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Abstract— There are many applications where topology con-
straints are useful in trajectory generation for mobile robots. In
this paper we present a method to generate an optimal trajec-
tory restricted to a particular homology class. The optimality
is achieved by formulating the trajectory generation problem
as a Mixed-Integer Quadratic Program (MIQP). We introduce
binary variables that not only encode information about the
satisfaction of geometric constraints, but also incorporate in-
formation about the homology class. We define the h-signature,
a complete homology class invariant, as a quadratic function of
the binary variables, which we subsequently convert to a linear
function by variable substitutions. As a result, the suggested
trajectory generation problem under homology class constraints
can still be formulated as a MIQP, which can be solved by
an anytime solver like CPLEX. We illustrate the method with
examples of minimum acceleration trajectory generation under
different homology class constraints with potential application
to differentially-flat systems with a two-dimensional flat output
space.

I. I NTRODUCTION

Trajectory generation algorithms for robotic systems is one
of the most active areas in robotics research. Some literatures
focus on finding optimal trajectories in convex or unbounded
spaces [1], [2]. However, with development of computational
capabilities, significant research interest has been focused
on algorithms for generating trajectories in cluttered, non-
convex environments with kinematic and dynamic constraints
in the form of constraints on communication, coverage,
environment, time, etc (see kinodynamic planners [3], RRT
trees [4], LQR trees [5], Elastic Roadmaps [6], MILP [7], [8]
and references within). Most of the algorithms are developed
to find optimal trajectories satisfying feasibility constraints.
However, there have also been considerable amount of re-
search interest in algorithms for generating trajectoriesfor
multi-agent problems [9], [10], [11]. In such problems it is
often required that each robot follows different trajectories to
cover or sense the whole work space as in search-and-rescue
or surveillance problems. This brings forth the necessity of
finding trajectories in topologically different classes. This
requires that we impose constraints on the homotopy classes
of the trajectories accordingly. However, in many practical
robotic problems, homology class constraints act as suitable
and convenient substitutes for homotopy class constraints
[12]. In this paper we propose an anytime algorithm for
finding optimal trajectories in specific homology classes
(i.e. finding trajectories with homology class constraints),
satisfying smoothness conditions, and minimizing a cost
function that is not necessarily the length of the trajectory,
but involves higher order derivatives.

Early attempts at classifying homotopy classes in two
dimensions include geometric methods [13], [14], homotopy
preserving probabilistic road-map constructions [15], and
triangulation-based path planning [16]. Two trajectoriesare
said to be homotopic if one can be continuously deformed
to another without intersecting any obstacle. Each set of
trajectories that are homotopic forms an equivalence class,
called a homotopy class (see Figure 1(a)). A particular
homotopy class can be specified by a representative trajectory
in that class. Thus, trajectory generation with homotopy class
constraints consists of finding an optimal trajectory in the
desired homotopy class, specified by the given representative
trajectory, that also respects the kinematic constraints.One
can think of applications ranging from multi-robot explo-
ration, where it may be beneficial to deploy each robot in
a different homotopy class to ensure maximal coverage and
minimal congestion, to single arm motion planning where
one may seek paths that go around obstacles one way or the
other based on the specific task.

Our objective in this paper is to design optimal trajec-
tory for a robot that minimizes an integral cost functional
(which depends on the trajectory), while also respecting
kinematic constraints of the system, avoiding obstacles, and
constraining the trajectory to a particular homology class.
The kinematic constraint that we will consider in particular
is that the trajectory needs to be smooth (r-differentiable).
We will however not consider bounds on curvature in the
present work. Although several of these subproblems have
been solved separately (see [3], [4], [5], [17], [18], [12]),
there is no literature, to our knowledge, that addresses the
combined problem described above. We assume a planar
robot of finite radius and with a safety padding around
it, and represent a planar trajectory of its center,q(t), by
the points[qx(t), qy(t)] parametrized byt. We use mixed-
integer quadratic programming [19], [20] to check feasibility
of each intermediate point on the trajectory and to divide
the configuration space into subsets. We start by assuming
that the required homology class is specified by a value of
the h-signature, which will be defined later in Section III-B.
Specifically, the suggested algorithm is an anytime algorithm,
and we can achieve an optimal trajectory that is guaranteed
to have the desired h-signature value while satisfying the
kinematic and topological constraints. This method can be
used for trajectory generation for differentially-flat systems
[21] with a two-dimensional flat output space, such as a
kinematic car [22], or a tricycle robot [23], which not only
produces a trajectory respecting the homology constraint,but
also provides the nominal feed-forward forces (due to the
differential-flatness property,) for use in feedback control for



(a) (b)
Fig. 1. (a) τ1 is homotopic toτ2 since there is a continuous sequence
of trajectories representing deformation of one into the other. τ3 belongs to
a different homotopy class since it cannot be continuously deformed into
any of the other two. (b) Example where the trajectories (τ1 and τ2) are
homologous, but not homotopic.

trajectory tracking.
The outline for the rest of the paper is as follows:

Section II briefly reviews some related previous works like
h-signature and MIQP. Section III describes the algorithm
to find optimal trajectories that are in a specified homology
class and satisfy other kinematic and dynamic constraints.
Section IV presents an example of finding optimal trajec-
tories with homology class constraints for a planar mobile
robot. Finally, Section V provides concluding remarks.

II. PRELIMINARIES

A. Homotopy and Homology Classes for Trajectories

We begin by defininghomologoustrajectories and illus-
trate the difference between homology and homotopy. Two
trajectories,q1 and q2, connecting the same start and end
points are homologous if and only if the closed loop formed
by them,q1

⊔
−q2 (i.e., q1 together withq2 with opposite

orientation), forms the boundary of a2-dimensional region
on the plane not containing/intersecting any obstacle. It can
be shown that [12] homology is a coarser representation of
homotopy, with trajectories that are homotopic being also
homologous. Figure 1(b) shows a good example of two
trajectories, which are homologous but not homotopic.

A compact representation for the homology classes of
trajectories is theh-signature, computed using the Cauchy
integral theorem and the Residue theorem from complex
analysis, as proposed by Bhattacharya et al. [18], [12]. The
h-signature of a trajectory,q, with respect to obstacleoj is
defined as

Hj (q) =

∫
1

z − zj
dz (1)

=

∫ tf

t0

1

qx(t) + iqy(t)− zj
(q̇x(t) + iq̇y(t)) dt

wherez(t) = qx(t) + iqy(t) is the complex representation
of the trajectory, andzj is the complex representation of an
arbitrary point inside obstacleoj . Then the h-signature with
respect to all obstacles is given byH = [H1, ..., Hno

]T with
no obstacles. However, since this h-signature is nonlinear in
the optimization variables that we will use for describing the
trajectories, we will define the h-signature using a different
formulation which is consistent with its definition of being
a complete invariant for homology classes.
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Fig. 2. The normal vector,ni,f , of thef th face of obstacleoi is pointing
inward. p is an arbitrary point on thef thface. (a) An example ofq ∈ Q
whenbi,f = 0. (b) An example ofq ∈ Q whenbi,f = 1.

B. Optimal Trajectory Generation

We consider trajectory planning in a compact subsetQ ⊂
R

2 of a plane. LetO = {o1, o2, · · · , ono
} be a set of

convex, pair-wise disjointobstaclesin Q (The requirement
of convexity of obstacles can be relaxed by considering a
set of arbitrarily-shaped obstacles such that their convex
hulls are pair-wise disjoint). Each obstacleoi ∈ O can
be represented by ani-sided convex polygon, whose faces
define hyperplanes that partitionQ into two half-spaces. A
binary variable is used to indicate whether a point is on the
feasible side of the hyperplane, as described in [20]. So a
point q ∈ Q will be feasible and will avoid collision with
an obstacleoi if there is at least one facef ∈ [1, ..., ni]
satisfyingni,f ·q ≤ si,f . Whereni,f is a normal vector to the
f th face of obstacleoi pointing inward, andsi,f = ni,f · p,
for an arbitrarily chosen pointp on thef th face as shown in
Figure 2. Similar to obstacle avoidance using binary variables
bi,f , as described in [20], a given point is feasible with
respect to obstacleoi if

ni,f · q ≤ si,f − δr +Mbi,f for f = 1, ..., ni (2)
ni∑

f=1

bi,f ≤ ni − 1,

where bi,f ∈ {0, 1} are binary variables (withbi,f = 0
indicating that the point lies on the feasible side of the
f th face of theith obstacle as shown in Figure 2(a)), and
M > 0 is a large positive number.δr ≥ 0 is the radius of the
disk encircling the finite-sized robot, along with some safety-
padding around it. The second inequality in (2) implies that
the point q will be feasible with respect to at least one
face, i.e., for a giveni, there exists at least onef such that
bi,f = 0. Although (2) is a sufficient condition for feasibility,
this formulation breaks upQ into overlapping subsets as
shown in Figure 3(a). The first three plots in Figure 3(a)
illustrate that the subset corresponding tob = [0, 0, 1] is the
intersection of the two subsets corresponding tob = [0, 1, 1]
and b = [1, 0, 1]. Considering the segment of trajectory
in the last plot of Figure 3(a), the binary variable vector
bk, corresponding to the pointqk, is not unique, but could
be any of b = [0, 1, 1], b = [0, 0, 1] and b = [1, 0, 1].
As a result, we can have the same trajectory (represented
by the points on it) described by different sets of binary
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Fig. 3. (a) Overlapping subsets divided by values of binary variables representing each face of triangular obstacle. (b) Disjointed cells divided by values
of binary variables representing each face but consideringadditional constraint. (c) An example of parallelogram obstacle.f is the index of each face. Red
and magenta curves are infeasible trajectories between two feasible configurations,q1 andq2. Adjacent intermediate points(q3, q4 andq5) are satisfying
additional constraint.

variables. Such duplication increases the size of the feasible
region in the space of binary variables, resulting in redundant
searches, and larger computation times. To eliminate such
cases, we introduce some additional inequality constraints to
build disjointed cells like in Figure 3(b),

−ni,f · q ≤ −si,f + δr +M(1− bi,f ) for f = 1, ..., ni.

(3)

The first inequality of (2) only guarantees that the pointq is
on the feasible side or outside off th face whenbi,f = 0.
But the constraint (3) enforces that the pointq be on the
other side whenbi,f = 1. Thus, the feasible region,Q,
is partitioned into disjoint cells, each of which is bounded
by hyperplanes defined by the faces of the obstacles. (see
Figure 3(b)). Moreover, each cell can be identified by a
unique vector of binary variables,b = [bT1 , . . . , b

T
no
]T where

bi = [bi,1, . . . , bi,ni
]T ∈ {0, 1}ni .

We parametrize the trajectory by splicingNs segments
of trajectories, each parametrized by linear combination of
Np + 1 basis functions,

q(t) =

Np∑

k=0

cj,k ek(t− tj) for tj ≤ t < tj+1, (4)

for j ∈ [0, ..., Ns − 1], 0 = t0 ≤ t1 ≤ ... ≤ tNs
= tf .

Whereek(t) is any basis function andcj,k are coefficients.
The trajectory is restricted to bekr-times differentiable at
the junction of each of the segments of trajectories,q(tj),
for j ∈ [1, ..., Ns−1]. Further, obstacle avoidance is achieved
by enforcing (2) at some equally distributed intermediate
points on each segment of trajectories. we choose the cost
function to be the integration of the square of the norm of
rth-derivative of the trajectory:

J(c) =

∫ tf

t0

∥∥∥∥
drq(t)

dtr

∥∥∥∥
2

dt = cTHc. (5)

where c = [cT0 , ...c
T
Ns−1]

T , and H depends only on the
choice of the basis functions (note that we could choose
a cost function that is a weighted sum of different order
derivatives, and still keep it quadratic inc). The optimal

trajectory generation problem can then be simplified as the
following MIQP (Mixed-Integer Quadratic Program),

min
c, b̃

cTHc (6)

s.t. Afc+Df b̃ ≤ gf

Abb̃ ≤ gb

Aeqc = 0

where b̃ is the vector formed by stacking all the binary
vectors, bk, corresponding to the intermediate points,qk,
of the trajectory and hence is a coarse representation of
the continuous trajectoryq(t). The first inequality captures
the feasibility constraints of (2) for the intermediate points,
the second inequality captures the constraint on sum of
binary variables in (2), andAeqc = 0 imposesrth order
differentiability at the junction of the segments of trajectories
and the boundary conditions of initial configuration,q(0) =
q0 and final configurationq(tf ) = qf .

To find an optimal trajectory in a specific homology class,
we can then add some topological constraints. If we add
a constraint on the h-signature of (1), which we described
earlier, such that the h-signature of the trajectory,H(q),
should be some desiredHd, the quadratic program (6)
becomes a non-convex problem. Furthermore, the gradient of
the new constraint,H = Hd, will be zero almost everywhere,
because the value of the h-signature does not change within
a particular homology class (i.e. the range of the h-signature
is a set of discrete variables). So, the resulting problem is
a non-convex problem, which is numerically hard to solve
based on gradients of cost and constraints. So, we need a
different way to enforce topological constraints, and thisis
described in the next Section.

III. A LGORITHM DESCRIPTION

In this Section, we will describe our algorithm to gener-
ate the optimal trajectory with homology constraints while
ensuring that the problem remains a MIQP.



A. Additional feasibility condition

We start by noting that the feasibility (with respect to
obstacles) of each intermediate point on the trajectory does
not guarantee the feasibility of the whole trajectory. Consider
an example with only one parallelogram obstacle as shown in
Figure 3(c). In Figure 3(c), two adjacent intermediate points,
q1 andq2, are both feasible with respect to the given obstacle,
o1. The red curve in Figure 3(c) shows an infeasible curve
connecting two points. Of course, the optimal trajectory
could be feasible like the green curve. However, the line
segment connecting the two points (the magenta curve)
is infeasible. To avoid such undesirable cases, we need
additional constraint between adjacent intermediate points.
The curves in Figure 3(c) illustrates this additional constraint:
Considering the corresponding binary variables of each point,
q3 is only feasible with respect to facef = 1 and the next
intermediate point,q4 is also feasible with respect to the
same face. So, the line segment, connecting these two points
is also feasible with respect to facef = 1. Moreover, both
q5 and its previous point,q4, are feasible with respect to face
f = 2. So the line segment joining them is also feasible. In
contrast, consider the case ofq1 andq2 in Figure 3(c). These
two adjacent intermediate points do not share feasibility with
respect to a common face –q1 is feasible with respect to only
facef = 4 andq2 is feasible with respect to only facef = 1.
So we cannot guarantee the feasibility of the line segment
connecting these two points.

The above discussion suggests an additional constraint that
two consecutive intermediate points should share a common
hyperplane with respect to which they are feasible, and this
should hold true for each obstacle. In other words, the binary
variables corresponding to the adjacent intermediate points
should either be the same or differ by only one component,
and this condition should be satisfied with respect to all
obstacles. This constraint then guarantees the feasibility of
a straight line segment connecting the two intermediate
points. We write b(o,k) to describe the vector of binary
variables for thekth intermediate point formed by stacking
together the binary variables for the different faces of the
oth obstacle (thus, it is ani-sized sub-vector of̃b). Thus the
constraint involving thekth andk + 1th intermediate points
with respect tooth obstacle can be describe as
∥∥b(o,k) − b(o,k+1)

∥∥2
2
=

b(o,k) · b(o,k) + b(o,k+1) · b(o,k+1) − 2b(o,k) · b(o,k+1) =∑
b(o,k) +

∑
b(o,k+1) − 2b(o,k) · b(o,k+1) ≤ 1

(7)
where,

∑
b denotes the sum of the elements of a binary

vector, and the last equality holds sinceb · b =
∑

b for
a vector of binary variables,b ∈ {0, 1}n. This additional
constraint on the gradual change of the binary variables along
the trajectory plays an important role in formulation of a
new h-signature based on binary variables, as described in
the next section. However, this constraint is quadratic in the
binary variables, and we will discuss how we can reduce this
constraint to a linear one in Section III-C.

B. Define h-signature

To find an optimal trajectory contained in a specific
homology class, the h-signature of [18] can be used. How-
ever, this function is based on Cauchy integral theorem and
is both nonlinear with respect to the given trajectory or
coefficient of basis functions. So we define a new h-signature
keeping in mind the definition of homologous trajectories of
[12]. Instead of calculating winding number through Cauchy
integral, we can get it by counting how many times the
closed curve intersects a reference ray (one dimensional half-
hyperplane), originating on the obstacle, in either clockwise
or counterclockwise directions. The Figure 4(a) shows an
example. Since the closed loop formed byτ1

⊔
−τ2, where

−τ2 means reverting the direction of trajectory, crosses the
red ray twice, first in clockwise and then in counterclockwise
direction, the winding number of this closed loop becomes
zero, and the area enclosed by this closed curve does not
contain the obstacleo1. Thus, in Figure 4(a),τ1 and τ2 are
homologous. However, the closed loop formed byτ1

⊔
−τ3

intersects the red ray once in clockwise. The winding number
of τ1

⊔
−τ3 is one, not zero, and two trajectories are not ho-

mologous. This definition is consistent with previous works,
[18], [12]. So we define new h-signature of a trajectory with
respect to an obstacle,oi, as the number of intersections with
reference ray ofoi in clockwise subtracted by the number of
intersections with reference ray ofoi in counterclockwise.

We can choose arbitrary reference ray of each obstacle but
for convenience of calculation and notation, we choose the
reference ray as the extension of facef = 1 in the direction
of the last facef = nf as shown in Figure 4(b). Also,
for the consistency of sign of winding number, the faces
are numbered in counterclockwise direction like Figure 4(b).
Then it is obvious that we need to accumulate the value of
bi,1,k+1 − bi,1,k for ∀k (where bybi,j,k we mean the binary
variable for thekth intermediate point corresponding to the
jth face of theith obstacle). However, to avoid counting the
number of intersection with the the other ray obtained by
extending the facef = 1 in the other direction (the green
line in Figure 4(b)), we need to count the case when the
two adjacent intermediate points are infeasible with respect
to the second facef = 2, i.e. bi,2,k+1 = bi,2,k = 1. So, the
h-signature with respect to an obstacle,oi, will be

hi(̃b) =
∑

k

bi,2,k+1 + bi,2,k

2
(bi,1,k+1 − bi,1,k) . (8)

=
∑

k

bi,2,k (bi,1,k+1 − bi,1,k)

The second equality of above equation holds because
bi,2,k+1 = bi,2,k whenbi,1,k+1 6= bi,1,k due to the constraint
we defined in (7). The h-signature with respect to all ob-
stacles will beH = [h1, ..., hno

]T , whereno is the number
of obstacles. However, this new h-signature is also quadratic
in binary variables. We will discuss how we can reduce this
quadratic equation to a linear one in the next section.

C. Substitution binary variables

As the new constraint in (7) and the h-signature in (8) are
quadratic with respect to the binary variables, we introduce
somesubstitution binary variablesthat represent the product
of two binary variables. For example, consider the product
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Fig. 4. (a) An example of counting winding number of trajectories. (b) An
example of calculating the h-signature with respect to a triangular obstacle.

of two binary variables,bi · bj , for bi, bj ∈ {0, 1}. Then, we
substitutebi · bj with a new binary variabledij ∈ {0, 1}, on
which we impose the following three inequalities,

dij ≤ bi , dij ≤ bj , −2 + δ + bi + bj ≤ dij (9)

where 0 < δ < 1 is a design parameter. The first two
inequalities in (9) enforcedij = 0 when bi = 0 or bj = 0,
respectively. And the last inequality enforcesdij = 1 when
bi = bj = 1, because0 < δ ≤ dij . So the above three
constraints let us perform the substitutiondij = bi · bj . Let
d be the vector of substitution variables with which we need
to replace all the quadratic terms in (7) and (8). Then we
can rewrite the feasibility conditions of substitution binary
variables, (9), as

Af,db̃+Bf,dd ≤ bf . (10)

Then we can rewrite the quadratic constraint of (7) for the
whole trajectory as

Ao,k b̃+Bo,kd ≤ bo,k (11)

for all o and k. And the h-signature calculation of (8)
becomes the following linear equation

hi = Ai,hd. (12)

So, we can reduce all equations containing quadratic terms
in the binary variables to linear ones using the substitution
binary variables.

D. Finding Optimal Trajectory in a given Homology Class

Since our goal is to design optimal trajectory with homol-
ogy constraint, we can impose the new constraints of (10),
(11), and (12) to the optimal trajectory generation problem
(6) to formulate a new MIQP as follows

min
c, b̃, d

cTHc (13)

s.t. Afc+Df b̃ ≤ gf , Abb̃ ≤ gb ,

Adb̃+Bdd ≤ bf , Aob̃+Bod ≤ bo ,

Aeqc = 0 , Ahd = Hd

where b̃ and d are vectors of binary variables as described
earlier. The third inequality is the condition of substitution
variables (10), the forth inequality is for additional feasibility
constraint for continuous change of binary variables (11),
and the last equality is for the homology constraint with
respect to all obstacles (12). As the resulting problem is
MIQP, we can get an anytime solution to this problem

Fig. 5. Starting from a piece-wise linear curve (cyan), we can progressively
add points, to make the trajectory smoother by increasing the order of
differentiability by one at each step.

through numerical solvers like CPLEX [24]. However, we
need enough number of segments of trajectories (Ns) and
basis function (Np) to be able to obtain a feasible trajectory
in the given homology class.

Proposition 1 (Completeness Guarantee):Suppose there
exists an arbitrary trajectoryτ (dark blue curve in Fig-
ure 5(a)), not touching any of the obstacles, in the homology
class represented by the h-signature ofHd, that crosses the
cell boundaries (i.e. the hyperplanes)m or less number of
times (for avoiding ambiguity we assumeτ is generic and
that it does not pass through the intersection of2 or more
hyperplanes). With the choice of basis functionsek(t) = tk

in (4), and with Np > r, it is then sufficient to choose
Ns = 2r(m − 1) + 1 in order to guarantee existence of a
solution for the problem in (13) (i.e. all the conditions being
satisfied, and with finite cost).
Sketch of Proof.Consider them−1 consecutive cells thatτ
passes through. We choosem− 1 points,q01 , q

0
2 , · · · , q

0
m−1,

respectively in the interior of each of these cells. Now,
two such consecutive cells together form a convex region
(bounded by the hyperplanes the cells are individually
bounded by, except for the one hyperplane that separates
them). Thus, the piece-wise linear curve formed by joining
these consecutive points (call thisq0) give a trajectory
consisting of m segments (cyan curve in Figure 5(a)),
connecting the initial and final points, not intersecting any of
the obstacles, and is continuous (i.e.0th order differentiable).
The affine segments are permitted by the choice of the basis
functions (the parametrization may be chosen arbitrarily),
thus giving values of coefficients,cj,k, in (4) that describe
this trajectory. Those, along with the binary vectors corre-
sponding to each of these points, satisfy all the conditions
in (13), except for the differentiability conditionAeqc = 0.

The main idea behind the proof of this proposition is that
we can now replace each of the pointsq0j by two points
lying arbitrarily close to it, and thus “smoothen” the curve
(Figure 5(b)). This smoothening is possible to achieve with
just an unit increase in the degree of the basis functions
(which is evident by looking at the individual components
q0x(t) andq0y(t), as illustrated in Figure 5(c)) – in this case,
going from linear to quadratic (it is always possible to find
a parabola that has two given lines with bounded slope as
tangents, and then scale it down such that the contact points
with the tangents lie within a small ball around the point of



intersection of the lines).
Thus, now we have a new trajectory (call thisq1), that

is smooth everywhere, but not twice differentiable (red
trajectory in Figure 5(b)). However, we can continue the
same process of smoothening the derivatives ofq(t) by
adding points in a small neighborhood of the originaltj ’s,
doubling the number of intermediate points at every step.
The choice of this neighborhood can be arbitrarily small to
ensure that the added points remain in the interior of the same
cell. Continuing this until we haverth order differentiability
requires2r(m− 1) intermediate points. In this way, we can
construct a trajectory that satisfies all the conditions of (13).

E. Computational Complexity

The resulting optimal trajectory generation problem is
a MIQP, which can be solved by an anytime solver like
CPLEX. Thus, if there exists a feasible solution, it will be
found by CPLEX. Moreover, with additional time available
for computation, a lower cost solution can be found. How-
ever, the computation time will increase with the complexity
of the given MIQP. So, in this section, we will discuss
the computational complexity of the trajectory generation
problem (13). The number of continuous variable in the
problem is

nc = 2(Np + 1)Ns (14)

where there areNs segments of trajectories ofNp + 1
basis function for eachx and y. However, some equality
constraints to satisfy initial and final configuration and the
continuity between segments of trajectories will reduce the
actual number of continuous variables by searching the null
space ofAeq of (13). Again, the number of binary variables
to describe feasibility with respect to each face of obstacle
is

nb = Nc ·Nf (15)

whereNc is the number of intermediate points on the whole
trajectory andNf =

∑no

i=1 ni is the total number of faces
of all obstacles. Then the number of substitution binary
variables is

nd = (Nc − 1)Nf + 2(Nc − 1) (16)

where each term is related to the quadratic terms in (7) and
(8), respectively. So the total number of binary variables will
be nb + nd.

The number of constraint is also an important factor in
computational complexity. The number of equality constraint
will be

neq = 2(kr + 1)(Ns − 1) + 2× 4 + no (17)

where the first term represent the continuity between seg-
ments of trajectories. The second term represents the equality
constraint of initial and final configuration; position and
velocity ofx andy. The last term is related to the h-signature
constraint, which is the same as the number of obstacles.
However, this equality constraint will disappear because we
search in the null space of this equality constraint while
reducing the number of continuous variables in the same

t = 23.1032
cost = 0.81085

(a)

t = 12.4738
cost = 0.65345
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t = 187.0652
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t = 3.3112
cost = 0.21916
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Fig. 6. Simulation result of trajectory generation in four different homology
classes with the same initial configuration (left bottom point) and final
configurations(right upper point). The first obstacle is parallelogram and the
second obstacle is triangle. The actual computation time(sec) and optimal
costs are specified on the upper left corners of plots. (a)Hd = [−1,−1]T .
(b) Hd = [−1, 0]T . (c) Hd = [0,−1]T . (d) Hd = [0, 0]T .

manner. Most of the constraints are inequality constraints
and we have

nineq =2Nc ·Nf +Nc · no +Nc · no + 3nd (18)

=5Nc ·Nf + 2Nc · no + 6Nc − 3Nf − 6

where the first term represents on which side of each face
the intermediate point is located – the first equation of (2)
and equation of (3). The second term represents the second
equation of (2) and the third term represents (7). The last
term presents the condition of substitution binary variables
(9). So the number of inequality constraint is bilinear with
respect to the number of intermediate points and faces of
obstacles.

IV. SIMULATION RESULTS

To illustrate how the suggested algorithm works, we
performed some simulations to generate optimal trajectories
of a point robot,δr = 0, in various homology classes of a
given environment. For all simulations, we use polynomial
basis functions,ek(t) = tk and minimize the integration of
the norm of acceleration of trajectories,i.e. we chooser = 2
in (5). In the first simulation, we find optimal trajectories
with two obstacles under homology constraint. As mentioned
in the introduction, the planned trajectory could be for a
differentially-flat dynamical robot system such as a kinematic
car [22], or a tricycle robot [23].

Figure 6 shows optimal trajectories with the same ini-
tial and final configurations but with different desired h-
signatures, and consequently different homology classes.For
each homology class, the CPLEX solver finds the optimal
trajectory.Comparing the computation time and cost of tra-
jectories of each homology class, it can be observed that the
optimal trajectory in the homology class corresponding to
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Fig. 7. Simulation result with anytime solutions. The computation
time(sec) and optimal costs are specified on the upper left corners of each
plot.

lower cost takes less time to compute. This is an expected
phenomenon since in a branch-and-bound algorithm the tree
of fixed binary variables tends to expand to minimize the
cost. In searching for the optimal trajectory in a particular
homology class (e.g. the one in Figure 6(c)), the algorithm
expands the nodes in the tree in such a way that feasible
solutions corresponding to other homology classes, but with
lower costs (e.g. the class in Figure 6(d)), are also obtained
in the process.

To show the anytime performance of the suggested al-
gorithm, we performed some simulations with the same
environment as earlier, and with the homology constraint of
Figure 6(c). The CPLEX solver was terminated at different
times to compare the resulting trajectories. As shown in
Figure 7, the cost decreases as we allow more computation
time. And as illustrated in the previous example in Figure 6,
we will get the global optimal trajectory with enough com-
putation time.

Next we present a series of four examples with increasing
number of obstacles, and subsequently increasing complexity
(see Figure 8). For all examples, we choose six segments of
trajectories with nine basis functions, such that the number
of continuous variables for optimization, as given by (14),
is nc = 108. The optimizer is given a maximum time of
one hour to search for a feasible trajectory. The resulting
found trajectory will respect the homology constraint and
may be either suboptimal or optimal. Figure 8(a) illustrates
results for the two obstacle case, showing trajectories in
all four different homology classes. Figure 8(e) shows how
the cost of each generated trajectory changes as we keep
searching – the corresponding trajectories have the same
color as in Figure 8(a). It is obvious that the trajectory
corresponding to the red curves in Figures 8(a),8(e) is the
global optimal one without topological constraints. So it

terminates searching solution before the time limit. Note
that we could not find global optimal trajectories for all the
homology classes within the time limit. Figure 8(e) however
shows that a feasible solution was found relatively quickly.
With additional computation time, we expect the optimizer to
either find the global optimal trajectories in each homology
class or guarantee that the current solution is the global
optimum.

Figure 8(b) shows the result of simulation with three
obstacles. We find suboptimal trajectories in all the eight
homology classes. As shown in Figure 8(f), an initial fea-
sible trajectory was found relatively quickly for all but one
homology class. For the homology class corresponding to
the black curve, the optimizer took over1000 sec to find a
feasible trajectory.

For the four obstacle case shown in Figure 8(c), we found
trajectories in nine homology classes, and could not find
trajectories in other seven homology classes within the time
limit. The missing seven trajectories should pass obstacle4
on left like one of the green plots in Figure 8(c). Similarly,
for the five obstacle case shown in Figure 8(d), we found
trajectories in only five homology classes among25 = 32
possible homology classes. As we found all eight trajectories
passing between obstacle4 and 5, like the trajectories in
Figure 8(b), there are feasible trajectories in these homology
classes which can be represented with our parametrization
and can be found.

As illustrated by these simulations, although the optimizer
quickly found initial feasible suboptimal trajectories invari-
ous homology classes, it could either not find corresponding
optimal solutions for all classes or not find the trajectories in
all the possible homology classes within the provided time.A
few reasons for this are (a) insufficient computation time for
the optimizer, (b) insufficient continuous-time variablesfor
parametrization of longer and winding trajectories in certain
homology classes, and (c) fundamental limitation of using a
general purpose solver such as CPLEX for this particular
scenario. To address the issue of computation time, the
algorithm can easily be run longer, but more importantly, the
computation time can be improved significantly by providing
an initial guess for the optimization. Further, increasingthe
number of continuous-time variables will also help since
Proposition 1 guarantees that there exists a feasible trajectory
with a sufficiently large number of segments of trajectories.

V. CONCLUSION

In this paper, we have presented a method to find a
smooth optimal trajectory subject to geometric and kinematic
constraints, and restricted to a specific homology class.
We used a Mixed-Integer Quadratic Programming(MIQP)
formulation to achieve this. The homology constraint is
incorporated by calculating the h-signature of the trajectory
from its binary variables, which constitute a coarse repre-
sentation of trajectory. The calculation of the h-signature
is quadratic in the binary variables but is reduced to a
linear equation by introducing substitution binary variables.
The resulting problem then becomes a MIQP, which can be
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Fig. 8. (a)-(d) Final trajectories in four different homology classes with two, three, four and five obstacles, respectively. (e)-(h) Cost of the trajectories
along with computation time with two, three, four and five obstacles, respectively. The plots shows the change in cost with time plotted in log scale.

solved using an anytime numerical solver like CPLEX. We
also illustrated the anytime performance of the suggested
method with various simulations. However, the substitution
binary variables increase the problem size of MIQP, and
thus requires more computation time. Clearly reducing the
computational complexity of the method is an important
direction of future research. In addition, we plan to extend
the basic method to three-dimensional settings using the
framework used in [12].
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