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Abstract— This paper works towards unifying two popular
approaches in the safety control community: Hamilton-Jacobi
(HJ) reachability and Control Barrier Functions (CBFs). HJ
Reachability has methods for direct construction of value
functions that provide safety guarantees and safe controllers,
however the online implementation can be overly conserva-
tive and/or rely on chattering bang-bang control. The CBF
community has methods for safe-guarding controllers in the
form of point-wise optimization using quadratic programs
(CBF-QP), where the CBF-based safety certificate is used as
a constraint. However, finding a valid CBF for a general
dynamical system is challenging. This paper unifies these two
methods by introducing a new reachability formulation inspired
by the structure of CBFs to construct a Control Barrier-Value
Function (CBVF). We verify that CBVF is a viscosity solution
to a novel Hamilton-Jacobi-Isaacs Variational Inequality and
preserves the same safety guarantee as the original reachability
formulation. Finally, inspired by the CBF-QP, we propose a
QP-based online control synthesis for systems affine in control
and disturbance, whose solution is always the CBVF’s optimal
control signal robust to bounded disturbance. We demonstrate
the benefit of using the CBVFs for double-integrator and
Dubins car systems by comparing it to previous methods.

I. INTRODUCTION

A. Motivation & Related Work

Value function-based approaches are common techniques
for solving safe control problems. Two such methods are
Hamilton-Jacobi (HJ) reachability analysis and Control Bar-
rier Functions (CBFs). HJ reachability analysis formulates
the reachability of a target set as an optimal control problem,
and has long been used as a formal theoretical tool for
safety analysis and synthesis of safe controllers [1], [2]. HJ
reachability-based value functions can be solved numerically
by using the dynamic programming principle [3]. The zero-
superlevel set of the value function describes the safe set,
and the optimal safety controller can be synthesized based
on the gradient of the function. Moreover, the safe control
can be robust to disturbances [2].

The main drawbacks of HJ reachability analysis are
twofold. First, although there have been recent advances
to improve computational efficiency [4], [5], [6], most nu-
merical methods to construct the value function suffer from
the curse of dimensionality [7]. Secondly, the resulting safe
optimal control policy is generally overly conservative when
applied directly. A popular remedy for reducing conservative-
ness is to use a least-restrictive hybrid controller–the optimal
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Fig. 1. Illustrative diagram of the viability kernel and the zero-superlevel
sets of the functions presented in the paper. The gray region represents the
failure set that should not be entered. The constraint set L is seen in white.
On the left, the infinite-time viability kernel generated by HJ reachability
is shown in blue, with the CBF safe set being a guaranteed under-
approximation. On the right, the finite-time viability kernel is generally
larger than the infinite-time version, as there exists more states that can be
safe for only a finite time horizon. The zero-superlevel set of the proposed
Robust CBVF Bγ matches the viability kernel, the maximal robust safe set.

control is only applied when the system is very close to the
safe boundary. However, this switching-based control law
often results in undesirable jerky behaviors.

Recently, Control Barrier Functions (CBFs) have gained
popularity among the controls and robotics community as
a convenient way of solving safe control problems [8], [9].
CBFs are Lyapunov-like functions that impose certain state-
dependent constraints on the control input. The constraint
results in control invariance of the zero-superlevel set of
CBFs, and this property can be used to ensure that the system
stays within a desired safe region. The main benefit of using
a CBF for safety control is that for control-affine systems,
the CBF constraint can be incorporated in an online min-
norm optimization based controller, namely the CBF-based
Quadratic Program (CBF-QP). The fact that this controller
can be applied in real-time for high-dimensional systems
makes it attractive for many applications [10], [11], [12].
Also, it can be used as an automatic safety filter (as opposed
to using least-restrictive control) [13], [14], [15].

The main drawback of CBF-based approaches is that
they lack general methods of constructing a valid CBF,
which results in using hand-designed or application-specific
CBFs [10], [12]. This may restrict the system to stay only
in a conservative safe region defined by a CBF’s zero-
superlevel set. Another problem arises when the system has
control input bounds: the CBF may be invalid under these
bounds, causing the CBF-QP to become infeasible anytime.
A new QP formulation proposed recently provides pointwise
feasibility but not persistent feasibility [16].

In summary, HJ reachability analysis and CBF-based
safety control are complementary in many ways. HJ reach-
ability provides constructive methods for the value func-
tions, whereas the CBF community usually has to deal with
handcrafting a valid CBF. Also, HJ-based value functions



result in the maximal safe region for a desired safety con-
straint, whereas CBFs often can only provide a conservative
estimate of safe region. On the other hand, online CBF-
based safety controllers like the CBF-QP are a powerful
tool to apply CBFs to high-dimensions systems in real-time
applications, whereas HJ reachability suffers from the curse
of dimensionality and its value function’s online deployment
is not straightforward due to the optimal policy’s restrictive
behavior. A recent paper uses HJ reachability functions as
CBFs [13], but a theoretical understanding of the relationship
between the two methods is still lacking.
B. Paper Organization and Contributions

In light of the fact that reachability-based value functions
and CBFs are tackling a similar problem in complementary
ways, we unify the two functions theoretically. First, in
Sec. II we briefly summarize and compare the concept of
a value function from HJ reachability and CBFs.

In Sec. III we introduce the notion of a Robust Control
Barrier-Value function (CBVF) that merges reachability-
based value functions and CBFs into one function. This
function (a) can be used for finite-time safety guarantees, (b)
is robust to bounded disturbances, (c) recovers the maximal
safe set for a desired safety constraint, and (d) leads to a
safety control that satisfies the control bound everywhere
inside the safe set. The main theoretical contribution is
a verification that the CBVF is a viscosity solution of a
particular Hamilton-Jacobi-Isaacs variational inequality (HJI-
VI), and this can be used to numerically construct a valid
CBVF. This constructive method does not naturally scale
well, but can benefit from methods from the reachability
community that enhance scalability [4], [5], [17].

In Sec. IV, we introduce the optimal control policy cor-
responding to the CBVF. This controller is less conservative
than that from the original HJ reachability, and is less jerky
than using the least-restrictive controller that is commonly
applied in HJ reachability. For systems affine in control and
disturbance, we show that such an optimal controller can
be obtained by solving a QP, namely the Robust CBVF-
QP. In Sec. V, we demonstrate this findings on numerical
examples by comparing the CBVF-based safety control with
the original HJ reachability and CBF-based methods.

II. BACKGROUND

A. Problem Formulation

Consider a state trajectory of the continuous-time time-
invariant controlled system with disturbance, solving

ẋ(s) = f(x(s), u(s), d(s)), s ∈ [t, t′], and x(t) = x, (1)

where t and x are the initial time and state, respectively. u ∈
U ⊂ Rm is the control input, d ∈ D ⊂ Rw is the disturbance
where U , D are compact and convex sets, and f : Rn×U ×
D → Rn is Lipschitz continuous in the state and bounded.
Let U[t,t′], D[t,t′] be a set of Lebesgue measurable functions
from the time interval [t, t′] to U and D, respectively. For
simplicity, we set the final time as 0. For every initial time
t ≤ 0, initial state x ∈ Rn, u(·) ∈ U[t,0], and d(·) ∈ D[t,0],

system (1) admits a unique solution trajectory. We denote
this trajectory as x(s), and will say that “x(·) solves (1) for
(x, t, u, d)” with a slight abuse of notation.

Throughout the paper, we assume that the disturbance
signal d(·) can be determined in reaction to the control signal
in a form of a strategy ξd : U[t,0] → D[t,0]. However, we
restrict it to draw only from nonanticipative strategies with
respect to u(·), denoted as ξd ∈ Ξ[t,0]. The nonanticipative
strategy prohibits the use of future information of the control
signal to make a decision of the disturbance at each time [18].

Now consider a set L defined as a zero-superlevel set of
a bounded Lipschitz continuous function l : Rn → R:

L = {x : l(x) ≥ 0} . (2)
The objective of the safety control is to guarantee the
trajectory to stay in L for s ∈ [t, 0] under the worst case
disturbance. We refer to l(x) as the safety target function.
More formally, we are interested in the following problems:
• Computing the viability kernel S(t) [1] for L: Verify
S(t) := {x ∈ L : ∀ξd ∈ Ξ[t,0],∃u(·) ∈ U[t,0] s.t. ∀s ∈
[t, 0], x(s) ∈ L where x(s) solves (1) for (x, t, u, ξd)} for
t < 0. S(t) is the set of all the initial states at time t in
L from which there exists an admissible control signal that
keeps the system safe under the worst-case disturbance.
• Computing a robust safe control u(·) for L: For
each x ∈ S(t), verify a control signal u(·) ∈ U[t,0] that
renders the trajectory safe for s ∈ [t, 0], under the worst-
case disturbance.
B. Hamilton-Jacobi Reachability Analysis

It has been verified that solving for the viability kernel
and the robust safe control signal can be posed as an optimal
control problem, which can be solved using HJ reachability
analysis [1], [2], [19]. First, we define a cost function as

J(x, t, u(·), d(·)) := min
s∈[t,0]

l(x(s)), (3)

which captures the minimal value of l(·) along the trajectory
x(·) that solves (1) for (x, t, u, d). If ∃s ∈ [t, 0] such that
J(x, t, u(s), d(s)) < 0, it means that the trajectory was
violating the safety constraint at some point in the time
horizon (obtaining a negative value of l), and is therefore
unsafe. The objective of the safety control is to make J as
big as possible, whereas under the worst case, the disturbance
would act in a direction of decreasing J as much as it
can. Based on this, we can define the value function V :
Rn × (−∞, 0]→ R as

V (x, t) := min
ξd∈Ξ[t,0]

max
u∈U[t,0]

J(x, t, u(·), ξd[u](·)), (4)

Then, by the following proposition, the viability kernel for L
is S(t) = {x ∈ Rn : V (x, t) ≥ 0}. Note that the minimum
and maximum in Ξ[t,0],U[t,0] always exists because U and
D are compact and convex [20].

Proposition 1. For all t ≤ 0, the viability kernel for L, S(t),
always is {x ∈ Rn : V (x, t) ≥ 0}.

Proof. This is directly from the definition of V and S(t).

Note that if S(t) is empty, safety can never be guaranteed
under the worst-case disturbance. In the complement of S(t),



the value function V (x, t) is negative, therefore, for any
admissible control, the trajectory is unsafe under the worst-
case disturbance. This set S(t)c describes what is known in
the HJ Reachability community as a Backward Reachable
Tube of the unsafe set.

The value function V (x, t) is the viscosity solution to
the following Hamilton-Jacobi-Isaacs Variational Inequality
(HJI-VI) [19]:

0 = min

{
l(x)− V (x, t), (5)

DtV (x, t) + max
u∈U

min
d∈D

DxV (x, t) · f(x, u, d)

}
with the terminal condition V (x, 0) = l(x). This means that
V (x, t) can be computed directly using dynamic program-
ming backwards in time by applying the HJI-VI at each point
in the state space.
Remark 1. The viscosity solution V (x, t) is a weak solution
to (5): V (x, t) is not differentiable for some (x, t). Under
the Lipschitz assumptions for the dynamics (f ) and the cost
(l) in the state, V (x, t) is Lipschitz continuous, which is
differentiable almost everywhere (a.e.) in (x, t)-space [18,
Th.3.2.][21].

When the viability kernel S(t) is non-empty, from any
element in S(t), we can synthesize a robust safe control
signal from the optimal control policy. Based on whether
the left or the right term in the minimum of (5) is active, the
optimal policy π∗V (x, t) : Rn × (−∞, 0]→ U is determined
in a different way. That is, when V (x, t) < l(x),

π∗V (x, t) = arg max
u∈U

min
d∈D

DxV (x, t) · f(x, u, d), (6)

and the right term of (5) is 0. Second, when V (x, t) = l(x),
any element of

KV (x, t) :={u∈U : DtV (x, t)+min
d∈D

DxV (x, t)·f(x, u, d)≥0}
(7)

can be used as π∗V (x, t). Therefore, the second case may
allow multiple options for the optimal control. In either case,
for any d ∈ D,

V̇ (x(t), t) = DtV (x(t), t)

+DxV (x(t), t) · f(x(t), π∗V (x(t), t), d) ≥ 0,

where x(·) is an instantaneous trajectory of (1) at t with
x(t)=x, control π∗V (x, t) and disturbance d. Therefore, this
implies that for any initial state x ∈ S(t), for any ξd ∈
Ξ[t,0], along the optimal trajectory x∗(·) which solves (1) for
(x, t, π∗V , ξd[π

∗
V ]), the value function V (x∗(s), s) will never

decrease. Since V is non-negative at the initial time t, it
is always kept non-negative under π∗V for s ∈ [t, 0], which
means the trajectory is rendered safe.

Remark 2. Note that for the second case of π∗V , for any
optimal u ∈ KV (x, t) and any d ∈ D,

l̇(x(t)) = V̇ (x(t), t) ≥ 0, (8)
where x(·) is an instantaneous trajectory of (1) at t with
x(t) = x, control u and disturbance d. This means that for
the second case, π∗V requires l to increase, in other words,
it never allows the trajectory to get closer to the safety

boundary. Therefore, such optimal control policy is often
too restrictive to be used as a safety filter for a reference
control signal. In the reachability community, to remedy this,
a common practice is to switch from the reference control
to the safe optimal control only when V (x(s), s) is close
to 0, so called least-restrictive control law [17], [22], [23].
The resulting control system with such switching law may
give undesirable jerky behaviors and is prone to errors in
numerically computed DxV .

C. Control Barrier Functions

An alternative approach for achieving the safety control
objective is to use Control Barrier Functions (CBFs). The
theory of CBFs is developed upon viability theory and
Lyapunov-based stability theory [9].

Definition 1. Let C be a zero-superlevel set of a contin-
uously differentiable function B : Rn → R. Consider a
Lipschitz continuous controlled system without disturbance,
f=f(x(s), u(s)). Then B is a Control Barrier Function for
this system if there exists an extended class K∞ function α
such that for all x ∈ C,

max
u∈U

DxB(x) · f(x, u) ≥ −α(B(x)). (9)

Introducing −α(B(x)) on the right hand side of (9) is
inspired by the condition that Control Lyapunov Functions
(CLFs) should satisfy in order to provide exponential stabi-
lizability [9]. In practice, a linear function γz (γ>0) is often
used as α(z). In this case, γ serves as a maximal discount
rate of B(x(s)). Informally, this means that B(x(s)) is
not allowed to decay faster than the exponentially decaying
curve Ḃ(x(s)) = −γB(x(s)), therefore potential unsafe
behaviors smooth out as it approaches the safe boundary.
More formally, the following holds:

Theorem 1. [9, Corollary 2] For such B and its zero-
superlevel set C, any Lipschitz continuous controller π : C →
U such that π(x) ∈ KB(x) where

KB(x) := {u ∈ U : DxB(x) ·f(x, u) ≥ −α(B(x))}, (10)

will render the set C forward invariant [9]. In other words,
C is control invariant.

Condition (9) can be incorporated in an online opti-
mization based controller that minimizes the norm of the
difference between u and the reference control uref . For
control-affine systems, this can become a Quadratic Program,
namely Control Barrier Function-based Quadratic Program
(CBF-QP) [9], and can be used as an online safety filter for
any reference control signal uref .

D. Comparison between HJ reachability and CBF

In this subsection, we restrict our interest to systems
without disturbance, f = f(x(s), u(s)), for the comparison
between value function from the reachability V and CBF B.
Note that by extending the definition of V to infinite-time
horizon as V∞(x) :=limt→−∞ V (x, t),

we can get a time-invariant value function [24] whose
zero-superlevel set S∞ := {x : V∞(x) ≥ 0} is a maximal



control invariant set contained in L. The latter results from
extending Proposition 1 to infinite horizon.

The geometric connection between the zero-superlevel set
of the CBF B, C, and the zero-superlevel set of V∞, S∞, is
that C is always a subset of S∞. This is because in order to
use B for our safety objective (2), the control invariant set
C should be a subset of L, as shown in Fig. 1. Since S∞ is
the maximal control invariant set in L, C ⊆ S∞.

Also, note that V∞ satisfies the CBF condition (9) for any
extended class K∞ function α where the gradient DxV∞
exists, from the fact, DtV∞ = 0, and the HJI-VI (5):

max
u∈U

DxV∞(x) · f(x, u) ≥ 0 ≥ −α(V∞(x)).

This implies that if V∞ is differentiable in S∞, then setting
B = V∞ works as a valid CBF with C = S∞. However, if it
is not the case, it is hard to devise a CBF such that its zero-
superlevel set recovers the maximal control invariant set in
L without relaxing its differentiability condition. Note that
choosing B = l, which makes C = L, would not be a valid
CBF in general. In many cases, a valid handcrafted CBF
results in its zero-superlevel set C strictly smaller than S∞.

III. ROBUST CONTROL BARRIER-VALUE FUNCTION AND
HAMILTON-JACOBI-BASED VERIFICATION

Note that the condition the CBF-based safe control should
satisfy, DxB(x) · f(x, u) ≥ −α(B(x)), from Theorem 1, is
less restrictive than the condition the optimal control for V
should satisfy, mind∈DDxV (x, s) · f(x, u, d) ≥ 0. This is
mainly because of the introduction of −α(·) on the right
hand side of (9). Inspired by this and the fact that when
α(B(x)) ≡ γB(x), γ serves as the maximal discount rate
of B, we define the following new value function.

Definition 2. A Robust Control Barrier-Value Function
(CBVF) Bγ : Rn × (−∞, 0]→ R is defined as

Bγ(x, t) := min
ξd∈Ξ[t,0]

max
u∈U[t,0]

min
s∈[t,0]

eγ(s−t)l(x(s)), (11)

where x(·) solves for (x, t, u, ξd[u]), for some γ ≥ 0 and
∀t ≤ 0. At t = 0, we get terminal condition Bγ(x, 0) = l(x).

Note that Bγ is defined for each fixed value of γ ≥ 0.
Now, consider the case γ = 0. For this case, the definition
of B0 in (11) matches with the definition of the original
reachability-based value function in (4). This is not surprising
because (11) should be regarded as a special case of the
reachability problem, whose target function is exponentially
decaying backward in time.

Since (11) is an optimal control problem under a differ-
ential game setting, Bellman’s principle of optimality can be
applied to derive the dynamic programming principle for Bγ .
Theorem 2. (Dynamic Programming Optimality Condi-
tion) For the Robust CBVF Bγ in Definition 2, for each
t < t+ δ ≤ 0, the following is satisfied.

Bγ(x, t) = min
ξd∈Ξ[t,0]

max
u∈U[t,0]

min
{

min
s∈[t,t+δ]

eγ(s−t)l(x(s)),

eγδBγ(x(t+δ), t+δ)
}

(12)

where x(·) solves (1) for (x, t, u, ξd).

Proof. See Appendix.
Theorem 2 leads to the derivation of the following the-

orem, which is the main theoretical result of this paper,
showing that Bγ can be obtained by solving a particular
variational inequality that has the form of HJI-VI.
Theorem 3. The Robust CBVF Bγ is a Lipschitz continuous
unique viscosity solution of the CBVF variational inequality
(CBVF-VI) below with the terminal condition Bγ(x,0)= l(x):

0 = min

{
l(x)−Bγ(x, t), (13)

DtBγ(x, t)+max
u∈U

min
d∈D

DxBγ(x, t)·f(x, u, d)+γBγ(x, t)

}
.

Proof. See Appendix.
The following proposition shows that like the original

reachability-based value function V from (4), Bγ can also be
used to verify the viability kernel S(t). In other words, the
zero-superlevel set of the Robust CBVF contains every initial
state from which robust safety guarantee is possible for a
chosen time span. This is in sharp contrast to the CBFs, since
the safe invariant set from a given CBF is only guaranteed to
be a subset of the maximal control invariant set. Moreover,
since CBVF is concerned with safety for finite-time horizon,
the obtained safe set can be much bigger than the control
invariant set from CBFs. Therefore, in addition to the fact
that the CBVF is constructive, the main benefit of using the
CBVF is that it recovers the biggest permissible region for
the system for maintaining safety (Fig. 1).
Proposition 2. For each t ≤ 0, define Cγ(t) := {x ∈ Rn :
Bγ(x, t) ≥ 0}. Then, ∀t ≤ 0, Cγ(t) = S(t).
Proof. For each t∈(−∞, 0], consider x such that Bγ(x, t) ≥
0. For ∀ξd ∈ Ξ[t,0], there exists u ∈ U[t,0] such that
mins∈[t,0] e

γ(s−t)l(x(s)) ≥ 0. Therefore, x belongs to S(t).
Consider x ∈ S(t). For all ξd ∈ Ξ[t,0], there exists u ∈

U[t,0] such that l(x(s)) is non-negative for all s ∈ [t, 0]. Thus,
maxu∈U[t,0] mins∈[t,0] e

γ(s−t)l(x(s)) is non-negative for all
ξd, and Bγ(x, t) ≥ 0.

Finally, since V can be used to verify the viability kernel
S(t), readers might wonder the additional benefit of intro-
ducing Bγ . In the next section, we explain why using Bγ
would be preferable to using the original value function V .

IV. OPTIMAL CONTROL POLICY OF THE CBVF
A. Evaluation of the optimal control policy of the CBVF

The main benefit of using the optimal controller from
the new formulation of CBVF Bγ instead of the original
reachability-based optimal controller π∗V is that it can sig-
nificantly reduce the conservativeness of π∗V (Remark 2).

First recall how the optimal policy π∗V of V is verified: 1)
when V (x, t) < l(x), it is determined by (6), and 2) when
V (x, t) = l(x), any element of (7) is optimal.

From the CBVF-VI (13), we can verify the optimal control
policy with respect to Bγ similarly. For the first case, when
Bγ(x, t) < l(x), the second term of (13) must be zero;
therefore the optimal control must be given by

π∗Bγ (x, t) = arg max
u∈U

min
d∈D

DxBγ(x, t) · f(x, u, d), (14)



which is similar to the first case of π∗V . Also, the CBVF-VI
(13) implies that for this case,
DtBγ(x, t) + min

d∈D
DxBγ(x, t) · f(x, π∗Bγ (x, t), d) + γBγ(x, t)

= Ḃγ(x(t), t) + γBγ(x(t), t) = 0. (15)

For the second case, when Bγ(x, t) = l(x), any element of

KBγ (x, t) :={u ∈ U : DtBγ(x, t)+ min
d∈D

DxBγ(x, t)·f(x, u, d)

+ γBγ(x, t) ≥ 0} (16)

is optimal with respect to Bγ and can be used as π∗Bγ .
For this case, KBγ (x, t) is always non-empty because the
second term of (13) is greater or equal to 0, and for any
u ∈ KBγ (x, t) and any d ∈ D,
l̇(x(t)) = Ḃγ(x(t), t) ≥ −γBγ(x(t), t) = −γl(x(t)), (17)

where x(·) solves (1) for (x, t, u, d).
It is crucial to note the difference between (8) and (17).

Speaking informally, both second cases of the optimal con-
trol policies with respect to V and Bγ occur when the state
is not at stake of violating safety, therefore, the user is
allowed to choose any u from KV and KBγ as π∗V and
π∗Bγ , respectively. However, as Remark 2 explains, π∗V still
never allows the state to get closer to the safety boundary.
On the other hand, π∗Bγ allows l to decrease as long as it
satisfies (17), which is a very similar property that CBFs
have. Therefore, π∗Bγ allows for more control authority than
π∗V , while achieving the same safety objective.

This benefit of Bγ over V can be regarded as CBF’s
property of becoming less conservative instilled in the HJ
reachability formulation. In the next section, we will nu-
merically demonstrate that the optimal trajectories from π∗Bγ
actually behave less conservative than the optimal trajectories
from π∗V , especially with higher value of γ.
B. Online optimal policy synthesis for control-affine systems

We end this section by proposing a specific way of syn-
thesizing π∗Bγ for systems affine in control and disturbance:

ẋ(s)=f(x(s), u(s), d(s)) = p(x(s))+q(x(s))u(s)+r(x(s))d(s),
(18)

where p :Rn→Rn, q :Rn→Rn×m, and r :Rn→Rn×w.
Note that u = π∗Bγ (x, t) should satisfy

DtBγ(x, t) + min
d∈D

DxBγ(x, t)·f(x, u, d) + γBγ(x, t) ≥ 0

from (15) and (16). Similarly to the CBF-QP, we can
incorporate this as a linear inequality constraint in a min-
norm optimization based controller. When the input bound
U is polytopic, the optimization becomes a QP as well:
Robust CBVF-QP:

πQP (x, t) = arg min
u∈U

(u− uref )T (u− uref ) (19a)

s.t. a(x, t) +DxBγ(x, t) · q(x)u+ γBγ(x, t) ≥ 0, (19b)
where a(x, t) = DtBγ(x, t) +DxBγ(x, t) · p(x)

+ min
d∈D

DxBγ(x, t) · r(x)d. (19c)

Note that a similar formulation is proposed in a previous
work that introduces a concept of Robust CBF [25].

Proposition 3. For the Robust CBVF Bγ , and for the system
(18) with linear control bound U , the Robust CBVF-QP
(19) is feasible everywhere (x, t) ∈ Rn × (−∞, 0] where
the gradient DxBγ(x, t) exists, and its solution is always an
optimal policy with respect to Bγ .
Proof. For the first case, when Bγ(x, t) < l(x), the con-
straint of the QP (19b) is satisfied but only under the equality
condition since

DtBγ(x, t) + max
u∈U

min
d∈D

DxBγ(x, t) · f(x, u, d) + γBγ(x, t) = 0

from (15). Any u ∈ U that satisfies the equality condition is
optimal. For the second case, when Bγ(x, t) = l(x), KBγ is
exactly the feasible set of the Robust CBVF-QP.

Remark 3. Note that any reference control signal uref can
be used in (19), since Proposition 3 holds for every feasible
solution. Therefore, (19) is not only an optimal controller
for Bγ , it also can be used as a safety filter for any kind of
performance controller. As we explained in Sec. IV-A, this
new safety filter is much less restrictive than the original
optimal control policy of V . Also, compared to applying a
least-restrictive safety filter explained in Remark 2 which
utilizes value function only at the boundary, the filter (19)
can be applied globally inside S(t), and the optimization
automatically adjusts uref to make it safe.

Remark 4. When the differential DxBγ does not exist,
since Bγ is Lipschitz continuous, either one of superdiffer-
ential or subdifferential always exists. The optimal control
is determined by the same rule (16) where the differential
DxBγ(x, t) is replaced by the superdifferential Dxϕ(x, t) ∈
DxB

+
γ (x, t) or subdifferential Dxϕ(x, t) ∈ DxB

−
γ (x, t) [26,

Ch.3.2.5].

V. NUMERICAL EXAMPLES
In the following numerical examples, standard numerical

methods for computing the reachability-based value func-
tions [3], [19] are used to compute Bγ .

A. Double Integrator Example
The running example in this subsection will be a simple

2D double integrator. Its system dynamics are ż = v + d,
v̇ = u, with states position z and velocity v, disturbance
d ∈ [−0.2, 0.2] and control u ∈ [−0.5, 0.5]. Figure 2 shows
a comparison of the functions, zero level sets, trajectories,
and control signals for three different values of γ. On the top
in orange is the standard HJ VI computation (i.e. γ = 0). The
other rows show computations for γ = 0.2 (middle, blue),
and γ = 0.5 (bottom, cyan). The new formulation is also
robust to bounded disturbances. Figure 3 shows a comparison
of trajectories under different disturbance conditions. Even
under worst-case disturbances (blue), the online trajectory is
guaranteed to remain in the safe set.
B. Dubins Car Example

In this subsection we demonstrate a comparison between
using the original reachability-based controllers and the
CBVF-QP, and a comparison between the CBF-QP and the
CBVF-QP. We use a Dubins car model: ẋ = v cos(θ),
ẏ = v sin(θ), θ̇ = u, where x, y are positions, θ is heading, v



Fig. 2. From left to right: 1. Comparison between V (x, t) (top) and
Bγ(x, t) with γ=0.2 (middle) and 0.5 (bottom), t=−5. Note that when
γ = 0, Bγ(x, t) = V (x, t). 2. The optimal trajectories in the state space
initiated at x = [3,−1] (red cross) and the zero-level sets of l(x) (green)
and Bγ(x, t). 3. The corresponding optimal control signals. The control
is synthesized using the Robust-CBVF-QP, where uref is a simple PD
control for the target point (green dot), and the shaded regions indicate
feasible solutions of the QP (KBγ (x(s), s)). 4. Profiles of Bγ along the
trajectories. The optimal policy is less conservative with larger γ (allowing
Bγ to decrease more) and is able to reach the target when γ=0.5.
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Fig. 3. Trajectories under different online disturbance conditions. All
trajectories start from x = [4, 1.5] (red cross). Conditions shown are no
disturbance (black), a fixed disturbance of 0.1 m/s (cyan), and worst-case
disturbance (blue). By starting in the safe set (orange boundary) the system
remains within the constraint set (green boundary) even under worst-case
disturbance.

is a fixed speed, and u ∈ [−3, 3] is rotational velocity. We use
γ = 10. In Fig. 4, the system navigates around an obstacle to
a goal using least-restrictive control (top) and the CBVF-QP
(bottom). The CBVF-QP is able to use a smoother control
signal and still reach the goal within the time horizon.

In Fig. 5, the time stamps are shown for a system using
a CBVF-QP (which is time-varying) and a CBF-QP (which
is time-invariant) controller. For the CBF, B = V∞ is used
to maximize its safe set C as S∞. Although V∞ has non-
differentiable points for the Dubins car system in general,
the trajectory resulting from the CBF-QP in Fig. 5 does not
intersect with such points. The CBF-QP maintains safety,
however, because of its safety concern for infinite-time
horizon, the system is unable to reach the goal. In contrast,
the time-varying CBVF-QP allows the system to safely reach
the goal within the finite-time horizon. This formulation can
be used for scenarios that require safety only for a fixed time
[27], [28], for example, a hybrid system like legged robots
that requires the system to stay safe only until it reaches the
goal.

VI. CONCLUSION

This paper has introduced the notion of a Control Barrier-
Value Function (CBVF) by unifying ideas from HJ reach-
ability and Control Barrier Functions. To the best of our
knowledge, this is the first constructive method for the
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Fig. 4. Comparison between the least-restrictive controller (top), the
optimal controller from the original HJ reachability (middle), and the CBVF-
QP controller (bottom).
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Fig. 5. Comparison of trajectories using a CBVF-QP (top) vs. a CBF-QP
(bottom).The red set represents the boundary of the x-y slice of the zero-
superlevel sets of Bγ and B at current θ. Note that these sets appear to
rotate over time because we are visualizing the 2D slice at the current value
of θ. On the top, the system is able to reach a goal while avoiding obstacles
within the prescribed time horizon. On the bottom, the system must stay
safe for an infinite time horizon, and is therefore unable to reach the goal
(video: https://youtu.be/wGg7rfyXCTs).

CBF community that provides the maximal safe set for a
desired safety constraint which also can handle bounded
control and disturbances, however, this comes with a cost
of bearing the curse of dimensionality. We also introduce
the Robust CBVF-QP for online control and demonstrate its
usage as a safety filter in a double-integrator and Dubins car
system. This provides a new systematic way of designing
the safety filter for the reachability community. We believe
the introduction of CBVFs is an important step towards
bridging the gap between the CBF-based and reachability-
based safety control frameworks. We plan to extend this
analysis to Control Lyapunov Functions, similarly to [29],
and to reach-avoid problems [19].
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APPENDIX

The following proofs of Theorem 2 and 3 inherit the
structure from the standard proof of viscosity solution of HJI
Partial Differential Equation (HJI-PDE) [18]. Note that the
proofs hold for compact U,D without convexity condition.
Here, we use notation ψu,dx,t ≡ x : [t, 0]→ Rn, where x(·)
solves (1) for (x, t, u, d), instead of x(·), to specify control
and disturbance signal. We use Ξt := Ξ[t,0], Ut := U[t,0].

https://youtu.be/wGg7rfyXCTs


Proof. (Proof of Theorem 2)
Define W (x, t) as the right hand side of (12). For ∀ε > 0,

∃η ∈ Ξt such that ∀u ∈ Ut
W (x, t) ≥ min

{
inf

s∈[t,t+δ]
eγ(s−t)l(ψ

u,η[u]
x,t (s)),

eγδBγ(ψ
u,η[u]
x,t (t+δ), t+δ)

}
− ε (20)

From the definition of Bγ , for each y ∈ Rn,

Bγ(y, t+δ) = inf
ξd∈Ξt+δ

sup
u∈Ut+δ

inf
s∈[t+δ,0]

eγ(s−(t+δ))l(ψ
u,ξd[u]
y,t+δ (s)).

Therefore, ∀ε1 > 0, ∃ηy ∈ Ξt+δ such that for ∀u ∈ Ut+δ
Bγ(y, t+δ) ≥ inf

s∈[t+δ,0]
eγ(s−(t+δ))l(ψ

u,ηy [u]

y,t+δ (s))− ε1. (21)

With y := ψ
u,η[u]
x,t (t+δ), define

ξd[u] :=

{
η[u](s) for t ≤ s ≤ t+δ
ηy[u](s) for t+δ < s ≤ 0

Then, from (20) and (21), for ∀u ∈ Ut,

W (x, t)≥ inf
s∈[t,0]

eγ(s−t)l(ψ
u,ξd[u]
x,t (s))−2ε by taking ε1 =e−γδε.

Therefore,
W (x, t) ≥ Bγ(x, t)− 2ε ∀ε > 0. (22)

On the other hand, by definitions of Bγ and W , for ∀ε >
0, ∃η ∈ Ξt such that for ∀u ∈ Ut

inf
s∈[t,0]

eγ(s−t)l(ψ
u,η[u]
x,t (s)) ≤ Bγ(x, t) + ε (23)

W (x, t) ≤ sup
u∈Ut

min
{

inf
s∈[t,t+δ]

eγ(s−t)l(ψ
u,η[u]
x,t (s)),

eγδBγ(ψ
u,η[u]
x,t (t+δ), t+δ)

}
,

Therefore, ∃u0 ∈ Ut such that

W (x, t) ≤ min
{

inf
s∈[t,t+δ]

eγ(s−t)l(ψ
u0,η[u0]
x,t (s)),

eγδBγ(ψ
u0,η[u0]
x,t (t+δ), t+δ)

}
+ε (24)

For ∀u ∈ Ut+δ , define

ū(s) :=

{
u0(s) for t ≤ s ≤ t+δ
u(s) for t+δ < s ≤ 0,

and define η̄ ∈ Ξt+δ by η̄[u](s) = η[ū](s) for s ∈ [t+δ, 0].
Then, with y := ψ

ū,η[ū]
x,t (t+δ), by definition of Bγ ,

Bγ(y, t+δ)≤ sup
u∈Ut+δ

inf
s∈[t+δ,0]

eγ(s−(t+δ))l(ψ
u,η̄[u]
y,t+δ (s)).

Therefore, ∀ε2 > 0, ∃u1 ∈ Ut+δ such that

Bγ(y, t+δ)≤ inf
s∈[t+δ,0]

eγ(s−(t+δ))l(ψ
u1,η̄[u1]
y,t+δ (s)) + ε2. (25)

Selecting ū ∈ Ut with u1 ∈ Ut+δ , (24) and (25) yields

W (x, t) ≤ inf
s∈[t,0]

eγ(s−t)l(ψ
u,η[u]
x,t (s))+2ε by taking ε2 =e−γδε.

Therefore, from (23),
W (x, t) ≤ Bγ(x, t) + 3ε ∀ε > 0. (26)

The proof is done from (22) and (26).

Proof. (Proof of Theorem 3)

According to the definition of viscosity solution [26],
Theorem 3 is equivalent to Bγ satisfying the following
statements.
1) For ∀ϕ(x, t) ∈ C1(Rn × (−∞, 0]) such that Bγ − ϕ has
a local maximum 0 at (x0, t0) ∈ Rn × (−∞, 0],

0 ≤ min

{
l(x0)− ϕ(x0, t0), (27)

Dtϕ(x0, t0)+max
u∈U

min
d∈D

Dxϕ(x0, t0) · f(x0, u, d)+γϕ(x0, t0)

}
.

2) For ∀ϕ(x, t) ∈ C1(Rn × (−∞, 0]) such that Bγ − ϕ has
a local minimum 0 at (x0, t0) ∈ Rn × (−∞, 0],

0 ≥ min

{
l(x0)− ϕ(x0, t0), (28)

Dtϕ(x0, t0)+max
u∈U

min
d∈D

Dxϕ(x0, t0) · f(x0, u, d)+γϕ(x0, t0)

}
.

We use the following lemma to prove 1) and 2).

Lemma 1. For ϕ(x, t) ∈ C1(Rn × (−∞, 0]), define

Λϕ(x, t, u, d) :=Dtϕ(x, t)+Dxϕ(x, t)·f(x, u, d)+γϕ(x, t). (29)

(a) If ∃θ > 0, ∃(x0, t0) ∈ Rn × (−∞, 0] such that
maxu∈U mind∈D Λϕ(x0, t0, u, d) ≤ −θ, there exists a small
enough δ > 0, ∃ξd ∈ Ξt0 such that ∀u ∈ Ut0 ,

eγδϕ(ψ
u,ξd[u]
x0,t0

(t0+δ), t0+δ)− ϕ(x0, t0)≤−θ
2
δ. (30)

(b) If ∃θ > 0, ∃(x0, t0) ∈ Rn × (−∞, 0] such that
maxu∈U mind∈D Λϕ(x0, t0, u, d) ≥ θ, there exists a small
enough δ > 0, ∀ξd ∈ Ξt0 , ∃u ∈ Ut0 such that

eγδϕ(ψ
u,ξd[u]
x0,t0

(t0+δ), t0+δ)−ϕ(x0, t0) ≥ θ

2
δ. (31)

Lemma 1 is a modification of [18, Lemma 4.3.] for general
HJI-PDE to CBVF-VI. For its proof, please refer to [18].

Proof of 1). Let (27) be false. Then one of the followings
should hold.
∃θ1 > 0 s.t. l(x0)− ϕ(x0, t0) ≤ −θ1 (32a)
∃θ2 > 0 s.t. Dtϕ(x0, t0)+max

u∈U
min
d∈D

Dxϕ(x0, t0)·f(x0, u, d)

+ γϕ(x0, t0) ≤ −θ2 (32b)

If (32a) is true, by continuity of l in the state and ψ in time,
∃δ > 0 such that for all u ∈ Ut0 , ξd ∈ Ξt0 , s ∈ [t0, t0 + δ],∣∣∣eγ(s−t0)l(ψ

u,ξd[u]
x0,t0

(s))− l(x0)
∣∣∣ ≤ θ1

2
.

⇒ eγ(s−t0)l(ψ
u,ξd[u]
x0,t0

(s)) ≤ l(x0) +
θ1

2

≤ ϕ(x0, t0)− θ1

2
= Bγ(x0, t0)− θ1

2
.

Plugging this into the dynamic programming principle (12),

Bγ(x0, t0) ≤ inf
ξd∈Ξt0

sup
u∈Ut0

inf
s∈[t0,t0+δ]

eγ(s−t0)l(ψ
u,ξd[u]
x0,t0

(s))

≤ Bγ(x0, t0)− θ1

2
.

This is a contradiction, therefore, (32a) is false.
Next, if (32b) is true, from Lemma 1.a, for small enough

δ > 0, ∃η ∈ Ξt0 such that for all u ∈ Ut0 ,

eγδϕ(ψ
u,η[u]
x0,t0

(t0+δ), t0+δ)− ϕ(x0, t0)≤−θ2

2
δ.



Since Bγ − ϕ has local maximum 0 at (x0, t0),

Bγ(ψ
u,η[u]
x0,t0

(t0+δ), t0+δ)− ϕ(ψ
u,η[u]
x0,t0

(t0+δ), t0+δ) ≤ 0.

⇒eγδBγ(ψ
u,η[u]
x0,t0

(t0+δ), t0+δ) ≤ eγδϕ(ψ
u,η[u]
x0,t0

(t0+δ), t0+δ)

≤ ϕ(x0, t0)− θ2

2
δ = Bγ(x0, t0)− θ2

2
δ.

Finally, from (12), we get,

Bγ(x0, t0) ≤ sup
u∈Ut0

min
{

inf
s∈[t0,t0+δ]

eγ(s−t0)l(ψ
u,η[u]
x0,t0

(s)),

eγδBγ(ψ
u,η[u]
x0,t0

(t0+δ), t0+δ)
}

≤Bγ(x0, t0)− θ2

2
δ,

which is a contradiction. Therefore, (32b) is false.
Proof of 2). Let (28) be false. Then both of the followings
should hold.

∃θ1 > 0 s.t. l(x0)− ϕ(x0, t0) ≥ θ1 (33a)
∃θ2 > 0 s.t. Dtϕ(x0, t0)+max

u∈U
min
d∈D

Dxϕ(x0, t0)·f(x0, u, d)

+ γϕ(x0, t0) ≥ θ2 (33b)

From (33a), by continuity of l and ψ, ∃δ1 > 0 such that
for all u ∈ Ut0 , ξd ∈ Ξt0 , s ∈ [t0, t0 + δ1],∣∣∣eγ(s−t0)l(ψ

u,ξd[u]
x0,t0

(s))− l(x0)
∣∣∣ ≤ θ1

2
.

⇒ eγ(s−t0)l(ψ
u,ξd[u]
x0,t0

(s)) ≥ l(x0)− θ1

2
≥ ϕ(x0, t0)+

θ1

2

= Bγ(x0, t0)+
θ1

2
. (34)

From (33b), by Lemma 1.b, for small enough δ2 > 0, ∀ξd ∈
Ξt0 , ∃u2 ∈ Ut0 such that

eγδ2ϕ(ψ
u2,ξd[u2]
x0,t0

(t0+δ2), t0+δ2)−ϕ(x0, t0) ≥ θ2

2
δ2. (35)

Since Bγ − ϕ has a local minimum 0 at (x0, t0),

eγδ2Bγ(ψ
u2,ξd[u]
x0,t0

(t0+δ2), t0+δ2)

≥ eγδ2ϕ(ψ
u2,ξd[u]
x0,t0

(t0+δ2), t0+δ2)

≥ ϕ(x0, t0) +
θ2

2
δ2 = B(x0, t0) +

θ2

2
δ2. (36)

Take δ = min(δ1, δ2) and plugging (34) and (36) into (12),

Bγ(x0, t0) ≥ inf
ξd∈Ξt0

min
{

inf
s∈[t0,t0+δ]

eγ(s−t0)l(ψ
u2,ξd[u2]
x0,t0

(s)),

eγδBγ(ψ
u2,ξd[u2]
x0,t0

(t0+δ), t0+δ)
}

≥ Bγ(x0, t0) + min

{
θ2

2
δ,
θ1

2

}
.

This is a contradiction.
Note that since Bγ satisfies both 1) and 2), uniqueness

and Lipschitz continuity of Bγ can be derived similarly to
[30, Th.4.2] and [18, Th.3.2.], respectively.
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