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Abstract— Safety is one of the fundamental problems in
robotics. Recently, one-step or multi-step optimal control
problems for discrete-time nonlinear dynamical system were
formulated to offer tracking stability using control Lyapunov
functions (CLFs) while subject to input constraints as well
as safety-critical constraints using control barrier functions
(CBFs). The limitations of these existing approaches are mainly
about feasibility and safety. In the existing approaches, the
feasibility of the optimization and the system safety cannot
be enhanced at the same time theoretically. In this paper, we
propose two formulations that unifies CLFs and CBFs under
the framework of nonlinear model predictive control (NMPC).
In the proposed formulations, safety criteria is commonly
formulated as CBF constraints and stability performance is
ensured with either a terminal cost function or CLF constraints.
Slack variables with relaxing technique are introduced on the
CBF constraints to resolve the tradeoff between feasibility and
safety so that they can be enhanced at the same. The advantages
about feasibility and safety of proposed formulations compared
with existing methods are analyzed theoretically and validated
with numerical results.

I. INTRODUCTION

A. Motivation

Safety-critical optimal control and planning is one of the
fundamental problems in robotic applications. In order to
ensure the safety of robotic systems while achieving optimal
performance, tight coupling between potentially conflicting
control objectives and safety criteria is considered in an
optimization problem. Some researchers formulate this prob-
lem using control barrier functions under the continuous
dynamics of the system [1], [2], where the optimal per-
formance is achieved by the control Lyapunov functions
and safety criteria is guaranteed through control barrier
functions. Recently, this methodology is also introduced in
the discrete-time domain and the optimal control problem
can be formulated to calculate the current optimal input [3]
or a sequence of ones in the fashion of model predictive
control [4]. However, feasibility and safety are still the main
challenges for these formulations using discrete-time control
barrier functions. In this paper, our proposed formulations
focus on how to handle these problems and provides a
detailed analysis comparing to the existing methods using
discrete-time control barrier functions.
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B. Related Work

Designing controllers to ensure provable safety guarantees
for autonomous systems is vital. One approach to provide
safety guarantees in control is to draw inspirations from
control barrier functions [5]. The CBF-QP formulation [6]
permits us to find the minimum perturbation for a given
feedback controller to guarantee safety. Control Lyapunonv
functions (CLFs) [7] can be applied to stabilize the closed-
loop dynamics of both linear and nonlinear dynamical sys-
tems [8]. Together with CBFs, the CLF-CBF-QP formulation
[2] enables handling safety-critical constraints effectively in
real-time. This approach is also generalized for high-order
systems [9], [10]. Robust or adaptive optimal control are
also applied with this technique [11]–[14].

1) Optimal Control with Discrete-time CBFs: Besides the
continuous-time domain, the formulations of CBFs are gen-
eralized into discrete-time systems. An optimization prob-
lem can be formulated to calculate the current optimal
control input, proposed in the DCLF-DCBF formulation in
[3]. A type of model predictive control is also recently
introduced to enhance performance. The model predictive
control with control Lyapunov functions (NMPC-DCLF) is
proposed to ensure stability in [15], where discrete-time CLF
constraints are considered under nonlinear model predictive
control (NMPC). A control design (MPC-DCBF) for safety-
critical tasks is firstly presented in [4], where the safety-
critical constraints are enforced by discrete-time control
barrier functions. This approach could also be applied to a
multi-layer control framework [16], [17], where the safety-
critical control with discrete-time CBF serves as a mid-level
controller or planner.

2) Feasibility & Safety: Among the formulations in the
discrete-time domain, optimal control with discrete-time
CBFs also encounter feasibility issues. The feasibility issues
arise due to the potential empty intersection between the
reachable set and the safe region confined by CBF constraints
at each time step. Moreover, with current approaches, there
exists a tradeoff between safety performance and feasibility
and they cannot be enhanced at the same time, as discussed
in [4]. In other words, reducing the decay rate of CBF
constraints increases the system safety, but comes at the
possibility of infeasibility. A potential way to partly handle
the feasibility issue is to adopt the CBF constraint only on
the first time step as a one-step constraint, as presented in
the formulation MPC-GCBF in [18]. This approach is shown
to enhance the feasibility, however, we are still under the
restriction between choosing feasibility and safety, as the
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intersection between the reachable set and the safe region
at the first step could still potentially be empty. A soft
constrained predictive safety filter with a terminal control
barrier function is proposed in [19], which enhances the
safety with respect to the model uncertainty. However, the
tradeoff between feasibility and safety is unsolved.

Similarly, feasibility is challenging to be guaranteed in
the continuous domain. Many existing approaches relax the
CLF constraint to resolve the conflict between CLF and
CBF constraints, as summarized in [5]. However, the QP-
based problem could become infeasible as the CBF constraint
might violate the input constraint even when we relax the
CLF constraint. In [2], a valid CBF is specifically designed
for the adaptive cruise control scenario based on the system
dynamics under input constraints, which could ensure the
feasibility in the optimization. This approach solves the
problem specifically for this system but not for general
nonlinear systems. Recently in [20], the decay rates of CBF
constraints are relaxed with optimization variables, which
generally resolves the conflict between the CBF constraint
and the input constraint and guarantees point-wise feasibility.

In this paper, the proposed formulations draw inspiration
from the decay-rate relaxing technique for the CBF constraint
in the continuous-time domain, and will be shown to be able
to enhance the feasibility and the safety at the same time.
The proposed formulations are generalized for both one-step
or multi-step constraints, and don’t specifically require only
an one-step constraint to increase the feasibility as done with
MPC-GCBF [18].

C. Contributions

The contributions of this paper are as follows:
• We propose two control frameworks for guaranteeing

stability and safety using nonlinear MPC (NMPC),
where the safety criteria are considered as discrete-time
CBF constraints, and stability criteria appear as CLFs
formulated either as a terminal cost or discrete-time
constraints.

• The decay rates of the discrete-time control barrier func-
tion constraints are relaxed in the optimization problem,
which allow the proposed formulations to enhance the
feasibility and the safety at the same time for both one-
step and multi-step input optimization.

• The proposed formulations are shown theoretically to
enhance the feasibility and safety performance com-
pared with existing approaches, and also validated with
numerical examples.

D. Paper Structure

The paper is organized as follows. A brief background
about discrete-time CLFs and CBFs is presented and the
existing optimal control formulations are revisited in Sec.
II. The proposed formulations are presented in Sec. III,
which unifies discrete-time CLF and CBF using NMPC.
The advantages about feasibility and safety compared with
the state-of-the-art are illustrated theoretically in Sec. IV.
Numerical simulations are shown in Sec. V to validate our

approach. Finally, concluding remarks are provided in Sec.
VI.

II. BACKGROUND

Having introduced the problem, we next present back-
ground on CLFs and CBFs and revisit some existing optimal
control formulations using discrete-time CLFs and CBFs.

A. CLFs and CBFs

In this paper, we consider a discrete-time control system
as follows,

xt+1 = f(xt,ut), (1)

with x ∈ X representing the system state with the control
input u confined by admissible input set U . For safety-critical
control, we consider a set C defined as the superlevel set of
a continuously differentiable function h : X ⊂ Rn → R,

C = {x ∈ Rn : h(x) ≥ 0},
∂C = {x ∈ Rn : h(x) = 0},

Int(C) = {x ∈ Rn : h(x) > 0}.
(2)

Throughout this paper, we refer to C as a safe set. The safe set
can be regarded as the ensemble of states satisfying distance
constraints

h(x) ≥ 0. (3)

In a stricter manner, the function h becomes a control
barrier function in the discrete-time domain if it satisfies the
following relation,

∆h(xk,uk) ≥ −γkh(xk), 0 < γk ≤ 1, (4)

where ∆h(xk,uk) := h(xk+1)−h(xk). Satisfying constraint
(4), we have h(xk+1) ≥ (1−γk)h(xk), i.e, the lower bound
of control barrier function h(x) decreases exponentially at
time k with the rate 1− γk.

Besides the system safety, we are also interested in sta-
bilizing the system with a feedback control law u under a
control Lyapunov function V in the discrete-time domain,

∆V (xk,uk) ≤ −αkV (xk), 0 < αk ≤ 1, (5)

where ∆V (xk,uk) := V (xk+1) − V (xk). Similarly as
above, the upper bound of control Lyapunov function de-
creases exponentially at time k with the rate 1− αk.

B. Existing Approaches Revisited

In this section, we will revisit some existing optimal
control formulations using discrete-time CLFs or CBFs.

1) DCLF-DCBF [3]: The discrete-time control Lyapunov
function and control barrier function can be unified into one
optimization program, which achieves the control objective
and guarantees system safety. This formulation was intro-
duced in [3] and is presented as follows,



DCLF-DCBF:

u∗k = argmin
(uk,s)∈Rm+1

uT
kH(x)uk + φ(s) (6a)

∆V (xk,uk) + αkV (xk) ≤ s (6b)
∆h(xk,uk) + γkh(xk) ≥ 0 (6c)
uk ∈ U , (6d)

where H(x) is any positive definite matrix and s ≥ 0 is a
slack variable together with an additional cost term φ(s) ≥ 0
that allows the Lyapunov function to grow when the CLF
and CBF constraints are conflicting. The safe set C in (2)
is invariant along the trajectories of the discrete-time system
with controller (6) if h(x0) ≥ 0 and 0 < γk ≤ 1.

2) MPC-DCBF [4]: Inspired by the previous work of
model predictive control and control barrier functions,
DCLF-DCBF can be improved by taking future state predic-
tion into account, yielding the form of MPC-DCBF firstly
introduced in [4]:

MPC-DCBF:

J∗t (xt)= min
U

p(xt+N |t)+

N−1∑
k=0

q(xt+k|t,ut+k|t) (7a)

s.t. xt+k+1|t = f(xt+k|t,ut+k|t), k = 0, ..., N−1 (7b)
ut+k|t ∈ U , xt+k|t ∈ X , k = 0, ..., N−1 (7c)

xt|t = xt, (7d)
∆h(xt+k|t,ut+k|t) ≥ −γkh(xt+k|t). k = 0, ..., N−1 (7e)

Here, at each time t, the optimized cost-to-go function
is denoted as J∗t (xt) and U = [uT

t|t, ...,u
T
t+N−1|t]

T . In
the cost function, p(xt+N |t) and q(xt+k|t,ut+k|t) represent
terminal cost and stage cost at each time step. The constraint
(7b) describes the system dynamics, (7c) shows the input
constraints along the horizon and (7d) represents the initial
condition constraint. The CBF constraints imposed in (7e)
are designed to guarantee the forward invariance of the
safe set C associated with the discrete-time control barrier
function. Here we have

∆h(xt+k|t,ut+k|t) = h(xt+k+1|t)− h(xt+k|t).

The optimal solution to (7) at time t is a sequence of inputs
as U∗ = [u∗Tt|t , ...,u

∗T
t+N−1|t]

T . Then, the first element of the
optimizer vector is applied, i.e.,

ut = u∗t|t(xt). (8)

This constrained finite-time optimal control problem (7) is
repeated at time step t+ 1, based on the new state xt+1|t+1,
yielding a receding horizon control strategy. In [4], MPC-
DCBF has been shown to have better exploration perfor-
mance with predictive horizon, which can be beneficial in
maneuvering through deadlock conditions. However, MPC-
DCBF has a smaller region of feasibility than the DCLF-
DCBF controller as more constraints are used to confine the
optimal control input.

3) MPC-GCBF [18]: In the formulation (7), the CBF
constraints are imposed on multi-steps along the horizon.
This increases the computational complexity with a large
horizon and the possibility of infeasibility also increases with
more constraints. One way to suppress the computational
complexity and enhance the feasibility is to apply a one-
step CBF constraint, which is done by modifying the CBF
constraint in (7e) as follows,

∆h(xt+1|t,ut|t) ≥ −γh(xt|t). (9)

This approach is firstly shown in the MPC-GCBF formu-
lation in [18], and enhances the feasibility and reduces the
computational time at the same time due to fewer constraints.
This approach is also generalized with consideration over the
high relative-degree constraint, where constraints in (7e) are
modified as constraints posed on two nonadjacent steps,

h(xt+m|t) ≥ (1− γ)mh(xt|t), (10)

where m represents the relative degree of the high-order
safety constraint.

4) CLF-NMPC [15]: Beside the control barrier functions,
the model predictive control is also unified with control
Lyapunov functions, where stability constraints with CLFs
are considered in the proposed CLF-NMPC formulation [15].
The CLF constraint can be imposed during one-step or multi-
step,

∆V (xt+k|t) ≤ −αkV (xt+k|t) + sk, (11)

where sk is the slack variable. The safety criteria is not
considered in CLF-NMPC. For more details see [15].

III. CLFS AND CBFS UNIFIED WITH NMPC

In this section, we are going to present two proposed for-
mulations: NMPC-DCBF and NMPC-DCLF-DCBF unifying
discrete-time CLFs and CBFs with NMPC.

A. Formulations

Firstly, we incorporate discrete-time CBF constraints of
decay rates under relaxing technique into a nonlinear model
predictive control framework, denoted as NMPC-DCBF with
the decision variables are U = [uT

t|t, ...,u
T
t+N−1|t]

T and Ω =

[ω1, ..., ωMCBF−1]T .

NMPC-DCBF:

J∗t (xt)= min
U,Ω

βV (xt+N |t)+

N−1∑
k=0

q(xt+k|t,ut+k|t)+ψ(ωk)

(12a)
s.t. xt+k+1|t = f(xt+k|t,ut+k|t), k=0, ..., N−1 (12b)

ut+k|t ∈ U , xt+k|t ∈ X , k=0, ..., N−1 (12c)
xt|t = xt, (12d)

h(xt+k+1|t) ≥ ωk(1− γk)h(xt+k|t), ωk ≥ 0

for k=0, ...,MCBF−1 (12e)

The system dynamics (12b), the input constraint (12c) and



the initial condition (12d) are imposed on the optimiza-
tion. The control Lyapunov function V (xt+N |t) is used
as a terminal cost scaled up with the parameter β, to-
gether with the cumulative stage cost along the horizon∑N−1

k=0 q(xt+k|t,ut+k|t). The terminal cost as CLF adopts
the fashion of work from the field of MPC, as noted in [21],
where stability usually can be achieved without the need
to specify a terminal state constraint if β is selected large
enough.

Different from the formulation in (7), the decay rates of
control barrier functions are relaxed from the fixed value
1 − γk into optimization variables ωk(1 − γk) and an
additional cost about the relaxing rate variables ψ(ωk) ≥ 0
is included in the optimization. This function ψ can be tuned
for different performance. The slack variable ωk for relaxing
is constrained by (12e) such that the following relation is
guaranteed,

h(xt+k+1|t) ≥ ωk(1− γk)h(xt+k|t) ≥ 0. (13)

This results in the safety guarantee for the first MCBF steps
in the open-loop trajectory but not for the entire horizon N .
Here, one horizon length N is designed for dynamics con-
straint, input constraint and stage cost, and another horizon
length MCBF ≤ N is applied for CBF constraints, which
allows us to choose the appropriate value of MCBF to reduce
the computational complexity. We denote this formulation as
NMPC-DCBF as the optimization is always nonlinear since
the constraints (12e) are nonlinear even if system dynamics
and the h(.) function are linear. Note that the constraints
inside a MPC-DCBF could become linear if the system
dynamics and the h(.) function are linear.

Remark 1. Here, we hypothesize that the closed-loop trajec-
tory can still be guaranteed by iterations. Formal guarantee
of this property requires analysis of recursive feasibility and
reachability, which will be proved in the subsequent work.

Remark 2. NMPC-DCBF represents a generalized form of
MPC-DCBF and MPC-GCBF with the relaxing technique
of decay rates of safety constraints. When the slack variable
ωk is fixed as 1, NMPC-DCBF becomes the same as MPC-
DCBF when MCBF = N and the same as MPC-GCBF when
MCBF = 1.

Remark 3. The fixed decay rates for safety constraints
existing in MPC-DCBF and MPC-GCBF are relaxed and
become as optimization variables in NMPC-DCBF, which
increase the optimization feasibility.

Remark 4. MPC-GCBF reduces the computational com-
plexity and increases feasibility by reducing multi-step con-
straints into one-step. However, one-step constraint might not
confine the system sufficiently and the optimization problem
may become infeasible after a while in the closed-trajectory,
as shown in Fig. 4b. Moreover, its set invariance for high-
relative degree constraint relies on additional assumptions
that h(xt+i|t) > 0 for i = 0, 1, ...m−1, shown in [18,
Thm. 2]. This could be invalid as it depends on the initial

condition of the system. Additionally, identifying the high-
relative degree of general complex dynamical systems could
be difficult. In our proposed approach, we continue to use
the multi-step constraints, which guarantee stronger set in-
variance with less assumptions. To apply NMPC-DCBF on a
high-relative degree system, we just simply need MCBF ≥ m,
where m represents the relative-degree defined in (10).

Alternatively, the stability criteria with CLF could be
posed as constraints instead of as a terminal cost, which
leads to the formulation as follows,

NMPC-DCLF-DCBF:

J∗t (xt)= min
U,Ω,S

N−1∑
k=0

q(xt+k|t,ut+k|t)+ψ(ωk)+φ(sk)

(14a)
s.t. xt+k+1|t = f(xt+k|t,ut+k|t), k=0, ..., N−1 (14b)

ut+k|t ∈ U , xt+k|t ∈ X , k=0, ..., N−1 (14c)
xt|t = xt, (14d)

h(xt+k+1|t) ≥ ωk(1− γk)h(xt+k|t), ωk ≥ 0

for k=0, ...,MCBF−1 (14e)
V (xt+k+1|t) ≤ (1− αk)V (xt+k|t)+sk,

for k=0, ...,MCLF−1 (14f)

where MCLF and MCBF are the horizon length for CLF and
CBF constraints respectively, which can be chosen to be
less than the prediction horizon N . The slack variables S =
[s1, ..., sMCLF ]

T are introduced to avoid infeasibility between
CLF and CBF constraints and additional term φ(sk) ≥ 0
is added into the cost function to minimize those slack
variables. This formulation is denoted as NMPC-DCLF-
DCBF for later discussions.

Remark 5. NMPC-DCLF-DCBF represents a generalized
form for DCLF-DCBF with horizon lengths for cost and
constraints. When the horizon lengths for CLF and CBF
constraints equal to one, i.e., MCLF = MCBF = 1, the NMPC-
DCLF-DCBF becomes exactly as DCLF-DCBF except the
decay rate of CBF constraint is relaxed. This relaxation is
necessary as it enhance feasibility. Compared with NMPC-
CLF in [15], NMPC-DCLF-DCBF represents an extended
form by adding safety constraints.

Remark 6. On one hand, the proposed formulations (12),
(14) have additional computational complexity generated due
to the introduction of the optimization variables ωk. On the
other hand, reducing the horizon length for constraints (MCBF
and MCLF) could reduce the computational complexity. The
joint influence on computational complexity arising from
the additional optimization variables and reduced constraint
horizons for the optimization problem depends on the system
dynamics and non-linearity of the control barrier functions.
When the control barrier functions are nonlinear, the majority
of non-linearity in the optimization comes from the CBF
constraints, and therefore the reduction in complexity arising



from the reduced constraint horizons would dominate the
increase in complexity that arises from the introduction of
additional optimization variables ωk.

IV. THEORETICAL ANALYSIS

In this section, we are going to illustrate theoretically
the advantages about feasibility and safety of the proposed
approaches. These advantages compared with the state-of-
the-art are summarized in Table I.

A. Theoretical Analysis of Feasibility

In this section, we are going to illustrate the enhancement
of feasibility with reachability analysis by comparing MPC-
DCBF and NMPC-DCBF.

For the MPC-DCBF formulation, the reachable set and
safe region confined by the CBF constraint at each time are
defined respectively as follows:

RMPC-DCBF
k = {xt+k|t ∈ Rn : ∀i = 0, ..., k − 1,

xt+i+1|t = f(xt+i|t,ut+i|t),

ut+i|t ∈ U ,xt+k|t ∈ X ,xt|t = xt},
(15)

SMPC-DCBF
k = {xt+k|t ∈ Rn : h(xt+k|t)

−h(xt+k−1|t)≥−γkh(xt+k−1|t)}.
(16)

The optimization of MPC-DCBF is feasible when the inter-
sections between the reachable set RMPC-DCBF

k and safe set
SMPC-DCBF
k at time t+ k are non-empty for all k. We denote

the safe region at each time step as SMPC-DCBF
k , but notice

that it also depends on the value of optimal value xt+k−1|t,
which depends on the states and the inputs of previous nodes
before the index k − 1. SMPC-DCBF

k could be rewritten as a
function of reachable set at the one-step before,

SMPC-DCBF
k ={xt+k|t ∈ Rn :

h(xt+k|t) ≥ (1− γk) inf
x∈RMPC-DCBF

k−1

h(x)}, (17)

as (16) leads to the following equation being valid

h(xt+k|t) ≥ (1− γk)h(xt+k−1|t),

with at least one value of xt+k−1|t.
For the NMPC-DCBF formulation, the reachable set is the

same as MPC-DCBF as they share the same initial condition,
system dynamics and input constraints, i.e.,

RNMPC-DCBF
k = RMPC-DCBF

k .

The corresponding safe region at each step is as follows,

SNMPC-DCBF
k = {xt+k|t ∈ Rn : ωk ≥ 0,

h(xt+k|t) ≥ ωk(1− γk) inf
x∈RNMPC-DCBF

k−1

h(x)}. (18)

As ωk is an optimization variable with constraint ωk ≥ 0,
this leads us to rewrite SNMPC-DCBF

k as follows,

SNMPC-DCBF
k = {xt+k|t ∈ Rn : h(xt+k|t) ≥ 0} = C. (19)

We can see that any value of γk for NMPC-DCBF won’t
affect the feasibility, as SNMPC-DCBF

k equals the safe set C
defined in (2), which is independent of γk. Hence, we have

SMPC-DCBF
k in (17) always as a subset of SNMPC-DCBF

k in (19),
as

SMPC-DCBF
k ⊂ SNMPC-DCBF

k = C (20)

which results to show that the feasible regions of decision
variable xt+k|t is always larger when applying NMPC-DCBF
approach compared to MPC-DCBF

RMPC-DCBF
k ∩SMPC-DCBF

k ⊂ RNMPC-DCBF
k ∩SNMPC-DCBF

k , (21)

where feasibility region at step k is the intersection between
reachable set Rk and safe set Sk for both approaches. To
sum up, as the relaxing technique for decay rates is applied
in NMPC-DCBF and NMPC-DCLF-DCBF, we can state they
outperform MPC-DCBF / MPC-GCBF / DCLF-DCBF from
the perspective of feasibility.

Remark 7. In (19), it shows that SNMPC-DCBF
k = C, which is

the same as the region enforced by the distance constraint
(3). This reveals the NMPC-DCBF holds the same feasible
region as MPC-DC [4]. Therefore, the feasible regions for
NMPC-DCBF and NMPC-DCLF-DCBF are constant with
respect to different hyperparameters γk, which will be shown
in Fig. 1, 2 and 3.

B. Theoretical Analysis of Safety

The system safety can be influenced by many factors,
including the safety function, the cost function, and other
hyperparameters, etc. In this section, we focus on the in-
fluence from the hyperparameter γk and the additional cost
function ψ(ωk) for the slack variable ωk of decay rate.

By reducing γk for MPC-DCBF / MPC-GCBF / DCLF-
DCBF, the system safety will increase as the smaller γk
represents a slower decay rate of lower bound of control
barrier function, see (4). However, from (17), we can see
that reducing γk for MPC-DCBF makes SMPC-DCBF

k smaller,
which leads the optimization more likely to be infeasible
along the trajectory as the intersection between the reachable
set and the region constrained by safety constraint decreases.
This leads to a tradeoff between feasibility and safety. This
tradeoff also happens among DCLF-DCBF and MPC-GCBF
with similar reasons and forces us to choose either feasibility
or safety for performance. However, in the case of our pro-
posed NMPC-DCBF, the region confined by safety constraint
won’t be affected by changing the value of γk, as shown in
(19). Hence, the intersection between the reachable set and
the region constrained by safety constraint is independent of
γ. This allows us to enhance the safety by reducing γk while
not harming feasibility, which resolves the tradeoff between
feasibility and safety.

The design of the additional cost function ψ(ωk) for the
decay-rate slack variable ωk could also affect the safety
performance. For example, the function ψ(ωk) can be in the
form as follows,

ψ(ωk) = Pω(ωk − 1)2 (22)

which keeps ωk close to 1 and thus minimizes the deviation
of the CBF constraint from the nominal decay rate of 1−γk.
When the hyperparameter Pω becomes larger, the optimized



Existing & Proposed
Approaches

Optimization Structure Performance
stability criteria safety criteria cost function constraint(s) feasibility safety

DCLF-DCBF [3] constraint constraint one-step one-step medium strong
MPC-DCLF [15] constraints none multi-step one/multi-step high none
MPC-DCBF [4] cost constraints multi-step multi-step low strong

MPC-GCBF [18] cost constraint multi-step one-step medium weak
NMPC-DCBF (12) cost constraint(s) multi-step one/multi-step high strong

NMPC-DCLF-DCBF (14) constraint(s) constraint(s) multi-step one/multi-step high strong

TABLE I: A comparison among existing and proposed optimal control methods with respect to a variety of attributes.

value of ω tends to be closer to 1, which implies the deviation
from the nominal decay rate 1− γk is smaller. Numerically,
γk tends to be optimized as value smaller than 1 to increase
the safe region (19) confined by CBF constraint at each time
step. When ωk = 0, the relaxed CBF constraint becomes
equivalent to a simple distance constraint and MPC with
distance constraints (MPC-DC [4]) needs longer horizon to
generate an expected obstacle avoidance performance in a
closed-loop trajectory. Therefore, it’s not recommended to
set a relatively too small value for Pω , which would over-
relax the CBF constraint, i.e., the optimized value of ωk

could be too small.
To sum up, by reducing γk and utilizing an appropriate

form of the additional cost function for decay-rate slack
variable ωk, the proposed approach would outperform the
existing formulations in term of safety while not harming
feasibility performance.

V. NUMERICAL EXAMPLES & RESULTS

In this section, we are going to show numerical results to
illustrate the advantages of our proposed formulations with
respect to the existing approaches. Consider the discrete-time
linear triple-integrator system,

xk+1 = Axk +Buk (23)

where x = [x, v, a]T and u = [j]T represent position (x),
velocity (v), acceleration (a) and jerk (j), respectively. The
admissible input set is U = {j ∈ R : jmin ≤ j ≤ jmax}.

For numerical simulations in this section, we set the
sampling time as ∆t = 0.1s together with input lower
and upper bounds as jmin,max = −1m/s3, 1m/s3. All
simulations run in MATLAB and the optimal control is
formulated with Yalmip [22] as modelling language and
solved with IPOPT [23].

A. Numerical Results for Feasibility

Our proposed formulations along with existing ones is
compared by solving the optimization problems at all sam-
pling states in a closed space. Precisely, we iterate over
sampling states in the closed space X as

X = {(x, v, a) ∈ R3 : xmin ≤ x ≤ xmax, vmin ≤ v ≤ vmax,

amin ≤ a ≤ amax}

and run these optimal controllers to see whether the optimiza-
tion problems are feasible at a given state xt. For simulation,
we set xmin,max = −2m, 0m, vmin,max = 0m/s, 2m/s and
amin,max = 0m/s2, 2m/s2. All the feasibility performance

comparison is evaluated between approaches with the same
horizon N and same form of stage cost and terminal cost.

To compare the feasibility performance among MPC-
DCBF, MPC-GCBF and NMPC-DCBF, we choose a high-
order control barrier function

h(x) = −x, (24)

which enforces the system to stay on one side of the yz
plane (x ≤ 0). In Figs. 1, 2, results from NMPC-DCBF are
compared with MPC-DCBF and MPC-GCBF for feasibility
analysis. The comparisons are validated with different values
of γk = 0.05, 0.10, 0.15, 0.20. For a reasonable comparison,
the horizon length of CBF constraints is assumed as MCBF =
3 for NMPC-DCBF to compare with MPC-GCBF, as the
relative-degree of the CBF in (24) is 3 for a triple integrator
system. The formulations of MPC-DCBF and MPC-GCBF
are shown to enhance the feasibility with larger value of
γ. MPC-GCBF does enhance the feasibility compared with
MPC-DCBF as more states are feasible for MPC-GCBF with
any value of γk. The feasibility of the proposed NMPC-
DCBF is shown to consistently outperform MPC-DCBF and
MPC-GCBF for any value of γk, where the feasible state
region for MPC-DCBF or MPC-GCBF lies always inside the
one for NMPC-DCBF. Additionally, the feasible state region
of NMPC-DCBF is independent of the value of γk, shown
in Figs. 1, 2, which verifies SNMPC-DCBF

k is independent of
γk as shown in (19).

To compare the feasibility performance between DCLF-
DCBF and NMPC-DCLF-DCBF, we choose a relative-
degree one control barrier function

h(x) = x2 + v2 + a2 − 1, (25)

as the DCLF-DCBF method can only optimize one-step
control input. The comparison result is shown in Fig. 3,
where NMPC-DCLF-DCBF outperforms DCLF-DCBF in
terms of feasibility for any values of γk. Similar to what we
have seen previously, DCLF-DCBF enhances the feasibility
with larger γk, while the feasible state region for NMPC-
DCLF-DCBF is independent of γk. Notice that the unsafe
states, which are inside the sphere region defined by (25),
are excluded from the state sampling test for feasibility. The
zero-level surface of the control barrier function is colored
in yellow in Fig. 3.

We also remark that the number of safety constraints for
NMPC-DCBF and NMPC-DCLF-DCBF are larger than the
ones for MPC-GCBF and DCLF-DCBF, but the feasibility
performance are enhanced in our proposed approach, which



(a) γk = 0.05 (b) γk = 0.10 (c) γk = 0.15 (d) γk = 0.20

Fig. 1: Feasibility comparison with h(x) = −x between MPC-DCBF (N = 8) and NMPC-DCBF (N = 8,MCBF = 8) with different
values of γk. Feasible states are marked by red points (MPC-DCBF) and blue circles (NMPC-DCBF). It’s shown that the feasibility region
of MPC-DCBF is always a subset of feasibility region of NMPC-DCBF, and the feasibility region of NMPC-DCBF is independent of γk.

(a) γk = 0.05 (b) γk = 0.10 (c) γk = 0.15 (d) γk = 0.20

Fig. 2: Feasibility comparison with h(x) = −x between MPC-GCBF (N = 8) and NMPC-DCBF (N = 8,MCBF = 3) with different
values of γk. It’s shown that the feasibility region of MPC-GCBF is always a subset of feasibility region of NMPC-DCBF, and the
feasibility region of NMPC-DCBF is independent of γk.

(a) γk = 0.05 (b) γk = 0.10 (c) γk = 0.15 (d) γk = 0.20

Fig. 3: Feasibility comparison with h(x) = x2 + v2 + a2 − 1 between DCLF-DCBF and NMPC-DCLF-DCBF (N = 8,MCLF =
8,MCBF = 8) with different values of γk. The zero-level set of CBF constraint is marked in yellow. It’s shown that the feasibility region
of DCLF-DCBF is always a subset of the one of NMPC-DCLF-DCBF, and the one of NMPC-DCLF-DCBF is independent of γk.

(a) MPC-DCBF (N = 8) (b) MPC-GCBF (N = 8) (c) NMPC-DCBF (N = 8,MCBF = 8)

Fig. 4: Evolution of control barrier function h(x) = −x in the closed-loop trajectory by using controllers MPC-DCBF, MPC-GCBF and
NMPC-DCBF with different values of γk. Notice that three evolution lines for MPC-GCBF in Fig. 4b overlap with each other and they
all become infeasible around time t = 5.0s. NMPC-DCBF is the only one to have feasibility when γ = 0.05.



demonstrates the importance of decay-rate relaxing technique
that are introduced in the two proposed formulations. To sum
up, the proposed formulations outperform the state-of-the-art
in terms of feasibility.

B. Safety
The safety performance between controllers are compared

numerically in this section. Given the same initial condition
x0 = [−2.0, 0.0, 1.0]T , we test each controller performance
by using hyperparameters γk = 0.05, 0.10, 0.15, 0.20. The
results for comparison among these approaches are shown in
Fig. 4. Among MPC-DCBF and NMPC-DCBF, it can seen
that by reducing the value of γk, the value of CBF decreases
slower, which implies a safer closed-loop trajectory. We
notice that NMPC-DCBF is the only approach that maintains
feasibility along the trajectory with γ = 0.05, while the other
two approaches are infeasible right at the initial condition.
Additionally, as illustrated in Fig. 4b, MPC-GCBF becomes
infeasible after around 5 seconds in a closed-loop trajectory
starting from the initial condition. This arises from the fact
that the one-step constraint doesn’t sufficiently confine the
system for safety and leads the system into an infeasible state
after a while. We also notice that the control barrier function
for NMPC-DCBF with γk = 0.20 is larger than γk = 0.15
after t = 8s. This happens due to numerical errors as after
t = 8s, the CBF h(x) is very close to zero and its derivative
becomes almost zero and the solver tends to optimize the
additional cost for relaxing decay-rate variable instead of the
stage and terminal cost. Together with feasibility analysis in
Sec. V-A, we have shown that by reducing γk, NMPC-DCBF
could enhance the safety of the closed-loop trajectory while
not adversely affecting feasibility, which resolves the tradeoff
between feasibility and safety.

VI. CONCLUSION & FUTURE WORK

In this paper, we have proposed formulations to unify
control Lyapunov function and control barrier functions
under the framework of nonlinear model predictive con-
trol. Compared with previous work, the decay-rate of the
CBF constraints are relaxed and different horizon lengths
are considered for the cost function and the constraints.
The proposed formulations are shown both theoretically
and numerically to outperform the state-of-the-art from the
perspective of feasibility and safety.

Our future work will focus on how to implement the
proposed formulations either as a mid-level planner or a
real-time controller on mobile robots, where modelling un-
certainty, system disturbance and noise are required to be
considered for real-time deployment. From the theoretical
perspective, a formal discussion about recursive feasibility
and stability will be carried out to summarize the technique
of nonlinear MPC with control barrier function.
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