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Abstract— There are many applications where topology con-
straints are useful in trajectory generation for mobile robots. In
this paper we present a method to generate an optimal trajec-
tory restricted to a particular homology class. The optimality
is achieved by formulating the trajectory generation problem
as a Mixed-Integer Quadratic Program (MIQP). We introduce
binary variables that not only encode information about the
satisfaction of geometric constraints, but also incorporate in-
formation about the homology class. We define the h-signature,
a complete homology class invariant, as a quadratic function of
the binary variables, which we subsequently convert to a linear
function by variable substitutions. As a result, the suggested
trajectory generation problem under homology class constraints
can still be formulated as a MIQP, which can be solved by
an anytime solver like CPLEX. We illustrate the method with
examples of minimum acceleration trajectory generation under
different homology class constraints with potential application
to differentially-flat systems with a two-dimensional flat output
space.

I. INTRODUCTION

Subhrajit Bhattacharya Vijayri&n

Early attempts at classifying homotopy classes in two
dimensions include geometric methods [13], [14], homotopy
preserving probabilistic road-map constructions [15]d an
triangulation-based path planning [16]. Two trajectoraes
said to be homotopic if one can be continuously deformed
to another without intersecting any obstacle. Each set of
trajectories that are homotopic forms an equivalence class
called a homotopy class (see Figure 1(a)). A particular
homotopy class can be specified by a representative trajecto
in that class. Thus, trajectory generation with homotopgsl!
constraints consists of finding an optimal trajectory in the
desired homotopy class, specified by the given represeatati
trajectory, that also respects the kinematic constraintse
can think of applications ranging from multi-robot explo-
ration, where it may be beneficial to deploy each robot in
a different homotopy class to ensure maximal coverage and
minimal congestion, to single arm motion planning where
one may seek paths that go around obstacles one way or the

Trajectory generation algorithms for robotic systems is onother based on the specific task.

of the most active areas in robotics research. Some litemtu

Our objective in this paper is to design optimal trajec-

focus on finding optimal trajectories in convex or unboundetPry for a robot that minimizes an integral cost functional
spaces [1], [2]. However, with development of computationdWhich depends on the trajectory), while also respecting
capabilities, significant research interest has been tatuskinematic constraints of the system, avoiding obstacled, a
on algorithms for generating trajectories in clutteredn-no €onstraining the trajectory to a particular homology class
convex environments with kinematic and dynamic consteaintT he kinematic constraint that we will consider in partigula
in the form of constraints on communication, coverage$ that the trajectory needs to be smoothdifferentiable).
environment, time, etc (see kinodynamic planners [3], RRYVe will however not consider bounds on curvature in the
trees [4], LQR trees [5], Elastic Roadmaps [6], MILP [7], [8]Present work. Although several of these subproblems have
and references within). Most of the algorithms are devedope?€en solved separately (see [3], [4], [5]. [17], [18], [12])

to find optimal trajectories satisfying feasibility corsstrts.

there is no literature, to our knowledge, that addresses the

However, there have also been considerable amount of @mbined problem described above. We assume a planar

search interest in algorithms for generating trajectofas

robot of finite radius and with a safety padding around

multi-agent problems [9], [10], [11]. In such problems it isit. @nd represent a planar trajectory of its centgt,), by

often required that each robot follows different trajesito

the points|g,(t), ¢,(t)] parametrized by. We use mixed-

cover or sense the whole work space as in search-and-res#tfgger quadratic programming [19], [20] to check feagipil
or surveillance problems. This brings forth the necessity @f €ach intermediate point on the trajectory and to divide

finding trajectories in topologically different classeshig

the configuration space into subsets. We start by assuming

requires that we impose constraints on the homotopy clasdgét the required homology class is specified by a value of
of the trajectories accordingly. However, in many practticathe h-signature, which will be defined later in Section IlI-B
robotic problems, homology class constraints act as daeitab>Pecifically, the suggested algorithm is an anytime allgorjt
and convenient substitutes for homotopy class constrair@®d we can achieve an optimal trajectory that is guaranteed
[12]. In this paper we propose an anytime algorithm fofo have the desired h-signature value while satisfying the
finding optimal trajectories in specific homology classe&inematic and topological constraints. This method can be
(i.e. finding trajectories with homology class constraints)used for trajectory generation for differentially-flat sms
satisfying smoothness conditions, and minimizing a cod21] with a two-dimensional flat output space, such as a

function that is not necessarily the length of the trajegtor Kinematic car [22], or a tricycle robot [23], which not only
but involves higher order derivatives. produces a trajectory respecting the homology constrairtt,

also provides the nominal feed-forward forces (due to the
differential-flatness property,) for use in feedback colnfor
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Fig. 1. (a)7 is homotopic tor; since there is a continuous sequence (@) (b)
of trajectories representing deformation of one into theeothy belongs to  Fig. 2. The normal vector; 7, of the fth face of obstacle; is pointing
a different homotopy class since it cannot be continuousfgprdeed into  inward. p is an arbitrary poiﬁt on thegtthface. (a) An example of € Q

any of the other two. (b) Example where the trajectories gnd 72) are  whens; ¢ =0. (b) An example of; € Q whenb; ; = 1.
homologous, but not homotopic. ’ ’

trajectory tracking. B. Optimal Trajectory Generation

The outline for the rest of the paper is as follows: We consider trajectory planning in a compact suliget
Section Il briefly reviews some related previous works likeR? of a plane. LetO = {01,092, - ,0,,} be a set of
h-signature and MIQP. Section Ill describes the algorithmonvex, pair-wise disjoinbbstaclesin ¢ (The requirement
to find optimal trajectories that are in a specified homologgf convexity of obstacles can be relaxed by considering a
class and satisfy other kinematic and dynamic constraintset of arbitrarily-shaped obstacles such that their convex
Section IV presents an example of finding optimal trajechulls are pair-wise disjoint). Each obstacle € O can
tories with homology class constraints for a planar mobilée represented by a;-sided convex polygon, whose faces
robot. Finally, Section V provides concluding remarks. define hyperplanes that partitiap into two half-spaces. A
binary variable is used to indicate whether a point is on the
feasible side of the hyperplane, as described in [20]. So a
A. Homotopy and Homology Classes for Trajectories  point ¢ € @ will be feasible and will avoid collision with

We begin by defininghomologoustrajectories and illus- an obstacleo; if there is at least one fac¢ € [1,...,n;]
trate the difference between homology and homotopy. Tweatisfyingn; ;-q < s; ;. Wheren; y is a normal vector to the
trajectories,q; and g2, connecting the same start and endf‘" face of obstacle; pointing inward, ands; ; = n; s - p,
points are homologous if and only if the closed loop formedor an arbitrarily chosen point on the f*» face as shown in
by them,q; | | —q2 (i.e, ¢1 together withg, with opposite Figure 2. Similar to obstacle avoidance using binary vaesb
orientation), forms the boundary of Zxdimensional region b; s, as described in [20], a given point is feasible with
on the plane not containing/intersecting any obstaclearit ¢ respect to obstacle; if
be shown that [12] homology is a coarser representation of
homotopy, with trajectories that are homotopic being also "/ "4 = i — 0r + Mbi for f=1,...n (2)
homologous. Figure 1(b) shows a good example of two < b <1
trajectories, which are homologous but not homotopic. Z if = T ’

A compact representation for the homology classes of =1
trajectories is then-signature computed using the Cauchy whered; ; € {0,1} are binary variables (wittb; ; = 0
integral theorem and the Residue theorem from complérdicating that the point lies on the feasible side of the
analysis, as proposed by Bhattacharya et al. [18], [12]. Thg" face of thei’” obstacle as shown in Figure 2(a)), and
h-signature of a trajectory;, with respect to obstacle; is M > 0 is a large positive numbe#, > 0 is the radius of the

Il. PRELIMINARIES

defined as disk encircling the finite-sized robot, along with some bafe
1 padding around it. The second inequality in (2) implies that
Hj (q) :/ »_ Z.dz @) the point ¢ will be feasible with respect to at least one
ty ’ 1 face,i.e., for a giveni, there exists at least onesuch that
:/ . (G (t) +igy(t)) dt b; ; = 0. Although (2) is a sufficient condition for feasibility,
o 9o(t) +igy(t) — 2 this formulation breaks ug into overlapping subsets as

where z(t) = ¢, (t) + ig,(t) is the complex representation shown in Figure 3(a). The first three plots in Figure 3(a)
of the trajectory, and; is the complex representation of anillustrate that the subset correspondinghte: [0, 0, 1] is the
arbitrary point inside obstacle;. Then the h-signature with intersection of the two subsets corresponding te [0, 1, 1]
respect to all obstacles is given by = [Hi, ..., H,,,]* with and b = [1,0,1]. Considering the segment of trajectory
n, obstacles. However, since this h-signature is nonlinear in the last plot of Figure 3(a), the binary variable vector
the optimization variables that we will use for describihg t b, corresponding to the poing, is not unique, but could
trajectories, we will define the h-signature using a difféere be any ofb = [0,1,1], b = [0,0,1] andb = [1,0,1].
formulation which is consistent with its definition of beingAs a result, we can have the same trajectory (represented
a complete invariant for homology classes. by the points on it) described by different sets of binary
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Fig. 3. (a) Overlapping subsets divided by values of binamwables representing each face of triangular obstacjeDidjointed cells divided by values
of binary variables representing each face but considexiftitional constraint. (c) An example of parallelogram abk. f is the index of each face. Red
and magenta curves are infeasible trajectories betweendasible configurationg;; andg2. Adjacent intermediate pointg{, g1 andgs) are satisfying
additional constraint.

variables. Such duplication increases the size of thelflsasi trajectory generation problem can then be simplified as the
region in the space of binary variables, resulting in redumd following MIQP (Mixed-Integer Quadratic Program),
searches, and larger computation times. To eliminate such

cases, we introduce some additional inequality consgamt min ¢’ He (6)
build disjointed cells like in Figure 3(b), b

st. A;c+D b <
Mg q < =i+ 00+ M(L—bis) for f=1,.. n,. f 19=91

(3) Aph < gy

The first inequality of (2) only guarantees that the pains Aege =0

on the feasible side or outside ¢f" face whenb; ; = 0. ~ . . .

But the constraint (3) enforces that the poinbe on the where b is the vector formed by .stacklng_all the_ binary
other side wherb, ; = 1. Thus, the feasible regior, vectors,bk., corresponding to .the intermediate pomtp;?

is partitioned into disjoint cells, each of which is bounded’ the trajectory and hence is a coarse representation of
by hyperplanes defined by the faces of the obstacles. (s&¥§ continuous trajectory(t). The first inequality captures

Figure 3(b)). Moreover, each cell can be identified by the feasibility constraints of (2) for the intermediate rgei
unique vector of binary variables,= [b7 . ..,bT |7 where the second inequality captures the constraint on sum of

bi = [bit, ... bin,|T € 0,1} ° b?nary v.ariz_;\ples in (2), apdﬁleqc = 0 imposesrt" Qrc_ier
We parametrize the trajectory by spliciny, segments differentiability at thejqutlon of t.h.e.segme.nts of.trapmes
of trajectories, each parametrized by linear combinatibn @"d the boundary conditions of initial configuratian() =
N, + 1 basis functions, ¢o and final configurationy(ts) = ¢;.
N To find an optimal trajectory in a specific homology class,
4 we can then add some topological constraints. If we add
at) =) ciren(t—t;) for t;<t<tin. (4 5 constraint on the h-signature of (1), which we described
k=0 earlier, such that the h-signature of the trajectafi(q),
for j € [0,....Ns —1], 0 =ty < t1 < .. < tn, = t;. should be some desiredl;, the quadratic program (6)
Whereey(t) is any basis function and, ;, are coefficients. becomes a non-convex problem. Furthermore, the gradient of
The trajectory is restricted to ble.-times differentiable at the new constraintd = H,, will be zero almost everywhere,
the junction of each of the segments of trajectorig$;), because the value of the h-signature does not change within
for j € [1, ..., Ns—1]. Further, obstacle avoidance is achieved particular homology class.€. the range of the h-signature
by enforcing (2) at some equally distributed intermediatés a set of discrete variables). So, the resulting problem is
points on each segment of trajectories. we choose the ca@sihon-convex problem, which is numerically hard to solve
function to be the integration of the square of the norm obased on gradients of cost and constraints. So, we need a
rt*-derivative of the trajectory: different way to enforce topological constraints, and ftkis
T described in the next Section.
dq(t)
o= [
to

dtr
where ¢ = [cf,..c} _,]", and H depends only on the
choice of the basis functions (note that we could choose In this Section, we will describe our algorithm to gener-
a cost function that is a weighted sum of different ordeate the optimal trajectory with homology constraints while
derivatives, and still keep it quadratic i¥f). The optimal ensuring that the problem remains a MIQP.

2
dt = ¢'He. (5)

Il1. ALGORITHM DESCRIPTION



A. Additional feasibility condition B. Define h-signature

To find an optimal trajectory contained in a specific
homology class, the h-signature of [18] can be used. How-
%ver, this function is based on Cauchy integral theorem and
is both nonlinear with respect to the given trajectory or
Befficient of basis functions. So we define a new h-signature
keeping in mind the definition of homologous trajectories of
12]. Instead of calculating winding number through Cauchy
tegral, we can get it by counting how many times the

We start by noting that the feasibility (with respect to
obstacles) of each intermediate point on the trajectorysdo
not guarantee the feasibility of the whole trajectory. Goeis
an example with only one parallelogram obstacle as shown
Figure 3(c). In Figure 3(c), two adjacent intermediate pin
q1 andgs, are both feasible with respect to the given obstacl
01. The red curve in Figure 3(c) shows an infeasible curv

conlr:je%tmgf] tw%l pﬁ!EtS'IhOf course, the oHptlmaI tra;LeCtlc.)r)élosed curve intersects a reference ray (one dimensioifal ha
cou ? casl et. ! eth etgreen .Cltjrvet'h owever,t € Ing perplane), originating on the obstacle, in either closkew
segment connecting the two points (the magenta CUNVEY counterclockwise directions. The Figure 4(a) shows an

is infeasible. To avoid such undesirable cases, we neg ample. Since the closed loop formed hy | —7», where
additional constraint between adjacent intermediate tpoin —7, means reverting the direction of trajectory, ;:rosses the

'éhe qlérvgs |r:hF|gure 3(c) |Iltqutrat:fas this a(_jdtl)tllonalf cmm::: . red ray twice, first in clockwise and then in countercloclevis
onsidering the corresponding binary variables of €achtpol direction, the winding number of this closed loop becomes

gs is only feasible with respect to fage= 1 and the next zero, and the area enclosed by this closed curve does not

intermediate pointg, is also feasible with respect to the_contain the obstacle,. Thus, in Figure 4(a)y, and, are

same face. So, the line segment, connecting these two po'ﬂtcc'mologous However, the closed loop formed-y | —7
is also feasible with respect to fage= 1. Moreover, both intersects the red ray once in clockwise. The winding number

q5_6‘r12d gs F:LGVIIQUS poinga, ?.rel fgasuﬁle W'Fh r?spefct tqbflacel of 71 | | —73 is one, not zero, and two trajectories are not ho-
f=2. So the line segment joining them is also feasible. rPnologous. This definition is consistent with previous werks

contragt, conglder the _caseq;_fandqg in Figure 3(c)._T_h_ese [18], [12]. So we define new h-signature of a trajectory with
two adjacent intermediate points do not share feasibilith w respect to an obstacle,, as the number of intersections with

respectto a common fa_ceq-f 'Sf feasible with respect to only reference ray ob; in clockwise subtracted by the number of

face f = 4 andg, is feasible with res.p_e.ct to only fggfe: L intersections with reference ray of in counterclockwise.

So we cannot guarantee the feasibility of the line segmentye can choose arbitrary reference ray of each obstacle but

connecting these two points. for convenience of calculation and notation, we choose the
The above discussion suggests an additional constraint tﬁ?:erence ray as the extension of fate- 1 in the direction

oo ; ; the last facef = ny as shown in Figure 4(b). Also,
two consecutive intermediate points should share a comm the consistency of sign of winding number, the faces

hyperplane with respect to which they are feasible, and thige numbered in counterclockwise direction like Figure) 4(b
should hold true for each obstacle. In other words, the BinaThen it is obvious that we need to accumulate the value of
variables corresponding to the adjacent intermediatet®oir;1.x+1 — bi,1,x for Vk (where byb; ;. we mean the binary
should either be the same or differ by only one componentariable for thek*" intermediate point corresponding to the
and this condition should be satisfied with respect to ali" face of thei"" obstacle). However, to avoid counting the

: : 2. number of intersection with the the other ray obtained by
obstacles. This constraint then guarantees the feagibilit extending the facef — 1 in the other direction (the green

a ;traight Iine_ segment connef:ting the two intermediaqo;he in Figure 4(b)), we need to count the case when the
points. We write b, ) to describe the vector of binary two adjacent intermediate points are infeasible with respe
variables for thek!" intermediate point formed by stacking to the second fac¢ = 2, i.e. b; 5 141 = b; 2 = 1. So, the

together the binary variables for the different faces of thB-Signature with respect to an obstaalg, will be

o'" obstacle (thus, it is a,-sized sub-vector of). Thus the hi(b) :Z bigksr +biak (bihs1 — bing) - ®)
constraint involving the:* andk + 1'" intermediate points k 2
with respect too!” obstacle can be describe as = biok (bikss — biix)
bosw — b - '
” (o,k) ™ (O”““)HQ o The second equality of above equation holds because
Do,k “Oo,k) + Do k1) Do k1) = 2b(o.k) bok+1) = by o 41y = b0 WheENb; 1 g1 # b1k due to the constraint
> bow) T Y bloger) — 2b(o) * bojerny <1 we defined in (7). The h-signature with respect to all ob-

(7) stacles will beH = [hy, ..., h,,]", Wheren, is the number
where, > b denotes the sum of the elements of a binaryf obstacles. However, this new h-signature is also quiadrat
vector, and the last equality holds sinbe b = > b for iy pinary variables. We will discuss how we can reduce this

a vector of binary variables; € {0,1}". This additional qgyadratic equation to a linear one in the next section.
constraint on the gradual change of the binary variablagglo

the trajectory plays an important role in formulation of aC- Substitution binary variables

new h-signature based on binary variables, as described inAs the new constraint in (7) and the h-signature in (8) are
the next section. However, this constraint is quadratican t quadratic with respect to the binary variables, we intreduc
binary variables, and we will discuss how we can reduce thsomesubstitution binary variablethat represent the product
constraint to a linear one in Section IlI-C. of two binary variables. For example, consider the product
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Fig. 4. (a) An e(xe)imple of counting winding numtge)r of trajeaeri(b) An  Fig. 5. Starting from a piece-wise linear curve (cyan), we peogressively
example of calculating the h-signature with respect to agugar obstacle. add points, to make the trajectory smoother by increasing tder cof
differentiability by one at each step.

(©)

of two binary variablesb; - b;, for b;,b; € {0,1}. Then, we

: : . . through numerical solvers like CPLEX [24]. However, we
substituteb; - b; with a new binary variablel;; € {0,1}, on

hich ! he followi h X lit need enough number of segments of trajectori€s) @nd
which we impose the following three inequalities, basis function {,) to be able to obtain a feasible trajectory
dij <bi . dij<b; . —2+0+4b+b<dy; () :
U= Ta =T R in the given homology class.
where0 < § < 1is a design parameter. The first two proposition 1 (Completeness Guarante&uppose there
inequalities in (9) enforcel;; = 0 whenb; = 0 orb; =0, exists an arbitrary trajectory (dark blue curve in Fig-
respectively. And the last inequality enforaés = 1 when e 5(a)), not touching any of the obstacles, in the homology
bi = bj = 1, becausé) < § < d;;. So the above three c|ass represented by the h-signaturerbf, that crosses the
constraints let us perform the substitutidyy = b; - b;. Let  ce|l boundariesi(e. the hyperplanes)n or less number of
d be the vector of substitution variables with which we nee¢yes (for avoiding ambiguity we assumeis generic and
to replace all the quadratic terms in (7) and (8). Then Wehat it does not pass through the intersectior2 afr more
can rewrite the feasibility conditions of substitution dip hyperplanes). With the choice of basis functiangt) = t*

variables, (9), as _ in (4), and with N, > r, it is then sufficient to choose
Afab+ Byad < by. (10) N, = 27(m — 1) + 1 in order to guarantee existence of a
Then we can rewrite the quadratic constraint of (7) for th&0lution for the problem in (13).€. all the conditions being
whole trajectory as satisfied, and with finite cost).
Ay xb+ Boxd < b i (11) Sketch of Proof.Consider then — 1 consecutive cells that
: passes through. We choose— 1 points,q?,q9,--- ,4¢%_1,
for all o and k. And the h-signature calculation of (8) respectively in the interior of each of these cells. Now,
becomes the following linear equation two such consecutive cells together form a convex region
hi = A; pd. (12)  (bounded by the hyperplanes the cells are individually

So, we can reduce all equations containing quadratic terfR@Unded by, except for the one hyperplane that separates
in the binary variables to linear ones using the substittio"€M)- Thus, the piece-wise linear curve formed by joining
binary variables. these consecutive points (call thig) give a trajectory

consisting of m segments (cyan curve in Figure 5(a)),
D. Finding Optimal Trajectory in a given Homology Class connecting the initial and final points, not intersecting af
Since our goal is to design optimal trajectory with homolihe obstacles, and is continuoii(0*" order differentiable).
ogy constraint, we can impose the new constraints of (10yhe affine segments are permitted by the choice of the basis
(11), and (12) to the optimal trajectory generation problerfnctions (the parametrization may be chosen arbitrarily)

(6) to formulate a new MIQP as follows thus giving values of coefficients; ;, in (4) that describe
. " this trajectory. Those, along with the binary vectors corre
mglnd ¢ He (13)  sponding to each of these points, satisfy all the conditions

~ _ in (13), except for the differentiability conditioA.,c = 0.
st. Aje+Dsb<g; , Ab<g , The main idea behind the proof of this proposition is that
Agb + Byd < by Aob+ B,d < b, , we can now replace each of the poir@% by two points
Age=0 , Ayd=H, lying arbitrarily close to it, and thus “smoothen” the curve
B (Figure 5(b)). This smoothening is possible to achieve with
whereb and d are vectors of binary variables as describegust an unit increase in the degree of the basis functions
earlier. The third inequality is the condition of substibmt (which is evident by looking at the individual components
variables (10), the forth inequality is for additional fémlity ~ ¢0(¢) andgy(t), as illustrated in Figure 5(c)) — in this case,
constraint for continuous change of binary variables (11going from linear to quadratic (it is always possible to find
and the last equality is for the homology constraint witta parabola that has two given lines with bounded slope as
respect to all obstacles (12). As the resulting problem igngents, and then scale it down such that the contact points
MIQP, we can get an anytime solution to this problenwith the tangents lie within a small ball around the point of



intersection of the lines). t = 23.1032 t=12.4738
Thus, now we have a new trajectory (call thi¥), that cost = 0.81085 cost = 0.65345
is smooth everywhere, but not twice differentiable (red
trajectory in Figure 5(b)). However, we can continue the
same process of smoothening the derivativesq@f by
adding points in a small neighborhood of the origings,
doubling the number of intermediate points at every step.
The choice of this neighborhood can be arbitrarily small to
ensure that the added points remain in the interior of theesam
cell. Continuing this until we have" order differentiability @ ()
requires2” (m - 1) intermediat_e points. In this way, we can 238%272988538 tcgsf-f%}%lgm
construct a trajectory that satisfies all the conditions1@f)(
]

E. Computational Complexity

The resulting optimal trajectory generation problem is
a MIQP, which can be solved by an anytime solver like
CPLEX. Thus, if there exists a feasible solution, it will be
found by CPLEX. Moreover, with additional time available © (d)
for computation, a lower cost solution can be found. Howrig. 6. Simulation result of trajectory generation in foufetient homology

ever the Computat|0n tlme W|” |ncrease Wlth the COmpr't classes with the same initial Configuration (Ieft bottom p)omnd final
' configurations(right upper point). The first obstacle isgiatogram and the

of the given _MIQP- So, in_ this SECtion*_ we will discutsssecond obstacle is triangle. The actual computation (tierg and optimal
the computational complexity of the trajectory generatiomosts are specified on the upper left corners of plotsHa)= [—1, —1]7".

problem (13). The number of continuous variable in thd) Ha = [~1,0]". (¢c) Hq = [0,—1]". (d) Hy = [0,0]".
problem is

ne = 2(N, + 1)N, (14) manner. Most of the constraints are inequality constraints
and we have
where there areN, segments of trajectories aWV, + 1 Nineq =2Ne - Ny 4+ Ne - 1o + Ne -1 + 3ng (18)
basis function for eaclr and y. However, some equality =5N,- N; + 2N, -n, + 6N, —3N; — 6

constraints to satisfy initial and final configuration ane th ) _ )

continuity between segments of trajectories will reducge thhere the first term represents on which side of each face
actual number of continuous variables by searching the ndffe intermediate point is located — the first equation of (2)
space of,, of (13). Again, the number of binary variables@nd equation of (3). The second term represents the second

to describe feasibility with respect to each face of obstacfduation of (2) and the third term represents (7). The last
is term presents the condition of substitution binary vasabl

ny = N, - Ny (15) (9). So the number of inequality constraint is bilinear with
respect to the number of intermediate points and faces of
where N, is the number of intermediate points on the wholebstacles.
trajectory andN; = "', n; is the total number of faces

of all obstacles. Then the number of substitution binary IV. SIMULATION RESULTS
variables is To illustrate how the suggested algorithm works, we

ng = (N.—1)Ny +2(N.—1) (16) performed some simulations to generate optimal trajezsori
of a point robot,s,, = 0, in various homology classes of a

where each term is related to the quadratic terms in (7) a en environment. For all simulations, we use polynomial

(8), respectively. So the total number of binary variabléds w basis functionse, (f) — ¢* and minimize the integration of

be ny + na. o . . the norm of acceleration of trajectories. we choose = 2

The nqmber of constraint Is also an important factor T (5). In the first simulation, we find optimal trajectories
cqmputaﬂonal complexity. The number of equality consirai with two obstacles under homology constraint. As mentioned
will be Neg = 2(kr + 1)(Ns — 1) + 2 x 4+ 1, 17) in' the introduction, thg planned trajectory could b.e.for a

differentially-flat dynamical robot system such as a kingma

where the first term represent the continuity between segar [22], or a tricycle robot [23].
ments of trajectories. The second term represents theigqual Figure 6 shows optimal trajectories with the same ini-
constraint of initial and final configuration; position andtial and final configurations but with different desired h-
velocity of x andy. The last term is related to the h-signaturesignatures, and consequently different homology clagz®s.
constraint, which is the same as the number of obstaclesach homology class, the CPLEX solver finds the optimal
However, this equality constraint will disappear becauge wirajectory.Comparing the computation time and cost of tra-
search in the null space of this equality constraint whilgectories of each homology class, it can be observed that the
reducing the number of continuous variables in the sanmptimal trajectory in the homology class corresponding to



t=2.3226 t = 2.8408 terminates searching solution before the time limit. Note
cost = 53.2028 cost = 7.492 that we could not find global optimal trajectories for all the
homology classes within the time limit. Figure 8(e) however
shows that a feasible solution was found relatively quickly
With additional computation time, we expect the optimizer t
\ either find the global optimal trajectories in each homology
class or guarantee that the current solution is the global
optimum.
Figure 8(b) shows the result of simulation with three
@ ®) obstacles. We find suboptimal trajectories in all the eight
tch‘tl':s%aﬁlsm 255%91-92951983 hpmolog_y classes. As shown in F|gur§ 8(f), an initial fea-
sible trajectory was found relatively quickly for all but @n
homology class. For the homology class corresponding to
the black curve, the optimizer took ovéd00 sec to find a
feasible trajectory.

For the four obstacle case shown in Figure 8(c), we found
trajectories in nine homology classes, and could not find
trajectories in other seven homology classes within the tim

© @ limit. Th_e missing seven trajectorigs should pass qbs_tacle
Fig. 7.  Simulation result with anytime solutions. The compotat 0N left like one of the green plots in Figure 8(c). Similarly,
time(sec) and optimal costs are specified on the upper left corners ¢f eador the five obstacle case shown in Figure 8(d), we found
plot trajectories in only five homology classes amatig= 32

) o possible homology classes. As we found all eight trajeesori
lower cost takes less time to compute. This is an eXpeCt%ssing between obstacleand 5, like the trajectories in

phenomenon since in a branch-and-bound algorithm the tr??gure 8(b), there are feasible trajectories in these hogyol

of fixed binary variables tends to expand to minimize the|asses which can be represented with our parametrization
cost. In searching for the optimal trajectory in a particula,q can be found.

homology classé.g.the one in Figure 6(c)), the algorithm A jjjstrated by these simulations, although the optimize
expapds the nodes n the tree in such a way that feas',t&%ickly found initial feasible suboptimal trajectoriesvari-
solutions corresponding t(_) other homology classes, bln Wityys homology classes, it could either not find corresponding
lower costs €.9.the class in Figure 6(d)), are also obtained,ima| solutions for all classes or not find the trajectsiie
in the process. all the possible homology classes within the provided tite.
To show the anytime performance of the suggested aew reasons for this are (a) insufficient computation time fo
gorithm, we performed some simulations with the samgye optimizer, (b) insufficient continuous-time variabfes
environment as earlier, and with the homology constraint gfarametrization of longer and winding trajectories in @iert
Figure 6(c). The CPLEX solver was terminated at differenhomology classes, and (c) fundamental limitation of using a
times to compare the resulting trajectories. As shown ifeneral purpose solver such as CPLEX for this particular
Figure 7, the cost decreases as we allow more computati§Benario. To address the issue of computation time, the
time. And as illustrated in the previous example in Figure &ajgorithm can easily be run longer, but more importantlg, th
we will get the global optimal trajectory with enough com-computation time can be improved significantly by providing
putation time. an initial guess for the optimization. Further, increasihg
Next we present a series of four examples with increasingumber of continuous-time variables will also help since
number of obstacles, and subsequently increasing conylexProposition 1 guarantees that there exists a feasibletoaje
(see Figure 8). For all examples, we choose six segmentswith a sufficiently large number of segments of trajectories
trajectories with nine basis functions, such that the numbe
of continuous variables for optimization, as given by (14),
is n. = 108. The optimizer is given a maximum time of In this paper, we have presented a method to find a
one hour to search for a feasible trajectory. The resultingmooth optimal trajectory subject to geometric and kinémat
found trajectory will respect the homology constraint anaonstraints, and restricted to a specific homology class.
may be either suboptimal or optimal. Figure 8(a) illustsateWe used a Mixed-Integer Quadratic Programming(MIQP)
results for the two obstacle case, showing trajectories fiormulation to achieve this. The homology constraint is
all four different homology classes. Figure 8(e) shows howncorporated by calculating the h-signature of the trajgct
the cost of each generated trajectory changes as we kdepm its binary variables, which constitute a coarse repre-
searching — the corresponding trajectories have the sarmsentation of trajectory. The calculation of the h-signatur
color as in Figure 8(a). It is obvious that the trajectoryis quadratic in the binary variables but is reduced to a
corresponding to the red curves in Figures 8(a),8(e) is tHmear equation by introducing substitution binary vaheeh
global optimal one without topological constraints. So ifThe resulting problem then becomes a MIQP, which can be

V. CONCLUSION
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(a)-(d) FEnaI trajectories in four different homojoglasses with two, three, four and five obstacles, respytive)-(h) Cost of the trajectories

along with computation time with two, three, four and five obks, respectively. The plots shows the change in cost Witk plotted in log scale.

solved using an anytime numerical solver like CPLEX. Wg11] H. Zhang, V. Kumar, and J. Ostrowski, “Motion planningdem uncer-
also illustrated the anytime performance of the suggested
method with various simulations. However, the substitutio
binary variables increase the problem size of MIQP, and
thus requires more computation time. Clearly reducing thié2l
computational complexity of the method is an important
direction of future research. In addition, we plan to extend
the basic method to three-dimensional settings using ttl
framework used in [12].
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