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Abstract— A quadrotor with a cable-suspended load with
eight degrees of freedom and four degrees underactuation is
considered and a coordinate-free dynamic model, defined on the
configuration spaceS F(3) x 52, is obtained by taking variations
on manifolds. The quadrotor-load system is established to be
a differentially-flat hybrid systemwith the load position and
the quadrotor yaw serving as the flat outputs. A nonlinear
geometric control design is developed, that enables tracking of xp € R3
outputs defined by (a) quadrotor attitude, (b) load attitude,

and (c) position of the load. In each case, the closed-loop : . :
system exhibits almost-global properties. Stability proofs for Fig. 1: A quadrotor with a cable suspended load. When the

the controller design, as well as simulations of the proposed Cable is taut, the system evolves BI/(3) x S?, an'd hass
controller are presented. degrees of freedom with degrees of underactuation.

qc

[. INTRODUCTION trajectories, while allowing the load to potentially ungler

The introduction of inexpensive micro unmanned aeridfrge dynamic swings. Planning trajectories and designing
vehicles (UAV), such as quadrotors, in recent years has lé@ntrollers to enable the load to track these trajectoses i
to a wide range of applications in society. In the area ofsherihard due to the underactuated nature of the problem, and
manipulation, quadrotors have been used for transpantatithe switching dynamics that arise when the cable is not taut.
of external loads. By equipping quadrotors with grippersin our previous paper [14], we developed a controller and
grasping and transportation of external loads is possigle, presented experimental results for the planar case of the
[10]. However, carrying an external load through a grippeﬁuadrotor with a cable-suspended load, here we present a
increases the inertia of the system and results in the qtaadrogeometric control design for the fullD problem.
exhibiting a sluggish attitude response, thereby makites# This paper builds on the earlier geometric control results
robust to reject perturbations. An alternative is to sudperfor position tracking of a quadrotor [6], and develops a
loads through a cable, thereby retaining the agility of theoordinate-free dynamic model of the quadrotor with a
aerial vehicle while still achieving the task of transptida cable suspended load. This prevents the problem of sin-
of the suspended load. gularities that are inherent when using local coordinates,

Cable-suspended systems are underactuated, and sevaral enables designing controllers offering almost-global
control approaches have been presented in the literatuomnvergence properties. For the quadrotor with the cable
However, early work is split into controllers that rapidly suspended load, the dynamics evolve eitheilS@{(3) x 52,
stabilize load swing [16], [17], and/or trajectory genaat or SE(3) x R?, depending on if the cable is taut or not. We
schemes that achieve fast motion of the load with minimahow that the quadrotor with cable-suspended load system
swing through preshaping [18], [13], [15]. Control designis a differentially-flat hybrid systemThis enables dynamic
for suspended load transportation using helicopters arhjectory generation that also handles the case when the
qguadrotors has been presented in [1], and [12]. However, titension in the cable goes to zero. The main result of this
primary focus of this early research has been to minimize thgaper is the development of a geometric controller design
load swing through a combination of trajectory generatioffor tracking outputs specified by (a) the quadrotor attitude
and active feedback control. (b) the load attitude, and (c) the load position. The cofgrol

In this paper, we are particularly interested in the defor tracking the quadrotor attitude and load attitude ex$ib
sign of controllers for achieving tracking of arbitrarilpdd almost-global exponential stability, while the load piosit
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mg € R Mass of the quadrotor A 3 . . .
Jo € R3*3 Inertia matrix of the quadrotor with respect to the - RY = 50(3) Is qef'”ed such thaty = = x y,Vu,y €
body-fixed frame R?. Throughout this paper),,(-) and Ay (:) denote the
R SO(3)  Rotation matrix of the quadrotor from body-fixed  mjinimum and maximum eigenvalue of a matrix respectively.
frame to the inertial frame The d . f th . he L
QeRr3 Angular velocity of the quadrotor in the body-fixed e ynam'0$ of the system satisfy the Lagrange-
frame d’Alembert principle,
zg,vg € R®  Position and velocity vectors of the center of mass
of the quadrotor in the inertial frame T T A
feRr Magnitude of the thrust for the quadrotor 0| Ldt+ ((Wl, M)+ W, - fR63) dt =0, (4)
M € R3 Moment vector for the quadrotor in the body-fixed 0 0
frame . . .
mp € R Mass of the suspended load where f is the thrust magnitude}/ is the moment vector,
g€ S?2 CR3  Unit vector from quadrotor to the load and W, = RTOR, Wy = dzg = Sz, — l§q are variational
weR3  Angular velocity of the suspended load vector fields [11], with the infinitesimal variations sayiisfg
xp,vp €R3 Position and velocity vectors of the suspended load 61. 121, [7
in the inertial frame (61, [21, [7]
leR Length of the suspension cable
TcR Tension in the cable. Sg=Exq, E€ER3sL.E-q=0

Sg=Exq+Exg

SR =R, neR3
a quadrotor with a cable suspended load. Section Il demon- 56 — 5’2\ h
strates that the system under consideration is a diffedénti =,
flat hybrid system. Section IV presents the main result qf;, §¢ being a variation onS?,
the geometric control design. Section V studies the eﬁegO 3).
of evolution of the quadrotor trajectory that is required to
track a given load trajectory at different frequenciesafin
Section VI presents concluding remarks.

TABLE I: Definition of various symbols used in the paper.

and 6R a variation on

Since (4) is satisfied for all possible variations, the equa-
tions of motion for the quadrotor with cable-suspended load
are obtained as
Il. DYNAMIC MODEL OF A QUADROTOR WITH CABLE )

SUSPENDEDL OAD TL = VL, ®)

We develop a coordinate-free dynamic model for the (mq +mr)(or + ges) = (¢~ [Rez —mql(d-4))g, (6)

guadrotor with a cable suspended load by using rotation q¢=uwXq, @)
matrices for represepting the quadrotor attitud_e and tlee tw mql & = —q x fRes, (8)
sphere for representing the load attitude. Consider thesys 7~ RO )

depicted by Figure 1, with the various symbols defined in
Table I. A hybrid model of this system is developed by first

developing the the dynamic models for the cases when the

tension in the cable is nonzero, and when the tension is zefd?" developing the hybrid model, the above dynamics can
be written in the standard forn¥,, = f,.(X,.) + gn(Xy)u,

A. Dynamical Model with Nonzero Cable Tension where X,, = {z1,q,R,vp,w,Q} is the state, andi =

The configuration of the system is defined by the locationf, M} the input of the system receptively.
of the load with respect to the inertial frame, the load wadit Remark1: Note that the quadrotor attitude dynamics,
and the quadrotor attitude. When the cable is taut, the systd@D), is decoupled from the load position and attitude dynam
has eight degrees of freedom with configuration spgce ics, (6) and (8), while the load attitude dynamics is decedpl
SE(3) x S2, and four degree underactuation. The quadrotdfom the load position dynamics. Also notice that gravity
and load positions are related by does not influence the load attitude dynamics. Both these
observations will motivate the choice of our control stauet
in Section 1V.

where the various symbols are as defined in Table I. The Remark2: The load attitude dynamics (8) can also be
method of Lagrange is used to deve|op the equations written directly in terms of the load attitud@,e 52, and its
motion. The Lagrangian for the system,: 7Q — R, is derivatives as,

defined by =7 —U, whereT : TQ — Randi/ : Q — R

are the kinetic and potential energies of the mechanism,
respectively, and are defined as,

JoQ+Q x JoQ = M. (10)

rg =1 —lg, 1)

mqli+mql(q-4)g=qx (¢ x fRes),  (11)
This equation for the load attitude dynamics will be used for
T = %vaQ g + %vaL g+ %@7 J/C-??Z% ) control design.

U =mqges - rg +mrges - xr, (3) B. Dynamical Model with Zero Cable Tension

whereu, is obtained as the derivative of (1), ) : s0(3) x
50(3) — R is the inner product omo(3), and thehat map

When the tension in the cable goes to zero, the system
evolves onQ, = SE(3) x R, with the quadrotor and load



>

as separate systems, with the load being in free fall. Tt +K
dynamical model in this case is, F, Foa * F F
Load » Load Quadrotor f »| Quadrotor
i =wvr,  mp(ig +ges) =0, (12) % voter | Contrller —J Contoller Suapanibiss]
tg =vg, mqg(vg + ges) = fRes, (13) 9e T R i
R=RQ, JoQ+QxJgQ=M. (14)

Fig. 2: Controller structure for tracking load position.
The above dynamics can also be written in the stan-

dard form, X, = f.(X.) + ¢.(X.)u, where X,

(21,70, R,v1, 00, Q) is the state. Proof: Y = (z1,) is a set of flat outputs for the quadrotor

with a cable syspended load [14, Lemma 1]. This implies
C. Hybrid Model that the event wheX € S, is known, since the tension is a
The quadrotor with a cable suspended load is a hybrifamcnon of the above flat outp_uts. Next, for the free quani’rot
aend load system, the evolution of the quadrotor is known

system since the dynamics switch when the tension in t oM Vo — ) (sinceXy is a set of flat outputs for the
cable drops to zero or when the slack cable becomes talt" ~@ = (xq, ¥ Q= 1t
adrotor [9]), and the evolution of the load is known from

when the tension gets reestablished. The hybrid model C%H . . : o
be written as ItS post-transition state since it undergoes ballistic iamot

From this, the transition evetX, € S is also known, thereby

X, = fu(X0) + gn(X0)u, X, ¢S, making this a differentially-flat hybrid system. ]
Xn Xt = A (XD), X, €8, In Section V, we use the flatness property of the gystem
; under consideration to see how the quadrotor trajectory
s X. = f(X2) + g:(X2)u, X. ¢ S evolves when the frequency of the designed load trajectory
Tl X =A0(XD), X, €S, is modified.
where the guards are defined $s= {X,, | T =0}, S, = IV. CONTROL DESIGN
{X: | [loq — |l =1 fllzq — wL]| > 0}, and the tension  Having derived the dynamics of a general 3-dimensional
T := |lmL(iL + ges)||. The transition mapd, . is an  quadrotor with a cable suspended load system and shown that
identity map, whileA. ., is modeled as an inelastic collision the oad position forms a set of differentially-flat outpéas
of two objects, that ensurei, — i} = 0. the system, we will develop a controller that can be used

Next, we demonstrate that the quadrotor with a cablgy tracking one of the following quantities (a) quadrotor
suspended load is differentially flat with the load positeonl  attitude, (b) load attitude, or (c) load position. Figure 2
the quadrotor yaw angle being the flat outputs. Moreover Wgystrates the inner-outer loop controller structure foe
will also show that this is a differentially flat hybrid syste  |oad position tracking.

Before proceeding to describe the controller, we will first
define configuration error functions on the Manifolg®(3)

A system is differentially-flat, if there exists a set ofands?2, see [2], as follows. The configuration error 6)(3)
outputs such that the system states and the inputs can iBeyiven as, ¥y = %Tr(] — RTR), while eg, eq are error
expressed in terms of the flat output and a finite number @finctions on7'SO(3), and are given by,
its derivatives [4]. Here we will briefly present differegiti

Ill. DIFFERENTIAL FLATNESS

flatness for the quadrotor with a cable suspended load, as ep = E(R;}FR — RTRy)Y, (15)
developed in our earlier work for the planar system [14]. 2 .
Definition 1: A Differentially-Flat Hybrid Systemis a e = Q- R R, (16)

hybrid system where each subsystem is differentially-flafyhere r, and Q, are the desired orientation and angular

with the guards being functions fo the flat outputs andelocity of the quadrotor respectively. Similarly, the ign
their derivatives, and moreover there are sufficiently stmoo yration error onS? is given asW, = 1—q%q , while e, e,

transition maps from the flat output space of one subsystesfe error functions of’S2, and are given by,
to the flat output space of the subsequent subsystem. -

Remark3: A differentially-flat hybrid system does not eq = 49, (17)
imply that all the states and inputs of the system can be eg = ¢—(qa % da) xgq, (18)
obtained by differentiating a set of smooth flat outputs. The , , , )
system is hybrid after all, and we expect discrete jumps iwhere qa 1S the deswgd load orlentatlon..l'zor use later, we
the states and inputs. Instead, we mean that each subsys?é?r? de_flne the tracking errors for position and velocity
is differentially flat, and that the flat outputs of a subsedque respectively as,
subsystem arise as smooth functions of the flat outputs of er = T—xg, (19)
the current subsystem mapped through the transition map e = v—uy (20)
between the two subsystems. v ’

Lemmal: The system comprising of a quadrotor with awherexz,(t) € R? is some smooth desired load position, and
cable suspended load is a differentially flat hybrid systemy; = 4.



Proposition1: [6, Prop. 1] Almost Global Exponential
Stability of Quadrotor Attitude Controlled Flight Moyi€on-

with the quadrotor moment defined by (21) with the com-
puted valuesR., 2. used instead of the desired ones. Fur-

sider the quadrotor dynamical model in (10), and consideher, suppose the initial conditions satisfy

the moment defined as
M = _E%kReR — %kgeg + Q) x JQQ
—Jo(QRT RiQy — RTRy0y), (21)

for any positive constantsg, kg, and0 < € < 1. Further,
suppose the initial conditions satisfy

Y r(R(0), Ra(0)) <2
(2 — Vg (R(0), Ra(0))) -

(22)
2 kg (23)

2 —

Wq(q(0), 4a(0)) < 2,

leaO)IF < =3k (2= ¥y(a(0). 4(0).

(33)
(34)

Then, there exists,, such that for all0 < e < €,
the zero equilibrium of the closed loop tracking error
(eq,€4:€r.e0) = (0,0,0,0) is exponentially stable. Further-
more, there exist constants;, 5, > 0 such that,

U,(g(t),qa(t)) < min {2, aqe_ﬁqt} ) (35)

Then, the zero equilibrium of the closed loop tracking errof N domain of attraction is characterizedz by (22), (23)),(33
(er,eq) = (0,0) is exponentially stable. Furthermore, there(34). Moreover, the region of statespaté™ x T'SO(3) that

exist constantsvr, 5g > 0 such that,

Ur(R(t), Ra(t)) < min {2, age Pr'}. (24)

The domain of attraction is characterized by (22), (23)Su

Moreover, the region of statespa@&O(3) that does not

converge to the equilibrium is of measure zero, resulting i

almost global exponential stability.
Proof:
of PD control along with a feedforward term. The proo
follows directly from [6, Prop. 1] after definingy = E%kR,
k&, = Lkq. The e parameter is introduced to enable rapi

exponential convergence, which will be employed for 3

singular perturbation argument in the following Propasis.

Proposition2: (Almost Global Exponential Stability of
Load Attitude Controlled Flight MogeConsider the load at-

titude dynamics in (8), and consider the computed quadrotﬂr

attitude defined as

Re:=[by;bs. x by ;bs.], Q.=RIR.  (25)
wherebs, € S? is defined by
b, = T (26)
where,
F=F,—F,q— Fyy, (27)

where F},, F,q and F;y are as defined below
Fo=—(qa-9)q (28)
de = —kzqeq — kweq (29)
Frp =mql(g; qa % 4a)(q x §) +mql (qa % 4a) x ¢ (30)

We also choosé,, € S2, not parallel tob;, and define the
unit vectorb;, as

1

= . 1
by, o % o]l (b3, X (b3, x b1,)) (31)

Now, consider the quadrotor thrugtis defined by
[ =F " Res, (32)

The controller (21) is a geometric version

does not converge to the equilibrium is of measure zero,
resulting in almost global exponential stability.
Proof: See Appendix I-A. [ ]
We have exponential stability for all initial load attitugle
ch that (33) is satisfied. This basically means the initial
load attitude error should be less thag0°. Since the load
Hititudes that lie outside the region of attraction are @ th
form ¢4(0) = —¢(0), which is a low-dimensional manifold in
S$2 x TSO(3), and is of measure zero. Thus the controller
achieves almost global exponential convergence for load

d,a\ttitude.

The inclusion of a hormal compone#t, in (27) ensures
atbs, is always well defined. Moreover, sindg, is along
q, it has no effect on the load attitude dynamics.

Also notice that in order to obtain exponential stability
of the load attitude, both the quadrotor moment and the
qguadrotor thrust were specified. This raises the question of
and how load position can be tracked, especially since
we have no other inputs. To answer this, notice from (8),
that any force,f Res that is alongg does not influence the
load attitude dynamics. Also notice that from (6), any force
tangential tay does not influence the load position dynamics.
This fact will be used in the following.

Proposition3: (Exponential Stability of Load Position
Controlled Flight Mode) Consider the load position dynasnic

in (6), and consider the computed load attitude defined as
A
Ge = — 7> (36)
|1 A]|

where

A= —kpey —kype, + (mQ erL)(i'% +ges) + le((] “4)q,

(37)
with e, = z;, —2¢, ande, = v, —v¢ being the error in the
load position and velocity respectively. We assuig| # 0,
and the commanded acceleration is uniformly bounded such
that

|(mq +mr)(E] + ges) +mql(d - 4)al| < B.
Furthermore, defind’, in (27) as

F,=(A-q)q. (38)



Let the computed quadrotor attitude be defined by (25), (26),
with the quadrotor thrust and moment defined by (32) and -
(21), with the desired quadrotor and load attitude replacedg:
by their computed values?., andq. respectively. Further,
suppose the initial conditions satisfy

Y T ey
Wq(q(0),9.(0)) <91 <1, (39) @) (b)

llex(O)I] < €x s (40)

for a fixed constant,, .. DefineW,, W,, € R**? as, ™ ™
X T Ty
cr1ke crky
W, —l "”Q1+2”L<170‘) ~ g imry (L) (41) © @
z ____CRy _ _ ’
Smatmn LT ) k(l—a)—a Fig. 3: Evolution of the trajectories of a quadrotor (red)

C1

0
[ mqQ+mp 42
We = | 1 o) @)

required to track the load trajectory (blue) as the timeqakri
of load trajectory is varied from0 seconds td second. The
figures show the plots in different views. Note that the the

wherea := /4, (2 — ¢1), andcy, kg, k, are positive con- trajectories become far more aggressive as the desired load
e trajectory time period goes fro) seconds ta second.
stants such that, ! y P \9 RESULTS
_ . {k a o ) A. Trajectory Generation using Differential Flatness
c min § K, (1 —a), v/ Kz (m mr), . o .
! < Since the quadrotor and load system is differentially flat,
4(mg +mrp)kzk, (1 — ) (43) we can plan and study trajectories directly in the flat space.
k2(1 — )2 4+ 4(mg + mp )k, We could do this through parametrizing the flat outputs
| Wagl 2 as functions of time with a suitable basis and solving an
Am(Wq) > m (44)  optimization problem to obtain the coefficients of the basis

as done in [9] for a quadrotor. However, our aim is to study
Then, there exists,, such that for all0 < ¢ < &, ~how the quadrotor trajectory, required to track a particula
the zero equilibrium of the closed loop tracking errofoad trajectory, evolves as the frequency of the load ttajgc

(€2, €0, €q: €4, €r,€0) = (0,0,0,0,0,0) is exponentially varies. In particular, we chose the flat outputs as follows,
stable. The domain of attraction is characterized by (22), A, sin(220)

. . 5
(23), with the desired values replaced by the computed er(t) = |A, COS(%) (46)

values, (39), and

z

() = 0, 47)

where,Tj is the time period of oscillation of the load. Using
) the differential-flatness property, we can analyticallytait
Remark4: If the load is connected to the quadrotoryhe qyadrotor trajectories for the corresponding flat distpu
through a rigid link, then by changing the sign in (36), We\\oreover, by varying the time period, we can study the
obtain a controller for tracking the position of the tip of agyolution of the quadrotor trajectories. Figure 3 illugts
spherical inverted pendulum on a quadrotor. Further resuliye quadrotor trajectories for multiple time periods, fram
on this are presented in the companion paper [8]. to 10 seconds, for following the load trajectory specified in
PrOpOSiti0n4: (AlmOSt Global EXponential Attractive- (46), with 4, < Ay The quadrotor trajectories dynamica”y
ness of Load Position Controlled Fl|ght MOde) Consider th%v0|ve and become far more aggressive for smaller time
quadrotor thrustf and moment) defined in expressions periods. Note that all the different quadrotor trajectsrie

(32), (21). Suppose the initial conditions satisfy (223)2 result in the same load trajectory, albeit at different frexcy
(33), (34). Then, zero equilibrium of the closed loop tracki of oscillation of the load.

error (e, €y, €4, €4, €r,€0) = (0,0,0,0,0,0) is exponen-
tially attractive. B. Load Position Controlled Flight Mode
Proof: See Appendix I-C. | Next, we present a simulation with the initial condition

Remark5: Note that the controller presented here, irspecifying large errors in the quadrotor attitude, the load
combination with the controller in [6] offering almost-¢jal  attitude and the load position. Specifically, the quadragor
exponential attractivity of the quadrotor position cotied  starts off flipped about the y-axis &r8°, the load attitude
flight mode, ensures a control design for the full hybrids specified ad78°, and there is a large initial load position
system. error. A desired time-varying load position trajectory is

2
leq(0)]1* < nTszq (V1 — ¥q(q(0),4:(0))) . (45)
Proof: See Appendix I-B.



VI. CONCLUSION

We have presented a coordinate-free development of the
dynamics of a quadrotor with a cable suspended load, and
have shown that this system is a differentially-flat hybrid
system. The flatness property has been utilized to design
nominal trajectories. A nonlinear geometric control dasig
is presented, that enables tracking of either the quadrotor
attitude, the load attitude or the position of the load. Aftno
global exponential stability for the load attitude traakimand
almost global exponential attractivity of the load positio
tracking is demonstrated.

APPENDIXI

Fig. 4: Snapshots of the quadrotor along the executed moti@) Proof of Proposition 2
(blue) as it tracks the desired load position (red). Notfe t
large initial errors in position, load and quadrotor atiiu
The quadrotor and the load start off almost flipped.

We begin by representing the load attitude dynamics (8)
as

[‘i] = flaw, R) = {—,,}qu xw(;: f]Reg)ReJ . (48)

i e = Next, From Proposition 1, and [6, Prop. 1], and defining
g [ e ===z €r = %63, the closed-loop quadrotor error dynamics can be
gy g represented as

Ll ‘ |

& 1L (pT ps s pTp \Y

e || mg(r g = |2 Bt RTR) T g

€q —krer — kaeq

Time (s)
Fig. 5: Load position error tracking. Notice the initial d@ Settinge to zero, we get,
position errors that are quickly rejected by the controller
0=9(R,Q,0) = R=R.. (50)
In the limit e = 0, the load attitude dynamics evolves on the

specified and the system is simulated with the controllerpameId given by = Ii.. In particular, theslow models

in Proposition 3. Figure 4 illustrates the trajectory of the [¢] R — w X q
load as it converges to the desired load position trajectory || — fla,w, Re) = —m%glq X (F - Ree3)Rees|”
as well as snapshots of the quadrotor at fixed intervals

Figure 5 illustrates the load position error, while Figure g he rest of the proof will establish exponential stability f

illustrates the configuration error metric for the quadrotothe _slovxll model fLOm [2, Lemma 11'2331 anf? tr;]en through
and load attitudes respectively. Note that the double peak ghsmgu ar pehrtur ?"0” _argu][nre]ntf (l':'yc no T_"et()) rerﬂ) 5,
U and ¥, occur due to the controller implementation not! M- 11.2], the trajectories of the full system will be shown
computingR., R., ¢, i, but rather using the nominal values!© uniformly converge to that of the slow model, establighin

from differential-flatness. This results in a simpler coiiar exponential convergence for the fyll mode. )
implementation. The command derivatives can be computed':rom the load attitude dynamics, (11), the input force
through a command filtering approach [3], or by carrying ougnters th? system throughx (¢ x fRes). For the slow
the complex task of analytically computing the derivatjvesmOdel' this can be written as,
as is done in the' companion_ paper [8]. Nev_ertheless, the g x (¢ x (F - Ree3)Rees) = qx (¢ x F)
simpler controller implementation is able to reject thegéar —  kyeq — kaew, + F;52)
errors in load position, load attitude and quadrotor at#tu g%q — Mdfw T HS

where we have used the following factg,F,, = 0, ¢%e, =

—€q, (j26q = —€q, Cszff = 7Fff, sinceeq,eq,Fff c quQ

(51)

Ur v, andq x F,, = 0. Further, since the norm @_ € S? in the
’ denominator is bounded away from zero, then &gr> 0,
18 : kq > 0, exponential convergence follows from [2, Lemma
1 11.23]. Then, by the converse Lyapunov Theorems, there

exists a Lyapunov functiol, and positive definite matrices
M,, Mg, W, such that

0.5

0 2 4 6 8 1® 2 4 6 8 10

Time (s) Time (s) Z?quq < YV Z?Mqu (53)

<
Fig. 6: Configuration error functions for the quadrotor -atti Vy <=z Wezg, (54)
tude and the load attitude. Controller rejects large altitu
errors of178° in both the quadrotor and load attitudes.



wherez, = [||e,]|, [|egl[]”- attitude errore,, we add and subtracJtL to the right hand
Remark 6: Note that this proposition would still hold for side of (57) obtaining
other choices off},. In particular, it holds for the choice in

(38). _ (mq +mr)é, = —(mq+mr)(ges +i7) —mql(d-d)q
Thus, for the slow modelge,, ¢;) exponentially converges /4

to zero. Now, for the full model, since the slow model qquc+X, (59)

satisfies the conditions of [5, Thm. 11.2], there exigts- 0,

such that, for all0 < e < &, the trajectories of full | ..+ - p3is defined as

model, (¢, w, R, )(¢) and the trajectories of the slow model, ©

(q,w, R, )(t) satisfy (q,w, R, Q)(t) — (g, w, Re, Q) (t) = fq

O(¢) uniformly. This results in exponential stability of the X = p ((ge - 9)q — qc) - (60)

load attitude dynamics for the full model.

B. Proof of Proposition 3 From the definition off, = A - ¢, and from (36), we have

This proof is motivated by the proof of [6, Prop. 3], fo = —I1Allqe - 61)
and follows it very closely. While [6, Prop. 3] was proving ? o
exponential stability of the quadrotor position, here we ad
dress a more complex system with additional underactuan%rhere‘core the third term on the right hand side of (59) can
and demonstrate exponential stability of the completecsyst € written as
through a singular perturbation argument. f (—[1Alle - @) A
We will consider the slow model and carry out the e = = =
subsequent analysis in the domain 9 q e 4 4]

D = {(es,e0,q,¢5) ERPXxR3x Ly xR3 | ||e|| < s, ) Substituting this into (59) and usingl from (37), the
(55) translational error dynamics ef, can be written as
where, by (39), the load attitude is restricted to be in the
sublevel set; = {q € S? | ¥,(q,q.) < 1}. (mg +mp)é, = —kper — kpey, + X. (62)
Translational Error Dynamics for Slow Model The
translational error dynamics of the complete system isrgive | yapunov Candidate for Translation Dynamics Con-
by sider the Lyapunov candidate,,

r = € (56) 1
(mQ—l—mL)év = —(mQ+mL)(geg+9'édL) Ve 7*]@ H6r||2 (mQ erL)HGUH +cieq - ey, (63)

—mql(d-4)q+ (¢ fRe3)q. (57) _ - o
o ) o wherec; is a positive constant. The derivative Bf along
Considering the slow model, where in the linait= 0, the  the solution of (62) is given by

load position and attitude dynamics evolve on the manifold

given by R = R., we have from (26) Vo = kues-eot ey (—knen — kuew + X) + cren - e
F c1
= = = 7$'_kx$_kvv X
Res = R.es bgc || || +mQ+mL€ ( e €y + )
Also from (32), we have = —(ky —c1)|le]* — &H%HQ
P mq +mrg
f:F'R63£F~R063:f~b36— T:HFH o Clk en - €U+X C1 ew+ev ]
|1 poo— poo—
mg +mr mq +mrg
Then,
Next, we find a bound orX using (60) as follows. From
fR@gEchengbgc = || ||||F|| F. (61), we haVe,
Finall
inally, X1 < Al 1(ge - a)g — gl
(¢- fRes)q (¢-F)q < (kallexl] + kolleo| | + B)llegl|
= (¢ (Fn+ Fpa—Fyy)q) < (Kallez|] + kolles|| + B)a, (64)
= (A-q)q
— f.q (58) where we have used (37) for the definition4f recognized
= fqq.

from (17),eq = ¢ x (¢ X ¢¢) = (¢c - ¢)g — ¢, and that
Furthermore, by (39), the quantig\;}—q is well defined. Then, |le,|| represents the sine of the angle betweeand g,
to rewrite the error dynamics of, in terms of the load given by |le,|| = /¥,(2—¥,). Thus « is defined as



a = /11(2 — 1) < 1. Substituting this into (64), we have,

Ve < (ke — er)lfen]? — — 2

C1 kv

2
mo —Q—mLHewH

TmgtmLE + (kzllexll + Kollew]] + B)|leq ]l

{ |

—(ko(1 = a) = c1)lles]|* —

C1
i g leall + lleoll

C1 k:z:

IN

1= 2
mQ+mL( Q)HGIH
Clk‘v

- = - 1
ot (Ut aleallle]

C1

+|le kzllezllles|| + ——————|les|| + Blley
leall {kelleclle] + mo=Sflecll + Bl

(65

C. Proof of Proposition 4

Once again we consider the slow model, whose dynamics
evolve on the slow manifold given b = R.. The initial
condition, (33), is outside the region of attraction spedifi
in Proposition 3, (39), and thus exponential convergence of
the load position error can not be guaranteed. Howevergsinc
the initial load attitude satisfies the conditions of Praopos
2, the load attitude tracking errot, is guaranteed to
exponentially decrease and enter the region of attraction o
Proposition 3 in finite time, say*. If we can show that the
load position errorz,, is bounded in this timet € [0,¢*],
then exponential attractivity ensures for the slow model.

We can still use a singular perturbation argument

during t € [0,¢*] to ensure(zp,vr,q,w,R,Q)(t) —
(zp,vr,q,w, Re, Q) (t) = O(e) uniformly. This results in
)boundedzm for the full model too during: € [0,¢*]. Then,

we can conclude exponential attractivity for the full model

In the above expression, there is a third-order term, Thus, we only need to show that, is bounded for
kzlleqll|lex|l|lev]]. Since we restrict our analysis to thet € [0,¢*] for the slow model. This can easily be shown
domain D defined in (55), an upper bound for this termby following the proof of [6, Prop. 4] with minor changes.

IS kxea,,,.|leqllllev]]-
Lyapunov Candidate for the Slow ModellLetV =V, +

V, be the Lyapunov candidate for the slow model. Then,l1]

from (53), (54), (63), (65), we have,
z};Mg,,zJc + ququq <yV< ZEMX% + quMqu
V< —2ITW,zp + 2T Wagzg — ququq,

(66)
(67)

where z, = [|les|], ||e.|]]*, and the matrices$V,, W, are
as in (41), (42), whileM,,, Mx are defined as

1 ka; —C1
M, = - , 68
2 {—cl mq + mJ (68)

1 kz C1
Mx = = . 69
X 2 Ll mqg + mL] ( )

Exponential Stability From Proposition 2, the matrices
M,, Mg, W, are positive definite, while the conditions of

Proposition 3, (43), ensure positive definitenes3d/Qf, Mx.
Then the candidate Lyapunov functidhis positive-definite,
and

V < =X (Wa)llza |2+ Wag 2l 221241 = A (Wo)l 241

The conditions of Proposition 3, (43), (44) ensures pasitiv (11

definiteness oflV,,, and negative-definiteness of. Thus

the zero equilibrium of the load position tracking errors of

the slow model is exponentially stable, i.ée,,e,, e, ¢4)

exponentially converges to zero while the dynamics evolvgs]

on the slow manifold given by? = R..

Now we employ the singular perturbation argument onctla14
again. We have, for the full model, since the slow mode
11.2], there exists

satisfies the conditions of [5, Thm.
€: > 0, such that, for all0 < ¢ < ¢, the trajecto-
ries of full model, (z,vr,q,w, R,Q)(¢t) and the trajec-
tories of the slow model(x, vy, q,w, R, Q.)(t) satisfy

(xr,vr,qw, R, Q)(t) — (1,00, q,w, Re,Qe)(t) = Ofe)

uniformly. This results in exponential stability of the tha
position dynamics for the full model.
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