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Abstract— A quadrotor with a cable-suspended load with
eight degrees of freedom and four degrees underactuation is
considered and a coordinate-free dynamic model, defined on the
configuration spaceSE(3)×S

2, is obtained by taking variations
on manifolds. The quadrotor-load system is established to be
a differentially-flat hybrid systemwith the load position and
the quadrotor yaw serving as the flat outputs. A nonlinear
geometric control design is developed, that enables tracking of
outputs defined by (a) quadrotor attitude, (b) load attitude,
and (c) position of the load. In each case, the closed-loop
system exhibits almost-global properties. Stability proofs for
the controller design, as well as simulations of the proposed
controller are presented.

I. I NTRODUCTION

The introduction of inexpensive micro unmanned aerial
vehicles (UAV), such as quadrotors, in recent years has led
to a wide range of applications in society. In the area of aerial
manipulation, quadrotors have been used for transportation
of external loads. By equipping quadrotors with grippers,
grasping and transportation of external loads is possible,see
[10]. However, carrying an external load through a gripper
increases the inertia of the system and results in the quadrotor
exhibiting a sluggish attitude response, thereby making itless
robust to reject perturbations. An alternative is to suspend
loads through a cable, thereby retaining the agility of the
aerial vehicle while still achieving the task of transportation
of the suspended load.

Cable-suspended systems are underactuated, and several
control approaches have been presented in the literature.
However, early work is split into controllers that rapidly
stabilize load swing [16], [17], and/or trajectory generation
schemes that achieve fast motion of the load with minimal
swing through preshaping [18], [13], [15]. Control design
for suspended load transportation using helicopters and
quadrotors has been presented in [1], and [12]. However, the
primary focus of this early research has been to minimize the
load swing through a combination of trajectory generation
and active feedback control.

In this paper, we are particularly interested in the de-
sign of controllers for achieving tracking of arbitrarily load
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Fig. 1: A quadrotor with a cable suspended load. When the
cable is taut, the system evolves onSE(3)× S2, and has8
degrees of freedom with4 degrees of underactuation.

trajectories, while allowing the load to potentially undergo
large dynamic swings. Planning trajectories and designing
controllers to enable the load to track these trajectories is
hard due to the underactuated nature of the problem, and
the switching dynamics that arise when the cable is not taut.
In our previous paper [14], we developed a controller and
presented experimental results for the planar case of the
quadrotor with a cable-suspended load, here we present a
geometric control design for the full3D problem.

This paper builds on the earlier geometric control results
for position tracking of a quadrotor [6], and develops a
coordinate-free dynamic model of the quadrotor with a
cable suspended load. This prevents the problem of sin-
gularities that are inherent when using local coordinates,
and enables designing controllers offering almost-global
convergence properties. For the quadrotor with the cable
suspended load, the dynamics evolve either onSE(3)×S2,
or SE(3)×R

3, depending on if the cable is taut or not. We
show that the quadrotor with cable-suspended load system
is a differentially-flat hybrid system. This enables dynamic
trajectory generation that also handles the case when the
tension in the cable goes to zero. The main result of this
paper is the development of a geometric controller design
for tracking outputs specified by (a) the quadrotor attitude,
(b) the load attitude, and (c) the load position. The controller
for tracking the quadrotor attitude and load attitude exhibits
almost-global exponential stability, while the load position
control exhibits almost-global exponential attractivity.

In a companion paper [8], we extend the control results
developed here to the case of multiple quadrotors. In par-
ticular, the case ofn cooperating quadrotors with a single
suspended load is considered, and a controller is developed
for asymptotic tracking of the load position.

The paper is organized as follows. Section II develops a
coordinate-free dynamical model for the system comprised of



mQ ∈ R Mass of the quadrotor
JQ ∈ R

3×3 Inertia matrix of the quadrotor with respect to the
body-fixed frame

R ∈ SO(3) Rotation matrix of the quadrotor from body-fixed
frame to the inertial frame

Ω ∈ R
3 Angular velocity of the quadrotor in the body-fixed

frame
xQ, vQ ∈ R

3 Position and velocity vectors of the center of mass
of the quadrotor in the inertial frame

f ∈ R Magnitude of the thrust for the quadrotor
M ∈ R

3 Moment vector for the quadrotor in the body-fixed
frame

mL ∈ R Mass of the suspended load
q ∈ S2

⊂ R
3 Unit vector from quadrotor to the load

ω ∈ R
3 Angular velocity of the suspended load

xL, vL ∈ R
3 Position and velocity vectors of the suspended load

in the inertial frame
l ∈ R Length of the suspension cable
T ∈ R Tension in the cable.

TABLE I: Definition of various symbols used in the paper.

a quadrotor with a cable suspended load. Section III demon-
strates that the system under consideration is a differentially-
flat hybrid system. Section IV presents the main result of
the geometric control design. Section V studies the effect
of evolution of the quadrotor trajectory that is required to
track a given load trajectory at different frequencies. Finally,
Section VI presents concluding remarks.

II. DYNAMIC MODEL OF A QUADROTOR WITH CABLE

SUSPENDEDLOAD

We develop a coordinate-free dynamic model for the
quadrotor with a cable suspended load by using rotation
matrices for representing the quadrotor attitude and the two-
sphere for representing the load attitude. Consider the system
depicted by Figure 1, with the various symbols defined in
Table I. A hybrid model of this system is developed by first
developing the the dynamic models for the cases when the
tension in the cable is nonzero, and when the tension is zero.

A. Dynamical Model with Nonzero Cable Tension

The configuration of the system is defined by the location
of the load with respect to the inertial frame, the load attitude
and the quadrotor attitude. When the cable is taut, the system
has eight degrees of freedom with configuration spaceQ =
SE(3)×S2, and four degree underactuation. The quadrotor
and load positions are related by

xQ = xL − lq, (1)

where the various symbols are as defined in Table I. The
method of Lagrange is used to develop the equations of
motion. The Lagrangian for the system,L : TQ → R, is
defined byL = T −U , whereT : TQ→ R andU : Q→ R

are the kinetic and potential energies of the mechanism,
respectively, and are defined as,

T =
1

2
mQvQ · vQ +

1

2
mLvL · vL +

1

2
〈Ω̂, ĴQΩ〉, (2)

U = mQge3 · xQ +mLge3 · xL, (3)

wherevQ is obtained as the derivative of (1),〈·, ·〉 : so(3)×
so(3) → R is the inner product onso(3), and thehat map

·̂ : R3 → so(3) is defined such that̂xy = x × y, ∀x, y ∈
R

3. Throughout this paper,λm(·) and λM (·) denote the
minimum and maximum eigenvalue of a matrix respectively.

The dynamics of the system satisfy the Lagrange-
d’Alembert principle,

δ

∫ τ

0

L dt+

∫ τ

0

(
〈W1, M̂〉+W2 · fRe3

)
dt = 0, (4)

wheref is the thrust magnitude,M is the moment vector,
andW1 = RT δR, W2 = δxQ = δxL − lδq are variational
vector fields [11], with the infinitesimal variations satisfying
[6], [2], [7]

δq = ξ × q, ξ ∈ R
3 s.t. ξ · q = 0

δq̇ = ξ̇ × q + ξ × q̇

δR = Rη̂, η ∈ R
3

δΩ̂ =
̂̂
Ωη + ˆ̇η,

with δq being a variation onS2, and δR a variation on
SO(3).

Since (4) is satisfied for all possible variations, the equa-
tions of motion for the quadrotor with cable-suspended load
are obtained as

ẋL = vL, (5)

(mQ +mL)(v̇L + ge3) = (q · fRe3 −mQl(q̇ · q̇))q, (6)

q̇ = ω × q, (7)

mQl ω̇ = −q × fRe3, (8)

Ṙ = RΩ̂, (9)

JQΩ̇ + Ω× JQΩ =M. (10)

For developing the hybrid model, the above dynamics can
be written in the standard form,̇Xn = fn(Xn) + gn(Xn)u,
where Xn = {xL, q, R, vL, ω,Ω} is the state, andu =
{f,M} the input of the system receptively.

Remark1: Note that the quadrotor attitude dynamics,
(10), is decoupled from the load position and attitude dynam-
ics, (6) and (8), while the load attitude dynamics is decoupled
from the load position dynamics. Also notice that gravity
does not influence the load attitude dynamics. Both these
observations will motivate the choice of our control structure
in Section IV.

Remark2: The load attitude dynamics (8) can also be
written directly in terms of the load attitude,q ∈ S2, and its
derivatives as,

mQlq̈ +mQl(q̇ · q̇)q = q × (q × fRe3), (11)

This equation for the load attitude dynamics will be used for
control design.

B. Dynamical Model with Zero Cable Tension

When the tension in the cable goes to zero, the system
evolves onQz = SE(3)× R

3, with the quadrotor and load



as separate systems, with the load being in free fall. The
dynamical model in this case is,

ẋL = vL, mL(v̇L + ge3) = 0, (12)

ẋQ = vQ, mQ(v̇Q + ge3) = fRe3, (13)

Ṙ = RΩ̂, JQΩ̇ + Ω× JQΩ =M. (14)

The above dynamics can also be written in the stan-
dard form, Ẋz = fz(Xz) + gz(Xz)u, where Xz =
{xL, xQ, R, vL, vQ,Ω} is the state.

C. Hybrid Model

The quadrotor with a cable suspended load is a hybrid
system since the dynamics switch when the tension in the
cable drops to zero or when the slack cable becomes taut
when the tension gets reestablished. The hybrid model can
be written as,

Σn :

{
Ẋn = fn(Xn) + gn(Xn)u, Xn /∈ Sz

X+
z = ∆n→z(X

−

n ), Xn ∈ Sz

Σz :

{
Ẋz = fz(Xz) + gz(Xz)u, Xz /∈ Sn

X+
n = ∆z→n(X

−

z ), Xz ∈ Sn,

where the guards are defined asSz = {Xn | T ≡ 0}, Sn =
{Xz | ||xQ − xL|| ≡ l, d

dt
||xQ − xL|| > 0}, and the tension

T := ||mL(ẍL + ge3)||. The transition map∆n→z is an
identity map, while∆z→n is modeled as an inelastic collision
of two objects, that ensureṡx+Q − ẋ+L = 0.

Next, we demonstrate that the quadrotor with a cable
suspended load is differentially flat with the load positionand
the quadrotor yaw angle being the flat outputs. Moreover we
will also show that this is a differentially flat hybrid system.

III. D IFFERENTIAL FLATNESS

A system is differentially-flat, if there exists a set of
outputs such that the system states and the inputs can be
expressed in terms of the flat output and a finite number of
its derivatives [4]. Here we will briefly present differential
flatness for the quadrotor with a cable suspended load, as
developed in our earlier work for the planar system [14].

Definition 1: A Differentially-Flat Hybrid Systemis a
hybrid system where each subsystem is differentially-flat,
with the guards being functions fo the flat outputs and
their derivatives, and moreover there are sufficiently smooth
transition maps from the flat output space of one subsystem
to the flat output space of the subsequent subsystem.

Remark3: A differentially-flat hybrid system does not
imply that all the states and inputs of the system can be
obtained by differentiating a set of smooth flat outputs. The
system is hybrid after all, and we expect discrete jumps in
the states and inputs. Instead, we mean that each subsystem
is differentially flat, and that the flat outputs of a subsequent
subsystem arise as smooth functions of the flat outputs of
the current subsystem mapped through the transition map
between the two subsystems.

Lemma1: The system comprising of a quadrotor with a
cable suspended load is a differentially flat hybrid system.

Fig. 2: Controller structure for tracking load position.

Proof: Y = (xL, ψ) is a set of flat outputs for the quadrotor
with a cable syspended load [14, Lemma 1]. This implies
that the event whenX ∈ Sz is known, since the tension is a
function of the above flat outputs. Next, for the free quadrotor
and load system, the evolution of the quadrotor is known
from YQ = (xQ, ψ) (sinceYQ is a set of flat outputs for the
quadrotor [9]), and the evolution of the load is known from
its post-transition state since it undergoes ballistic motion.
From this, the transition eventXz ∈ S is also known, thereby
making this a differentially-flat hybrid system.

In Section V, we use the flatness property of the system
under consideration to see how the quadrotor trajectory
evolves when the frequency of the designed load trajectory
is modified.

IV. CONTROL DESIGN

Having derived the dynamics of a general 3-dimensional
quadrotor with a cable suspended load system and shown that
the load position forms a set of differentially-flat outputsfor
the system, we will develop a controller that can be used
for tracking one of the following quantities (a) quadrotor
attitude, (b) load attitude, or (c) load position. Figure 2
illustrates the inner-outer loop controller structure forthe
load position tracking.

Before proceeding to describe the controller, we will first
define configuration error functions on the ManifoldsSO(3)
andS2, see [2], as follows. The configuration error onSO(3)
is given as,ΨR = 1

2 Tr(I − RT
dR), while eR, eΩ are error

functions onTSO(3), and are given by,

eR =
1

2
(RT

dR−RTRd)
∨, (15)

eΩ = Ω−RTRdΩd, (16)

whereRd and Ωd are the desired orientation and angular
velocity of the quadrotor respectively. Similarly, the config-
uration error onS2 is given as,Ψq = 1− qTd q , while eq, eq̇
are error functions onTS2, and are given by,

eq = q̂2qd, (17)

eq̇ = q̇ − (qd × q̇d)× q, (18)

where qd is the desired load orientation. For use later, we
also define the tracking errors for position and velocity
respectively as,

ex = x− xd, (19)

ev = v − vd, (20)

wherexd(t) ∈ R
3 is some smooth desired load position, and

vd = ẋd.



Proposition1: [6, Prop. 1] (Almost Global Exponential
Stability of Quadrotor Attitude Controlled Flight Mode) Con-
sider the quadrotor dynamical model in (10), and consider
the moment defined as

M = − 1
ǫ2
kReR − 1

ǫ
kΩeΩ +Ω× JQΩ

−JQ(Ω̂R
TRdΩd −RTRdΩ̇d), (21)

for any positive constantskR, kΩ, and0 < ǫ < 1. Further,
suppose the initial conditions satisfy

ΨR(R(0), Rd(0)) < 2 (22)

||eΩ(0)||
2 <

2

λM (JQ)

kR
ǫ2

(2−ΨR (R(0), Rd(0))) . (23)

Then, the zero equilibrium of the closed loop tracking error
(eR, eΩ) = (0, 0) is exponentially stable. Furthermore, there
exist constantsαR, βR > 0 such that,

ΨR(R(t), Rd(t)) ≤ min
{
2, αRe

−βRt
}
. (24)

The domain of attraction is characterized by (22), (23).
Moreover, the region of statespaceTSO(3) that does not
converge to the equilibrium is of measure zero, resulting in
almost global exponential stability.

Proof: The controller (21) is a geometric version
of PD control along with a feedforward term. The proof
follows directly from [6, Prop. 1] after definingkǫR = 1

ǫ2
kR,

kǫΩ = 1
ǫ
kΩ. The ǫ parameter is introduced to enable rapid

exponential convergence, which will be employed for a
singular perturbation argument in the following Propositions.

Proposition2: (Almost Global Exponential Stability of
Load Attitude Controlled Flight Mode) Consider the load at-
titude dynamics in (8), and consider the computed quadrotor
attitude defined as

Rc := [b1c ; b3c × b1c ; b3c ], Ω̂c = RT
c Ṙc (25)

whereb3c ∈ S2 is defined by

b3c =
F

||F ||
, (26)

where,
F = Fn − Fpd − Fff , (27)

whereFn, Fpd andFff are as defined below

Fn = −(qd · q)q (28)

Fpd = −kqeq − kωeq̇ (29)

Fff = mQl〈q, qd × q̇d〉(q × q̇) +mQl (qd × q̈d)× q. (30)

We also chooseb1d ∈ S2, not parallel tob3c and define the
unit vectorb1c as

b1c = −
1

||b3c × b1d ||
(b3c × (b3c × b1d)). (31)

Now, consider the quadrotor thrustf is defined by

f = F ·Re3, (32)

with the quadrotor moment defined by (21) with the com-
puted values,Rc,Ωc used instead of the desired ones. Fur-
ther, suppose the initial conditions satisfy

Ψq(q(0), qd(0)) < 2, (33)

||eq̇(0)||
2 <

2

mQl
kq (2−Ψq(q(0), qd(0))) . (34)

Then, there exists̄ǫq, such that for all0 < ǫ < ǭq,
the zero equilibrium of the closed loop tracking error
(eq, eq̇, eR, eΩ) = (0, 0, 0, 0) is exponentially stable. Further-
more, there exist constantsαq, βq > 0 such that,

Ψq(q(t), qd(t)) ≤ min
{
2, αqe

−βqt
}
. (35)

The domain of attraction is characterized by (22), (23), (33),
(34). Moreover, the region of statespaceTS2×TSO(3) that
does not converge to the equilibrium is of measure zero,
resulting in almost global exponential stability.

Proof: See Appendix I-A.
We have exponential stability for all initial load attitudes

such that (33) is satisfied. This basically means the initial
load attitude error should be less than180◦. Since the load
attitudes that lie outside the region of attraction are of the
form qd(0) = −q(0), which is a low-dimensional manifold in
TS2 ×TSO(3), and is of measure zero. Thus the controller
achieves almost global exponential convergence for load
attitude.

The inclusion of a normal componentFn in (27) ensures
that b3c is always well defined. Moreover, sinceFn is along
q, it has no effect on the load attitude dynamics.

Also notice that in order to obtain exponential stability
of the load attitude, both the quadrotor moment and the
quadrotor thrust were specified. This raises the question of
if and how load position can be tracked, especially since
we have no other inputs. To answer this, notice from (8),
that any force,fRe3 that is alongq does not influence the
load attitude dynamics. Also notice that from (6), any force
tangential toq does not influence the load position dynamics.
This fact will be used in the following.

Proposition3: (Exponential Stability of Load Position
Controlled Flight Mode) Consider the load position dynamics
in (6), and consider the computed load attitude defined as

qc = −
A

||A||
, (36)

where

A = −kxex − kvev +(mQ +mL)(ẍ
d
L + ge3)+mQl(q̇ · q̇)q,

(37)
with ex = xL−xdL, andev = vL− vdL being the error in the
load position and velocity respectively. We assume||A|| 6= 0,
and the commanded acceleration is uniformly bounded such
that

||(mQ +mL)(ẍ
d
L + ge3) +mQl(q̇ · q̇)q|| < B.

Furthermore, defineFn in (27) as

Fn = (A · q)q. (38)



Let the computed quadrotor attitude be defined by (25), (26),
with the quadrotor thrust and moment defined by (32) and
(21), with the desired quadrotor and load attitude replaced
by their computed values,Rc, and qc respectively. Further,
suppose the initial conditions satisfy

Ψq(q(0), qc(0)) < ψ1 < 1, (39)

||ex(0)|| < exmax
, (40)

for a fixed constantexmax
. DefineWx,Wxq ∈ R

2×2 as,

Wx =

[
c1kx

mQ+mL
(1− α) − c1kv

2(mQ+mL) (1 + α)

− c1kv

2(mQ+mL) (1 + α) kv(1− α)− c1

]
, (41)

Wxq =

[ c1
mQ+mL

0

Kxexmax
+B 0

]
, (42)

whereα :=
√
ψ1(2− ψ1), and c1, kx, kv are positive con-

stants such that,

c1 < min

{
kv(1− α),

√
kx(mQ +mL),

4(mQ +mL)kxkv(1− α)

k2v(1− α)2 + 4(mQ +mL)kx

}
(43)

λm(Wq) >
||Wxq||

2

4λm(Wx)
. (44)

Then, there exists̄ǫx, such that for all0 < ǫ < ǭx,
the zero equilibrium of the closed loop tracking error
(ex, ev, eq, eq̇, eR, eΩ) = (0, 0, 0, 0, 0, 0) is exponentially
stable. The domain of attraction is characterized by (22),
(23), with the desired values replaced by the computed
values, (39), and

||eq̇(0)||
2 <

2

mQl
kq (ψ1 −Ψq(q(0), qc(0))) . (45)

Proof: See Appendix I-B.
Remark4: If the load is connected to the quadrotor

through a rigid link, then by changing the sign in (36), we
obtain a controller for tracking the position of the tip of a
spherical inverted pendulum on a quadrotor. Further results
on this are presented in the companion paper [8].

Proposition4: (Almost Global Exponential Attractive-
ness of Load Position Controlled Flight Mode) Consider the
quadrotor thrustf and momentM defined in expressions
(32), (21). Suppose the initial conditions satisfy (22), (23),
(33), (34). Then, zero equilibrium of the closed loop tracking
error (ex, ev, eq, eq̇, eR, eΩ) = (0, 0, 0, 0, 0, 0) is exponen-
tially attractive.

Proof: See Appendix I-C.
Remark5: Note that the controller presented here, in

combination with the controller in [6] offering almost-global
exponential attractivity of the quadrotor position controlled
flight mode, ensures a control design for the full hybrid
system.
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Fig. 3: Evolution of the trajectories of a quadrotor (red)
required to track the load trajectory (blue) as the time period
of load trajectory is varied from10 seconds to1 second. The
figures show the plots in different views. Note that the the
trajectories become far more aggressive as the desired load
trajectory time period goes from10 seconds to1 second.

V. RESULTS

A. Trajectory Generation using Differential Flatness

Since the quadrotor and load system is differentially flat,
we can plan and study trajectories directly in the flat space.
We could do this through parametrizing the flat outputs
as functions of time with a suitable basis and solving an
optimization problem to obtain the coefficients of the basis,
as done in [9] for a quadrotor. However, our aim is to study
how the quadrotor trajectory, required to track a particular
load trajectory, evolves as the frequency of the load trajectory
varies. In particular, we chose the flat outputs as follows,

xL(t) =



Ax sin(

2πt
T0

)

Ay cos(
2πt
T0

)

Az


 (46)

ψ(t) ≡ 0, (47)

where,T0 is the time period of oscillation of the load. Using
the differential-flatness property, we can analytically obtain
the quadrotor trajectories for the corresponding flat outputs.
Moreover, by varying the time period, we can study the
evolution of the quadrotor trajectories. Figure 3 illustrates
the quadrotor trajectories for multiple time periods, from1
to 10 seconds, for following the load trajectory specified in
(46), withAx < Ay. The quadrotor trajectories dynamically
evolve and become far more aggressive for smaller time
periods. Note that all the different quadrotor trajectories
result in the same load trajectory, albeit at different frequency
of oscillation of the load.

B. Load Position Controlled Flight Mode

Next, we present a simulation with the initial condition
specifying large errors in the quadrotor attitude, the load
attitude and the load position. Specifically, the quadrotoris
starts off flipped about the y-axis at178◦, the load attitude
is specified as178◦, and there is a large initial load position
error. A desired time-varying load position trajectory is
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Fig. 5: Load position error tracking. Notice the initial large
position errors that are quickly rejected by the controller.

specified and the system is simulated with the controller
in Proposition 3. Figure 4 illustrates the trajectory of the
load as it converges to the desired load position trajectory,
as well as snapshots of the quadrotor at fixed intervals.
Figure 5 illustrates the load position error, while Figure 6
illustrates the configuration error metric for the quadrotor
and load attitudes respectively. Note that the double peak in
ΨR andΨq occur due to the controller implementation not
computingṘc, R̈c, q̇c, q̈c, but rather using the nominal values
from differential-flatness. This results in a simpler controller
implementation. The command derivatives can be computed
through a command filtering approach [3], or by carrying out
the complex task of analytically computing the derivatives,
as is done in the companion paper [8]. Nevertheless, the
simpler controller implementation is able to reject the large
errors in load position, load attitude and quadrotor attitude.
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0

0.5

1

1.5

2

0 2 4 6 8 10

ΨR

Time (s)Time (s)
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Fig. 6: Configuration error functions for the quadrotor atti-
tude and the load attitude. Controller rejects large attitude
errors of178◦ in both the quadrotor and load attitudes.

VI. CONCLUSION

We have presented a coordinate-free development of the
dynamics of a quadrotor with a cable suspended load, and
have shown that this system is a differentially-flat hybrid
system. The flatness property has been utilized to design
nominal trajectories. A nonlinear geometric control design
is presented, that enables tracking of either the quadrotor
attitude, the load attitude or the position of the load. Almost
global exponential stability for the load attitude tracking, and
almost global exponential attractivity of the load position
tracking is demonstrated.

APPENDIX I

A. Proof of Proposition 2

We begin by representing the load attitude dynamics (8)
as

[
q̇
ω̇

]
=: f(q, ω,R) =

[
ω × q

− 1
mQl

q × (F ·Re3)Re3

]
. (48)

Next, From Proposition 1, and [6, Prop. 1], and defining
ēR = 1

ǫ
eR, the closed-loop quadrotor error dynamics can be

represented as

ǫ

[
˙̄eR
ėΩ

]
=: g(R,Ω, ǫ) =

[
1
2

(
RT

c RêΩ + êΩR
TRc

)∨
−kRēR − kΩeΩ

]
. (49)

Settingǫ to zero, we get,

0 = g(R,Ω, 0) =⇒ R ≡ Rc. (50)

In the limit ǫ = 0, the load attitude dynamics evolves on the
manifold given byR ≡ Rc. In particular, theslow modelis
[
q̇
ω̇

]
= f(q, ω,Rc) =

[
ω × q

− 1
mQl

q × (F ·Rce3)Rce3

]
. (51)

The rest of the proof will establish exponential stability for
the slow model from [2, Lemma 11.23] and then through
a singular perturbation argument (Tychnoff Theorem) [5,
Thm. 11.2], the trajectories of the full system will be shown
to uniformly converge to that of the slow model, establishing
exponential convergence for the full model.

From the load attitude dynamics, (11), the input force
enters the system throughq × (q × fRe3). For the slow
model, this can be written as,

q × (q × (F ·Rce3)Rce3) = q × (q × F )

= −kqeq − kdeω + Fff ,(52)

where we have used the following facts,q̂2Fn = 0, q̂2eq =
−eq, q̂2eq̇ = −eq̇, q̂2Fff = −Fff , sinceeq, eq̇, Fff ∈ TqS

2

andq × Fn = 0. Further, since the norm ofb3c ∈ S2 in the
denominator is bounded away from zero, then forkq > 0,
kd > 0, exponential convergence follows from [2, Lemma
11.23]. Then, by the converse Lyapunov Theorems, there
exists a Lyapunov functionVq and positive definite matrices
Mq, MQ, Wq, such that

zTq Mqzq ≤ Vq ≤ zTq MQzq (53)

V̇q ≤ −zTq Wqzq, (54)



wherezq = [||eq||, ||eq̇||]
T .

Remark6: Note that this proposition would still hold for
other choices ofFn. In particular, it holds for the choice in
(38).

Thus, for the slow model,(eq, eq̇) exponentially converges
to zero. Now, for the full model, since the slow model
satisfies the conditions of [5, Thm. 11.2], there existsǭq > 0,
such that, for all0 < ǫ < ǭq, the trajectories of full
model,(q, ω,R,Ω)(t) and the trajectories of the slow model,
(q, ω,Rc,Ωc)(t) satisfy(q, ω,R,Ω)(t)− (q, ω,Rc,Ωc)(t) =
O(ǫ) uniformly. This results in exponential stability of the
load attitude dynamics for the full model.

B. Proof of Proposition 3

This proof is motivated by the proof of [6, Prop. 3],
and follows it very closely. While [6, Prop. 3] was proving
exponential stability of the quadrotor position, here we ad-
dress a more complex system with additional underactuation
and demonstrate exponential stability of the complete system
through a singular perturbation argument.

We will consider the slow model and carry out the
subsequent analysis in the domain

D = {(ex, ev, q, eq̇) ∈ R
3×R

3×L1×R
3 | ||ex|| < exmax

},
(55)

where, by (39), the load attitude is restricted to be in the
sublevel setL1 = {q ∈ S2 | Ψq(q, qc) < 1}.

Translational Error Dynamics for Slow Model The
translational error dynamics of the complete system is given
by

ėx = ev (56)

(mQ +mL)ėv = −(mQ +mL)(ge3 + ẍdL)

−mQl(q̇ · q̇)q + (q · fRe3)q. (57)

Considering the slow model, where in the limitǫ = 0, the
load position and attitude dynamics evolve on the manifold
given byR ≡ Rc, we have from (26)

Re3 ≡ Rce3 = b3c =
F

||F ||
.

Also from (32), we have

f = F ·Re3 ≡ F ·Rce3 = f · b3c = F ·
F

||F ||
= ||F ||.

Then,

fRe3 ≡ fRce3 = fb3c = ||F ||
F

||F ||
= F.

Finally,

(q · fRe3)q = (q · F )q

= (q · (Fn + Fpd − Fff )q)

= (A · q)q

=: fqq. (58)

Furthermore, by (39), the quantity1
qTc q

is well defined. Then,
to rewrite the error dynamics ofev in terms of the load

attitude erroreq, we add and subtractfq
qTc q

to the right hand
side of (57) obtaining

(mQ +mL)ėv = −(mQ +mL)(ge3 + ẍdL)−mQl(q̇ · q̇)q

+
fq
qTc q

qc +X, (59)

whereX ∈ R
3 is defined as

X =
fq
qTc q

((qc · q)q − qc) . (60)

From the definition offq = A · q, and from (36), we have

fq = −||A||qc · q. (61)

Therefore, the third term on the right hand side of (59) can
be written as

fq
qTc q

qc =
(−||A||qc · q)

qc · q
.−

A

||A||
= A.

Substituting this into (59) and usingA from (37), the
translational error dynamics ofev can be written as

(mQ +mL)ėv = −kxex − kvev +X. (62)

Lyapunov Candidate for Translation Dynamics Con-
sider the Lyapunov candidateVx,

Vx =
1

2
kx||ex||

2 +
1

2
(mQ +mL)||ev||

2 + c1ex · ev, (63)

wherec1 is a positive constant. The derivative ofVx along
the solution of (62) is given by

V̇x = kxex · ev + ev · (−kxex − kvev +X) + c1ev · ev

+
c1

mQ +mL

ex · (−kxex − kvev +X)

= −(kv − c1)||ev||
2 −

c1kx
mQ +mL

||ex||
2

−
c1kv

mQ +mL

ex · ev +X ·

{
c1

mQ +mL

ex + ev

}
.

Next, we find a bound onX using (60) as follows. From
(61), we have,

||X|| ≤ ||A|| ||(qc · q)q − qc||

≤ (kx||ex||+ kv||ev||+B)||eq||

≤ (kx||ex||+ kv||ev||+B)α, (64)

where we have used (37) for the definition ofA, recognized
from (17), eq = q × (q × qc) = (qc · q)q − qc, and that
||eq|| represents the sine of the angle betweenq and qc,
given by ||eq|| =

√
Ψq(2−Ψq). Thus α is defined as



α =
√
ψ1(2− ψ1) < 1. Substituting this into (64), we have,

V̇x ≤ −(kv − c1)||ev||
2 −

c1kx
mQ +mL

||ex||
2

−
c1kv

mQ +mL

ex · ev + (kx||ex||+ kv||ev||+B)||eq||

{
c1

mQ +mL

||ex||+ ||ev||

}

≤ −(kv(1− α)− c1)||ev||
2 −

c1kx
mQ +mL

(1− α)||ex||
2

+
c1kv

mQ +mL

(1 + α)||ex||||ev||

+||eq||

{
kx||ex||||ev||+

c1
mQ +mL

||ex||+B||ev||

}
.

(65)

In the above expression, there is a third-order term,
kx||eq||||ex||||ev||. Since we restrict our analysis to the
domainD defined in (55), an upper bound for this term
is kxexmax

||eq||||ev||.
Lyapunov Candidate for the Slow ModelLet V = Vx+

Vq be the Lyapunov candidate for the slow model. Then,
from (53), (54), (63), (65), we have,

zTxMxzx + zTq Mqzq ≤ V ≤ zTxMXzx + zTq MQzq (66)

V̇ ≤ −zTxWxzx + zTxWxqzq − zTq Wqzq, (67)

wherezx = [||ex||, ||ev||]
T , and the matricesWx, Wxq are

as in (41), (42), whileMx, MX are defined as

Mx =
1

2

[
kx −c1
−c1 mQ +mL

]
, (68)

MX =
1

2

[
kx c1
c1 mQ +mL

]
. (69)

Exponential Stability From Proposition 2, the matrices
Mq, MQ, Wq are positive definite, while the conditions of
Proposition 3, (43), ensure positive definiteness ofMx, MX .
Then the candidate Lyapunov functionV is positive-definite,
and

V̇ ≤ −λm(Wx)||zx||
2+ ||Wxq||2||zx||||zq||−λm(Wq)||zq||

2.

The conditions of Proposition 3, (43), (44) ensures positive-
definiteness ofWx, and negative-definiteness oḟV. Thus
the zero equilibrium of the load position tracking errors of
the slow model is exponentially stable, i.e.,(ex, ev, eq, eq̇)
exponentially converges to zero while the dynamics evolve
on the slow manifold given byR ≡ Rc.

Now we employ the singular perturbation argument once
again. We have, for the full model, since the slow model
satisfies the conditions of [5, Thm. 11.2], there exists
ǭx > 0, such that, for all0 < ǫ < ǭx, the trajecto-
ries of full model, (xL, vL, q, ω,R,Ω)(t) and the trajec-
tories of the slow model,(xL, vL, q, ω,Rc,Ωc)(t) satisfy
(xL, vL, q, ω,R,Ω)(t) − (xL, vL, q, ω,Rc,Ωc)(t) = O(ǫ)
uniformly. This results in exponential stability of the load
position dynamics for the full model.

C. Proof of Proposition 4

Once again we consider the slow model, whose dynamics
evolve on the slow manifold given byR ≡ Rc. The initial
condition, (33), is outside the region of attraction specified
in Proposition 3, (39), and thus exponential convergence of
the load position error can not be guaranteed. However, since
the initial load attitude satisfies the conditions of Proposition
2, the load attitude tracking error,zq is guaranteed to
exponentially decrease and enter the region of attraction of
Proposition 3 in finite time, sayt∗. If we can show that the
load position errorzx is bounded in this time,t ∈ [0, t∗],
then exponential attractivity ensures for the slow model.

We can still use a singular perturbation argument
during t ∈ [0, t∗] to ensure (xL, vL, q, ω,R,Ω)(t) −
(xL, vL, q, ω,Rc,Ωc)(t) = O(ǫ) uniformly. This results in
boundedzx for the full model too duringt ∈ [0, t∗]. Then,
we can conclude exponential attractivity for the full model.

Thus, we only need to show thatzx is bounded for
t ∈ [0, t∗] for the slow model. This can easily be shown
by following the proof of [6, Prop. 4] with minor changes.
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