reduce the number of available resources in each

CWs (input and output rules).

The input and output rules of a CW are calculated as follows:

routd SCC ⋅= (10)

T

routd FCC ⋅= (11)

where the (i,j) element of dC (Cd) is 1 if the jth rule increases (reduces) the number of available resources in

the ith CW.

In order to avoid deadlocks, we have to monitor those tasks of the MSN whose completion activate rules

which consume resources in a CW. The task set of a CW C, J(C), is the set of tasks which need at least one

of the resources of C to be started. A siphon is a set of tasks and resources which if gets empty (none of its

tasks are in progress and none of its resources are available) after a certain rule fires, then it will remain

empty under any successor rule. The critical siphon of a CW C is the smallest siphon containing the CW.

The siphon-task set Js(C) is the set of tasks which, when added to the set of resources contained in CW C,

yields the critical siphon. The critical subsystem of a CW C, Jo(C), is the set of tasks from J(C) not

contained in the siphon-task set Js(C). If the number of activated tasks of the critical subsystem is equal to

the resources of the CW, it means that all the resources of the CW are busy, i.e. the CW is empty. Since, by

construction, the tasks of the critical subsystem, when completed, never increase the number of the

available resources of a CW, the CW remains indefinitely empty and the activity of the MSN comes to a

halt. Under the assumptions previously presented, a deadlock condition occurs if and only if there is an

empty circular wait [11, 13, 14, 18]. For these systems, an empty CW can only be caused by activation of

tasks of the corresponding critical subsystem, whose matrix formulation can be calculated as follows ([13]):

)()()()(vd

T

vdvdvdo FCSCFCCFJ ∧=∧= (12)

where each entry of one in position (i,j) means that task j is included in the critical subsystem of CW i.

For sake of completeness we also report the matrix formulation of the critical siphon:

() ()vd

T

vdvdvds FCSCFCCFJ ∧=∧= (13)

where each entry of one in position (i,j) means that task j is included in the critical siphon of CW i.

 5

A simple deadlock avoidance strategy (which has been so far evaluated only in simulation) consists in not

allowing the number of activated tasks of the critical subsystem to become equal or greater than the number

of available resources in the ith CW Ci (MAXWIP policy [11, 13]).

)())((ioio CmCJm < (14)

Therefore, we can conveniently update the conflict resolution input ud to inhibit rules which, if activated,

would violate condition 14 and lead to deadlock conditions.

Our dispatching policy follows three main steps:

1. Based on the structure of the system defined by matrices F and S, we calculate the CWs, their

corresponding critical subsystem and the number of available resources)(io Cm in the ith CW Ci (off-

line computation).

2. For every DE-iteration, we calculate from the current marking vector, mcurrent, the corresponding possible

successor-marking vector, mpossible. Equation (6) provides this possible successor ma(t+1)=mpossible;

ma(t)=mcurrent; mpossible is readjusted keeping into account possible shared resource conflicts (on-line

computation).

3. If the selected mpossible does not satisfy condition (14), then it is necessary to eliminate the task that is

attempting to cause a deadlock, inhibiting the corresponding rule. This is done by conveniently updating

vector ud. Then the algorithm restarts from step 2 (on-line computation).

4. IMPLEMENTATION OF DEC ON WSN TESTBED

The Mobile Sensor Network Test-bed at the Automation and Robotics Research Institute, University of

Texas at Arlington, consists of mobile sentry robots, Unattended Ground Sensors, and a centralized control

unit where the DEC runs under LabView programming environment. Every resource is connected to the

control unit through transceivers (figure 1).

4.1 Mobile Sentry Robots

Two cybermotion SR2 mobile sentry robots (donated by JC Penney, Inc.) formerly used to patrol a

warehouse in Dallas, Texas are employed as mobile sensing units. They have an extensive sensor suite

including ultrasonic intrusion, optical flame detector, dual passive IR, microwave intrusion, smoke,

temperature, humidity and light sensors, and gas sensors including oxygen, NOx, and CO. Each robot’s task

is executed through an ad hoc LabVIEW® VI. For sake of simplicity manipulation tasks have been

implemented just as time delays. However, this does not affect the behavior of our DEC which is the focus

of this work.

4.2 Unattended Ground Sensors

A set of six Berkeley Crossbow unattended ground sensors (UGSs) has been incorporated into the Secure

Area Test-bed at ARRI. They can measure various quantities such as Light, Acceleration, Temperature,

Magnetism and Sound. The UGSs form a star network and communicate through a wireless link with the

base station connected to one of the serial ports of the microcontroller board.

 6

Figure 1- The MSN test-bed at ARRI

4.3 Implementation

In our motivating scenario, a MSN is in charge of monitoring a warehouse where dangerous chemicals

are handled. Based on a fair knowledge of the environment and of the possible operating conditions, it is

possible to come up with predefined sequences of tasks that the robots have to accomplish in response to

external threats or programmed events.

A virtual MSN test-bed has been created to illustrate various mobile robot movements as the MSN

topology reconfigures to handle various missions (figure 2).

Figure 2- Perspective view of the virtual MSN test-bed with the initial network configuration

5 SIMULATION AND EXPERIMENTAL RESULTS

The results presented in this paper have been obtained using Matlab and Labview programming

environments. Matlab has been used for initial simulation of the missions, followed by a Labview

implementation of the missions with simulated resources. With satisfactory performance of the deadlock

resolution algorithm, the simulated resources were replaced by real resources and the missions were

actually implemented in our lab. Thus the same code has been used for simulation and real implementation

of all missions. The similarity and fidelity of the dispatching sequences in both the simulation and

Sentry robot

UGSs

DEC

Transceiver

Sentry robot

charger

 7

experimental phases was indeed satisfactory. This is a key result since it shows that the proposed DEC

allows one to perform a “simulate and experiment” approach for a MSN, with noticeable benefits in terms

of cost, time and performance.

Three separate missions have been implemented to illustrate the proposed control architecture. The first

mission aims at patrolling the warehouse, the second mission aims at recharging the UGSs batteries, the

third mission aims at transporting dangerous chemicals to a predefined location. The triggering events of

the three missions are an intruder alert, a low-battery alert, and a prescheduled instant of time respectively.

Once the alert is received, the network physically reconfigures its topology to react to the alert. For sake of

completeness, the Petri net representation of mission 1, mission 2 and mission 3 is illustrated in figure 3.

The procedure for implementing the proposed control policy consists of three different steps.

First, we define the vector of resources r of the system. In this example we have two robots R and six

stationary sensors M. The resource vector is r = [R1, R2, M1, M2, M3, M4, M5, M6].

Then for each mission i, we define the vector of inputs u
i
, of outputs y

i
 and of tasks v

i
, and the task

sequence of each mission (see Table 1, Table 3, and Table 5 for missions 1, 2, and 3 respectively) and write

down the if-then rules representing the supervisory coordination strategy to sequence the programmed

missions (see Table 2,Table 4, and Table 6 for missions 1, 2, and 3 respectively).

x1
1 R1Pa

1
u1

M1

UGS1
1 R1Pb

1

x2
1

x3
1 x4

1

x1
3 x2

3 x3
3

x4
3

x5
3

u3

u2

M5

R1

M6

UGS1c
3 R1dA

3

UGS5c
3

UGS6c
3

R2pA
3

y1

y3

y2

R2

x1
2 x2

2 x3
2

x4
2 x5

2
x6

2 x7
2 x8

2
R1cS3

2
 UGS3

2

R2vS3cS2
2

UGS2
2

R2vS3cS4
2

UGS4
2 R1vS4

2

M3 M2 M4

Mission 1

Mission 3

Mission 2

Figure 3- Petri net representation of mission 1 (Patrol and Sensing of the Warehouse), mission 2 (Charging of the

UGSs) and mission 3 (Transportation of dangerous chemicals).

Finally, we translate the linguistic description of the coordination rules into a more convenient matrix

representation, suitable for mathematical analysis and computer implementation. As an example, matrices

Fv
1
, Fr

1
 relative to mission-1 are reported (figure 4).

 8

Table 1: Mission 1 - Task Sequence

Mission-1 Notation Description

Input u
1

Intruder Alert from any UGS

Task 1 R1Pa
1

i.R1 navigates to M2

ii.R1 takes measurement at M2

iii.R1 navigates from M2 to M1

iv.R1 takes measurement at M1

Task 2 UGS1
1

i.M1 takes measurement

Task 3 R1Pb
1
 i.R1 navigates to M1

ii.R1 takes measurement at M1

iii.R1 navigates from M1 to M3

iv.R1 takes measurement at M3

Output y
1

i.Patrol and sensing of warehouse

Table 2: Mission 1 – Rule-base

Mission 1 – Operation Sequence

Rule 1 x1
1

If u
1
 occurs and R1 available then start R1Pa

1

Rule 2 x2
1

If R1Pa
1
 completed and M1 available then release

R1 and start UGS1
1

Rule 3 x3
1

If UGS1
1
 completed and R1 available then

release M1 and start R1Pb
1

Rule 4 x4
1

If R1Pb
1
 completed then release R1 and terminate

mission-1 by producing output y
1

Table 3: Mission 2 - Task Sequence

Mission-2 Notation Description

Input u
2

Low battery warning from an UGS

Task 1 R1cS3
2

i.R1 navigates to M3

ii.R1 charges M3

Task 2 UGS3
2

i.M3 takes measurement

Task 3 R2vS3cS2
2

i.R2 navigates to M3

ii.R2 takes measurement and

verifies M3 charge

iii.R2 navigates from M3 to M2

iv.R2 charges M2

Task 4 UGS2
2

i.M2 takes measurement

Task 5 R2vS2cS4
2

i.R2 navigates to M2

ii.R2 takes measurement and

verifies M2 charge

iii.R2 navigates from M2 to M4

iv.R2 charges M4

Task 6 UGS4
2

i.M4 takes measurement

Task 7 R1vS4
2

i.R1 navigates to M4

ii.R1 takes measurement and

verifies M4 charge

Output y
2

i.Charging of a predefined set of

UGSs

Table 4: Mission 2 – Rule-base

Mission 2 – Operation Sequence

Rule 1 x1
2

If u
2
 occurs and R1 available then start R1cS3

2

Rule 2 x2
2

If R1cS3
2
 completed and M3 available then

release R1 and start UGS3
2

Rule 3 x3
2

If UGS3
2

completed and R2 available then

 9

release M3 and start R2vS3cS2
2

Rule 4 x4
2

If R2vS3cS2
2
 completed and M2 available then

release R2 and start UGS2
2

Rule 5 x5
2
 If UGS2

2
 completed and R2 available then

release M2 and start R2vS2cS4
2

Rule 6 x6
2

If R2vS2cS4
2
 completed and M4 available then

release R2 and start UGS4
2

Rule 7 x7
2

If UGS4
2
 completed and R1 available then

release M4 and start R1vS4
2

Rule 8 x8
2
 If R1vS4

2
 completed then release R1 and

terminate mission-2 by producing output y
2

Table 5: Mission 3 - Task Sequence

Mission-1 Notation Description

Input u
3

Forty minutes have elapsed

Task 1 UGS1c
3

M1 takes measurement

Task 2 R1dA
3
 R1 picks up dangerous chemical

and drops off at temporary storage

location A

Task 3 UGS5c
3

UGS6c
3

M5 and M6 take measurements

Task 4 R2pA R2 picks up chemical from A and

transports to location B

Output y
3

Dangerous chemical transported

Table 6: Mission 3 – Rule-base

Mission 3 – Operation Sequence

Rule 1 x1
3

If u
3
 occurs and M1 available then start UGS1c

3

Rule 2 x2
3

If UGS1c
3
 completed and R1 available then

release M1 and start R1dA
3

Rule 3 x3
3

If R1dA
3
completed and M5 and M6 available then

release R1 and start UGS5c
3
 and UGS6c

3

Rule 4 x4
3

If UGS5c
3
 and UGS6c

3
 completed and R2

available then release M5 and M6 and start R2pA

Rule 5 x5
3
 If R2pA then release R2 and terminate mission-3

by producing output y
3

Figure 4- Mission 1-Job sequencing matrix Fv
1
 and Resource requirement matrix Fr

1

 R1Pa R1Pb

 UGS1 M1 M2 M3 M4 M5 M6 R1 R2



















=

100

010

001

000

1
vF a)



















=

00000000

01000000

00000001

01000000

1
rF b)

 10

 M1 M2 M3 M4 M5 M6 R1 R2

]830[x

outC





















=

11111111

11111110

10000010

01000001

M a)

 R1Pa R1Pb R1dA UGS6c

 UGS1 R1cS3 UGS5c R2pA

]1530[

0

x

J





















=

01111011

01111000

00000000

00000011

L

L
M

L

L

b)

Figure 5- Circular wait matrix Cout and Critical Subsystem matrix Jo.

5.1 Experiment 1- Deadlocks caused by multiple activation of the same mission

Suppose that two different intrusions threats are detected and that, in the meantime, two sensors launch a

low-battery alert. In this case both mission 1 and mission 2 are triggered two times and deadlock conditions

occur (figure 6). In particular we get two empty circular waits: R1�M1 and R2�M2. As an example let us

analyze the first circular wait. The first row of the circular wait matrix (figure 5a) shows that resources R1

and M1 form Circular wait 1, whereas the first row of the critical subsystem matrix (figure 5b) shows that

tasks R1Pa and UGS1 form Critical subsystem 1. When both these tasks are simultaneously in progress,

Circular wait 1 becomes empty and a deadlock occurs.

In figure 6a the Matlab simulation illustrates the triggering of mission 1 at time instant 14 and time

instant 19 for two different intrusion alerts. When mission 1 is triggered the first time, task R1Pa starts and

runs to completion. Then task UGS1
1
starts. While UGS1

1
 is still in progress, mission 1 is triggered again

and another instance of task R1Pa starts. Now resources R1 and M1 are consumed. When task UGS1
1

completes, R1Pb has to be fired and this requires resource R1 which is already consumed. Also, when R1Pa

completes, resource M1 is needed to fire task UGS1
1
. Since M1 is being used, we have a cyclic wait of

resources which leads to a deadlock situation. As shown in figure 6b (path sequences p1…p5 and q1…q4

describe the motions of R1 and R2 robot 2 respectively), R1 and R2 keep on wandering in the warehouse

without accomplishing mission 1. Same considerations hold for mission 2 with the circular wait R2�M2.

Figure 7 illustrates the same case when the MAXWIP algorithm is applied. As can be seen, both missions

successfully run to completion two times. In particular, for mission 1, in order to avoid deadlocks, the

dispatching policy inhibits rule 1 (x1
1
) when task UGS1

1
 is in progress by conveniently updating the conflict

resolution vector ud. Similar considerations hold for mission 2. The controller inhibits R2 from performing

task R2vS3cS2
2
as long as task UGS2

2
is in progress. In this way mission 1 and mission 2 are executed two

consecutive times and the network successfully reacts to multiple intrusions and low battery alarms. A

comparison of figure 7a and 7b shows that the task sequences in both simulation and experiment cases

show a satisfactory correlation (the different durations of the tasks in the two cases is not related to the

behavior of the DEC but to real-word navigation of the robots and is not therefore relevant to our

discussion).

5.2 Experiment 2- Deadlock caused by simultaneous activation of multiple missions

As shown in the previous experiment, deadlock can occur due to multiple triggering of a certain mission.

Deadlocks can also arise when two or more missions run in parallel and share a circular wait. This scenario

 11

is illustrated in figure 8 wherein mission 1 and mission 3 execute in parallel and share the circular wait

R1�M1. As shown in figure 8a, when task R1Pa from mission 1 and task UGS1c from mission 3 execute in

parallel, the circular wait R1�M1 gets empty and a deadlock occurs. With no deadlock resolution, robot R1

performs task R1Pa
1
first and

navigates to sensor M2 and sensor M1, before getting stuck in a deadlock

(figure 8b). With the deadlock resolution algorithm applied (figure 9a and 9b), task R1Pa is inhibited until

UGS1c is completed. R1 performs task R1dA
3
first and navigates to location “A” before successfully

completing the assigned missions (figure 9c).

Interested readers can watch videos of the proposed missions represented in 3D Studio Max at

http://arri.uta.edu/acs/WSN/multimedia.html

(a)

(b)

Figure 6. Missions 1, 2 deadlock: (a) Event Time Traces, (b) Top view Robot Paths (Darker paths are R1 paths, lighter

paths are R2 paths)

(a)

(b)

 12

(c)

Figure 7. Missions 1,2 Deadlock Avoidance: (a-b) Event Time Traces-Matlab simulation and LabView implementation,

(c) Top view Robot Paths (Darker paths are R1 paths, lighter paths are R2 paths)

(a)

(b)

Figure 8. Missions 1,3 Deadlock: (a) Event Time Traces-Matlab simulation, (b) Top view Robots’Paths

(a)

(b)

 13

(c) Robot path. (Darker paths are R1 paths, lighter paths are R2

paths.)

Figure 9. Missions 1,3 Deadlock Avoidance: (a-b) Event Time Traces-Matlab simulation and LabView implementation,

(c) Top view Robots’ Paths (Darker paths are R1 paths, lighter paths are R2 paths)

6 CONCLUSIONS

This paper has presented the experimental implementation of a mobile wireless sensor network composed

of heterogeneous resources in charge of performing complex interconnected tasks. A discrete event

controller has been used to define the sequence of operations each resource has to follow to accomplish

multiple concurrent missions triggered by external events. Since the presence of resources shared by

multiple missions may lead to deadlocks, a deadlock avoidance policy is applied to on-line to on-line adapt

the coordination strategy of the MSN. Both simulation and experimental results have been provided using

the MSN test-bed at the Automation and Robotics Research Institute, University of Texas at Arlington. The

proposed coordination control strategy proves to be effective to solve deadlocks caused by multiple

activation of the same mission or by simultaneous activation of concurrent missions in real-world

applications. Current research is devoted to the integration of deadlock avoidance policies together with

distributed dynamic resource assignment algorithms.

REFERENCES

[1] Akyldiz I., Su W., Sankarasubramaniam Y, Cayirci E., “A survey on sensor networks”, IEEE Communications Magazine,

August 2002

[2] Balch T., Hybinette M., “Social potentials for scalable multi-robot formations”, Proceedings of the IEEE International

Conference on Robotics and Automation, April 2000

[3] Butler Z., Rus D., “Event-based motion control for mobile-sensor network”, IEEE Transactions on Pervasive Computing,

vol.2 issue 4, October-December 2003

[4] Chong C., Kumar S., “Sensor Networks: Evolution, Opportunities and Challenges”, Proceedings of the IEEE, col. 91, no.8,

August 2003

[5] Cortes J., Martinez S., Karatas T., Bullo F., “Coverage control for mobile sensing network”, IEEE Transactions on Robotics

and Automation, vol.20, no.2, April 2004

[6] Gerkey B., Mataric M., “Sold! Auction methods for multirobot coordination”, IEEE Transactions on Robotics and

Autoation, vol. 18, no. 5, October 2002

[7] Giordano V., Lewis F., Mireles J., Turchiano B., “Coordination control policy for mobile sensor networks with shared

heterogeneous resources”, Proceedings of the IEEE International Conference on Control and Automation, Budapest, June

2005

 14

[8] Giordano V., Ballal P., Lewis F., Turchiano B., Zhang J. B., “Supervisory control of mobile sensor networks: Matrix

formulation, simulation and implementation”, to appear in IEEE Transactions on System, Man and Cybernetics part B

[9] Kusiak A. “Intelligent scheduling of automated machining systems”, In Intelligent design and Manufacturing. A. Kusiak (ed.)

Wiley, New York (1992)

[10] Lewis F., “Wireless sensor networks”, Smart environments: Technologies, Protocols, and Applications, ed. D. J. Cook and S.

K. Das, John Wiley, New York, 2004.2004

[11] Lewis F., Gurel A., Bogdan S., Docanalp A. Pastravanu O., “Analysis of deadlock and circular waits using a matrix model

for flexible manufacturing systems”, Automatica, vol.34, no. 9, September 1998

[12] Makarenko A., Kaupp T., Durrant-Whyte H., “Scalable Human-Robot Interactions in Active Sensor Networks”, IEEE

Pervasive Computing Magazine 2003, vol 2, no 4, Oct-Nov 2003 pp 63--71.

[13] Mireles J., Lewis F., Gurel A., “Implementation of a deadlock avoidance policy for multipart reentrant flow lines using a

matrix-based discrete event controller”, Proceedings of the International symposium on advances in robot dynamics and

control, New Orleans, November 2002

[14] Murata, T. “Petri Nets: Properties, Analysis and Applications.” Proceedings of the IEEE, vol.77, no.4, April 1989, pp.541-

80

[15] Sinopoli B., Sharp C., Schenato L., Schaffert S., Sastry S., “Distributed Control Applications Within Sensor Networks”,

Proceedings of the IEEE, vol. 91, no.8, August 2003

[16] Steward D. V., “The design structure system: a method for managing the design of complex systems”, IEEE Trans.

Engineering Management, pp. 45-54, August 1981

[17] Tacconi D., Lewis F., “A new matrix model for discrete event systems: application to simulation”, IEEE Control System

Magazine, vol.17 October 1997

[18] Wysk, R.A.; Yang, N.S.; Joshi, S.; “Detection of deadlocks in flexible manufacturing cells”, IEEE Transactions on Robotics

and Automation, vol.:7 , Issue: 6 , December 1991

[19] Zhao F., Shin J., Reich J., “Information-Driven Dynamic Sensor Collaboration“, IEEE Signal Processing Magazine, March

2002

