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Abstract— This paper works towards unifying two popular
approaches in the safety control community: Hamilton-Jacobi
(HJ) reachability and Control Barrier Functions (CBFs). HJ
Reachability has methods for direct construction of value
functions that provide safety guarantees and safe controllers,
however the online implementation can be overly conserva-
tive and/or rely on chattering bang-bang control. The CBF
community has methods for safe-guarding controllers in the
form of point-wise optimization using quadratic programs
(CBF-QP), where the CBF-based safety certificate is used as
a constraint. However, finding a valid CBF for a general
dynamical system is challenging. This paper unifies these two
methods by introducing a new reachability formulation inspired
by the structure of CBFs to construct a Control Barrier-Value
Function (CBVF). We verify that CBVF is a viscosity solution
to a novel Hamilton-Jacobi-Isaacs Variational Inequality and
preserves the same safety guarantee as the original reachability
formulation. Finally, inspired by the CBF-QP, we propose a
QP-based online control synthesis for systems affine in control
and disturbance, whose solution is always the CBVF’s optimal
control signal robust to bounded disturbance. We demonstrate
the benefit of using the CBVFs for double-integrator and
Dubins car systems by comparing it to previous methods.

I. INTRODUCTION

A. Motivation & Related Work

Value function-based approaches are common techniques
for solving safe control problems. Two such methods are
Hamilton-Jacobi (HJ) reachability analysis and Control Bar-
rier Functions (CBFs). HJ reachability analysis formulates
the reachability of a target set as an optimal control problem,
and has long been used as a formal theoretical tool for
safety analysis and synthesis of safe controllers [1], [2]. HJ
reachability-based value functions can be solved numerically
by using the dynamic programming principle [3]. The zero-
superlevel set of the value function describes the safe set,
and the optimal safety controller can be synthesized based
on the gradient of the function. Moreover, the safe control
can be robust to disturbances [2].

The main drawbacks of HJ reachability analysis are
twofold. First, although there have been recent advances
to improve computational efficiency [4], [5], [6], most nu-
merical methods to construct the value function suffer from
the curse of dimensionality [7]. Secondly, the resulting safe
optimal control policy is generally overly conservative when
applied directly. A popular remedy for reducing conservative-
ness is to use a least-restrictive hybrid controller–the optimal
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Fig. 1. Illustrative diagram of the viability kernel and the zero-superlevel
sets of the functions presented in the paper. The gray region represents the
failure set that should not be entered. The constraint set L is seen in white.
On the left, the infinite-time viability kernel generated by HJ reachability
is shown in blue, with the CBF safe set being a guaranteed under-
approximation. On the right, the finite-time viability kernel is generally
larger than the infinite-time version, as there exists more states that can be
safe for only a finite time horizon. The zero-superlevel set of the proposed
Robust CBVF Bγ matches the viability kernel, the maximal robust safe set.

control is only applied when the system is very close to the
safe boundary. However, this switching-based control law
often results in undesirable jerky behaviors.

Recently, Control Barrier Functions (CBFs) have gained
popularity among the controls and robotics community as
a convenient way of solving safe control problems [8], [9].
CBFs are Lyapunov-like functions that impose certain state-
dependent constraints on the control input. The constraint
results in control invariance of the zero-superlevel set of
CBFs, and this property can be used to ensure that the system
stays within a desired safe region. The main benefit of using
a CBF for safety control is that for control-affine systems,
the CBF constraint can be incorporated in an online min-
norm optimization based controller, namely the CBF-based
Quadratic Program (CBF-QP). The fact that this controller
can be applied in real-time for high-dimensional systems
makes it attractive for many applications [10], [11], [12].
Also, it can be used as an automatic safety filter (as opposed
to using least-restrictive control) [13], [14], [15].

The main drawback of CBF-based approaches is that
they lack general methods of constructing a valid CBF,
which results in using hand-designed or application-specific
CBFs [10], [12]. This may restrict the system to stay only
in a conservative safe region defined by a CBF’s zero-
superlevel set. Another problem arises when the system has
control input bounds: the CBF may be invalid under these
bounds, causing the CBF-QP to become infeasible anytime.
A new QP formulation proposed recently provides pointwise
feasibility but not persistent feasibility [16].

In summary, HJ reachability analysis and CBF-based
safety control are complementary in many ways. HJ reach-
ability provides constructive methods for the value func-
tions, whereas the CBF community usually has to deal with
handcrafting a valid CBF. Also, HJ-based value functions



result in the maximal safe region for a desired safety con-
straint, whereas CBFs often can only provide a conservative
estimate of safe region. On the other hand, online CBF-
based safety controllers like the CBF-QP are a powerful
tool to apply CBFs to high-dimensions systems in real-time
applications, whereas HJ reachability suffers from the curse
of dimensionality and its value function’s online deployment
is not straightforward due to the optimal policy’s restrictive
behavior. A recent paper uses HJ reachability functions as
CBFs [13], but a theoretical understanding of the relationship
between the two methods is still lacking.
B. Paper Organization and Contributions

In light of the fact that reachability-based value functions
and CBFs are tackling a similar problem in complementary
ways, we unify the two functions theoretically. First, in
Sec. II we briefly summarize and compare the concept of
a value function from HJ reachability and CBFs.

In Sec. III we introduce the notion of a Robust Control
Barrier-Value function (CBVF) that merges reachability-
based value functions and CBFs into one function. This
function (a) can be used for finite-time safety guarantees, (b)
is robust to bounded disturbances, (c) recovers the maximal
safe set for a desired safety constraint, and (d) leads to a
safety control that satisfies the control bound everywhere
inside the safe set. The main theoretical contribution is
a verification that the CBVF is a viscosity solution of a
particular Hamilton-Jacobi-Isaacs variational inequality (HJI-
VI), and this can be used to numerically construct a valid
CBVF. This constructive method does not naturally scale
well, but can benefit from methods from the reachability
community that enhance scalability [4], [5], [17].

In Sec. IV, we introduce the optimal control policy cor-
responding to the CBVF. This controller is less conservative
than that from the original HJ reachability, and is less jerky
than using the least-restrictive controller that is commonly
applied in HJ reachability. For systems affine in control and
disturbance, we show that such an optimal controller can
be obtained by solving a QP, namely the Robust CBVF-
QP. In Sec. V, we demonstrate this findings on numerical
examples by comparing the CBVF-based safety control with
the original HJ reachability and CBF-based methods.

II. BACKGROUND

A. Problem Formulation

Consider a state trajectory of the continuous-time time-
invariant controlled system with disturbance, solving

_x(s) = f(x(s); u(s); d(s)); s 2 [t; t0]; and x(t) = x; (1)

where t and x are the initial time and state, respectively. u 2
U � Rm is the control input, d 2 D � Rw is the disturbance
where U , D are compact and convex sets, and f : Rn�U �
D ! Rn is Lipschitz continuous in the state and bounded.
Let U[t;t′], D[t;t′] be a set of Lebesgue measurable functions
from the time interval [t; t0] to U and D, respectively. For
simplicity, we set the final time as 0. For every initial time
t � 0, initial state x 2 Rn, u(�) 2 U[t;0], and d(�) 2 D[t;0],

system (1) admits a unique solution trajectory. We denote
this trajectory as x(s), and will say that “x(�) solves (1) for
(x; t; u; d)” with a slight abuse of notation.

Throughout the paper, we assume that the disturbance
signal d(�) can be determined in reaction to the control signal
in a form of a strategy �d : U[t;0] ! D[t;0]. However, we
restrict it to draw only from nonanticipative strategies with
respect to u(�), denoted as �d 2 �[t;0]. The nonanticipative
strategy prohibits the use of future information of the control
signal to make a decision of the disturbance at each time [18].

Now consider a set L defined as a zero-superlevel set of
a bounded Lipschitz continuous function l : Rn ! R:

L = fx : l(x) � 0g : (2)
The objective of the safety control is to guarantee the
trajectory to stay in L for s 2 [t; 0] under the worst case
disturbance. We refer to l(x) as the safety target function.
More formally, we are interested in the following problems:
• Computing the viability kernel S(t) [1] for L: Verify
S(t) := fx 2 L : 8�d 2 �[t;0];9u(�) 2 U[t;0] s.t. 8s 2
[t; 0]; x(s) 2 L where x(s) solves (1) for (x; t; u; �d)g for
t < 0. S(t) is the set of all the initial states at time t in
L from which there exists an admissible control signal that
keeps the system safe under the worst-case disturbance.
• Computing a robust safe control u(�) for L: For
each x 2 S(t), verify a control signal u(�) 2 U[t;0] that
renders the trajectory safe for s 2 [t; 0], under the worst-
case disturbance.
B. Hamilton-Jacobi Reachability Analysis

It has been verified that solving for the viability kernel
and the robust safe control signal can be posed as an optimal
control problem, which can be solved using HJ reachability
analysis [1], [2], [19]. First, we define a cost function as

J(x; t; u(�); d(�)) := min
s2[t;0]

l(x(s)); (3)

which captures the minimal value of l(�) along the trajectory
x(�) that solves (1) for (x; t; u; d). If 9s 2 [t; 0] such that
J(x; t; u(s); d(s)) < 0, it means that the trajectory was
violating the safety constraint at some point in the time
horizon (obtaining a negative value of l), and is therefore
unsafe. The objective of the safety control is to make J as
big as possible, whereas under the worst case, the disturbance
would act in a direction of decreasing J as much as it
can. Based on this, we can define the value function V :
Rn � (�1; 0]! R as

V (x; t) := min
�d2�[t;0]

max
u2U[t;0]

J(x; t; u(�); �d[u](�)); (4)

Then, by the following proposition, the viability kernel for L
is S(t) = fx 2 Rn : V (x; t) � 0g. Note that the minimum
and maximum in �[t;0];U[t;0] always exists because U and
D are compact and convex [20].

Proposition 1. For all t � 0, the viability kernel for L, S(t),
always is fx 2 Rn : V (x; t) � 0g.

Proof. This is directly from the definition of V and S(t).

Note that if S(t) is empty, safety can never be guaranteed
under the worst-case disturbance. In the complement of S(t),



the value functionV (x; t ) is negative, therefore, for any
admissible control, the trajectory is unsafe under the worst-
case disturbance. This setS(t)c describes what is known in
the HJ Reachability community as aBackward Reachable
Tubeof the unsafe set.

The value functionV (x; t ) is the viscosity solution to
the following Hamilton-Jacobi-Isaacs Variational Inequality
(HJI-VI) [19]:

0 = min
�

l (x) � V (x; t ); (5)

D t V (x; t ) + max
u 2 U

min
d2 D

D x V (x; t ) � f (x; u; d)
�

with the terminal conditionV (x; 0) = l(x). This means that
V (x; t ) can be computed directly using dynamic program-
ming backwards in time by applying the HJI-VI at each point
in the state space.
Remark 1. The viscosity solutionV (x; t ) is a weak solution
to (5): V (x; t ) is not differentiable for some(x; t ). Under
the Lipschitz assumptions for the dynamics (f ) and the cost
(l ) in the state,V (x; t ) is Lipschitz continuous, which is
differentiable almost everywhere (a.e.) in(x; t )-space [18,
Th.3.2.][21].

When the viability kernelS(t) is non-empty, from any
element inS(t), we can synthesize a robust safe control
signal from the optimal control policy. Based on whether
the left or the right term in the minimum of (5) isactive, the
optimal policy � �

V (x; t ) : Rn � (�1 ; 0] ! U is determined
in a different way. That is, whenV(x; t ) < l (x),

� �
V (x; t ) = arg max

u 2 U
min
d2 D

D x V (x; t ) � f (x; u; d); (6)

and the right term of (5) is 0. Second, whenV(x; t ) = l(x),
any element of

K V (x; t ) := f u 2 U : D t V (x; t )+min
d2 D

D x V (x; t ) � f (x; u; d) � 0g

(7)

can be used as� �
V (x; t ). Therefore, the second case may

allow multiple options for the optimal control. In either case,
for any d 2 D,

_V (x( t); t ) = D t V (x( t); t )

+ D x V (x( t); t ) � f (x( t); � �
V (x( t); t ); d) � 0;

where x(�) is an instantaneous trajectory of (1) att with
x(t)= x, control � �

V (x; t ) and disturbanced. Therefore, this
implies that for any initial statex 2 S(t), for any � d 2
� [t; 0] , along the optimal trajectoryx� (�) which solves (1) for
(x; t; � �

V ; � d[� �
V ]), the value functionV (x � (s); s) will never

decrease. SinceV is non-negative at the initial timet, it
is always kept non-negative under� �

V for s 2 [t; 0], which
means the trajectory is rendered safe.

Remark 2. Note that for the second case of� �
V , for any

optimal u 2 K V (x; t ) and anyd 2 D,
_l(x( t)) = _V (x( t); t) � 0; (8)

where x(�) is an instantaneous trajectory of (1) att with
x(t) = x, control u and disturbanced. This means that for
the second case,� �

V requiresl to increase, in other words,
it never allows the trajectory to get closer to the safety

boundary. Therefore, such optimal control policy is often
too restrictive to be used as a safety �lter for a reference
control signal. In the reachability community, to remedy this,
a common practice is to switch from the reference control
to the safe optimal control only whenV(x( s); s) is close
to 0, so called least-restrictive control law [17], [22], [23].
The resulting control system with such switching law may
give undesirable jerky behaviors and is prone to errors in
numerically computedD x V.

C. Control Barrier Functions

An alternative approach for achieving the safety control
objective is to use Control Barrier Functions (CBFs). The
theory of CBFs is developed upon viability theory and
Lyapunov-based stability theory [9].

De�nition 1. Let C be a zero-superlevel set of a contin-
uously differentiable functionB : Rn ! R. Consider a
Lipschitz continuous controlled system without disturbance,
f = f (x( s); u(s)) . ThenB is a Control Barrier Functionfor
this system if there exists an extended classK1 function �
such that for allx 2 C,

max
u2 U

D x B (x) � f (x; u) � � � (B (x)) : (9)

Introducing � � (B (x)) on the right hand side of (9) is
inspired by the condition that Control Lyapunov Functions
(CLFs) should satisfy in order to provide exponential stabi-
lizability [9]. In practice, a linear function
z (
 > 0) is often
used as� (z). In this case,
 serves as amaximal discount
rate of B (x( s)) . Informally, this means thatB (x( s)) is
not allowed to decay faster than the exponentially decaying
curve _B (x( s)) = � 
B (x( s)) , therefore potential unsafe
behaviors smooth out as it approaches the safe boundary.
More formally, the following holds:

Theorem 1. [9, Corollary 2] For suchB and its zero-
superlevel setC, any Lipschitz continuous controller� : C !
U such that� (x) 2 K B (x) where

K B (x) := f u 2 U : D x B (x) � f (x; u) � � � (B (x))g; (10)

will render the setC forward invariant [9]. In other words,
C is control invariant.

Condition (9) can be incorporated in an online opti-
mization based controller that minimizes the norm of the
difference betweenu and the reference controluref . For
control-af�ne systems, this can become a Quadratic Program,
namely Control Barrier Function-based Quadratic Program
(CBF-QP) [9], and can be used as an online safety �lter for
any reference control signaluref .

D. Comparison between HJ reachability and CBF

In this subsection, we restrict our interest to systems
without disturbance,f = f (x( s); u(s)) , for the comparison
between value function from the reachabilityV and CBFB .
Note that by extending the de�nition ofV to in�nite-time
horizon asV1 (x) := lim t !�1 V(x; t ),

we can get a time-invariant value function [24] whose
zero-superlevel setS1 := f x : V1 (x) � 0g is a maximal



control invariant set contained inL . The latter results from
extending Proposition 1 to in�nite horizon.

The geometric connection between the zero-superlevel set
of the CBFB , C, and the zero-superlevel set ofV1 , S1 , is
that C is always a subset ofS1 . This is because in order to
useB for our safety objective (2), the control invariant set
C should be a subset ofL , as shown in Fig. 1. SinceS1 is
the maximal control invariant set inL , C � S 1 .

Also, note thatV1 satis�es the CBF condition (9) for any
extended classK1 function � where the gradientD x V1

exists, from the fact,D t V1 = 0 , and the HJI-VI (5):
max
u2 U

D x V1 (x) � f (x; u) � 0 � � � (V1 (x)) :

This implies that ifV1 is differentiable inS1 , then setting
B = V1 works as a valid CBF withC = S1 . However, if it
is not the case, it is hard to devise a CBF such that its zero-
superlevel set recovers the maximal control invariant set in
L without relaxing its differentiability condition. Note that
choosingB = l, which makesC = L , would not be a valid
CBF in general. In many cases, a valid handcrafted CBF
results in its zero-superlevel setC strictly smaller thanS1 .

III. ROBUST CONTROL BARRIER-VALUE FUNCTION AND

HAMILTON -JACOBI-BASED VERIFICATION

Note that the condition the CBF-based safe control should
satisfy,D x B (x) � f (x; u) � � � (B (x)) , from Theorem 1, is
less restrictive than the condition the optimal control forV
should satisfy,mind2 D D x V(x; s) � f (x; u; d) � 0. This is
mainly because of the introduction of� � (�) on the right
hand side of (9). Inspired by this and the fact that when
� (B (x)) � 
B (x), 
 serves as the maximal discount rate
of B , we de�ne the following new value function.

De�nition 2. A Robust Control Barrier-Value Function
(CBVF) B 
 : Rn � (�1 ; 0] ! R is de�ned as

B 
 (x; t ) := min
� d 2 �[ t; 0]

max
u2U [ t; 0]

min
s2 [t; 0]

e
 (s� t ) l (x( s)) ; (11)

where x(�) solves for(x; t; u; � d[u]), for some
 � 0 and
8t � 0. At t = 0 , we get terminal conditionB 
 (x; 0) = l(x).

Note thatB 
 is de�ned for each �xed value of
 � 0.
Now, consider the case
 = 0 . For this case, the de�nition
of B0 in (11) matches with the de�nition of the original
reachability-based value function in (4). This is not surprising
because (11) should be regarded as aspecial case of the
reachability problem, whose target function is exponentially
decaying backward in time.

Since (11) is an optimal control problem under a differ-
ential game setting, Bellman's principle of optimality can be
applied to derive the dynamic programming principle forB 
 .

Theorem 2. (Dynamic Programming Optimality Condi-
tion) For the Robust CBVFB 
 in De�nition 2, for each
t < t + � � 0, the following is satis�ed.

B 
 (x; t ) = min
� d 2 � [ t; 0]

max
u 2U [ t; 0]

min
n

min
s2 [t;t + � ]

e
 ( s� t ) l (x( s)) ;

e
� B 
 (x( t + � ); t + � )
o

(12)

wherex(�) solves (1) for(x; t; u; � d).

Proof. See Appendix.
Theorem 2 leads to the derivation of the following the-

orem, which is the main theoretical result of this paper,
showing thatB 
 can be obtained by solving a particular
variational inequality that has the form of HJI-VI.
Theorem 3. The Robust CBVFB 
 is a Lipschitz continuous
unique viscosity solution of the CBVF variational inequality
(CBVF-VI) below with the terminal conditionB 
 (x;0)= l(x):

0 = min
�

l (x) � B 
 (x; t ); (13)

D t B 
 (x; t )+max
u 2 U

min
d2 D

D x B 
 (x; t ) � f (x; u; d)+ 
B 
 (x; t )
�

:

Proof. See Appendix.
The following proposition shows that like the original

reachability-based value functionV from (4),B 
 can also be
used to verify the viability kernelS(t). In other words, the
zero-superlevel set of the Robust CBVF contains every initial
state from which robust safety guarantee is possible for a
chosen time span. This is in sharp contrast to the CBFs, since
the safe invariant set from a given CBF is only guaranteed to
be a subset of the maximal control invariant set. Moreover,
since CBVF is concerned with safety for �nite-time horizon,
the obtained safe set can be much bigger than the control
invariant set from CBFs. Therefore, in addition to the fact
that the CBVF is constructive, the main bene�t of using the
CBVF is that it recovers the biggest permissible region for
the system for maintaining safety (Fig. 1).
Proposition 2. For eacht � 0, de�ne C
 (t) := f x 2 Rn :
B 
 (x; t ) � 0g. Then,8t � 0, C
 (t) = S(t).
Proof. For eacht 2 (�1 ; 0], considerx such thatB 
 (x; t ) �
0. For 8� d 2 � [t; 0] , there existsu 2 U[t; 0] such that
mins2 [t; 0] e
 (s� t ) l (x( s)) � 0. Therefore,x belongs toS(t).

Considerx 2 S(t). For all � d 2 � [t; 0] , there existsu 2
U[t; 0] such thatl(x( s)) is non-negative for alls 2 [t; 0]. Thus,
maxu2U [ t; 0] mins2 [t; 0] e
 (s� t ) l (x( s)) is non-negative for all
� d, andB 
 (x; t ) � 0.

Finally, sinceV can be used to verify the viability kernel
S(t), readers might wonder the additional bene�t of intro-
ducing B 
 . In the next section, we explain why usingB 


would be preferable to using the original value functionV .

IV. OPTIMAL CONTROL POLICY OF THE CBVF

A. Evaluation of the optimal control policy of the CBVF
The main bene�t of using the optimal controller from

the new formulation of CBVFB 
 instead of the original
reachability-based optimal controller� �

V is that it can sig-
ni�cantly reduce the conservativeness of� �

V (Remark 2).
First recall how the optimal policy� �

V of V is veri�ed: 1)
when V(x; t ) < l (x), it is determined by (6), and 2) when
V(x; t ) = l(x), any element of (7) is optimal.

From the CBVF-VI (13), we can verify the optimal control
policy with respect toB 
 similarly. For the �rst case, when
B 
 (x; t ) < l (x), the second term of (13) must be zero;
therefore the optimal control must be given by

� �
B 
 (x; t ) = arg max

u 2 U
min
d2 D

D x B 
 (x; t ) � f (x; u; d); (14)



which is similar to the �rst case of� �
V . Also, the CBVF-VI

(13) implies that for this case,
D t B 
 (x; t ) + min

d2 D
D x B 
 (x; t ) � f (x; � �

B 
 (x; t ); d) + 
B 
 (x; t )

= _B 
 (x( t); t ) + 
B 
 (x( t); t ) = 0 : (15)

For the second case, whenB 
 (x; t ) = l(x), any element of

K B 
 (x; t ) := f u 2 U : D t B 
 (x; t )+ min
d2 D

D x B 
 (x; t ) � f (x; u; d)

+ 
B 
 (x; t ) � 0g (16)

is optimal with respect toB 
 and can be used as� �
B 


.
For this case,K B 
 (x; t ) is always non-empty because the
second term of (13) is greater or equal to 0, and for any
u 2 K B 
 (x; t ) and anyd 2 D,

_l(x( t)) = _B 
 (x( t); t) � � 
B 
 (x( t); t) = � 
l (x( t)) ; (17)
wherex(�) solves (1) for(x; t; u; d ).

It is crucial to note the difference between (8) and (17).
Speaking informally, both second cases of the optimal con-
trol policies with respect toV andB 
 occur when the state
is not at stake of violating safety, therefore, the user is
allowed to choose anyu from K V and K B 
 as � �

V and
� �

B 

, respectively. However, as Remark 2 explains,� �

V still
never allows the state to get closer to the safety boundary.
On the other hand,� �

B 

allows l to decrease as long as it

satis�es (17), which is a very similar property that CBFs
have. Therefore,� �

B 

allows for more control authority than

� �
V , while achieving the same safety objective.
This bene�t of B 
 over V can be regarded as CBF's

property of becoming less conservative instilled in the HJ
reachability formulation. In the next section, we will nu-
merically demonstrate that the optimal trajectories from� �

B 


actually behave less conservative than the optimal trajectories
from � �

V , especially with higher value of
 .
B. Online optimal policy synthesis for control-af�ne systems

We end this section by proposing a speci�c way of syn-
thesizing� �

B 

for systems af�ne in control and disturbance:

_x(s)= f (x( s); u(s); d(s)) = p(x( s))+ q(x( s))u(s)+ r (x( s))d(s);
(18)

wherep :Rn ! Rn , q :Rn ! Rn � m , andr :Rn ! Rn � w .
Note thatu = � �

B 

(x; t ) should satisfy

D t B 
 (x; t ) + min
d2 D

D x B 
 (x; t ) � f (x; u; d) + 
B 
 (x; t ) � 0

from (15) and (16). Similarly to the CBF-QP, we can
incorporate this as a linear inequality constraint in a min-
norm optimization based controller. When the input bound
U is polytopic, the optimization becomes a QP as well:

Robust CBVF-QP:

� QP (x; t ) = arg min
u 2 U

(u � uref )T (u � uref ) (19a)

s.t. a(x; t ) + D x B 
 (x; t ) � q(x)u + 
B 
 (x; t ) � 0; (19b)
wherea(x; t ) = D t B 
 (x; t ) + D x B 
 (x; t ) � p(x)

+ min
d2 D

D x B 
 (x; t ) � r (x)d: (19c)

Note that a similar formulation is proposed in a previous
work that introduces a concept of Robust CBF [25].

Proposition 3. For the Robust CBVFB 
 , and for the system
(18) with linear control boundU, the Robust CBVF-QP
(19) is feasible everywhere(x; t ) 2 Rn � (�1 ; 0] where
the gradientD x B 
 (x; t ) exists, and its solution is always an
optimal policy with respect toB 
 .
Proof. For the �rst case, whenB 
 (x; t ) < l (x), the con-
straint of the QP (19b) is satis�ed but only under the equality
condition since

D t B 
 (x; t ) + max
u 2 U

min
d2 D

D x B 
 (x; t ) � f (x; u; d) + 
B 
 (x; t ) = 0

from (15). Anyu 2 U that satis�es the equality condition is
optimal. For the second case, whenB 
 (x; t ) = l(x), K B 
 is
exactly the feasible set of the Robust CBVF-QP.

Remark 3. Note that any reference control signaluref can
be used in (19), since Proposition 3 holds for every feasible
solution. Therefore, (19) is not only an optimal controller
for B 
 , it also can be used as a safety �lter for any kind of
performance controller. As we explained in Sec. IV-A, this
new safety �lter is much less restrictive than the original
optimal control policy ofV . Also, compared to applying a
least-restrictive safety �lter explained in Remark 2 which
utilizes value function only at the boundary, the �lter (19)
can be applied globally insideS(t), and the optimization
automatically adjustsuref to make it safe.

Remark 4. When the differentialD x B 
 does not exist,
sinceB 
 is Lipschitz continuous, either one of superdiffer-
ential or subdifferential always exists. The optimal control
is determined by the same rule (16) where the differential
D x B 
 (x; t ) is replaced by the superdifferentialD x ' (x; t ) 2
D x B +


 (x; t ) or subdifferentialD x ' (x; t ) 2 D x B �

 (x; t ) [26,

Ch.3.2.5].

V. NUMERICAL EXAMPLES
In the following numerical examples, standard numerical

methods for computing the reachability-based value func-
tions [3], [19] are used to computeB 
 .

A. Double Integrator Example
The running example in this subsection will be a simple

2D double integrator. Its system dynamics are_z = v + d;
_v = u; with states positionz and velocityv, disturbance
d 2 [� 0:2; 0:2] and controlu 2 [� 0:5; 0:5]. Figure 2 shows
a comparison of the functions, zero level sets, trajectories,
and control signals for three different values of
 . On the top
in orange is the standard HJ VI computation (i.e.
 = 0 ). The
other rows show computations for
 = 0 :2 (middle, blue),
and 
 = 0 :5 (bottom, cyan). The new formulation is also
robust to bounded disturbances. Figure 3 shows a comparison
of trajectories under different disturbance conditions. Even
under worst-case disturbances (blue), the online trajectory is
guaranteed to remain in the safe set.
B. Dubins Car Example

In this subsection we demonstrate a comparison between
using the original reachability-based controllers and the
CBVF-QP, and a comparison between the CBF-QP and the
CBVF-QP. We use a Dubins car model:_x = v cos(� );
_y = v sin(� ); _� = u; wherex; y are positions,� is heading,v



Fig. 2. From left to right: 1. Comparison betweenV (x; t ) (top) and
B 
 (x; t ) with 
 =0 :2 (middle) and0:5 (bottom), t = � 5. Note that when

 = 0 , B 
 (x; t ) = V (x; t ). 2. The optimal trajectories in the state space
initiated atx = [3 ; � 1] (red cross) and the zero-level sets ofl (x) (green)
and B 
 (x; t ). 3. The corresponding optimal control signals. The control
is synthesized using the Robust-CBVF-QP, whereuref is a simple PD
control for the target point (green dot), and the shaded regions indicate
feasible solutions of the QP (K B 
 (x( s); s)). 4. Pro�les of B 
 along the
trajectories. The optimal policy is less conservative with larger
 (allowing
B 
 to decrease more) and is able to reach the target when
 =0 :5.

Fig. 3. Trajectories under different online disturbance conditions. All
trajectories start fromx = [4 ; 1:5] (red cross). Conditions shown are no
disturbance (black), a �xed disturbance of 0.1 m/s (cyan), and worst-case
disturbance (blue). By starting in the safe set (orange boundary) the system
remains within the constraint set (green boundary) even under worst-case
disturbance.

is a �xed speed, andu 2 [� 3; 3] is rotational velocity. We use

 = 10. In Fig. 4, the system navigates around an obstacle to
a goal using least-restrictive control (top) and the CBVF-QP
(bottom). The CBVF-QP is able to use a smoother control
signal and still reach the goal within the time horizon.

In Fig. 5, the time stamps are shown for a system using
a CBVF-QP (which is time-varying) and a CBF-QP (which
is time-invariant) controller. For the CBF,B = V1 is used
to maximize its safe setC as S1 . Although V1 has non-
differentiable points for the Dubins car system in general,
the trajectory resulting from the CBF-QP in Fig. 5 does not
intersect with such points. The CBF-QP maintains safety,
however, because of its safety concern for in�nite-time
horizon, the system is unable to reach the goal. In contrast,
the time-varying CBVF-QP allows the system to safely reach
the goal within the �nite-time horizon. This formulation can
be used for scenarios that require safety only for a �xed time
[27], [28], for example, a hybrid system like legged robots
that requires the system to stay safe only until it reaches the
goal.

VI. CONCLUSION

This paper has introduced the notion of a Control Barrier-
Value Function (CBVF) by unifying ideas from HJ reach-
ability and Control Barrier Functions. To the best of our
knowledge, this is the �rst constructive method for the

Fig. 4. Comparison between the least-restrictive controller (top), the
optimal controller from the original HJ reachability (middle), and the CBVF-
QP controller (bottom).

Fig. 5. Comparison of trajectories using a CBVF-QP (top) vs. a CBF-QP
(bottom).The red set represents the boundary of thex-y slice of the zero-
superlevel sets ofB 
 and B at current� . Note that these sets appear to
rotate over time because we are visualizing the 2D slice at the current value
of � . On the top, the system is able to reach a goal while avoiding obstacles
within the prescribed time horizon. On the bottom, the system must stay
safe for an in�nite time horizon, and is therefore unable to reach the goal
(video: https://youtu.be/wGg7rfyXCTs ).

CBF community that provides the maximal safe set for a
desired safety constraint which also can handle bounded
control and disturbances, however, this comes with a cost
of bearing the curse of dimensionality. We also introduce
the Robust CBVF-QP for online control and demonstrate its
usage as a safety �lter in a double-integrator and Dubins car
system. This provides a new systematic way of designing
the safety �lter for the reachability community. We believe
the introduction of CBVFs is an important step towards
bridging the gap between the CBF-based and reachability-
based safety control frameworks. We plan to extend this
analysis to Control Lyapunov Functions, similarly to [29],
and to reach-avoid problems [19].
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APPENDIX

The following proofs of Theorem 2 and 3inherit the
structure from the standard proof of viscosity solution of HJI
Partial Differential Equation (HJI-PDE) [18]. Note that the
proofs hold for compactU; D without convexity condition.
Here, we use notation u;d

x;t � x : [t; 0] ! Rn , wherex(�)
solves (1) for(x; t; u; d ), instead ofx(�), to specify control
and disturbance signal. We use� t := � [t; 0] , Ut := U[t; 0] .
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