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Abstract— Control invariant sets are crucial for various methods
that aim to design safe control policies for systems whose state
constraints must be satisfied over an indefinite time horizon. In
this article, we explore the connections among reachability, control
invariance, and Control Barrier Functions (CBFs) by examining the
forward reachability problem associated with control invariant sets.
We present the notion of an “inevitable Forward Reachable Tube”
(FRT) as an analysis tool for the verification of control invariant
sets with differentiable boundaries. Our findings show that the
inevitable FRT of a robust control invariant set with a differentiable
boundary is the set itself. We highlight the importance of the differ-
entiability of the boundary through numerical examples. We also
formulate a zero-sum differential game between the control and
disturbance, where the inevitable FRT is characterized by the zero-
superlevel set of the value function. By incorporating a discount
factor in the cost function of the game, the barrier constraint of
the CBF naturally arises as the constraint that is imposed on the
optimal control policy. As a result, the value function serves as
a CBF-like function. Conversely, any valid CBF is also a forward
reachability value function inside the control invariant set. As such,
our work establishes a strong link between reachability, control
invariance, and CBFs, filling a gap that prior formulations based
on backward reachability were unable to bridge.

I. INTRODUCTION

Safety guarantees are essential for control design in many appli-
cations. In this article, we focus on safety problems that can be
represented by ensuring that system states satisfy specific constraints
over an indefinite time horizon. An effective strategy to maintain state
trajectories within the desired constraint region involves identifying
a subset in which the trajectory can remain indefinitely. Then, the
control policy that renders the trajectories invariant within this set will
ensure that the system remains safe. Sets exhibiting these properties
are referred to as control invariant sets [1], and are key to various
methods for designing safe control policies in the literature [2]. As
such, the theoretical analysis of control invariance offers valuable
insights for the development of safe control policies.

A typical way of characterizing a control invariant set is by using
a scalar function whose zero-superlevel set defines the invariant
set, known as the barrier certificate [3]. This concept has evolved
into the notion of a control barrier function (CBF) [4], which
mandates that the function satisfies a particular differential inequality
condition. Control policies generated by imposing this condition not
only maintain safety on the boundary of the set, but additionally
enforce that trajectories approaching the boundary “brake” smoothly.
The condition will be called the barrier constraint in this article.

This paper presents the analysis of control invariance and the bar-
rier constraint through the lens of reachability analysis. Reachability
analysis, in fact, forms the basis for many methods that construct
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control invariant sets using dynamic programming principles [5]–
[7]. In these methods, a value function is computed by solving an
optimal control problem, whose level sets characterize the invariant
sets, similarly to the CBFs. An attempt to bring in the idea of the
barrier constraint into the reachability formulations was made in [8],
however, it was limited to finite-horizon problems. We will discuss
in Section V how this formulation struggles to extend to infinite-
horizon problems when considering control invariance. This article
works toward developing a new reachability formulation that resolves
the issues that arose in [8] for its infinite-horizon extension.

The key idea of our new formulation is to use the forward
reachability concept, instead of the backward reachability concept
that was employed in previous literature on reachability for control
invariance [5]–[10]. Forward reachability focuses on the set of states
that an initial set reaches in the future, whereas backward reachability
pertains to the set of states that reaches a terminal set from the past.
In the previous works, one typically verifies control invariant sets by
identifying and eliminating states that will inevitably reach unsafe
regions, which corresponds to the backward reachability problem.

In contrast, we take the perspective of forward reachability.
Forward reachability concepts have also been employed in safety
control and verification literature. Rather than producing a control
invariant set, application of forward reachability typically focuses on
determining the set that encompasses all possible forward trajectory
evolutions from an initial set and verifying whether this set intersects
with any unsafe regions. Such a set is known as the maximal forward
reachable tube (FRT) [11], and has been the primary focus of forward
reachability applied for safety applications [12]–[14].

Little attention has been paid to the minimal FRT, which only
includes states that are inevitably reached from the initial set [11].
The study in [11] enumerates various combinations of reachable set
concepts, including backward versus forward and minimal versus
maximal variations. That work dismissed the utility of minimal FRTs
for safety by demonstrating that trajectories from an initial set whose
minimal FRT does not intersect with an unsafe set may still inevitably
reach the unsafe set.

In this work, we present minimal FRTs as an analysis tool for the
verification of control invariant sets with differentiable boundaries,
and their corresponding CBFs. We consider nonlinear systems with
disturbances, which leads us to first present the extended notion of
control invariance, termed robust control invariance, as defined in
[10], [15]. We then redefine the term minimal FRT as inevitable
FRT to accommodate systems with disturbances. The first theoretical
finding presented in this paper concerns the verification of conditions
under which the inevitable FRT remains identical to the initial set. We
determine that the inevitable FRT remains unchanged when the initial
set is robustly control invariant and has a differentiable boundary.

Next, we introduce a differential game formulation that charac-
terizes the inevitable FRT as the zero-superlevel set of the value
function capturing the game between the control and disturbance.
The crux of our formulation is the incorporation of a discount
factor in the cost function of the value function. First, it induces
a contraction mapping in the Bellman operator of the value function,
allowing the value function to be continuous and characterized as a
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TABLE I
COMPARISON OF REACHABILITY METHODS WITH RESPECT TO PROPERTIES OF CONTROL-BARRIER FUNCTIONS.

Value function Diff. Inequality in HJ-PDE Matching
CBF constraint Boundedness Continuity Sol. Unique.

of HJ-PDE
BRT (Viability Kernel) w/o discount [7]

V (x) := inf
ξd

sup
u

inf
t∈[0,∞)

hS(x(t)) max
u∈U

min
d∈D

∂V
∂x

· f(x, u, d) ≥ 0 no yes no no

Discounted BRT [9], [10]
V (x) := inf

ξd
sup
u

inf
t∈[0,∞)

e−γthS(x(t))
max
u∈U

min
d∈D

∂V
∂x

·f(x, u, d)−γV ≥0 no yes yes yes

CBVF [8] + Extension to infinite horizon [16]
V (x) := inf

ξd
sup
u

inf
t∈[0,∞)

eγthS(x(t)) max
u∈U

min
d∈D

∂V
∂x

·f(x, u, d)+γV ≥0 yes no no no

Discounted FRT (Ours)
V (x) := sup

ξd

inf
u

sup
t∈(−∞,0]

eγthS(x(t)) max
u∈U

min
d∈D

∂V
∂x

·f(x, u, d)+γV ≥0 yes yes yes yes

unique viscosity solution [17] to a particular Hamilton-Jacobi partial
differential equation (HJ PDE) called the Hamilton-Jacobi forward
reachable tube variational inequality (HJ-FRT-VI).

Most importantly, this formulation establishes a connection be-
tween reachability and control barrier functions. The barrier con-
straint arises as the constraint that the optimal control policy of the
discounted FRT value function abides by. Thus, the value function
serves as a CBF-like function in that it satisfies the barrier con-
straint almost everywhere. Conversely, we discover that any valid
CBF is also a valid viscosity solution to the HJ-FRT-VI inside the
control invariant set and can therefore be interpreted as a forward
reachability value function. These findings constitute the main con-
tribution of this article.

We highlight that prior formulations relying on backward reacha-
bility, introduced in [7]–[10], were unable to establish this connection
between reachability, control invariance, and CBFs (Table I). Con-
sequently, by adopting a forward reachability approach to control
invariant sets in a manner not previously explored in the literature,
our work becomes the first to create a strong link between these three
concepts. The discount factor plays a critical role in this process, as
it shapes the value function to satisfy the barrier constraint through
an induced contraction.

The rest of the article is organized as follows. In Section II, we
review the concepts of control invariance and CBFs, extending these
notions to systems with disturbances, which leads to the definitions of
robust control invariance and robust CBFs. Additionally, we provide
a geometric interpretation of robust control invariant sets, which is
used in the subsequent analyses throughout the paper. In Section III,
we introduce the definitions of forward reachable tubes and present
an analysis of their application to robust control invariant sets. In
Section IV, we detail the Hamilton-Jacobi formulation of the FRT
discussed in Section III and establish a connection to CBFs. Section
V offers a comparison between our formulation and reachability
formulations from prior work that have been applied to characterize
control invariant sets. Finally, we conclude the article with closing
remarks and directions for future work in Section VI.

Notation: ∥·∥ indicates the l2 norm in the Euclidean space. For two
same dimensional vectors a and b, a·b denotes the inner product. For a
set A, A and Int(A) denote the closure and the interior, respectively.
For a point x ∈ Rn and r > 0, we define Br(x) as the hypersphere
centered at x with radius r, Br(x) := {y ∈ Rn | ∥y − x∥ ≤ r}.
For ε > 0 and a set A, A + Bε :=

⋃
x∈A Bε(x), and A − Bε :=

A \
⋃

x∈Ac Bε(x).

II. CONTROL INVARIANCE AND CONTROL BARRIER
FUNCTIONS

We will be concerned with a general nonlinear time-invariant
system represented by an ODE

ẋ(t) = f(x(t), u(t)) for t > 0, x(0) = x, (1)

where x ∈ Rn is an initial state, x : [0,∞) → Rn is the solution
to the ODE, and u : [0,∞) → U is a Lebesgue measurable control
signal with U ⊂ Rmu . We use U to denote the set of Lebesgue
measurable control signals:

U := {u : [0,∞) → U | u is Lebesgue measurable.} (2)

We assume that the control input set U is compact, which holds for
most physical systems whose actuation limit is bounded. Also, we
assume that the system (1) satisfies the following conditions.

Assumption 1 (on vector field of (1)).

1) f : Rn × U → Rn is uniformly continuous,
2) f(·, u) is Lipschitz continuous in x ∈ Rn for each u ∈ U ,
3) ∃M > 0 such that ∥f(x, u)∥ ≤ M ∀x ∈ Rn, u ∈ U ,

Under the above conditions, the solution to the ODE dynamics (1)
is unique for any u ∈ U and initial state x ∈ Rn. We will call the
solution x the (forward) trajectory of the initial state x.

A. Control Invariance

Let X ⊂ Rn be the constraint set, i.e. the set that the system must
remain within to maintain safety. The main challenge of finding a
control signal u ∈ U such that for given x(0) ∈ X , x(t) ∈ X for all
t ≥ 0 (i.e. x(·) remaining safe) is that there may be some states in X
from which exiting the set X is inevitable regardless of the choice
of a control signal. An effective way of ruling out these failure states
is to consider a subset of X that is control invariant.

Definition 1 ((Forward) control invariant [1]). A set S ⊂ Rn in the
state space is (forward) control invariant under the dynamics (1) if
for all x ∈ S, there exists a control signal u ∈ U such that x(t) ∈ S
for all t ≥ 0. We also say that such u renders the trajectory x forward
invariant in S.

By the above definition, a trajectory starting inside a control
invariant set S that is a subset of X can remain within S for all
time, and therefore can stay safe in X . One method for determining
if a set is control invariant is by analyzing the evolution of trajectories
within the tangent cone.
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Fig. 1. A control invariant set S is a subset of the constraint set X.
In general, S is a strict subset. A trajectory starting inside a control
invariant set S ∈ X can remain within S for all time, and therefore
can stay safe in X. Geometric characterization of the control invariant
set S based on the condition at its boundary is provided in Lemmas 1
and 2, by the usage of the tangent cone, and a distance-like function of
S, hS , respectively.

Definition 2 ((Bouligand’s) tangent cone [18]). Given a closed set
S ⊂ Rn, the tangent cone to S at x ∈ Rn is defined as

TS(x) :=

{
z ∈ Rn | lim inf

τ→0

dist(x+ τz, S)

τ
= 0

}
, (3)

where dist(y, S) := minz∈S ∥y − z∥.

Lemma 1. (Tangential characterization of closed control invariant
sets [19, Theorem 11.3.4]) Let the dynamics (1) satisfy Assumption
1. Then, a closed set S ⊂ Rn is (forward) control invariant under
the dynamics (1) if and only if for all x ∈ ∂S,

∃u ∈ U such that f(x, u) ∈ TS(x). (4)

A pictorial description of this lemma is provided in Figure 1,
left. Verifying the tangent cone everywhere along the boundary of
a set is practically infeasible. A modification of the lemma can be
made in a special case when the set S has a differentiable boundary
(Assumption 2), by introducing a scalar function hS : Rn → R that
satisfies Assumption 3.

Assumption 2. S is a closed set whose interior is not empty, and
the boundary of S, ∂S, is continuously differentiable.1

Assumption 3. Given a closed set S, hS : Rn → R is a function
whose zero-superlevel set is S, S = {x ∈ Rnx | hS(x) ≥ 0}, and
satisfies the following conditions:

1)

Int(S) = {x ∈ Rn | hS(x) > 0},
∂S = {x ∈ Rn | hS(x) = 0}. (5)

2) (Differentiability and boundedness) hS is uniformly continu-
ously differentiable and both upper and lower bounded.

3) (Regularity) ∃ε > 0 such that

∂hS
∂x

(x) ̸= 0 ∀x ∈ ∂S +Bε. (6)

Lemma 2. Let the dynamics (1) satisfy Assumption 1 and for a
given closed set S ⊂ Rn satisfying Assumption 2, let hS : Rn → R
satisfy Assumption 3. Then, S is (forward) control invariant under
the dynamics (1) if and only if for all x ∈ ∂S,

∃u ∈ U such that
∂hS
∂x

(x) · f(x, u) ≥ 0. (7)

1For each point x ∈ ∂S, there exists r > 0 and a C1 function η : Rn−1 →
R such that S ∩ Br(x) = {x ∈ Br(x) | xn ≥ η(x1, ..., xn−1)}, where
relabeling and reorienting the coordinates axes are allowed [20].

Proof. This is a corollary of Lemma 1 by noticing that for x ∈ ∂S,

TS(x) =

{
z ∈ Rn|∂hS

∂x
· z ≥ 0

}
, (8)

when Assumptions 2 and 3 hold.

Remark 1. An hS satisfying Assumption 3 always exists for the
set S satisfying Assumption 2, by selecting a regularized distance
function for S [21, Theorem 2.1].

In other words, if hS is differentiable, at the boundary of the set
where hS(x) = 0, there must exist a control input u ∈ U such that
∂hS
∂x (x) · f(x, u) ≥ 0. If this condition is met, the resulting vector

field points inward into the set so that the value of hS(x) stays non-
negative. This is shown in Figure 1, right. The lemma is known as
Nagumo’s theorem for autonomous systems [22].

Remark 2. For a given S that is control invariant, the condition (7)
holds for any hS satisfying Assumption 3. Thus, the specific choice
of hS does not affect the condition (7).

Remark 3. Note that a control invariant set does not necessarily have
a differentiable boundary. In general, the maximal control invariant
set contained in the desired safety constraint set X , might have a
non-differentiable boundary [19]. However, the differentiability of
the boundary will render a few noticeable differences in the theory
that will be developed in Section III.

B. Control Barrier Functions

Lemma 2 implies that a safe control input on the boundary of the
set S can render the trajectory x forward invariant in S. In the modern
control theory, control barrier functions (CBFs), first introduced in
[4], also impose conditions on the control input when the trajectory
is strictly inside the set before reaching the boundary, which enables
the trajectories to “smoothly brake” as they approach the boundary
of the safe set. More formally, it is defined as below.

Definition 3. A function hS : Rn → R that satisfies Assumption
3 for a closed set S is a control barrier function for the dynamics
(1) if there exists an extended class K function α such that, for all
x ∈ S,

max
u∈U

∂hS
∂x

(x) · f(x, u) + α (hS(x)) ≥ 0. (9)

Here, α : R → R is an extended class K function if it is continuous
and strictly increasing and satisfies α(0) = 0. We say the barrier
constraint is feasible at x if the condition (9) holds for x.

This paper considers a particular class K function α(y) = γy for
a constant γ > 0, as in [23], [24],

max
u∈U

∂hS
∂x

(x) · f(x, u) + γhS(x) ≥ 0. (10)

This is the most common choice of class K function used in the CBF
literature, and enables us to make a connection between CBFs and
reachability value functions where γ will play the role of a discount
factor in the reachability formulation.

Intuitively, the inequality (10) ensures that hS(x(t)) does not
decay faster than the exponentially decaying curve ḣS(x(t)) =
−γhS(x(t)). This induces the “smooth braking” mechanism to any
trajectory x approaching the boundary of S. If (10) is satisfied, (7)
is trivially satisfied at x ∈ ∂S where hS(x) = 0. Thus, according
to Lemma 2, the existence of the CBF hS is a sufficient condition
for S being control invariant. For control-affine systems, min-norm
controllers like the CBF quadratic program (CBF-QP) have been
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proposed as examples of the feedback policies that produce safe
control signals that satisfy the barrier constraint [4].

Remark 4. If (7) in Lemma 2 holds with strict inequality for a
compact and control invariant set S, any function hS satisfying
Assumption 3 can is a CBF with large enough γ [4, Lemma 2].

C. Robust control invariance for systems with disturbance

We introduce the concepts of control invariance and control barrier
functions extended to systems with disturbance. Plenty of literature
presents various notions of robustness with respect to disturbances or
uncertainties in system dynamics [25]–[27], however, in this paper,
we employ the differential game-based formulation that interprets the
disturbance as an adversarial agent playing against the control input
[28], as commonly done in the Hamilton-Jacobi reachability-based
safety analysis for systems with bounded disturbance [7], [10], [15].

For this, we consider the system dynamics

ẋ(t) = f(x(t), u(t), d(t)) for t > 0, x(0) = x, (1d)

where d : [0,∞) → D is a Lebesgue measurable disturbance signal
and D ⊂ Rmd is a compact set. We use D to denote the set of
Lebesgue measurable disturbance signals. We assume conditions on
the dynamics, similar to Assumption 1:

Assumption 4 (on vector field of (1d)).

1) f : Rn × U ×D → Rn is uniformly continuous,
2) f(·, u, d) is Lipschitz continuous in x ∈ Rn for each (u, d) ∈

U ×D,
3) ∃M > 0 such that ∥f(x, u, d)∥ ≤ M ∀x ∈ X , (u, d) ∈ U ×D,

so that under the above conditions, the solution to the ODE (1d) is
unique for any pair of (u,d) ∈ U ×D and initial state x ∈ Rn [28].

To ensure safety under the most adversarial disturbance, we as-
sume that the disturbance can use the control signal’s current and
previous information, whereas the control is not aware of the current
disturbance input. To formulate this, we recall the definition of the
non-anticipative strategies [28]:

ξd ∈ Ξd := {ξd : U → D | ∀s ∈ [0,∞) and u, ū ∈ U ,
if u(τ) = ū(τ) a.e. τ ∈ [0, s],

then ξd[u](τ) = ξd[ū](τ) a.e. τ ∈ [0, s]}.
(11)

Using the notion of non-anticipative strategies, we define the robust
control invariant set under the dynamics (1d).

Definition 4 (Robustly (forward) control invariant [10], [15]). A set
S ⊂ Rn is robustly (forward) control invariant (under the dynamics
(1d)) if, for all x ∈ S, ξd ∈ Ξd, for any ε > 0 and T > 0, there
exists a control signal u(·) ∈ U such that x(t) ∈ S + Bε for all
t ∈ [0, T ].

We provide a brief remark on the necessity of ε and T in the
definition. First, if S is an open set, the notion of ε and T can
be dropped, that is, if S is robustly control invariant, for all x ∈ S,
ξd ∈ Ξd, there exists a control signal u(·) ∈ U such that x(t) ∈ S for
all t ≥ 0. However, at the boundary of a closed set S, the disturbance
can react to the current control input to drive the system outside of
S. Thus, x might not stay in S for all time although the trajectory
x will stay in S + Bε for any small ε. To clarify this subtlety, we
recall the example in [15]. Consider ẋ(t) = u(t) + d(t), S = {0},
and U = D = [−1, 1]. Then, for all disturbances, there is no control
signal u that satisfies x(t) = 0 for all t ∈ [0,∞). This is because

for any control signal, ẋ(t) cannot be 0 almost everywhere in (0,∞)
under the following non-anticipative strategy

ξd[u](t) =

{
u(t), if u(t) ̸= 0,

1, if u(t) = 0.

Thus, Definition 4 captures cases where, under the worst-case dis-
turbance, there exists a control signal that “almost” never leaves the
set S “almost” indefinitely (by choosing ε arbitrarily small and T
sufficiently large).

Remark 5. Note that there exist different definitions of robust control
invariance in the literature, for instance in [1].

Similar to Lemma 2, robustly control invariant sets can be verified
by examining the vector field of the dynamics at the boundary of the
sets. More formally, the following lemma holds.

Lemma 3. (Tangential characterization of robustly control invariant
sets) Let the dynamics (1d) satisfy Assumption 4 and let S ⊂ Rn

and hS : Rn → R satisfy Assumptions 2 and 3, respectively. Then,
S is robustly (forward) control invariant under the dynamics (1d) if
and only if for all x ∈ ∂S,

∃u ∈ U such that
∂hS
∂x

(x) · f(x, u, d) ≥ 0 ∀d ∈ D. (12)

Proof. The lemma results from [15, Theorem 2.3], and (8) which
holds under Assumptions 2 and 3.

We can also extend the definition of the control barrier function as-
sociated with the barrier constraint to the dynamics with disturbance
(1d).

Definition 5 (Robust Control Barrier Function). A function hS :
Rn → R that satisfies Assumption 3 for a closed set S is a robust
control barrier function for the dynamics (1d) if there exists an
extended class K function α such that, for all x ∈ S,

max
u∈U

min
d∈D

∂hS
∂x

(x) · f(x, u, d) + α (hS(x)) ≥ 0. (13)

By Lemma 3, it is again straightforward that the existence of
the robust CBF hS is a sufficient condition for S that is satisfying
Assumption 2 to be robustly control invariant, since when x ∈ ∂S
(meaning that hS(x) = 0), (13) indicates (12):

Proposition 1. Let the dynamics (1d) satisfy Assumption 4 and let
S ⊆ Rn satisfy Assumption 2. Then if the robust CBF hS exists,
the set S is robustly control invariant.

Remark 6. Another common concept of the CBF in the literature
that is robust to disturbance is the notion of input-to-state safe
(ISSf) CBF [26], [29]. The zero-superlevel set of an ISSf CBF is
not necessarily robustly control invariant, however, one can verify a
negative superlevel set that can be rendered robustly control invariant
under the control signal satisfying the original barrier constraint (9).
This means that while the margin that will be infiltrated by the
disturbance has to be considered in the process of the design of the
CBF, a controller that is blind to disturbance can be deployed safely as
long as it satisfies (9). On the other hand, the robust CBF in Definition
5 allows the zero-superlevel set of hS to be robustly control invariant
as stated in Proposition 1. However, in order to render the set robustly
forward invariant, the controller has to address the worst-case effect
of the disturbance proactively, as in (13).

III. FORWARD REACHABILITY OF CONTROL INVARIANT
SETS

In this section, we apply forward reachability analysis to control
invariant sets. In order to do so, we first provide background on the



5

forward reachability of a set and introduce definitions of forward
reachable tubes.

A. Forward Reachability

Forward reachability analyzes a set’s evolution in the future; its
purpose is to identify the states that trajectories from an initial set
C ⊂ Rn reach forward in time. The forward reachable tube (FRT)
of a set, roughly speaking, encompasses states that are reached by
trajectories departed from the initial set. This concept is illustrated
in Figure 2. For autonomous systems (e.g. ẋ(t) = f(x(t))) whose
trajectory is uniquely determined for each initial state, the evolution
of a set is also uniquely determined, therefore, its forward reachable
tube is unique (Fig 2 (a)). However, for systems with control and/or
disturbance inputs like (1) and (1d), the trajectory is determined
by the choice of control and disturbance signals. Thus, the forward
reachable tube can be shaped in various ways based on the choice of
the controller and the disturbance assumptions.

Consider the dynamics of a controlled system satisfying (1) first.
At one extreme, the control can use its best effort to get further
away from the original set C, and at the other extreme, the control
works to stay as close to C as possible. The former would render
the FRT to expand maximally covering all the states such that from
C, reaching them is viable, and the latter would induce the FRT to
grow minimally, encapsulating only the states which inevitably must
have evolved from C. From this intuition, we are able to define the
viable and inevitable FRTs of a set C under the dynamics (1).

To introduce their formal definitions, we use a separate notation for
the solution of the ODE (dynamics) whose terminal state is specified
as x (as opposed to initial states being specified as x in (1)):

ẋ−(t) = f(x−(t), u−(t)) for t < 0, x−(0) = x, (1−)

where u− : (−∞, 0] → U is a measurable backward control signal.
We will call x− the backward trajectory of (terminal state) x. We
will also denote U− as a set of measurable backward control signals.
Evaluating whether x− reaches the set C if the time flows backward
will tell us whether x belongs to a forward reachable tube of C.
Using this, we define the viable and the inevitable FRTs:

Definition 6 (Viable FRT). The viable FRT of an initial set C ⊂ Rn

under the dynamics (1) for a time horizon T > 0 is defined as

FRT′(C;T ) :=
{
x ∈ Rn | ∃u− ∈ U−, ∃t ∈ [−T, 0]

s.t. x−(t) ∈ C, where x− solves (1−).
} (14)

We also define the infinite-horizon viable FRT of C as

FRT′(C) :=
{
x ∈ Rn | ∃u− ∈ U−, ∃t ∈ (−∞, 0]

s.t. x−(t) ∈ C, where x− solves (1−).
} (15)

In plain words, FRT′(C) is a collection of states that can be
reached forward in time from trajectories that departed from C
in the past. Note that for control systems, the viable FRT is the
maximal FRT achievable by selecting an appropriate control signal
(Figure 2 (b)) [11]. Viable FRTs have often been used in literature
as means of safety verification, by evaluating safety of all possible
trajectories in the future [12], [30]. In contrast, this paper focuses on
the inevitable FRT, introduced next.

Definition 7 (Inevitable FRT). The inevitable FRT of an initial set
C ⊂ Rn under the dynamic (1) for a time horizon T > 0 is defined
as

FRT(C;T ) :=
{
x ∈ Rn | ∀u− ∈ U−, ∃t ∈ [−T, 0]

s.t. x−(t) ∈ C, where x− solves (1−).
} (16)

We also define the infinite-horizon inevitable FRT of C as

FRT(C) :=
{
x ∈ Rn | ∃T > 0 s.t. ∀u− ∈ U−, ∃t ∈ [−T, 0]

s.t. x−(t) ∈ C, where x− solves (1−).
} (17)

Note that FRT(·) can be also interpreted as a set mapping, FRT :

2R
n
→ 2R

n
.

In plain words, FRT(C) is a collection of states such that every
trajectory reaching it forward in time must have passed through C
at some point in the past (Figure 2 (c)). For control systems, the
inevitable FRT is minimal [11] since it excludes any state that can
be reached by a trajectory that does not evolve from C.

Next, we extend the definition of forward reachable tubes to
systems with disturbance (1d). Because of the interaction between
control and disturbance, we cannot trivially extend Definitions 6 and
7 by simply adding a disturbance term. Complexity is introduced
due to the interplay between the disturbance strategies (e.g. (11))
and the choice of a control signal (which similarly makes Definition
4 more complicated than Definition 1). This work introduces only a
particular type of robust FRT that is the equivalent of the infinite-
horizon inevitable FRT (17) for systems with disturbance, which we
will focus on throughout the rest of the paper. This FRT is shaped
by the control aiming to restrain the growth of the FRT, whereas the
disturbance is assumed to act adversarially and attempts to grow the
FRT.

To formally define this, consider again the backward trajectory x−

solving

ẋ−(t) = f(x−(t), u−(t), ξ−d [u−](t)), t < 0, x−(0) = x, (1−d )

where D− denotes a set of measurable backward disturbance signals
d− : (−∞, 0] → D, and ξ−d is a non-anticipative strategy for the
disturbance in the sense of backward in time

ξ−d ∈ Ξ−
d := {ξ−d : U− → D− | ∀s ∈ (−∞, 0] and u−, ū− ∈ U−,

if u−(τ) = ū−(τ) a.e. τ ∈ [s, 0],

then ξ−d [u−](τ) = ξ−d [ū−](τ) a.e. τ ∈ [s, 0]}.

In the backward ODE dynamics (1−d ), at each time t < 0, the control
u−(t) is forced to play first, and then the disturbance ξ−d [u−](t)
counters.

Definition 8. For a given initial set C ⊂ Rn which is an open set,
we define the (infinite-horizon inevitable) FRT of C as the following
set.

FRT(C) :=

{
x ∈ Rn

∣∣∣ ∃ξd ∈ Ξd, T > 0 s.t.

∀u ∈ U−, ∃t ∈ [−T, 0] s.t. x−(t) ∈ C,

where x− solves (1−d ).
} (17d)

Note that for systems with disturbance, the inevitable FRT is not
necessarily minimal since the disturbance strategy attempts to grow
the FRT.

B. Forward Reachable Tubes of control invariant sets

We are now ready to apply the forward reachability analysis to
control invariant sets. The main theorem of the section is as follows:

Theorem 1. Suppose f satisfies Assumption 1 (or Assumption
4). Then, a set S satisfying Assumption 2 is control invariant
under (1) (or robustly control invariant under (1d)) if and only if
FRT(Int(S)) = Int(S).

Proof. See Appendix A.
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FRT(𝐶; 𝑇)

𝐶

𝑓 𝑥
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𝐶
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𝑥 ∈ 𝐶

Fig. 2. (a) For an autonomous system ẋ(t) = f(x(t)), the forward reachable tube (FRT) of C is a union of the set C ’s forward evolution and it
is uniquely determined. (b) For control systems, the viable FRT, FRT′(C), is the collection of all possible trajectories departed from C. (c) On the
other hand, the inevitable FRT, FRT(C), is a collection of a state such that every trajectory reaching it must have passed through C at some point
in the past.

trajectory forward in time
trajectory backward in time

𝑥!

𝑆

−𝑓 𝑥, 𝜋&(𝑥)

𝑆

𝑥!

{−𝑓 𝑥!, 𝑢 	 	𝑢 ∈ 𝑈

𝑥"

{𝑓 𝑥!, 𝑢	 	 	𝑢 ∈ 𝑈

{𝑓 𝑥", 𝑢	 	 	𝑢 ∈ 𝑈
{−𝑓 𝑥", 𝑢 	 	𝑢 ∈ 𝑈

(a) (b)

Fig. 3. (a) Illustration of why Theorem 1 holds for smooth control
invariant set S. (b) Illustration of the importance of the boundary of S
being differentiable (Assumption 2) for Theorem 1.

The theorem states that the (inevitable) forward reachable tube
of the interior of a (robust) control invariant set with a differen-
tiable boundary is identical to the interior of the set itself. Another
interpretation of the theorem is that the interior of any control
invariant set with a differentiable boundary is a fixed point of FRT(·).
However, control invariant sets with nondifferentiable boundaries are
not fixed points of FRT(·) in general, and Theorem 1 does not hold
for them. In the rest of this section, we mainly describe how the
differentiable and nondifferentiable cases render different results. To
simplify the explanation, we only consider the control system (1)
without disturbance, and the system with disturbance is considered
in the full proof of Theorem 1 in Appendix A.

First, when S satisfies Assumption 2 and hS satisfies Assumption
3, Lemmas 1 and 2 imply that at any state x on the boundary ∂S of
the control invariant set S, there exists a control π̄(x) ∈ U such that
the dynamic flow points inward or tangential to S:

f(x, π̄(x)) ∈ TS(x), (18)

and equivalently,

∂hS
∂x

(x) · f(x, π̄(x) ≥ 0. (19)

Equation (19) implies that the backward dynamic flow −f(x, π̄(x))
must point either outward from or tangential to S (as the green vector
fields in Figure 3a:

∂hS
∂x

(x) · (−f(x, π̄(x)) ≤ 0,

or equivalently,

−f(x, π̄(x)) ∈ TInt(S)c(x), (20)

by noting that hInt(S)c := −hS also satisfies Assumption 3 and
thus,

TInt(S)c(x) = {z ∈ Rn| − ∂hS
∂x

· z ≥ 0}, (21)

for x ∈ ∂S.
We will now discuss Int(S) = FRT(Int(S)) under these condi-

tions for smooth control invariant sets. First note that by Definition 7,
Int(S) ⊆ FRT(Int(S)). Therefore it is only left to check that there
does not exist any state x0 ∈ FRT(Int(S)) such that x0 /∈ Int(S).
This hypothetical state x0 is plotted in Figure 3a.

The definition of FRT requires that all trajectories reaching x0
have departed from the interior of S at some point in the past.
Reversing the flow of time, all backward trajectories x− that start
from x0 and follow the backward dynamic flow should enter the
interior of S at some point. However, from (20), one can see that this
is not possible for the backward trajectory under the control signal
satisfying u−(t) = π̄(x−(t)) where x−(t) is on the boundary of
S, because π̄ pushes the backward trajectory away from the interior
of S. This is visualized in Figure 3a, where the backward trajectory
(red) cannot enter the set S due to the flow field shown in green.
Thus, this results in a contradiction and such a x0 cannot exist.

It is important to note that Assumption 2 is crucial for establishing
the equivalence between (18) and (20), which results from (8) and
(21). The geometric interpretation of this equivalence is that the
existence of the forward dynamic flow that keeps the set S invariant
on its boundary should imply the existence of the backward dynamic
flow that keeps the set Sc invariant (when the time flows backward)
and vice versa. Figure 3b illustrates this relationship at the state x1
which is on the smooth boundary of S.

One might consider the same equivalence relationship at the non-
smooth boundary of S when Assumption 2 does not hold. However,
x2 in Figure 3b highlights that this is not necessarily true. In
particular, even if there exists a control input u ∈ U such that the
resulting forward dynamic flow keeps the set S invariant (by the flow
pointing inward or tangential to S), all possible backward dynamic
flow might still point inward to S and there might not exist any u ∈ U
such that the backward dynamic flow keeps the set Sc invariant if the
time flows backward. In other words, even if (18) hold, (20) might not
hold. In this case, the forward trajectory can be inevitably “leaked”
from the interior of S, leading to the expansion of FRT(Int(S)) to
a strict superset of Int(S). An example of this incident is introduced
in the next subsection (Figure 4b).

In summary, it is important to note that the differentiability of the
boundary of S is a crucial prerequisite condition for the equivalence
between S being robustly control invariant and Int(S) being a fixed
point of FRT(·). This crucial gap between the smooth and nonsmooth
cases, informally, is due to the fact that the tangent cone of a set on its
boundary is locally symmetric to the tangent cone of the complement
of the set only when it is on the smooth boundary.
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C. Running example: Double Integrator

A running example we use in this subsection is a simple double
integrator system with the system dynamics, ṗ = v, v̇ = u, with state
x = [p v]T , and control input u, with control bound u ∈ [−1, 1].
We compute the (inevitable) forward reachable tube defined in (17)
for four specific sets S (Figure 4, first row). Note that in the state
domain where v > 0, a curve p = c− 1

2v
2 characterizes a trajectory

that is decelerating from a positive velocity with the saturated input,
u = −1, which stops at p = c. In the state domain where v < 0,
a curve p = c + 1

2v
2 characterizes a trajectory that is accelerating

from a negative velocity with the saturated input, u = 1.
The descriptions of each choice of S are enlisted below:

(a) S is defined as the circular region with radius r centered at
the origin. This set S satisfies Assumption 2 but is not control
invariant.

(b) S is formed by five curves, p = −p1 + 1
2v

2, p = p1 − 1
2v

2,
p = p2 − 1

2v
2, p = −p2 +

1
2v

2, p = − 1
2v

2, and the p-axis, as
shown in Figure 4(b). This set does not satisfy Assumption 2,
but is control invariant.

(c) S is formed by two curves, p = −p1 + 1
2v

2, and p = p1 −
1
2v

2. This set also does not satisfy Assumption 2 but is control
invariant.

(d) S is formed by two curves, p = −p1 +
1
2v

2 and p = p1 − 1
2v

2

(p1 > 1), and two arcs whose radius is r = −1+2
√
p1 that are

tangential to the curves whose centers are positioned at (−p1+
r, 0), (p1 − r, 0), respectively. This set satisfies Assumption 2
and is also control invariant.

The FRT of each Int(S) is visualized in the second row of
Figure 4. The first case demonstrates that FRT(Int(S)) can be a
strict superset of Int(S) when the set S is not control invariant.
Note that the resulting FRT(Int(S)) is still not control invariant
since the trajectory is bounded to escape the set at points A and B.
This example reveals a challenge in constructing a control invariant
set with forward reachability, when the initial set that is used is
not control invariant. In the second and third cases, the control
invariance of S can be checked analytically. The second case shows
that FRT(Int(S)) can be a strict superset of Int(S) if Assumption
2 is not met. Note that point C is where (18) holds but (20) does not
hold. In the third case, due to the fact that (20) holds at both points
D and E, where ∂S is not smooth, FRT(Int(S)) = Int(S). Finally,
the set S in the last case satisfies Assumption 2 and is also control
invariant. Thus, according to Theorem 1, FRT(Int(S)) remains the
same as Int(S).

IV. FRT VALUE FUNCTION AND CBF

In this section, by taking the Hamilton-Jacobi approach to the
forward reachability problem, we pose the computation of forward
reachable tubes as a differential game. The forward reachable tube
is characterized by the value function proposed in Section IV-A.
This value function is the unique solution to the HJ-PDE proposed
in Section IV-B. When the initial set is control invariant and has
a differentiable boundary, we establish a connection between the
proposed value function and the CBFs in Section IV-C. Importantly,
this provides an interpretation of any valid CBF as a forward
reachability value function.

A. FRT Value function

For a closed set S, by noting that hS satisfying Assumption 3
serves as a distance-like metric to the boundary of S and its sign
serves as an indicator of the inclusion in S, we can rewrite the

definition of the infinite-horizon inevitable FRT in (17d) as follows:

FRT(Int(S)) :=
{
x ∈ Rn | ∃ξd ∈ Ξd, ∃T > 0 s.t. ∀u− ∈ U−,

∃t ∈ [−T, 0] s.t. x−(t) ∈ Int(S), where x− solves (1−d ).
}

=

{
x ∈ Rn | ∃ξd ∈ Ξd, ∀u−∈U−, sup

t∈(−∞,0]
hS(x

−(t))>0

}

=

x ∈ Rn | sup
ξ−
d
∈Ξ−

d

inf
u−∈U−

sup
t∈(−∞,0]

hS(x
−(t)) > 0

 .

Since rescaling hS(x
−(t)) with a positive constant at any time t does

not change its sign, the following holds:

FRT(Int(S)) =x ∈ Rn | sup
ξ−
d
∈Ξ−

d

inf
u−∈U−

sup
t∈(−∞,0]

eγthS(x
−(t)) > 0

 ,

where at each time t ∈ (−∞, 0], hS(x
−(t)) is rescaled by eγt. Thus,

by defining the FRT value function of S, Vγ : Rn → R, as

Vγ(x) := sup
ξ−
d
∈Ξ−

d

inf
u−∈U−

Jγ(x,u
−,Ξ−

d ) (22)

with the cost functional Jγ : Rn × U− × Ξ−
d → R defined as

Jγ(x,u
−, ξ−d ) = sup

t∈(−∞,0]
eγthS(x

−(t)), (23)

where x− solves (1−d ) and x is the terminal state of x−, the following
holds.

Lemma 4. Suppose S ∈ Rn is a closed set, f satisfies Assumption
4, and a bounded function hS satisfies Assumption 3-1). Vγ(x) is
positive if and only if x belongs to the FRT of the interior of S:

FRT(Int(S)) = {x | Vγ(x) > 0}. (24)

Proof. See Appendix B.

The value function (22) captures a differential game between the
control and the disturbance, wherein the optimal control signal of this
game is verifying the existence of a trajectory that reaches x without
passing through Int(S) in the past under the worst-case disturbance.
If such a trajectory does not exist, Vγ(x) is positive and x is inside
FRT(Int(S)).

We now discuss the effect of introducing γ to the cost function.
When we choose γ > 0, rescaling by eγt discounts the measure hS
backward in time exponentially, thus, (22) defines a differential game
problem with a discounted supremum-over-time cost function. More
importantly, the value of the discount factor would also affect the
resulting optimal control policy. Whereas the optimal control always
has to try its best to maintain the value of hS when there is no
discount, the non-zero discount factor alleviates this conservativeness
and allows the optimal control to decay the value of hS . The discount
factor attenuates the “degree of retrospection” in evaluating the worst-
case in the past (supt∈[−T,0]); larger γ will recognize the value of
hS at the current time more than the value in the past.

As such, the discount factor introduces the “game-of-degree”
aspect to the reachability problem. In this “game-of-degree,” the
parameter γ serves as a knob that adjusts how conservative the
resulting optimal policy will be. However, the fundamental nature
of the reachability problem—what is called the "game-of-kind" [15],
[31]—remains consistent. In this aspect, whether or not the state is
inside the FRT of Int(S) can still be determined by checking if Vγ(x)
is positive, as equation (24) holds for any value of γ.
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Fig. 4. Forward reachable tubes under double integrator dynamics for various shapes of S. In the first row, S is visualized as the interior of the
pink level curve. The interior of the blue level curve in the second row is FRT(Int(S)) for each case. (a) Smooth S that is not control invariant,
resulting in FRT(Int(S)) ̸= Int(S). The FRT is still not control invariant. (b, c) Nonsmooth sets S that are control invariant; in case (b),
FRT(Int(S)) ̸= Int(S), and in case (c), FRT(Int(S)) = Int(S). This shows that Assumption 2 is required for Theorem 1 to hold. (d) Smooth
control invariant S that results in FRT(Int(S)) = Int(S) according to Theorem 1.

The idea of introducing the discount to (23) is similar to the idea
of introducing the discount factor to an infinite-horizon sum-over-
time cost in optimal control problems [17]. In fact, many favorable
properties of the value function resulting from the discount like
its Lipschitz continuity, and the contraction of the corresponding
Bellman backup operator hold similarly in both types of problems.

Proposition 2 (Lipschitz Continuity). Suppose f satisfies Assump-
tion 4 and hS is Lipschitz continuous. Vγ is Lipschitz continuous in
Rn if Lf < γ, where Lf is the Lipschitz constant of f .

Proof. See Appendix C.

The condition Lf < γ implies that the discount factor has
to be large enough to suppress the effect of the vector field in
prohibiting continuity. Under this condition, since the value function
is Lipschitz continuous, it is differentiable almost everywhere by
Rademacher’s Theorem [20, Ch.5.8.3]. Other infinite-horizon value
functions in backward reachability formulations [7], [8] do not have
Lipschitz continuity and can even be discontinuous, which prohibits
the usage of a differential inequality-based condition like the barrier
constraint to derive safe control policies from the value function.

The contraction property of the Bellman backup will be discussed
next after introducing the dynamic programming principle and the
HJ-PDE characterization for FRT value function Vγ .

B. Hamilton-Jacobi characterization of the value function
This section provides a computational machinery for the compu-

tation of the value function Vγ using the Hamilton-Jacobi analysis.
First, we apply Bellman’s principle of optimality to (22):

Theorem 2 (Dynamic Programming principle). Suppose γ > 0. For
x ∈ Rn,

Vγ(x) = sup
ξ−
d

∈Ξ−
d

inf
u−∈U−

max
{

max
t∈[−T,0]

eγthS

(
x−(t)

)
,

e−γTVγ
(
x−(−T )

)}
(25)

for any T > 0, where x− solves (1−d ).

Proof. See Appendix D.

Building on Theorem 2, Theorem 3 presents the Hamilton-Jacobi
variational inequality for Vγ . For the definition of the viscosity

solution in the theorem, see the proof of the theorem and [17] for
more details.

Theorem 3. Suppose hS is a bounded and Lipschitz continuous
function, and γ > 0. Vγ in (22) is a unique viscosity solution in
Rn of the following Hamilton-Jacobi PDE, called forward reachable
tube Hamilton-Jacobi variational inequality (FRT-HJ-VI):

0 = min
{

Vγ(x)− hS(x),max
u

min
d

∂Vγ
∂x

· f(x, u, d) + γVγ(x)
}
.

(26)

Proof. See Appendix E.

For non-positive values of γ, Vγ might be unbounded and the FRT-
HJ-VI might have multiple solutions. In contrast, a strictly positive
value of γ guarantees the boundedness and the uniqueness of the
solution of the FRT-HJ-VI. (An example in Appendix J illustrates
these outcomes.) In fact, the uniqueness property follows from the
contraction property of the Bellman backup associated with the
dynamic programming principle of Vγ in (25).

To see this, we define a Bellman backup operator BT :
BUC(Rn) → BUC(Rn) for T > 0, where BUC(Rn) represents
a set of bounded and uniformly continuous functions: Rn → R, as

BT [V ](x) := sup
ξ−
d

∈Ξ−
d

inf
u−∈U−

max
{

max
t∈[−T,0]

eγthS(x(t)),

e−γTV (x−(−T ))
}
. (27)

Then, the following holds.

Theorem 4 (Contraction mapping). For V 1, V 2 ∈ BUC(Rn),

∥BT [V
1]−BT [V

2]∥∞ ≤ e−γT ∥V 1 − V 2∥∞, (28)

and the FRT value function Vγ in (22) is the unique fixed-point
solution to Vγ=BT [Vγ ] for each T >0. Also, for any V ∈BUC(Rn),

lim
T→∞

BT [V ] = Vγ , (29)

Proof. See Appendix F.

The theorem provides us various methods to compute the FRT
value function Vγ using the operation BT [·], which does not require
any assumptions for the initial guess of the value function, besides
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the boundedness and uniform continuity in Rn. For instance, the
following lemma presents a finite-horizon HJ equation for this
computation.

Lemma 5. For a given initial value function candidate V 0 ∈
BUC(Rn), let W : [0, T ]×Rn → R be the unique viscosity solution
to the following initial-value HJ-PDE

W (0, x) = max{hS(x), V
0(x)}, for x ∈ Rn, (30)

0 = min

{
W (t, x)− hS(x),

∂W

∂t
+max

u
min
d

∂W

∂x
· f(x, u, d) + γW (t, x)

} (31)

for (t, x) ∈ (0, T )× Rn. Then, W (T, x) ≡ BT [V
0](x).

Proof. See Appendix G.

In Lemma 5, any V 0 ∈ BUC(Rn) works for the computation
of Vγ ; for instance, a straightforward choice of V 0 can be hS . As
T → ∞, ∂W

∂t vanishes to 0 for all x ∈ Rn.
Combining Theorem 4 and Lemma 5, we have

lim
T→∞

BT [V
0] = lim

T→∞
W (T, x) = Vγ(x). (32)

The PDE (31) can be numerically solved forward in time from the
initial condition (30), by using well-established time-dependent level-
set methods [32].

Theorem 4 also enables other numerical schemes that are based
on time-discretization, like value iteration, to produce an accurate
approximate solution of Vγ . The following corollary of Theorem 4
provides the guarantee that the value iteration with any initial guess of
V 0 ∈ BUC(Rn) will converge to Vγ with a Q-linear convergence rate
specified by (33). For a given time step size ∆t, the semi-Lagrangian
approximation can be applied to the exact Bellman backup operator in
(27) for its numerical approximation, and the resulting value function
will converge to Vγ when ∆t → 0 [9].

Corollary 1. For any V 0 ∈ BUC(Rn) and a time step ∆t > 0,
define the sequence {V k}∞k=0 by an iteration V k := B∆t[V

k−1]
for k ∈ N. Then,

∥V k+1 − Vγ∥∞
∥V k − Vγ∥∞

= e−γ∆t < 1, (33)

and thus, limk→∞ V k = Vγ .

Proof. This is a direct outcome of Theorem 4.

C. FRT Value Functions for control invariant sets

We now revisit the forward reachability for control invariant sets,
by extending from the analysis presented in Section III-B, and draw
a connection between the FRT value function Vγ and robust CBFs.

First, when S has a differentiable boundary and is robustly control
invariant where Theorem 1 holds, the following holds:

Proposition 3. Under Assumptions 3, 4, and 2, S is robustly control
invariant if and only if

FRT(Int(S)) = Int(S) = {x | Vγ(x) > 0}, (34)

Int(S)c = {x | Vγ(x) = 0}, (35)

where Vγ is defined as (22).

Proof. The proposition holds from Theorem 1 and Lemma 4.

When Proposition 3 holds, the control invariant set Int(S) is
characterized as a strict zero-superlevel of Vγ . This enables the
synthesis of a control policy using Vγ to maintain forward invariance

of trajectories within Int(S). To see this, we derive an optimal policy
of Vγ from the FRT-HJ-VI (26).

Proposition 4. Under the assumptions in Theorem 3, we define the
set-valued map policy Kγ : S → 2U as

Kγ(x) :=

{
u ∈ U : min

d∈D

∂Vγ
∂x

· f(x, u, d) + γVγ(x) ≥ 0

}
, (36)

where Vγ is defined as (22). Then, Kγ(x) is non-empty for every
x ∈ Int(S) where ∂Vγ

∂x exists. In addition, if Vγ is differentiable,
any element of Kγ(x) is an optimal control input with respect to Vγ
in (22), and under Assumptions 3, 4, and 2, if S is robustly control
invariant, the trajectory under Kγ(x) remains forward invariant in S
under the worst-case disturbance.

Proof. See Appendix H

The full proof is deferred to the appendix, however, the non-
emptiness of Kγ(x) is derived from Vγ satisfying the FRT-HJ-VI
(26). By noting that the second term of the minimum in (26) has to
be non-negative for (26) to hold, we get that

max
u∈U

min
d∈D

∂Vγ
∂x

· f(x, u, d) + γVγ(x) ≥ 0 (37)

at every x ∈ Rn where Vγ is differentiable. This corresponds to the
barrier constraint in (13), where we consider a particular extended
class K function α(y) = γy for y ∈ R.

Since the value function is Lipschitz continuous and differentiable
almost everywhere by Proposition 2, Vγ satisfies (37) almost ev-
erywhere in Int(S) ⊂ Rn. Note that since Vγ is 0 everywhere
outside Int(S), (37) also holds trivially for x ∈ Int(S)c. If Vγ is
differentiable in Int(S), (37) is satisfied everywhere in Int(S) ⊂ Rn,
which constitutes the definition of the robust CBF in Definition 5:

Corollary 2. If Vγ is continuously differentiable in Int(S), Vγ :
S → R is a robust CBF.

Proof. Proposition 4 implies that the barrier constraint holds at any
state in the interior of S. As we constrain the domain of Vγ to S,
the gradient of Vγ at any state on the boundary, x ∈ ∂S, is defined
as limy→x

∂Vγ
∂x . Since Vγ is continuously differentiable, this limit

exists and Kγ(x) in (36) is nonempty by Proposition 4. Thus, the
statement holds by the definition of robust CBF in Def. 5.

More importantly, any valid robust CBF h itself is the FRT value
function in Int(S):

Theorem 5. Assume Assumptions 4 and 2. Let h : Rn → R be
a differentiable function that satisfies Assumption 3 and is a robust
CBF for a closed set S, satisfying

max
u∈U

min
d∈D

∂h

∂x
· f(x, u, d) + γh(x) ≥ 0, (38)

for all x ∈ S and some γ > 0. Then,

Vγ(x) = max{0, h(x)} (39)

is the unique viscosity solution of the FRT-HJ-VI (26) with hS(x) =
h(x).

Proof. See Appendix I.

Corollary 2 and Theorem 5 establishes a tight theoretical linkage
between HJ reachability analysis and CBFs, wherein the role of
discount factor is crucial. By introducing the discount factor to
the reachability formulation, the value function becomes a CBF-
like function in a sense that it satisfies the barrier constraint almost
everywhere in the set S, and in the best case when it is differentiable,
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it becomes the CBF. On the other hand, by Theorem 5, any CBF can
be interpreted as an FRT value function with a discount factor. The
barrier constraint naturally emerges as a discounted optimal control
policy of the value function. Thus, this reveals that any CBF and
a policy that satisfies the barrier constraint is inverse optimal for a
forward reachability problem. The inverse optimality of CBF-based
min-norm controllers has been investigated in [27], however, we
believe that this is the first work that establishes the inverse optimality
of the CBF itself.

Remark 7. Our findings reveal a significant correlation between
the differentiability of the value function and the discount factor.
Although viscosity solutions are generally non-differentiable, accord-
ing to Theorem 5, under specific conditions, the value function (39)
is differentiable in Int(S). As discussed in Remark 4, any h that
characterizes the robust control invariant set is a CBF for sufficiently
large γ. Under this condition, Vγ is identical to h in Int(S) and 0 in
Int(S)c, thus, Vγ is differentiable in Int(S). Conversely, when the
value of γ is smaller (i.e., indicating slower braking), Vγ may become
non-differentiable even within Int(S). As will be demonstrated in
the simulations presented in Section IV-D, we employ numerical
gradients when the value function is computed numerically, but this
method could allow violation of safety and the barrier constraint near
states where the value function is not differentiable. To resolve these
issues, further research is necessary, including our work, to explore
Hamilton-Jacobi analysis with viscosity solutions in identifying op-
timal or robust controls at non-differentiable states.

D. Running example

We present an example of a pendulum system subjected to distur-
bance where we demonstrate the robustness of the safety control
derived from Proposition 4. We use Proposition 4 to design the
following robust safety filter:

Robust min-norm safety filter

πS(x, t) = arg min
u∈U

∥∥u− uref (t)
∥∥ (40a)

s.t. min
d∈D

∂h

∂x
· f(x, u, d) + γh(x) ≥ 0, (40b)

where h is the chosen CBF. The controller (40) filters a reference
control signal uref (t)—in case uref (t) does not satisfy the barrier
constraint, it selects a control input u ∈ U that is closest to uref (t)
that satisfies (40b). Note that from Proposition 4, if we use an FRT
value function Vγ that is differentiable for h, the filter is always
feasible for x ∈ Int(S), and will render the trajectory forward
invariant in Int(S). In the case when the system is affine in control
input and disturbance, this safety filter can be implemented as a
quadratic program [4], [8].

The dynamics of the pendulum system is given as[
ẋ1
ẋ2

]
=

[
x2

− sinx1

]
+

[
0
1

]
u+

[
0

cosx1

]
d, (41)

where x1 = θ, x2 = θ̇ are the angle and the angular rate of the
pendulum, respectively, u is the applied torque, the control input, and
d is the horizontal acceleration applied to the base of the pendulum,
the disturbance to the system. x1 = 0 at the released configuration.
The desired safety constraint is X = {x | 0.5π ≤ x1 ≤ 2π, |x2| ≤
1}, constraining both the range of angle and the angular rate of
the pendulum. We set the maximum torque ū = sin π

3 , so that the
maximum torque cannot resist the torque produced by the gravity in

the range of θ ∈ [π3 ,
2π
3 ] and θ ∈ [ 4π3 , 5π3 ]. Then U is set as [−ū, ū],

and D is set as [−0.1, 0.1].
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Fig. 5. (a) The desired safety constraint for the pendulum example
is set to be X = {x|0.5π ≤ θ ≤ 2π, |θ̇| ≤ 1}. The robust control
invariant set S for the computation of the FRT value function is designed
by a bezier fitting to the maximal control invariant set of X, computed
from the backward reachability analysis. (b) The corresponding target
function hS(X) and the computed value function Vγ(x) with γ = 5.
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Fig. 6. Trajectories from a sampled initial state x(0) = [4 0.4]T of
the pendulum system under 1) the reference control signal uref that
stabilizes to (−0.2, 0) for t ∈ [0, 8] and (π−0.6, 0) for t > 8 (grey),
2) the safety filter that uses the FRT value function Vγ as robust CBF
(blue), and 3) the safety filter that uses the distance function of X, hX

as robust CBF (red).

The reference control signal is produced by a clipped feedback
linearization controller uref (t) = πref (x(t)), given as

πref (x)=min
{
max{sinx1 − k1(x1 − x1,target)− k2x2,−ū}, ū

}
.

The desired target angle x1,target is set as −0.2 for t ∈ [0, 8] and
π − 0.6 for t > 8.

For the design of the target function hS , we first verify the maximal
control invariant set contained in X , using the backward reachability
analysis, presented in [7], [10]. Then, a control invariant set with a
differentiable boundary, S, and its distance function hS , is designed
by applying Bezier curve fitting [33] to the maximal control invariant
set. The resulting S and hS are visualized in Figure 5. We then
compute the FRT value function Vγ . The result when γ = 5 is
presented in Figure 5, which is differentiable in Int(S).

Next we demonstrate the robust min-norm safety filter (40) under
the worst-case disturbances for various initial states. The phase plot



11

0 5 10 15
0

2

4

6

0 5 10 15
-2

-1

0

1

2

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15

-1.5

-

-0.5

0

0 5 10 15
-2

0

2

4

6

0 5 10 15
-2

-1

0

1

2

0 5 10 15

0

0.2

0.4

0.6

0.8

1

0 5 10 15

-1.5

-

-0.5

00

−0.5𝜋

−𝜋

−1.5𝜋

0

−0.5𝜋

−𝜋

−1.5𝜋

ℎ(
𝑥)

ℎ̇
+
𝛾ℎ

𝜃
𝜃

𝑡 𝑡

Fig. 7. Trajectories from multiple initial states under worst-case distur-
bance and the safety filter that uses the FRT value function Vγ as robust
CBF (blue), and 3) the safety filter that uses the distance function of X,
hX as robust CBF (red). The first and the second rows are states, the
third row is the value of CBF, and the fourth row is the value of the left
hand side of (40b), in time. The trajectories highlighted by thick lines are
the trajectories in Figure 6

of the trajectories with the initial state x(0) = [4 0.4]T is plotted
in Figure 6. The state x(·), control input u(·) and the resulting CBF
value h(x(·)) is plotted in time for various initial states in Figure 7.
The trajectories under the desired control signal always exit X and
violate safety. When the computed Vγ is used as the CBF h in (40),
the trajectories under the safety filter remains safe in S, while always
ensuring the feasibility of (40b). In contrast, for comparison, when
a signed distance function hX is used as the CBF h in (40), the
feasibility of (40b) is not guaranteed. Even under the best control
effort, i.e. u = maxu∈U mind∈D

∂h
∂x ·f(x, u, d), applied in the case

of infeasibility, the trajectories often violate safety. The worst-case
disturbance in both cases is produced at each sampling time, by taking
mind∈D

∂h
∂x · f(x, u, d) for the chosen h.

V. DISCUSSION

Although inspired by existing works that establish the connection
between reachability and robust control invariance, our work is the
first paper that connects forward reachability to the analysis of
robust control invariance. Existing works have focused on backward
reachability-based formulations that produce the largest robust control
invariant set contained in a given desired safety region called the
viability kernel. This is done by finding the inevitable (or minimal)
backward reachable tube (BRT) [11] of the unsafe region, which
becomes the complement of the viability kernel. Various value
functions have been proposed to characterize the viability kernels
based on computing the BRTs, both for finite time [6], [8], [34], [35]
and infinite time [7], [9], [10], [16] but none of these functions are
CBFs, as indicated in Table I.

The time-varying value functions that characterize finite-horizon
BRTs are proposed in [6], [34], [35], where the discount factor
is not necessary for the boundedness and continuity of the value
function, and the solution uniqueness of the HJ-PDE. The work in
[7] has extended these formulations to the infinite-horizon setting.
However, the value function can be discontinuous and the corre-
sponding HJ-PDE admits non-unique solutions [36]. The work in

[9], [10] proposes formulations that resolve these issues for the
infinite-horizon setting through the introduction of the discount factor.
However, the differential inequality condition on the value function
that emerges from the corresponding HJ-PDE differs from the barrier
constraint (Table I). Moreover, the value function flattens to zero in
the interior of the computed control invariant set, thus, there is no
non-zero gradient of the value function inside the control invariant
set that can be useful for the synthesis of safety control. On the
other hand, another work [8] presents a formulation for the finite-
horizon BRT wherein the differential inequality derived from the
corresponding HJ-PDE matches the barrier constraint in the CBF
definition. However, the extension of this formulation to infinite
horizon might lead to an unbounded and discontinuous value function
and non-unique solutions to the corresponding HJ-PDE.

Our formulation of forward reachability ensures compliance with
the barrier constraint in the CBF definition. Additionally, the value
function is both continuous and bounded in Rn, while the corre-
sponding HJ-PDE has a unique solution. The central idea behind
our approach is the usage of the discount factor backward in time,
as eγt where t < 0, in the definition of the discounted FRT (22).
In contrast to the discount in backward reachable tube formulations
leading to the emergence of −γVγ(x) in the corresponding HJ-
PDEs, the usage of discount in this way leads to the emergence of
positive γVγ(x) term in the FRT-HJ-VI (26), and thus the satisfaction
of the barrier constraint. Moreover, eγt vanishes as t approaches
−∞, thereby ensuring continuous, bounded value functions and the
solution uniqueness of the FRT-HJ-VI, resulting from the contraction
mapping property outlined in Section IV-B.

An example in Appendix J illustrates the limitations of the previous
approaches and compares our formulation to them using a simple
one-dimensional system.

VI. CONCLUSIONS

In this study, we have presented a framework that establishes a
strong linkage between reachability, control invariance, and Control
Barrier Functions (CBFs) through a Hamilton-Jacobi differential
game formulation. Two main aspects of our approach are the use
of forward reachability concept in lieu of backward reachability,
and the incorporation of a discount factor in the value function.
These elements induce a contraction in the Bellman backup of the
value function, thereby shaping it to satisfy the barrier constraint
of the CBFs. Importantly, we note that prior formulations relying
on backward reachability were unable to establish this connection
between reachability, control invariance, and CBFs. Thus, our work
fills a crucial gap in the existing literature, shedding new light on
the interplay among these key concepts, which is vital for ensuring
safety in control systems.

As we look toward future research avenues, several open questions
and challenges emerge. One salient assumption underlying our study
is the differentiability of the boundaries of control invariant sets.
A deeper understanding of the implications and limitations of this
assumption is crucial for broadening the applicability of our results.
Also, the potential of forward reachability, especially in the context of
inevitable FRT, has been discussed but not yet fully explored. Finally,
our finding regarding the contraction mapping property has potential
ramifications for learning-based approaches. Specifically, this prop-
erty may pave the way for advancements in value-function-based
approximate dynamic programming algorithms for safety control.

APPENDIX

A. Proof of Theorem 1
Before we present the proof, let us point out that control systems

can be regarded as a special case of systems with disturbance when
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the disturbance set D in (1d) is set to a singleton (e.g. D = {0}
without loss of generality, which results in d(t) ≡ 0). Under this
point of view, it is easily checked that a set S is robustly control
invariant if and only if it is control invariant by using Lemmas 7 and
12. As such, we will present the proof of Theorem 1 only in terms
of systems with disturbance (1d).

For the formal proof of Theorem 1, we have to reason about the
backward flow of the dynamics, as in (1−) and (1−d ). In order to do
so, we first consider the notion of backward control invariance, the
mirrored version of the forward control invariance.

Definition 9 (Robustly backward control invariant). A set S ∈ Rn

is robustly backward control invariant (under (1d)) if for all x ∈ S,
for all ξ−d ∈ Ξ−

d , for any ε > 0 and time T > 0, there exists a
backward control signal u− ∈ U− such that x−(t) ∈ S+Bε for all
t ∈ [−T, 0], where x− solves (1−d ).

Put simply, backward control invariant sets are forward con-
trol invariant under the negated dynamics (where the time flows
inversely). Thus, we can geometrically characterize the backward
control invariant sets similarly to Lemma 3:

Corollary 3. Suppose Assumption 4 holds and let S ⊂ Rn and
hS : Rn → R satisfy Assumptions 2 and 3, respectively. Then, S is
robustly backward control invariant if and only if for all x ∈ ∂S,

∃u ∈ U such that − ∂hS
∂x

(x) · f(x, u, d) ≥ 0 ∀d ∈ D. (42)

By combining Lemma 3 and Corollary 3, we draw a connection
between forward and backward control invariant sets.

Lemma 6. Let S ⊂ Rn and hS : Rn → R satisfy Assumptions 2
and 3, respectively. Under the dynamics (1d) satisfying Assumption
4, S is robustly forward control invariant if and only if Int(S)c is
robustly backward control invariant.

Proof. By Lemma 3, S is robustly forward control invariant if and
only if for all x ∈ ∂S, (12) is satisfied. Note that ∂S = ∂Int(S)c

and Int(S)c and hInt(S)c := −hS also satisfies Assumptions 2 and

3, respectively. Since
∂hInt(S)c

∂x (x) = −∂hS
∂x (x), (12) is equivalent

to

∃u ∈ U such that
∂hInt(S)c

∂x
(x) · (−f(x, u, d)) ≥ 0 ∀d ∈ D. (43)

By applying Corollary 3, Int(S)c is robustly backward control
invariant if and only if for all x ∈ ∂S, (43) is satisfied.

As remarked in Section III-B, ∂S being continuously differentiable
in Assumption 2, is very important in Lemma 6. This assumption
guarantees that, for a state x1 on the boundary of S, if there exists
a particular control u1 such that f(x1, u1, d) points inward to S for
all d ∈ D, −f(x1, u1, d) points outwards to S for all d ∈ D.

Next, we introduce the concept of a viability kernel under the
backward dynamics:

Definition 10. A viability kernel of a closed set C ⊂ Rn, under the
backward dynamics (1−d ), is defined as follows.

VK−f (C) := {x ∈ Rn | ∀ξ−d ∈ Ξ−
d , ε > 0, T > 0, ∃u− ∈ U− s.t.

∀t ∈ [−T, 0], x−(t) ∈ C +Bε, where x− solves (1−d ).}
(44)

In words, it is a set of terminal states from which, for all backward
disturbance strategies, a backward control signal exists such that the
corresponding backward trajectory stays in C + Bε for all time.
This definition applies the concept of leadership kernel in [15] to
the backward dynamics.

Given any closed set C ⊂ Rn, the VK−f (C) is the largest
negatively robustly invariant set in C. Thus, if C is negatively
robustly control invariant, C is identical to its FVK.

Lemma 7. A closed set C ⊂ Rn is negatively robustly control
invariant under (1d) if and only if VK−f (C) = C.

Proof. This is straightforward from the definition of the robust
backward control invariance and the viability kernel.

According to Definitions 8 and 10, the FRT and the viability
kernel under the backward dynamics have the following complement
property.

Lemma 8. For any open set C ⊂ Rn, the state space Rn can be
partitioned into FRT(C) and VK−f (C

c). In other words,

{FRT(C)}c = VK−f (C
c). (45)

Furthermore, VK−f (C) is always a closed set and FRT(C) is
always an open set.

Proof. The complement relationship (45) follows directly from Def-
initions 8 and 10. That VK−f (C) is a closed set is proven in [15],
and FRT(C) being an open set follows directly from it being the
complement of the closed set VK−f (Int(C)c).

Combining the lemmas above, we are now ready to present the
proof of Theorem 1.

Proof of Theorem 1. S is positively robustly control invariant
if and only if Int(S)c is negatively robustly control invariant, by
Lemma 6. By Lemma 7, Int(S)c is negatively robustly control
invariant if and only if VK−f (Int(S)

c) = Int(S)c. By Lemma
8, VK−f (Int(S)

c) = FRT(Int(S))c. Thus, from the above state-
ments, S is positively robustly control invariant if and only if
FRT(Int(S)) = Int(S).

B. Proof of Lemma 4

Proof. We define two one-to-one functions: ρu : U → U−:

ρu(u)(−t) = u(t), ∀t ∈ [0,∞); (46)

and ρξd : Ξd → Ξ−
d :

ρξd(ξd)[u
−](−t) = ξd[ρ

−1
u (u−)](t), (47)

for all u− ∈ U− and t ∈ [0,∞). Then,

x−(−t) = x(t) ∀t ∈ [0,∞), (48)

where x− solves (1−d ), and x solves ẋ(t) =

−f(x(t), ρ−1
u (u−)(t), ρ−1

ξ−
d

(Ξ−
d )[ρ−1

u (u−)](t)) for t > 0, and

x(0) = x. Since ρu and ρ
ξ−
d

are one-to-one, the viability kernel

of Int(S)c under −f , defined in Definition 10, is equivalent to the
following set:

VK−f (C) = {x ∈ Rn | ∀ξd ∈ Ξd, ε > 0, T > 0, ∃u ∈ U s.t.
∀t ∈ [0, T ], x(t) ∈ C +Bε},

(49)

where x solves

ẋ(t) = −f(x(t),u(t), ξd[u](t)), ∀t > 0, x(0) = x. (50)

By [10, Lemma 1], the viability kernel (49) of Int(S)c is charac-
terized by a particular value function:

VK−f (Int(S)
c) =

{
x

∣∣∣∣ inf
ξd∈Ξd

sup
u∈U

inf
t∈[0,∞)

e−γt
(
− hS(x(t))

)
= 0

}
,
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where x solves (50). By (48) and one-to-one properties of ρu and
ρξd , VK−f (Int(S)

c) = {x | Vγ(x) = 0}. By Lemma 8,

FRT(Int(S)) = {x | Vγ(x) ̸= 0}. (51)

Since hS is bounded,

Vγ(x) ≥ sup
ξ−
d
∈Ξ−

d

inf
u−∈U−

[eγthS(x
−(t)) | t = ∞] = 0. (52)

for all x ∈ Rn. By combining (51) and (52), FRT(Int(S)) =
{x | Vγ(x) > 0}.

C. Proof of Proposition 2

Proof. For x1 ∈ Rn and ε > 0, there exists ξ̂−d ∈ Ξ−
d such that

V (x1) ≤ inf
u−∈U−

Jγ(x1, u
−, ξ̂−d ) + ε, (53)

where Jγ is defined in (23). Hence,

V (x1) ≤ Jγ(x1, u
−, ξ̂−d ) + ε (54)

for any u− ∈ U−. For x2, there exists û− ∈ U− such that

V (x2) ≥ inf
u−∈U−

Jγ(x2,u
−, ξ̂−d ) ≥ Jγ(x2, û

−, ξ̂−d )− ε. (55)

By combining (54) and (55), we have

V (x1)− V (x2) ≤ Jγ(x1, û
−, ξ̂−d )− Jγ(x2, û

−, ξ̂−d ) + 2ε (56)

= sup
t∈(−∞,0]

eγthS(x
−
1 (t))− sup

t∈(−∞,0]
eγthS(x

−
2 (t)) + 2ε,

where x−1 solves (1−d ) for (û−, ξ̂−d ) with the terminal state x1, and
x−2 solves (1−d ) for (û−, ξ̂−d ) with the terminal state x2. Since there
exists t̂ ∈ (−∞, 0] such that

sup
t∈(−∞,0]

eγthS(x
−
1 (t)) ≤ eγt̂hS(x

−
1 (t̂)) + ε, (57)

(57) implies

V (x1)− V (x2) ≤ eγt̂hS(x
−
1 (t̂))− eγt̂hS(x

−
2 (t̂)) + 3ε (58)

≤ LhS
eγt̂e−Lf t̂∥x1 − x2∥+ 3ε (59)

≤ LhS
∥x1 − x2∥+ 3ε, (60)

where LhS
is the Lipschitz constant of hS . The second inequality is

by Gronwall’s inequality, and the third inequality is by the condition,
Lf < γ. Using the similar argument, we can show V (x2)−V (x1) ≤
LhS

∥x1 −x2∥+3ε, thus |V (x1)−V (x2)| ≤ LhS
∥x1 −x2∥+3ε.

Since the previous inequality holds for all ε > 0, |V (x1)−V (x2)| ≤
LhS

∥x1 − x2∥.

D. Proof of Theorem 2

Proof. Similarly to Appendix B, using the one-to-one mappings ρu
and ρ

ξ−
d

, the value function Vγ in (22) can be written as

Vγ(x) = sup
ξd∈ξd

inf
u∈U

sup
t∈[0,∞)

e−γthS(x(t)), (61)

where x solves (50). [10, Lemma 3] proves that

V (x) = sup
ξd∈Ξd

inf
u∈U

max{ max
t∈[0,T ]

e−γthS(x(t)), e
−γTV (x(T ))}. (62)

Combining (62) with (46) and (47), we conclude (25).

E. Proof of Theorem 3

Proof. Similarly to Appendix D, from (61), [10, Lemma 3] proves
that Vγ is the unique viscosity solution to

0 = min{Vγ(x)− hS(x),−min
u∈U

max
d∈D

∂Vγ
∂x

· (−f(x, u, d)) + γVγ(x)}

in Rn. This is equivalent to satisfying the following two conditions.
First, for any smooth function v ∈ C∞(Rn) such that Vγ − v has a
local minimum at x0 ∈ Rn and Vγ(x0) = v(x0),

0 ≤ min{v(x)− hS(x),−min
u∈U

max
d∈D

∂v

∂x
· (−f(x, u, d)) + γv(x)}

= min{v(x)− hS(x),max
u∈U

min
d∈D

∂v

∂x
· f(x, u, d) + γv(x)}.

Second, for any smooth function v ∈ C∞(Rn) such that Vγ − v has
a local maximum at x0 ∈ Rn and V (x0) = v(x0),

0 ≥ min{v(x)− hS(x),−min
u∈U

max
d∈D

∂v

∂x
· (−f(x, u, d)) + γv(x)}

= min{v(x)− hS(x),max
u∈U

min
d∈D

∂v

∂x
· f(x, u, d) + γv(x)}.

F. Proof of Theorem 4
Proof. In the proof, we define

l(ξd,u, x) := max
t∈[−T,0]

eγthS(x(t)), li(ξd, u, x) := e−γTV i(x(−T )),

for i = 1, 2, then

BT [V
ii] = sup

ξd∈Ξd

inf
u∈U

max{l(ξd, u), li(ξd, u)}.

Without loss of generality, let BT [V
1](x) ≥ BT [V

2](x).
For any ε > 0, there exists ξ̄d such that BT [V

1] −
ε < infu max{l(ξ̄d, u), l1(ξ̄d, u)}, and there exists ū such that
infu max{l(ξ̄d,u), l2(ξ̄d, u)}+ε > max{l(ξ̄d, ū), l2(ξ̄d, ū)}. Then,

BT [V
1](x)−BT [V

2](x) < 2ε+max{l(ξ̄d, ū), l1(ξ̄d, ū)}
−max{l(ξ̄d, ū), l2(ξ̄d, ū)}

≤ 2ε+ |l1(ξ̄d, ū)− l2(ξ̄d, ū)|
≤ 2ε+ e−γT max

x∈Rn
|V 1(x)− V 2(x)| (63)

The second inequality holds since, for all a, b, c ∈ R, |max{a, b}−
max{a, c}| ≤ |b−c|. Since the above inequality holds for all x ∈ Rn

and ε > 0,

∥BT [V
1]−BT [V

2]∥L∞(Rn) ≤ e−γT ∥V 1 − V 2∥L∞(Rn)

Since Vγ is a fixed-point solution for all T > 0, the Banach’s
contraction mapping theorem [20, Chapter 9.2] implies that Vγ is the
unique fixed-point solution to BT [Vγ ](x) = Vγ(x) for all T > 0. In
addition, we have

∥BT [V ]− Vγ∥L∞(Rn) ≤ e−γT ∥V − Vγ∥L∞(Rn)

for all V ∈BUC(Rn), thus we conclude (29).

G. Proof of Lemma 5
Proof. We will derive the HJ equation for another value function
W+ defined below, and then replace W+ by W . Define W+ :
[−T, 0]× Rn → R

W+(t, x) = inf
ξd∈Ξd

sup
u∈U

min

{
min

s∈[t,0]
e−γ(s−t)(−hS(x(s))),

eγt(−V0(x(0)))

}
,

(64)
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where x solves (50). Then, W (T, x) = −W+(−T, x), and

W (t, x) = −W+(−t, x),
∂W

∂t
(t, x) =

∂W+

∂t
(−t, x),

∂W

∂x
(t, x) = −

∂W+

∂x
(−t, x),∀(t, x) ∈ (0, T )× Rn.

(65)

In the rest of the proof, we will utilize the technique presented in
[8]. The value function in [8] is

inf
ξd∈ξd

sup
u

min
s∈[t,0]

e−γ(s−t)(−hS(x(s))), (66)

which is the exactly same as (64) except the second term of the
minimization operation: eγt(−V0((x(0))). This term affects the ter-
minal condition of W+ but not the dynamic programming principle.
Thus, W+ and the value function in [8] solves the same dynamic
programming principle, but their terminal conditions are different.
Note that we assume γ > 0, but [8] assumes γ ≤ 0. However, the
sign of γ does not affect any arguments in [8]’s lemmas, theorems.

Using the similar arguments in the proof of [8, Theorem 2], we
prove

W+(t, x) = inf
ξd∈Ξd

sup
u∈U

min

{
min

s∈[t,t+δ]
e−γ(s−t)(−hS(x(s))),

e−γδW+(t+ δ, x(t+ δ))

}
.

(67)

Then, [8, Theorem 3] implies that W+ is the unique viscosity
solution to the terminal-value HJ equation:

W+(0, x) = −max{hS(x), V0(x)} on {t = 0} × Rn, (68)

0 = min
{
− hS(x)−W+(t, x),

∂W+

∂t
+max

u
min
d

∂W+

∂x
· (−f)(x, u, d)− γW+(t, x)

}
, (69)

in (−T, 0) × Rn. By applying (65), we get the conclusion that W
is the unique viscosity solution to (31).

H. Proof of Proposition 4

Proof. (i) At x ∈ Int(S) where Vγ is differentiable, the FRT-HJ-VI
(26) implies that Kγ is non-empty.
(ii) For any control policy π = π(x) ∈ Kγ(x), where Vγ is
differentiable, consider the following equation for V π

γ :

0=min
{
V π
γ (x)− hS(x),min

d

∂Vγ

∂x
· f(x, π(x), d) + γV π

γ (x)
}
. (70)

For each x ∈ Rn, min{y−hS(x),mind
∂Vγ
∂x ·f(x, π(x), d)+γy} is

monotonically increasing in y ∈ R, so the equation (70) has a unique
solution. Also, from the FRT-HJ-VI (26),

0 = min
{

Vγ(x)− hS(x),max
u

min
d

∂Vγ

∂x
· f(x, u, d) + γVγ(x)

}
,

≥ min
{

Vγ(x)− hS(x),min
d

∂Vγ

∂x
· f(x, π(x), d) + γVγ(x)

}
≥ 0.

(71)

The last inequality holds since Vγ − hS ≥ 0 by the FRT-HJ-VI (26)
and mind

∂Vγ
∂x · f(x, π(x), d) + γVγ(x) ≥ 0 since π(x) ∈ Kγ(x).

The equation (71) and the uniqueness of (70) imply Vγ ≡ V π
γ for

any π. By replacing Vγ by V π
γ in (70),

0 = min
{

V π
γ (x)− hS(x),min

d

∂V π
γ

∂x
· f(x, π(x), d) + γV π

γ (x)
}
.

(72)

The solution to (72) can be considered as the value function (23)
under π(x) and worst-case disturbance, and since Vγ ≡ V π

γ , we
conclude that any control u ∈ Kγ(x) is an optimal control for the
zero-sum game value Vγ in (22).

I. Proof of Theorem 5

Proof. We will show the two statements as follows.

1) For any smooth function v ∈ C∞(Rn) such that Vγ − v has a
local minimum at x0 ∈ Rn and Vγ(x0) = v(x0),

0 ≤ min
{
v(x0)− h(x0),max

u∈U
min
d∈D

∂v

∂x
(x0) · f(x0, u, d) + γv(x0)

}
.

2) For any smooth function v ∈ C∞(Rn) such that Vγ − v has a local
maximum at x0 ∈ Rn and Vγ(x0) = v(x0),

0 ≥ min
{
v(x0)− h(x0),max

u∈U
min
d∈D

∂v

∂x
(x0) · f(x0, u, d) + γv(x0)

}
.

Case 1. Vγ(x0)=h(x0)>0: By the continuity of h, there exists
ε > 0 such that Vγ(y)=h(y) for all y∈Bε(x0). Thus, the gradient
of Vγ at x0 exists: ∂Vγ

∂x (x0) =
∂h
∂x (x0), so for any v such that Vγ−v

has either a local minimum or a local maximum at x0, ∂v
∂x (x0) =

∂h
∂x (x0). From (38),

max
u∈U

min
d∈D

∂v

∂x
(x0) · f(x0, u, d) + γv(x0) = 0. (73)

Therefore, Statements 1) and 2) hold in this case.
Case 2. Vγ(x0)=0>h(x0): By the continuity of h, there exists

ε > 0 such that Vγ(y) = 0 for all y ∈ Bε(x0). This implies that
the gradient of Vγ at x0 is 0 ∈ Rn, so for any v such that Vγ − v
has either a local minimum or a local maximum at x0, ∂v

∂x (x0) = 0.
Thus, (73) holds. Therefore, Statements 1) and 2) hold in this case.

Case 3. Vγ(x0)=0=h(x0): From v(x0)− h(x0)=0, it is trivial
that 2) holds, and we focus on the proof of 1). Since Vγ − v has
a local minimum at x0, ∂v

∂x (x0) ∈ ∂−Vγ(x0), where ∂−Vγ(x0) is
the sub-differential, which is determined as

∂−Vγ(x0) = conv
(
{0} ∪

{∂h

∂x
(x0)

})
,

where conv is a convex-hull operator. Thus, ∂v
∂x (x0) = α∂h

∂x (x0) for
some α ∈ [0, 1]. Thus, from (38) and v(x0) = 0, (73) holds and
therefore, 1) holds.

J. 1D example: comparison of reachability methods in Table I

We consider a simple one-dimensional system described by

ẋ(t) = x(t) + u(t), x(0) = x, (74)

where u ∈ U = [−1, 1]. We consider the state domain x ∈ [0,∞).
We consider the set S = [0, 2], and choose hS as hS(x) = max{2−
x,−2}. Basically, it is a distance function cut off at the absolute value
of 2 (Figure 8 grey). For this example, we compare the results of
the three backward reachability formulations studied in the previous
literature [7]–[10], [16] with our forward reachability formulation, as
summarized in Table I. We use γ = 2 in all formulations. Note that
the chosen S is not control invariant, thus, the example is chosen
not for the reachability analysis of control invariant sets, but to
study the boundedness, continuity, and the solution uniqueness of
the resulting value functions. The viability kernel of S, the maximal
control invariant set contained in S, is [0, 1], since at x = 1, ẋ can
be maintained 0 by selecting the saturated control input u = −1,
but for every x exceeding 1, ẋ > 0 for any admissible control input
value. Also, we did not introduce disturbance for simplicity, thus,
the readers may assume no effect of disturbance strategies ξd on the
value functions defined in each formulation.
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Fig. 8. Various reachability value functions, summarized in Table I, for
the 1D example in (74). Only the formulations with the discounted factor
(green and blue), including the one proposed in this work produce value
functions that are bounded and continuous.

1) Backward Reachable Tube (BRT) without discount factor
[7], [36]:

V (x) := inf
ξd∈Ξd

sup
u∈U

inf
t∈[0,∞)

hS(x(t)), (75)

which characterizes the viability kernel of S as {x|V (x) ≥ 0}, which
can be seen in Figure 8 (purple). The value function is discontinuous
at x = 1. Moreover, the corresponding HJ-PDE, given as

0 = min
{

hS(x)− V (x),max
u

min
d

∂V

∂x
· f(x, u, d)

}
(76)

admits non-unique solutions, for instance, V (x) ≡ −2 in this
example is also a valid viscosity solution to (76).

2) Discounted BRT with discount factor [9], [10]:

V (x) := inf
ξd∈Ξd

sup
u∈U

inf
t∈[0,∞)

e−γthS(x(t)). (77)

In this case, as can be seen in Figure 8 (green), the value function is
continuous and bounded. However, the main issue of this formulation
is that the value function is flat inside the viability kernel, which is
characterized as {x|V (x) = 0}.

3) Infinite horizon CBVF [8], [16]:

V (x) := inf
ξd∈Ξd

sup
u∈U

inf
t∈[0,∞)

eγthS(x(t)). (78)

Notice the flip of sign in the factor of the exponential term, compared
to (77). This formulation results in an HJ-PDE whose differential
inequality matches the form of the barrier constraint. However, it
results in discontinuity and unboundedness of the value function, as
can be seen in Figure 8 (orange).

4) Our formulation: The value function is defined in (22), which
is bounded and continuous, as can be seen in Figure 8 (blue).
Also, this formulation admits a unique solution to the correspond-
ing HJ-PDE in (26), and the differential inequality in the PDE
matches the form of the barrier constraint. Note that in this example,
FRT (Int(S)) is [0,∞), thus, in Figure 8, V (x) > 0 everywhere.
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