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Nonsmooth Control Barrier Functions for Obstacle Avoidance
between Convex Regions

Akshay Thirugnanam, Jun Zeng and Koushil Sreenath

Abstract—In this paper, we focus on non-conservative obstacle
avoidance between robots with control affine dynamics with
strictly convex and polytopic shapes. The core challenge for
this obstacle avoidance problem is that the minimum distance
between strictly convex regions or polytopes is generally im-
plicit and non-smooth, such that distance constraints cannot be
enforced directly in the optimization problem. To handle this
challenge, we employ non-smooth control barrier functions to
reformulate the avoidance problem in the dual space, with the
positivity of the minimum distance between robots equivalently
expressed using a quadratic program. Our approach is proven to
guarantee system safety. We theoretically analyze the smoothness
properties of the minimum distance quadratic program and
its KKT conditions. We validate our approach by demonstrat-
ing computationally-efficient obstacle avoidance for multi-agent
robotic systems with strictly convex and polytopic shapes. To our
best knowledge, this is the first time a real-time QP problem can
be formulated for general non-conservative avoidance between
strictly convex shapes and polytopes.

I. INTRODUCTION

A. Motivation

Optimization-based approaches usually consider the control
and planning algorithms as an optimization problem with
obstacle avoidance constraints, where the minimum distance
between the robots and the obstacles is enforced to always
be positive along the trajectory. The minimum distance func-
tions for these constraints are smooth and differentiable when
the shapes of the robots and the obstacles are considered
lines, planes, circles, ellipses, hyper-ellipses, etc. However,
the smoothness and the differentiability are no longer valid
when the robots or the obstacles are considered as general
convex regions, such as polytopes [1]. To handle this issue,
polytopic obstacle avoidance can be reformulated into smooth
constraints with dual variables within model predictive con-
trol for discrete-time systems. However, the optimization is
computationally heavy for real-time implementation as the
constraints in the dual space are still nonlinear and non-
convex [2]. Recent progress in the field of control barrier
functions permits us to formulate quadratic optimization prob-
lems for obstacle avoidance for continuous-time systems [3],
although only for differentiable distance functions. The chal-
lenges of computational complexity and non-smooth distances
between convex regions motivate us to describe the minimum
distance constraint between convex regions in a differentiable
and smooth manner. We will show that this can be achieved
for polytopic and strictly convex sets by incorporating KKT
conditions into the control barrier function constraints. The
proposed formulations allow us to reformulate a set of non-
differentiable and non-convex obstacle avoidance constraints
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(a) Snapshot of the trajectories for polytopic robots.

(b) Snapshot of the trajectories for strictly convex-shaped robots.

Fig. 1: Snapshots of the trajectories for polytopic and strictly convex-
shaped robots using our proposed formulation. The ’o’ markers
indicate the initial positions, while ’*’ indicates the final position. The
shape of each robot is different, with three having unicycle dynamics
and the others having integrator dynamics, which illustrates the versa-
tility of our formulation. The robot shapes are not over-approximated,
allowing for tight maneuvers while guaranteeing safety.

into convex and differentiable ones through nonsmooth control
barrier functions [4] and achieve real-time computation with
convex quadratic programs. The resulting control policy allows
for tight obstacle avoidance maneuvers, as shown in Fig. 1.

B. Related Work

Collision-free maneuvering for autonomous systems in an
obstacle-dense environment is a challenging problem. In al-
most all existing cybernetics systems, one core behavior is
required: to avoid collision with surrounding obstacles.

1) Obstacle Avoidance in Planning and Control: In the
last two decades, a majority of obstacle avoidance prob-
lems have been considered using optimization-based trajectory
planning algorithms through dynamic programming-related
approaches [5], such as trajectory parametrization [6], [7],
convex optimizations [8], [9], sequential optimization [10]–
[12], LQR/LQG [13]–[15], and model predictive control [16]–
[18]. All the above approaches and their variants are related to
optimization techniques that use the gradient of the discrete-
time system dynamics. Recently, obstacle avoidance has also
been achieved through control approaches for continuous-time
systems, such as with barrier-based approaches [4], [19]–[21].
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2) Necessity of Convex Obstacle Avoidance: To achieve
obstacle avoidance in planning and control problems, the
minimum distance function between the robots and the ob-
stacles is considered [22]. This will generate repulsion from
obstacles, where either additional terms are added in the
cost function or inequalities are enforced in the constraints
for the optimization problems. The additional cost terms and
constraints are functions of the minimum distance, which are
required to be smooth and differentiable. Therefore, the shapes
of the robots and the obstacles are often approximated as lines,
planes, circles, ellipses, and spheres [12], [15], [22], [23].
These approximations could result in a conservative obstacle
avoidance behavior and deadlock for trajectory generation
problems or navigation tasks.

3) Existing Work on Polytopic Obstacle Avoidance: The
existing optimization-based approaches for polytopic obstacle
avoidance can be classified as mixed-integer programming and
model predictive control (MPC) with duality. Mixed-integer
programming [24]–[26] was initially developed for hybrid sys-
tems and then generalized for polytopic avoidance [27], [28]
since the nearest pair of points for minimum distance between
polytopes are on different edges, which could be described
as mixed-integer variables. For real-time computation, mixed-
integer programming can only be applied to linear systems.
Dual analysis was introduced into the MPC problem [2] and
allows us to define obstacle avoidance constraints in trajec-
tory generation problems. This approach is computationally
faster than mixed-integer programming but still requires non-
convex optimization. Therefore, this approach can only be
used online for linear systems [29] and in offline planning for
nonlinear systems [30]. However, the optimization problems
are always non-convex for nonlinear systems for mixed-integer
programming and model predictive control with duality, mean-
ing real-time computation cannot be guaranteed for general
nonlinear systems. Approximating polytopes into circles or
spheres can make the problem convex, but the approximation
is conservative and could generate deadlock. This motivates us
to seek convex optimizations for non-conservative polytopic
avoidance.

4) Obstacle Avoidance between Strictly Convex Regions:
As discussed above, one core challenge for obstacle avoidance
between polytopes is the non-smoothness and the implicit
expression of the minimum distance. The distance function
between strictly convex sets is also non-smooth and implicit in
general. Only a few existing works [31], [32] attempt to solve
obstacle avoidance between strictly convex regions. Moreover,
they all assume specific forms of convex regions, e.g., ellipses
or spheres. This motivates us to propose a general way to solve
obstacle avoidance between strictly convex regions.

5) Convex Optimizations with Control Barrier Functions:
Recent research in control barrier functions (CBFs) brings
the possibility of solving obstacle avoidance with convex
optimizations in the scope of control problems. The studies
on control barrier functions have used a variety of approaches
that can be best described as “Lyapunov-like”. In other words,
these functions yield invariant super-level sets such that one
can guarantee safety if these level sets are contained within
the safe set [33]. CBF-QP [34] uses quadratic programs to

find the minimum perturbation of a given feedback controller
to guarantee safety. Control Lyapunov functions (CLFs) [35],
[36] can be applied to stabilize the closed-loop dynamics of
both linear and nonlinear dynamical systems [37]. Together
with CBFs, the framework of CLF-CBF-QP [3] incorporates
control barrier functions with control Lyapunov function-based
quadratic programs, which enables handling safety-critical
constraints effectively in real-time with low complexity of
solving QPs. These safety-critical constraints with control
barrier functions are usually used for obstacle avoidance. To
achieve obstacle avoidance, these control barrier functions are
a function of the distance between different shapes of robots
and obstacles, including point-mass [38], circles [39], el-
lipses [40], parabolas [41] and high-dimensional spheres [42].
All these existing work motivates us to apply control barrier
functions to deal with obstacle avoidance for convex regions.
However, the nominal CBF-QP and CLF-CBF-QP formula-
tions, and their variants, require the control barrier functions to
be differentiable, while the distance functions between convex
regions are not only non-smooth but do not even hold explicit
forms [43], [44]. To overcome this challenge, in this paper,
we seek differentiable control barrier functions with convex
obstacle avoidance in the dual space instead of the primal
space in the optimization problem.

C. Contributions

Preliminary results of this work were published in [1], which
focused on obstacle avoidance between polytopes. We further
elaborate on the results of this work and also provide a method
for obstacle avoidance between strictly convex regions. The
contributions of this paper are as follows:
• We provide a novel optimization algorithm for collision

avoidance between a large class of robots whose geometries
are described by either a polytope or a strictly convex set
and whose dynamics are characterized by a nonlinear control
affine system. The proposed method is also not conservative,
meaning the algorithm allows for tight avoidance maneuvers
in obstacle-filled environments.

• We use the results from nonsmooth analysis to show the
differentiability properties of the KKT solution of the mini-
mum distance optimization problem. Nonsmooth analysis is
also used to prove the overall safety properties of the system
under our proposed controller.

• We formulate the problem in continuous-time, and the
control optimization problem is a QP and thus can be solved
in real-time.

D. Notation

For n ∈ N, [n] denotes the set {1, 2, ..., n}. Superscripts
of variables, such as xi, denote the robot index. Subscripts
of variables, such as Ak, denote the row index of vectors or
matrices, and stylized subscripts, such as AR, denote the sub-
matrix obtained by selecting those rows whose index lies in
the set R. For mathematical proofs, subscripts of variables
with parenthesis, such as a(m), denote the m-th element in
the sequence {a(m)}. Tab. I summarizes the symbols used in
the paper.
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TABLE I: List of Symbols and Notations

Symbol Meaning
xi ∈ X i ⊆ Rn System state of Robot i
s∗(x) ∈ Rl Optimal separating vector between Ci(xi) and

Cj(xj); minimizer of (9)
ui ∈ U i ⊆ Rm System input for Robot i
Ai(xi, zi) ∈ Rri Constraints defining Ci(xi) for the strictly convex

set case; (10)
f i(xi) Drift vector field for Robot i; (1)
J i(xi, zi) Set of active constraints at zi; (11)
gi(xi) Input vector field for Robot i; (1)
λi ∈ R1×ri Dual variables for Robot i
F [·] Filippov operator; (4)
L(x, z, λ) Lagrangian function; (13)
Ci(xi) ⊆ Rl Geometric region occupied by Robot i
J i
k(x

i) Set of active and inactive constraints at an optimal
solution z∗i, k = {0, 1, 2}; (20), (22), (29)

h(x) ∈ R≥0 Square of the minimum distance between Ci(xi)
and Cj(xj); (12), (25)

Ai(xi) ∈ Rri×l,
bi(xi) ∈ Rri

Half-space constraints defining Ci(xi) for the
polytope case; (24)

zi Any point in Robot i, zi ∈ Ci(xi)
Affi(xi) Parallel affine space defining xi; (30)
S ⊆ X i ×X j Set of safe states; (6)
Λ(x, λ) Lagrangian dual function; (27)

E. Paper Structure

The paper is organized as follows. A brief introduction
to discontinuous dynamical systems and nonsmooth control
barrier functions is presented in Sec. II. In Sec. III, we analyze
the general smoothness properties of the optimal solutions of
the minimum distance function, including uniqueness, con-
tinuity, and differentiability. We analyze the continuity and
differentiability properties of the minimum distance problem
between strictly convex sets in Sec. IV and propose an obstacle
avoidance formulation with NCBFs for strictly convex sets in
Sec. V. The properties of dual solutions for polytopic sets
are discussed in Sec. VI, and the corresponding optimization
formulation with NCBFs for polytopes is then presented in
Sec. VII. In Sec VIII, we numerically validate our approach
for obstacle avoidance with NCBFs, and concluding remarks
are presented in Sec. IX.

II. BACKGROUND

In this paper, we consider the enforcement of safety con-
straints between multiple controllable robots and obstacles.
Each controlled robot is associated with some states, control
inputs, system dynamics which describe the state evolution,
and geometries which describe the physical domain occupied
by each of the robot links. Enforcing safety for such robots
requires their control policies to guarantee that no two robots
or obstacles collide with each other, i.e. the minimum distance
between any two robots is always greater than zero.

Consider N controlled robots with the i-th robot having
states xi ∈ X i ⊂ Rn and nonlinear, control-affine dynamics:

ẋi(t) = f i(xi(t)) + gi(xi(t))ui(t), i ∈ [N ], (1)
where f i : X i → Rn and gi : X i → Rn×m are continuous
functions, ui(t) ∈ U i ⊂ Rm, and [N ] = {1, 2, ..., N}. We
assume X i to be an open connected set and U i a convex
compact set.

ODEs of the form of (1), where the RHS is a continuous
function, are guaranteed to have a solution, but the solution
might be non-unique. Although restricting the functions f i,

gi, and ui in (1) to be Lipschitz continuous functions would
guarantee uniqueness of solutions, imposing Lipschitz conti-
nuity on ui is too restrictive. In this work, we assume that
the geometry of any robot can be described by a polytope,
see Fig. 4, or a strictly convex set, see Fig. 3, which have
nonsmooth boundaries, so the minimum distance between any
pair of such geometries is not differentiable. This means that
the control input obtained using the distance function might
not be continuous, as is noted in the subsequent sections.
Therefore, we first present some background about solutions
of ODEs with a discontinuous RHS.

A. Discontinuous Dynamical Systems

To have a well-defined notion of a solution to an ODE with a
discontinuous RHS, we can study the properties of differential
inclusions of the form:

ẋi(t) ∈ F i(xi(t)), xi(0) = xi
0, (2)

where F i : X i → 2R
n

is a set-valued map. Here 2R
n

denotes
the power set of Rn. We also need the notion of continuity of
set-valued maps.

Definition 1. (Semi-continuity) [45, Sidebar 7] A set-valued
map Γ : X → 2R

n

is said to be upper semi-continuous
(respectively, lower semi-continuous) at a ∈ X , if ∀ϵ > 0,
∃δ > 0 such that ∀x ∈ Bδ(a), Γ(x) ⊂ Γ(a) + Bϵ(0)
(respectively, Γ(a) ⊂ Γ(x) + Bϵ(0)). Here Br(x) := {y :
∥x − y∥ < r} is an open ball of radius r around x, and
the addition between sets is defined as Minkowski addition.
For sets A and B, the Minkowski addition is defined as
A+ B := {a+ b : a ∈ A, b ∈ B}. Γ is continuous at a ∈ X
if it is both upper and lower semi-continuous at a ∈ X .

For a differential inclusion of the form of (2), a notion of
a solution can be defined as follows.

Definition 2. (Caratheodory Solution) [45] A Caratheodory
solution on [0, T ] to (2) is an absolutely continuous map xi :
[0, T ] → X i which satisfies (2) for almost all t ∈ [0, T ], i.e.
the set of points where (2) is not satisfied has measure zero.

We now examine the dynamical system (1) with a discon-
tinuous feedback control input u(x) and convert it into the
form (2) to obtain a Caratheodory solution for the system.
To do this, we use the Filippov operator. For a vector field
f i : X i → Rn, the Filippov operator on f i, F [f i] : X i → 2R

n

,
is defined as [45, Eq. (30)],
F [f i](x) := co{ lim

k→∞
f i(x(k)) : x(k)→x, x(k) /∈Qd,Q}, (3)

where ‘co’ stands for convex hull, Qd is the zero-measure set
of the points of discontinuities of f i, and Q is an arbitrary
zero-measure set. Note that F [f i] is a set-valued map.

Let ui : X i → U i be some measurable feedback control
law. The discontinuous dynamical system (1) can be converted
to a differential inclusion of the form (2), using the Filippov
operator F [·] as :

ẋi(t) ∈ F [f i + giui](xi(t)) (4)
We can now define a solution of (1) as a solution of (4).

Definition 3. (Filippov Solution) [45, Eq. (21)] A Filippov
solution of (1) is a Caratheodory solution of (4).
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Caratheodory solutions are defined for differential inclu-
sions of the form (2), whereas Filippov solutions are defined
for ODEs of the form (1) by converting the ODE into a
differential inclusion using (4). The following result guarantees
the existence of Filippov solutions.

Proposition 1. (Existence of Filippov Solutions) [45, Prop. 3]
The map F [f i + giui] : X i → 2R

n

is upper semi-continuous
and is non-empty, convex, and compact at each xi ∈ X i.
Then, for all xi

0 ∈ X i, (4) has a Caratheodory solution with
xi(0) = xi

0, which is a Filippov solution to (1).

We also make a note of the following properties of the
Filippov operator:

Property 1. (Distributive Property) By the sum and product
rules for Filippov operators [45, Eq. (26-27)] and the conti-
nuity of f i and gi, (4) is equivalent to

ẋi(t) ∈ f i(xi(t)) + gi(xi(t))F [ui](xi(t)). (5)

Property 2. Let Γ : X → U , U ⊆ Rm, be a map such
that for all x, Γ(x) ∈ Fu(x), where Fu : X → 2R

m

is a
pointwise non-empty, convex, and compact set-valued map.
Also let Γ be such that for all x and sequences {x(m)} → x,
limm→∞ Γ(x(m))=u ⇒ u ∈ Fu(x). Then, by the definition
of Filippov operator (4), F [Γ](x) ⊆ Fu(x), ∀x ∈ X .

B. Nonsmooth Control Barrier Functions

To enforce obstacle avoidance between Robots i and j,
we want the minimum distance between them to be greater
than 0. Let hij(xi, xj) be the minimum distance between the
geometries of Robot i at state xi and Robot j at state xj .
Note that the minimum distance between two non-empty sets
is always well-defined and non-negative. We can define safe
states as the states (xi, xj) where hij(xi, xj) is greater than
zero [33], as

Sij := {(xi, xj) : hij(xi, xj) > 0}cl, (6)
where (·)cl denotes closure of a set.

Remark 1. We define Sij as the closure of the actual safe set
to ensure that Sij is a closed set, but this may also introduce
states that are not safe into Sij . Under certain regularity
assumptions on the geometries of the robots and obstacles,
taking the closure of the safe set is not detrimental to the
obstacle avoidance problem. Taking the closure of the safe set
introduces only those unsafe states in which the obstacle and
the robot have an intersection of measure zero [46].

Let, for all Robots i, ui : X i → U i be a measurable
feedback control law, with the corresponding Filippov solution
as xi(t) for t ∈ [0, T ]. We consider the system to be
safe if for any two Robots i and j, (xi(t), xj(t)) ∈ Sij

∀t ∈ [0, T ]. We want to enforce conditions on ui to guarantee
the system’s safety. However, simply enforcing the condition
that hij(xi(t), xj(t)) > 0 at a particular time is not useful
since hij does not explicitly depend on the control input. The
control input influences the state evolution, so we can enforce a
safety condition on the time-derivative ḣij . To achieve this, we
first adapt the definition of barrier functions from [4, Def. 4].

Definition 4. [4, Def. 4] (Nonsmooth Control Barrier Func-
tion) A locally Lipschitz continuous function h : X → R is
a nonsmooth control barrier function (NCBF) if there exists
a measurable control law u : X → U such that the set
S = {x ∈ X : h(x) ≥ 0}, is forward invariant for the closed-
loop system.

If h is a locally Lipschitz continuous function, it is also
absolutely continuous [45]. By Def. 3, the Filippov solution
x(t) is absolutely continuous, and so h ◦ x is also absolutely
continuous and is differentiable almost everywhere [45]. Then
the following lemma can be used to guarantee safety:

Lemma 1. [4, Lem. 2] Let α > 0 be a constant, and h :
[0, T ] → R be an absolutely continuous function. If

ḣ(t) ≥ −α · h(t) (7)
for almost all t ∈ [0, T ] and h(0) > 0, then h(t) ≥
h(0)e−αt > 0 ∀t ∈ [0, T ].

NCBFs are a generalization of Control Barrier Functions
(CBFs) [33] to nonsmooth functions, and the constraint (7) is
called the NCBF constraint. The safety for the system (1) can
be enforced by choosing hij as an NCBF, but, as opposed to
previous work on CBFs, the minimum distance hij is implic-
itly calculated as the solution of a minimization problem. In
the following sections, we will show how to explicitly enforce
(7) for the minimum distance function hij for both strictly
convex sets and polytopic sets. We first analyze the general
properties of the minimum distance function for convex sets
in Sec. III. In Sec. IV and Sec. VI, we derive a set of
smooth, explicit constraints for the derivative of the minimum
distance for strictly convex sets and polytopes respectively.
These constraints are then used to enforce the NCBF constraint
(7) and prove safety in Sec. V and Sec. VII. A flowchart of
results is shown in Fig. 2.

III. UNIQUENESS / CONTINUITY / DIFFERENTIABILITY
FOR THE MINIMUM DISTANCE PROBLEM

This section identifies general results on the smoothness
of the minimum distance between a pair of convex sets. The
first two subsections discuss the uniqueness and continuity
of optimal solutions, and the third subsection focuses on
the optimal value’s differentiability. We make incremental
assumptions on the convex sets to determine the corresponding
properties in each subsection. The results in the section justify
that the minimum distance function can be used as a candidate
NCBF and is the base for the results in the subsequent sections.

For simplicity, we will restrict our discussion to a pair of
Robots i and j and generalize when necessary. We also define
X := X i × X j , U := U i × U j , x := (xi, xj) ∈ X , h(x) :=
hij(xi, xj), S := Sij , and u := (ui, uj) ∈ U for the Robots i
and j.

A. Uniqueness of Optimal Solutions

Let Ci : X i → 2R
l

and Cj : X j → 2R
l

be set-valued maps
defined from the states to the l-dimensional physical space.
Ci(xi), Cj(xj) ⊂ Rl represent the physical space occupied by
the Robots i and j at states xi and xj respectively.

Assumption 1. We assume the following for Ci, for all i:
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Smoothness properties of the distance function h, Sec. III

Uniqueness of separating vector s∗, Lem. 2

Lipschitz continuity of h, Lem. 4

Strictly convex sets Polytopic sets

Smoothness properties of KKT
solutions, Sec. IV

Continuous differentiability of
KKT solutions, Lem. 7

Directional derivative of h, Thm. 1

Continuity of s∗ and h, Lem. 3

Safety for strictly convex sets, Sec. V

Safety using NCBFs, Thm. 2

Smoothness properties of dual
solution λ∗, Sec. VI

Dual QP for h, Lem. 8

Differentiability of λ∗, Lem. 9

Derivative of h as an LP, Lem. 10

Safety for polytopic sets, Sec. VII

Safety using NCBFs, Thm. 3

Fig. 2: A flowchart of the important results in the paper. The results
in blue are the main contributions of the paper. Sec. III identifies
smoothness properties of the minimum distance optimization for
general convex sets. Sec. IV and Sec. V cover smoothness and
safety for strictly convex sets, respectively. Sec. VI and Sec. VII
cover smoothness and safety for polytopes and are independent of
the sections on strictly convex sets.

(a) Ci(xi) is convex, compact, and has a non-empty interior
for all xi ∈ X i.

(b) The set-valued maps Ci are continuous, i.e. both lower
and upper semi-continuous.

These are natural assumptions since we expect the shape of
the robot to be bounded, have non-zero volume, and change
continuously with the robot’s state.

The minimum distance h(x) between Ci(xi) and Cj(xj) is
defined by the optimization problem,

h(x) = min
z

∥zi − zj∥22
s.t. zi ∈ Ci(xi), zj ∈ Cj(xj).

(8)

Variables zi, zj ∈ Rl denote points inside the sets Ci(xi) and
Cj(xj) respectively, and let z := [ziT , zjT ]T . Any value of z
that is a minimizer of (8) is referred to as an optimal solution.

A separating vector is defined as a vector from Cj(xj) to
Ci(xi), which has the minimum length. The separating vector
s∗ is obtained as a solution to the optimization problem,

h(x) = min
s

∥s∥22
s.t. s ∈ Ci(xi)− Cj(xj),

(9)

where Ci(xi) − Cj(xj):={s = zi − zj : zi ∈ Ci(xi), zj ∈
Cj(xj)} is the Minkowski addition of Ci(xi) and −Cj(xj).
A non-zero separating vector implies that the two sets are
disjoint. The separating vector is also unique, as shown in the
following lemma.

Lemma 2. (Uniqueness of Separating Vector) If Assump-
tion 1.a holds, then at least one optimal solution exists, and
the separating vector s∗ defined as s∗ = z∗i − z∗j is unique
for all pairs of optimal solutions z∗ := (z∗i, z∗j) of (8).

Further, if Ci(xi) is strictly convex and Ci(xi)∩Cj(xj) = ∅,
then both z∗i and z∗j are unique.

Proof. The proof is provided in Appendix A.

For any x ∈ X , s∗(x) is defined as the unique minimizer
of (9). The optimal solution of (8), if unique, is defined as
z∗(x) = (z∗i(x), z∗j(x)). To show the continuity of h and s∗,
we consider the additional assumption on the continuity of Ci,
Assumption 1.b.

B. Continuity of Optimal Solutions

The following result shows that, under Assumption 1, the
continuity of the minimum distance h and the separating vector
s∗ can be established using (9).

Lemma 3. (Continuity of Separating Vector) If Assumption 1
holds, then the minimum distance function h and the separat-
ing vector s∗ are continuous for all x ∈ X .

Further, if Ci(xi) is strictly convex for all xi ∈ X i and
Ci(xi)∩Cj(xj) = ∅ at x, then the unique minimizer z∗(x) of
(8) is continuous at x.

Proof. The proof is provided in Appendix B.

Lem. 3 implies that the separating vector, which is the
normal vector of the optimal hyperplane separating Ci and Cj ,
moves continuously with the states of the robots. To derive the
differentiability properties for general convex sets, we need to
impose further restrictions on the structure of the convex sets.

C. Differentiability of Optimal Solutions

Differentiability of the minimum distance function h re-
quires stronger assumptions on the convex sets Ci(xi) and
Cj(xj) than for continuity. Let Ci be of the form,

Ci(xi) = {zi ∈ Rl : Ai
k(x

i, zi) ≤ 0, k = 1, ..., ri}, (10)
where Ai

k : X i×Rl → R, and ri is the number of constraints
used to define Ci(xi).

Assumption 2. We assume the following for all i and k:

(a) Ai
k(x

i, ·) is convex in z ∈ Rl, ∀xi ∈ X i.
(b) Ci(xi) is a compact set with a non-empty interior. More-

over, ∃z ∈ Ci(xi) such that Ai(xi, z) < 0.
(c) Ai

k is continuous on X i × Rl. Further, for any xi ∈ X i,
there is an open convex set W ⊃ Ci(xi) and a neigh-
borhood N of xi such that for each z ∈ W , Ai

k(·, z)
is Lipschitz continuous in N with a Lipschitz constant
independent of z, i.e., ∀y1, y2 ∈ N , z ∈ W

|Ai
k(y

1, z)−Ai
k(y

2, z)| ≤ Lx∥y1 − y2∥.

Ci(xi) is the intersection of the 0-sublevel sets of Ai
k(x

i, ·).
So, if Assumption 2.a holds, Ci(xi) is convex for all xi ∈ X i.
Thus, if Assumptions 2.a and 2.b hold, Ci(xi) is a convex,
compact set with a non-empty interior, and Lem. 3 holds. The
Lipschitz property in Assumption 2.c guarantees that Ci(xi)
changes continuously with the state xi and, by Lem. 3, that h is
continuous. Note, however, that Ci(xi) need not be Lipschitz
continuous [47, Ex. 1]. Further, h is also locally Lipschitz
continuous, as shown in the following lemma:
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Lemma 4. (Lipschitz continuity of minimum distance) If
Assumptions 2.b and 2.c hold, then the minimum distance h(x)
is locally Lipschitz continuous.

Proof. The proof is provided in Appendix C.

Although the minimum distance h(x) is Lipschitz con-
tinuous under Assumption 2, the optimal solution of the
minimum distance problem (8) (if unique) might be non-
Lipschitz. One such example where the optimal solution of
a quadratic program, with smooth dependence on parameters,
is non-Lipschitz is provided in [48].

This section discussed some general smoothness properties
for minimum distance problems. The analysis in this section
supports all the theorems and proofs in the rest of the paper.
With additional assumptions, the discussion for smoothness
properties is then extended to KKT solutions for strictly
convex sets and to dual solutions for polytopes, in Sec. IV
and Sec. VI respectively. Based on the smoothness properties
proved in Sec. IV and Sec. VI, we propose optimization
formulations for obstacle avoidance with NCBFs for strictly
convex sets and polytopes in Sec.V and Sec. VII respectively.
An outline of the results in this section and the following
sections is provided in Fig. 2.

IV. SMOOTHNESS PROPERTIES FOR STRICTLY CONVEX
SETS WITH DUAL ANALYSIS

This section discusses continuity and differentiability prop-
erties for strictly convex sets in depth. As discussed in the
previous section, h is locally Lipschitz, meaning it can be
used as a candidate NCBF. However, h is the solution to an
optimization problem, and it is unclear how to obtain ḣ. This
section aims to derive a set of explicit constraints to calculate
ḣ(x), which will then be used to derive the NCBF formulation
for strictly convex sets in the next section.

Consider a general class of robots whose geometries are
strictly convex and can be explicitly represented by sufficiently
smooth functions, as defined in (10). For a given xi and a point
zi ∈ Ci(xi), define the set of active indices as,

J i(xi, zi) = {k ∈ [ri] : Ai
k(x

i, zi) = 0}, (11)
i.e. the set of indices of constraints that are active at zi.

Assumption 3. We assume the following for all i:
(a) Ai

k is twice continuously differentiable on X i × Rl ∀k.
(b) Ai

k(x
i, ·) is strongly convex in z ∈ Rl, i.e. ∇2

zA
i
k(x

i, z) ≻
0, ∀k.

(c) The set Ci(xi) satisfies linear independence constraint
qualification (LICQ), i.e. the set of gradients of active
constraints, {∇zA

i
k(x

i, zi) : k ∈ J i(xi, zi)} is linearly
independent for all zi ∈ Ci(xi) and xi ∈ X i.

(d) For all xi ∈ X i, Ci(xi) is a compact set and has a non-
empty interior.

Next, we show how Assumption 3 and the results from
Sec. III can be used to determine the smoothness properties
of the minimum distance between strictly convex sets. In
particular, Assumption 3 implies that Assumption 2 holds.

By Assumption 3.b, the 0-sublevel set of Ai
k(x

i, ·) is strictly
convex, i.e. if Ai

k(x
i, zi1) = Ai

k(x
i, zi2) = 0, then Ai

k(x
i, λzi1+

(1− λ)zi2) < 0, ∀λ ∈ (0, 1). Thus, the set {zi : Ai
k(x

i, zi) ≤

0} and consequently Ci(xi) is strictly convex. By Lem. 2, there
exists a unique solution to (8) ∀x ∈ S, denoted by z∗(x).

Since Ai : X i × Rl → Rri is a locally Lipschitz vector
function (by Assumption 3.a) and Ci(xi) is non-empty, the
set Ci(xi) = {z ∈ Rl : Ai(xi, z) ≤ 0} is upper and lower
semi-continuous. By Lem. 3, the minimum distance function
h is continuous and by the strict convexity of Ci(xi), z∗(x)
is continuous at x ∈ S.

Let W ⊃ Ci(xi) be an open, convex, and bounded set. Since
Ai

k is continuously differentiable for all k, Ai
k(·, z) is locally

Lipschitz continuous for each z ∈ Rl. Moreover, since W is
bounded, Ai

k(·, z) is Lipschitz continuous around xi ∈ X i for
each z ∈ W with a Lipschitz constant independent of z ∈
W . Thus Assumption 3 ensures that Assumption 2 holds. All
conditions for Lem. 4 are satisfied; thus, h is locally Lipschitz
continuous. Lipschitz continuity of h means that it can be used
as a candidate NCBF.
A. KKT Conditions for the Minimum Distance Problem

Consider the minimum distance optimization problem (8)
written as

h(x) = min
z

∥zi − zj∥22
s.t. Ai(xi, zi) ≤ 0, Aj(xj , zj) ≤ 0.

(12)

The primal optimal solution z∗(x) is a global optimum for
(12), and we can obtain the first-order necessary conditions
that z∗(x) must satisfy using KKT conditions.

For a given x ∈ X , we define the Lagrangian function L :
X × R2l × Rri × Rrj → R as, [49, Chap. 5]

L(xi, xj , zi, zj , λi, λj) = ∥zi − zj∥22 + λiAi(xi, zi) (13)

+ λjAj(xj , zj),

where λi ∈ R1×ri and λj ∈ R1×rj are the dual variables
corresponding to the inequality constraints. We denote the
dual variables as λ := [λi, λj ] and the Lagrangian function
as L(x, z, λ). For simplicity of notation, we also define
A(x, z) = [AiT (xi, zi), AjT (xj , zj)]T .

The Karush-Kuhn-Tucker (KKT) conditions are necessary
optimality conditions for (12) [49, Chap. 5]. The KKT con-
ditions state that, for each x ∈ X , there exists KKT solution,
(z∗, λ∗), such that the following constraints are satisfied:

∇zL(x, z
∗, λ∗) = 0, (14a)

λ∗A(x, z∗) = 0, (14b)
λ∗ ≥ 0, (14c)

A(x, z∗) ≤ 0, (14d)
where (14a) is the stationarity condition along the set of
feasible directions, (14c) is the non-negativity condition for the
dual variables, and (14d) is the primal feasibility condition for
z∗. The conditions (14b) are called complementary slackness
conditions. Note that because of the non-negativity (14c) and
primal feasibility (14d) conditions, λ∗i

k Ai
k(x

i, z∗i) = 0 ∀k ∈
[ri], and similarly for the Robot j. Thus if the constraint
Ai

k(x
i, z∗i) is inactive at z∗i, the corresponding dual variable

λ∗i
k = 0. However, both Ai

k(x
i, z∗i) and λ∗i

k can be zero si-
multaneously. Strict complementary slackness condition holds
for the KKT solution (z∗, λ∗) if for all k ∈ [ri], λ∗i

k > 0
whenever Ai

k(x
i, z∗i) = 0 (and similarly for j).

Since the minimum distance optimization problem (12) is
convex and the interior of the feasible set is non-empty, the
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KKT conditions (14) are necessary and sufficient conditions
for global optimality [49, Chap. 5]. Note that there is a unique
primal optimal solution for (12), and so all KKT solutions of
(14) share the same primal optimal solution.

B. Smoothness Properties of KKT Solutions

In order to determine the uniqueness, continuity, and differ-
entiability properties of the KKT solution, we use the strong
second-order sufficiency conditions (SSOSC) for optimality
for the constrained optimization problem (12). Similar to un-
constrained optimization problems, the SSOSC for constrained
optimization requires strong convexity of the cost function at
the primal optimal solution z∗ along feasible directions. The
SSOSC for (12) [50, Eq. (9)] states that for a KKT solution
(z∗(x), λ∗), ∃a > 0 such that

zT∇2
zL(x, z

∗(x), λ∗)z ≥ a∥z∥22, (15)

∀z ∈ {z : ziT∇zA
i
k(x

i, z∗i(x)) = 0,∀k ∈ J i(xi, z∗i(x)),

zjT∇zA
j
k(x

j , z∗j(x)) = 0,∀k ∈ J j(xj , z∗j(x))},
where J i is defined in (11). The SSOSCs guarantee that the
optimal primal solution z∗(x) is a minimizer of the primal
optimization problem (12), but can also be used to show
smoothness properties. First, we show that for the minimum
distance optimization problem (12), SSOSC holds under some
conditions.

Lemma 5. If Ci(xi) ∩ Cj(xj) = ∅, then any KKT solution at
x satisfies the strong second order sufficient conditions (15).

Proof. The proof is provided in Appendix D.

Now using the LICQ Assumption 3.c and the strong second-
order sufficiency condition, we can show that there is a unique
KKT solution for (14). Moreover, this KKT solution is also
continuous, as shown next.

Lemma 6. If Assumption 3 holds and Ci(xi) ∩ Cj(xj) = ∅,
then there is a unique KKT solution, written as (z∗(x), λ∗(x)),
for (14). Moreover, the unique dual optimal solution λ∗(x) is
a continuous function of x ∈ X .

Proof. Linear independence condition holds at the primal opti-
mal solution z∗(x) by Assumption 3.c. If Ci(xi)∩Cj(xj) = ∅,
Lem. 5 shows that SSOSC holds at x. Finally, Assumption 3.a
says that A(x, z) is twice continuously differentiable. Then,
[50, Thm. 2] shows that there is a unique dual optimal solution
λ∗(x) and that the unique KKT solution is continuous.

Observe that the KKT conditions (14a) and (14b) are
2l + ri + rj equality constraints, in terms of the parameter
x, for the KKT solution (z∗(x), λ∗(x)) ∈ R2l+ri+rj . If the
Jacobian of these equality constraints with respect to the KKT
solution is invertible, we can use the implicit function theorem
to guarantee continuous differentiability of the KKT solution
(z∗(x), λ∗(x)) in terms of x. However, we also need to make
sure that the inequalities (14c) and (14d) are satisfied in the
vicinity of x. We now state the result, which guarantees the
continuous differentiability of the KKT solution at x.

Lemma 7. If Ci(xi) ∩ Cj(xj) = ∅ and the KKT solution
(z∗(x), λ∗(x)) satisfies the strict complementary slackness

condition, then for x′ in a neighbourhood of x, the unique
KKT solution (z∗(x′), λ∗(x′)) is continuously differentiable.

Proof. The KKT solution is unique for x by Lem. 6. In
order to show the continuous differentiability property for
the KKT solution, we make use of [50]. The assumptions
in [50, Thm. 1] are satisfied by Assumption 3.c, Lem. 5, and
Assumption 3.a respectively. Note that second-order sufficient
condition (SOSC) is weaker than SSOSC. Thus, using result
(b) from [50, Thm. 1], for all x′ in a neighbourhood of x
the KKT solution (z∗(x′), λ∗(x′)) is continuously differen-
tiable.

The derivatives of the KKT solution (z∗, λ∗) with respect
to x′ in a vicinity of x can be computed by differentiating the
KKT conditions (14) as done in [50] to obtain,

Q(x′)
∂(z∗, λ∗)

∂x
(x′) = V (x′), (16)

where
Q(x′) =

[
∇2

zL ∇zA
T

diag(λ∗)∇zA diag(A)

]
(x′, z∗(x′), λ∗(x′)), (17)

is invertible when strict complementary slackness holds, and

V (x′) =

[
−∇x∇zL

−diag(λ∗)∇xA

]
(x′, z∗(x′), λ∗(x′)). (18)

Thus, whenever strict complementary slackness condition
holds, (16) shows that Dz∗(x) = [I2n 02n×2n]Q(x)−1V (x).
This allows us to explicitly calculate the derivative of h(x) =
∥z∗i(x)− z∗j(x)∥22, as,
∂h

∂x
(x) = 2(z∗i(x)− z∗j(x))T

(
∂z∗i

∂x
(x)− ∂z∗j

∂x
(x)

)
. (19)

However, when strict complementary slackness does not
hold, Q(x) is not invertible. For these border cases, we can
still obtain the directional derivative of h as the solution of
a system of inequalities. For the optimization problem (12),
we first define the active set of constraints J i

0 and the strictly
active set of constraints J i

1 for Robot i (and similarly for j)
at a KKT solution (z∗(x), λ∗) as

J i
0 (x) = {k ∈ [ri] : Ai

k(x
i, z∗i(x)) = 0}, (20a)

J i
1 (x) = {k ∈ [ri] : λ∗i

k > 0}, (20b)

J i
2 (x) = J i

0 (x) \ J i
1 (x). (20c)

We also adopt the following notation: If Ai has ri rows and Aj

has rj rows, then the index for A = [AiT , AjT ]T is obtained
from the set [r] := [ri] ⊔ [rj ], where ⊔ denotes the disjoint
union, and for (i, k) ∈ [r], A(i,k) := Ai

k.
By the complementary slackness condition (14b), J i

1 (x) ⊆
J i
0 (x), with the equality holding only when strict complemen-

tary slackness condition holds. When strict complementary
slackness does not necessarily hold, we can use the following
result to compute the derivative of h.

Theorem 1. (Directional derivative of h) [50, Thm. 4] Let
x̊ ∈ R2n be a direction of perturbation from x ∈ X . Consider
the following set of equations and inequalities for (̊z, λ̊),

∇2
zLz̊ + λ̊∇zA = −∇x∇zLx̊, (21a)

∇zAkz̊ = −∇xAkx̊, k ∈ J1(x), (21b)
∇zAkz̊ ≤ −∇xAkx̊, k ∈ J2(x),

λ̊k = 0, k ∈ J0(x)
c, λ̊k ≥ 0, k ∈ J2(x), (21c)

λ̊k(∇zAkz̊ +∇xAkx̊) = 0, k ∈ J2(x), (21d)
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where (·)c represents the complement of a set. The set of
equations and inequalities (21) are evaluated at (x, z∗(x), λ∗)
and the index set J0(x) = J i

0 (x) ⊔ J j
0 (x) (and similarly for

J1(x) and J2(x)).
Then, (21) has a unique solution, (̊z∗, λ̊∗), which is the

directional derivative of (z∗, λ∗) at x along x̊.

Thm. 1 provides a method to calculate the directional
derivative of z∗ along a direction x̊ by solving for the feasible
solution z̊ of (21). Moreover, when strict complementary
slackness holds, (21) reduces to (16).

To summarize, Thm. 1 provides a set of constraints whose
feasible solution for a given direction x̊ provides the di-
rectional derivative (̊z, λ̊) of the KKT solution (z∗, λ∗). In
the next section, we use the directional derivative z̊ along a
direction x̊, determined by the system inputs, to calculate ḣ
using (19) and enforce the NCBF constraint (7) for strictly
convex sets.

V. OBSTACLE AVOIDANCE FOR STRICTLY CONVEX SETS

The results in Lem. 7 and Thm. 1 allow us to find the
directional derivatives of the optimal solution z∗(x) in terms
of ẋ, which is determined by the system dynamics and the
input. Since h(x) = ∥z∗(x)∥22, we can find the directional
derivatives of h, and thus enforce the NCBF constraint (7).
Thus, using (19) and the set of constraints (21), we can enforce
the NCBF constraint (7) in terms of the control input u, i.e.,
we can design a control law u(x) which guarantees the NCBF
constraint pointwise.

However, the constraints (21) depend on the index sets
J0,J1, and J2, which can change with x, meaning the (̊z, λ̊)
obtained from (21) may not be continuous. The resulting
control law can be discontinuous, and the closed-loop tra-
jectory would then be the Filippov solution corresponding to
the closed-loop system. So we must ensure that the Filippov
solution satisfies the NCBF constraint.

To do this, we use almost active set of constraints similar
to [51, Def. 7]. We define the almost active set of constraints,
for any ϵ > 0, as
J2,ϵ(x) = {k ∈ [r] : λ∗

k(x) < ϵ,Ak(x, z
∗(x)) > −ϵ}. (22)

Note that J i
2,ϵ(x) ⊇ J i

2 (x), and J c
0 (x)∩J2,ϵ and J1(x)∩J2,ϵ

may be non-empty.
Using the expression (19) as the basis, we propose that the

following optimization problem can be used to enforce the
NCBF constraint between Robots i and j:
u∗(x) = argmin

{u,̊z,̊λ}
∥u− unom(x)∥2 (23a)

s.t. 2(z∗i(x)− z∗j(x))(̊zi − z̊j) ≥ −α · h(x), (23b)
x̊ = f(x) + g(x)u, (23c)

∇2
zLz̊ + λ̊∇zA+∇x∇zLx̊ = 0, (23d)

∇zAkz̊ = −∇xAkx̊, k ∈ J1(x), (23e)
∇zAkz̊ ≤ −∇xAkx̊, k ∈ J2,ϵ(x),

λ̊k = 0, k ∈ J0(x)
c, λ̊k ≥ 0, k ∈ J2,ϵ(x), (23f)

λ̊k(∇zAkz̊ +∇xAkx̊) = 0, k ∈ J2,ϵ(x), (23g)

∥z̊∥ ≤ M, ∥̊λ∥ ≤ M, (23h)
u ∈ U . (23i)

where unom(x) is a nominal feedback controller not designed
with safety in consideration and can be obtained using a

Fig. 3: For a given state x, the figure illustrates the separating vector
s∗ = z∗i − z∗j in green. For strictly convex sets there is a unique
optimal solution z∗ = (z∗i, z∗j), and the gradients of the constraints,
∇Ai

1 at z∗i and ∇Aj
1 and ∇Aj

2 at z∗j are shown. The KKT condition
(14a) indicates that a conic combination of ∇Aj

k must be equal to s∗

(the dual variables are the coefficients). From the figure, we can see
that s∗ lies in the cone generated by ∇Aj

1 and ∇Aj
2 (and similarly

for i), and that λ∗j
2 = λ∗i

2 = 0. Thus the index sets (set J0 of
primal active and J1 of dual inactive constraints) at the state x are
J i

0 = J i
1 = {1},J j

0 = {1, 2}, and J j
1 = {1}. The combined

index sets can be written as: J0 = {(i, 1), (j, 1), (j, 2)}, and J1 =
{(i, 1), (j, 1)}.
Lyapunov function or a tracking control law. Note that x̊
represents the derivative of x when an input u is applied,
and z̊, when feasible for (23d)-(23h), is the derivative of z∗

at x along x̊ The constraint (23b) is the NCBF constraint
ḣ(x) ≥ −α · h(x), (23c) is the dynamics constraint for the
system. The constraints (23d)-(23g) are the same as (21),
except the active constraint set J2(x) is replaced by the almost
active constraint set J2,ϵ(x). The constraint (23h) restricts the
norm of the derivatives with M being a large number.

Remark 2. Whenever strict complementarity holds, we can
directly compute the gradient of z∗ using (16) and compute ∂h

∂x
as a function of x and u, without having to add the additional
constraints (23d)-(23h). This will result in a significantly
smaller quadratic program, leading to faster computational
times. When the convex set is defined by a single constraint
(such as for ellipsoids [40]), strict complementarity always
holds, and (16) can be used directly. When strict complemen-
tary slackness does not hold, we must use (23). In practice,
strict complementary slackness almost always holds, and (16)
can be used directly.

We can now prove that the control law obtained from (23)
guarantees safety for the closed-loop system.

Theorem 2. (Safety for strictly-convex sets) Let x(0) ∈ S
and (23) be feasible ∀ x ∈ S, with some α > 0. Then, any
measurable feedback control law obtained as a solution of
(23) makes the closed-loop system safe. The system’s safety is
independent of the cost function used in (23).

Proof. The proof is provided in Appendix E.

VI. SMOOTHNESS PROPERTIES FOR POLYTOPES WITH
DUAL ANALYSIS

In the previous two sections, we determined the smoothness
properties of the KKT solutions for strictly convex sets and
used them to enforce the NCBF constraint. We repeat this
procedure for polytopes in the next two sections. We follow
the outline of our previous paper [1]. In this section, we detail
the continuity and differentiability properties for polytopes,
which will then be used to derive the NCBF formulation for
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polytopes in the next section. This section aims to determine
a set of smooth, explicit constraints similar to (21), which
will allow us to enforce the NCBF constraints for polytopes.
The discussion in this section deviates from Sec. IV since
the optimal solution z∗ might be discontinuous for polytopes,
and thus polytopic geometries are not amenable to the same
techniques used for strictly convex sets. Instead, we will use
the dual formulation.

Consider a class of robots with polytopic geometries. For
Robot i at the state xi ∈ X i, let Ci(xi) be the l-dimensional
region associated to the robot, defined by

Ci(xi) := {z ∈ Rl : Ai(xi)z − bi(xi) ≤ 0}, (24)
where Ai : X i → Rri×l and bi : X i → Rri×1 represent the
half spaces that specify the domain boundary. Polytopes are
convex and closed by definition, and the set of polytopic sets
is disjoint from the set of strictly convex sets.

Assumption 4. We assume the following for all i:
(a) Ai, bi are continuously differentiable on X i.
(b) The set of active constraints at any point of Ci(xi) are

linearly independent for all xi ∈ X i, i.e. the set of normal
vectors {Ai

k(x
i) : k ∈ J (xi, zi)} is linearly independent

∀zi ∈ Ci(xi) and xi ∈ X i. In practice, we only need to
check this condition at the vertices of Ci(xi).

(c) Ci(xi) is bounded, and thus compact, and has a non-
empty interior for all xi ∈ X i.

Consider the minimum distance optimization problem (8)
for polytopes as,
h(x) := min

z
∥zi − zj∥22

s.t. Ai(xi)zi ≤ bi(xi), Aj(xj)zj ≤ bj(xj),
(25)

Assumption 4.b requires that at most l planes can define
any vertex of the polytope and is equivalent to the LICQ
Assumption 3.c for strictly convex sets. Any polytope that
does not satisfy Assumption 4.b can be tessellated into smaller
polytopes, such as tetrahedra, which do satisfy the assumption.
Once tessellated, the method described in this section can be
applied to each of these polytopes.

Assumption 4 and the results from Sec. III can be used
to determine the smoothness properties of the minimum dis-
tance between polytopic sets. Similar to strictly convex sets,
Assumption 4 implies that Assumption 2 holds. Thus, the
minimum distance between polytopic sets is locally Lipschitz
continuous and a candidate NCBF. In particular, Assump-
tion 4.c guarantees regularity conditions are satisfied for (25),
which are necessary and sufficient conditions for the existence
of an optimal solution [52, Thm. 2.1]. Moreover, regularity
is sufficient to establish the continuity [52, Thm. 2.3] and
directional differentiability [52, Thm. 2.4] of the minimum
distance h between Ci(xi) and Cj(xj).

Polytopes are convex sets, and so by Lem. 2, there is a
unique separating vector s∗(x) for (25). However, multiple
optimal primal solutions can exist since polytopes are not
strictly convex. Let Z∗(x) be the set of all the pairs of
optimal solutions, (z∗i, z∗j), at x. Note that Z∗(x) is a convex,
compact, and non-empty set.

Although h(x) is locally Lipschitz continuous, the primal
optimal solutions z∗i(x), z∗j(x) could be discontinuous or

even non-unique. So, we cannot represent ḣ(t) using the
derivatives of the primal and dual optimal solutions, as we
did in Sec. IV-B. However, we can obtain a lower bound on
ḣ(t) using the dual program.

A. Dual Program and KKT Conditions

The dual program of a minimization problem is a maxi-
mization problem in terms of the corresponding dual variables.
For the minimum distance optimization problem between
polytopes, we can obtain the dual program in terms of only the
dual variables λ, thus bypassing the need for primal variables.
Moreover, for quadratic programs, such as (25), the dual
program has the same optimal solution as that of (25).

Lemma 8. [1, Lem. 4] The dual program corresponding to
(25) is:

h(x) = max
{λi,λj}

Λ(x, λ)

s.t. λiAi(xi) + λjAj(xj) = 0, (26)

λi, λj ≥ 0,

where Λ is the Lagrangian dual function, given by

Λ(x, λ) = −1

4
∥λiAi(xi)∥22 − λibi(xi)− λjbj(xj). (27)

Similar to the case of strictly convex sets, the KKT con-
ditions for polytopes state that for z∗ to be optimal for (25),
there must exist a pair (z∗, λ∗) that satisfies,[

2(z∗i − z∗j) +Ai(xi)Tλ∗iT

2(z∗j − z∗i) +Aj(xj)Tλ∗jT

]
=

[
0
0

]
, (28a)

λ∗i(Ai(xi)z∗i − bi(xi)) = 0, (28b)

λ∗j(Aj(xj)z∗j − bj(xj)) = 0,

λ∗i ≥ 0, λ∗j ≥ 0, (28c)

Ai(xi)z∗i ≤ bi(xi), Aj(xj)z∗j ≤ bj(xj), (28d)
where (28a) is the stationarity condition along the set feasible
directions, (28c) are the non-negativity conditions for the dual
variables, and (28d) are the primal feasibility conditions for
z∗. The conditions (28b) are called complementary slackness
conditions. The dual program (26) and the KKT conditions
(28) can be used to determine the smoothness properties of
the dual solution.

B. Smoothness properties of Dual Solutions

Since the minimum distance problem for polytopes can have
multiple optimal solutions, we first redefine the index sets for
polytopes. For all (z∗i, z∗j) ∈ Z∗(x), define J i

0 (x) ⊂ [ri]
(J j

0 (x) ⊂ [rj ]) as the set of indices of constraints that are
active for all optimal solutions z∗i (z∗j(x)) for Ci(x) (Cj(x)),
i.e.,

J i
0 (x) := {k ⊂ [ri] : k ∈ J i(xi, z∗i) ∀z∗ ∈ Z∗(x)}, (29)

J j
0 (x) := {k ⊂ [rj ] : k ∈ J j(xj , z∗j) ∀z∗ ∈ Z∗(x)},

where J i is defined in (11). By convexity of Z∗(x), there
exists some optimal solution, represented by z̄∗ ∈ Z∗(x), such
that J i(xi, z̄∗i) = J i

0 (x) and J j(xj , z̄∗j) = J j
0 (x) (see [53,

Rem. 3.16]). Then,
Affi(x) := {zi : Ai

J i
0 (x)

(x)zi = biJ i
0 (x)

(x)}, (30)

Affj(x) := {zj : Aj

J j
0 (x)

(x)zj = bj
J j

0 (t)
(x)},
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represent two parallel affine spaces such that the minimum
distance between Ci(x) and Cj(x) is the distance between
the affine spaces Affi(x) and Affj(x). This is because a
KKT solution (z̄∗, λ∗) of (25) is also a KKT solution for
the minimum distance optimization problem between Affi(x)
and Affj(x). These affine spaces can be points, hyperplanes,
or even the entire space if the two polytopes intersect. An
example is depicted in Fig. 4.

For convenience, we choose to work in the time domain
for the rest of the section. Let x(t), t ∈ [0, T ] be the Filippov
solution corresponding to some measurable feedback control
law u : X → U . We can now write all functions of x as
functions of time explicitly, such as, h(t) := h(x(t)), Z∗(t) :=
Z∗(x(t)), s∗(t) = s∗(x(t)) etc. We also make the following
assumption about the geometry of the affine spaces Affi(t)
and Affj(t).

Assumption 5. For almost all t ∈ [0, T ], ∃ ϵ > 0 such
that dim(Affi(τ)), dim(Affj(τ)), and the dimension of the
othogonal subspace common between Affi(τ) and Affj(τ) are
constant for τ ∈ [t, t+ ϵ).

Remark 3. Assumption 5 is true when the set of times when
states of the system oscillate infinitely fast has zero-measure.
In practice, the states of the system do not oscillate infinitely
fast due to limited control frequency (due to sample-and-hold
control implementation [45, Eq. (36)]) and the inertia of the
system.

Further, we can use the KKT conditions (28) and the dual
program (26) to determine the properties of the dual optimal
solution.

Lemma 9. Under Assumption 4, a unique dual optimal
solution λ∗(t) of (26) exists, and λ∗(t) is continuous for all
t ∈ [0, T ]. Further, under Assumption 5, the dual optimal
solution λ∗(t) is right-differentiable for almost all t ∈ [0, T ].

Proof. The proof is provided in Appendix F.

Finally, similar to Thm. 1, we can explicitly write a linear
program for computing a lower bound of ḣ(t) by differentiat-
ing the cost and constraints of (26) as,

Lemma 10. (Lower Bound for Derivative of h as an LP) Let,

g(t) = max
{λ̇}

Λ̇(t, λ∗(t), λ̇) (31a)

s.t. λ̇iAi(t) + λ∗i(t)Ȧi(t) + λ̇jAj(t) (31b)

+ λ∗j(t)Ȧj(t) = 0,

λ̇i
k ≥ 0 if λ∗i

k (t) = 0, (31c)

λ̇j
k ≥ 0 if λ∗j

k (t) = 0.

where Λ̇(t, λ, λ̇) represents the time-derivative of Lagrangian
dual function Λ(x(t), λ) and is defined as follows,

Λ̇(t, λ, λ̇) =− 1

2
λiAi(t)Ai(t)T λ̇i T − 1

2
λiAi(t)Ȧi(t)Tλi T

− λ̇ibi(t)− λiḃi(t)− λ̇jbj(t)− λj ḃj(t). (32)
Then, for almost all t ∈ [0, T ], ḣ(t) ≥ g(t).

Proof. The proof is provided in Appendix G.

Fig. 4: For a given state x, the figure illustrates the separating vector
s∗ in green. The vectors Ai

k represent the normal vectors of the
hyperplanes defining the Ci(xi). The set of primal optimal solutions
is a singleton set given by Z∗ = {(z∗i, z∗j)}. Although z∗ is unique
for the configuration depicted, this is not necessarily the case for all
states, such as when the planes defined by Aj

1 and Ai
2 are parallel.

Similar to the strictly convex set case, s∗ must lie in the conic set
generated by Ai

1 and Ai
2 (and similarly for j). The coefficients of

this conic combination are the dual variables λ∗. The index sets for
the state x can be written as: J i

0 = {1, 2}, and J j
0 = {1}. The

minimum distance between any two polytopes is the same as the
minimum distance between the affine sets Affi and Affj , represented
in blue.

VII. OBSTACLE AVOIDANCE FOR POLYTOPES

The result from Lem. 10 allows us to write ḣ(t) in terms
of the time derivatives of Ai and Aj , which in turn depend on
the inputs.

Based on the LP (31), we can implement the NCBF con-
straint by enforcing, for some (λ̇i, λ̇j) feasible for (31),

Λ̇(t, λ∗(t), λ̇) ≥ −α · h(t). (33)
Lem. 10 then guarantees that

ḣ(t) ≥ Λ̇(t, λ∗(t), λ̇) ≥ −α · h(t), (34)
holds for almost all t ∈ [0, T ], which is the required NCBF
constraint.

Remark 4. In order to express the NCBF constraint as in (34),
ḣ(t) needs to be expressed as a maximization problem. This
is the primary motivation for considering the dual problem,
since writing ḣ(t) using the primal problem, similar to (31),
would result in a minimization problem.

We can use (33) to motivate a feedback control law to
guarantee the safety of the system. The input u implicitly
affects Λ̇ via the derivatives of the matrices Ai, Aj , bi, bj . Note
that by (32), Λ̇ is affine in λ̇, and u. To implement the safety-
critical control law, ∀x ∈ S , (26) is first used to compute
h(x) and λ∗(x), and then the optimal solution of following
quadratic program is used as the feedback control.
u∗(x) = argmin

{u,λ̇}
∥u− unom(x)∥2 (35a)

s.t. Λ̇(t, λ∗(x), λ̇, u) ≥ −α · h(x) (35b)

λ̇iAi(x) + λ∗i(x)(LfiA
i(x) + LgiA

i(x)u) (35c)

+ λ∗j(x)(LfjA
j(x) + LgjA

j(x)u) = −λ̇jAj(x)

λ̇i
k ≥ 0 if λ∗i

k (x)<ϵ, λ̇j
k ≥ 0 if λ∗j

k (x)<ϵ, (35d)

|λ̇i| ≤ M, |λ̇j | ≤ M, (35e)
u ∈ U , (35f)

where L(⋆)(·) represents the Lie derivative of (·) along (⋆),
ϵ > 0 is a small constant, and M is a large number.

Theorem 3. (Safety for polytopic sets) Let x(0) ∈ S and (35)
be feasible ∀ x ∈ S. Then, the feedback control law (35) makes
the closed-loop system safe, irrespective of the cost function.

Proof. The proof is provided in Appendix H.
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Fig. 5: Square of the minimum distance (NCBF) between different
pairs of strictly convex-shaped robots, corresponding to Fig. 1b. The
left figure shows the NCBF between robot 1 (in blue) and all other
robots, while the right figure plots the minimum of all 20 pairwise
NCBFs as a function of time. Since the NCBFs are greater than the
safety margin ϵ21, the robots don’t collide with each other, and safety
is maintained. Both plots have log scales on the y-axis.

Remark 5. In practice, h(x) is redefined as (h(x)−ϵ21), where
ϵ1 > 0 is a small number. This prevents the gradient of h(x)
from becoming zero at the boundary of the safe set [1, Rem. 3].
Moreover, if h(x) is redefined as (h(x) − ϵ21) then the term
α·h(t) in the NCBF constraint (7) can be replaced by α(h(t)−
ϵ21), where α is any extended class-K function [4].

Remark 6. Both the formulations (35) and (23) can be
extended to multiple robots by introducing the corresponding
optimization variables for each pair of robots, which will also
be validated in the Sec. VIII. For the case of polytopes, each
pair of robots would have separate dual variables λ̇, which
will be used to enforce the NCBF constraint between that
pair of robots. Since safety is maintained pairwise, it is also
maintained for the whole system.

VIII. RESULTS

In this section, we provide simulation results to demonstrate
obstacle avoidance between strict convex-shaped robots in
real-time, using the formulation derived in Sec. IV. Additional
simulation results for the polytope-shaped robots, using the
formulation (35), can be found in [1].

A. Simulation Setup

The simulation environment consists of 5 strict convex-
shaped robots, as shown in Fig. 1b. The robots in the figure are
labeled 1 to 5 going counter-clockwise, starting with the blue
robot. Robot 1 is described by the shape {z : (z1/1.5)

4+z42 ≤
1}, Robot 5 by {z : (z1/2)

6 + z62 ≤ 1}, and Robot 4 is
an ellipse. Robots 2 and 3 are formed by the intersection of
three and two circles. All these shapes satisfy the assumptions
for strictly convex sets. The states of all five robots are
x = (x1, x2, x3) ∈ R2 × S1, where (x1, x2) is the geometric
center of the robot and x3 is the angle of rotation. Robots 1,
2, and 3 are assumed to have three inputs, u = (v1, v2, ω) and
integrator dynamics as

ẋ1 = v1, ẋ2 = v2, ẋ3 = ω, (36)
where (v1, v2) is the velocity and ω is the angular velocity.
The inputs to Robots 4 and 5 are u = (v, ω) corresponding to
unicycle dynamics,

ẋ1 = v cos(x3), ẋ2 = v sin(x3), ẋ3 = ω, (37)
where v is the velocity along x3 and ω is the angular velocity.
The initial positions for the robots are chosen along the
boundary of an ellipse with a semi-major axis length of 15m
and a semi-minor axis length of 7.5m, and the final positions

are diametrically opposite to the initial positions. The nominal
controller for the integrator is obtained using a Proportional
control law, while that of the unicycle is derived from a
CLF [54].

The NCBF is chosen as the square of the minimum distance
as described in (12). Note that, for any safe configuration
of the robots, by choosing u = 0, z̊ = 0, and λ̊ = 0,
the optimization problem (23) can be made feasible, thus
satisfying the assumptions of Thm. 2. The value of the margin
ϵ1, as defined in Rem. 5 is chosen as ϵ21 = 0.1m2.

B. Simulation Results

The simulations are performed on a laptop with an 8-core
2.20GHz Intel Core i7 processor using MATLAB. For strictly
convex-shaped robots, the nonlinear distance optimization (12)
is solved using fmincon with warm start, and the control opti-
mization (23) is solved using quadprog. For polytope-shaped
robots, both the distance (25) and control (35) optimizations
are solved using quadprog. The trajectory of the five strictly
convex-shaped robots is illustrated in Fig. 1b using snapshots.
Similarly, snapshots of five polytope-shaped robots are shown
in Fig. 1a. The NCBF hij is greater than ϵ21 for all 20 pairs of
robots as depicted in Fig. 5, and thus the safety of the system
is maintained.

TABLE II: Statistics of the computation time (ms) per iteration for
strictly convex sets

Timing (ms) mean ± std p50 p99 max
Distance OPTs (12) 4.80 ± 1.50 4.60 8.50 44.0
NCBF OPT (23) 1.00 ± 2.60 0.70 4.00 51.9
Total (20+1 = 21 OPTs) 88.5 ± 14.9 85.3 136 234

The computation times for calculating the 20 pairwise
minimum distances, the control inputs for each robot, and
the total computation time are provided in Tab. II. p50 and
p99 refer to the 50-th and 99-th percentile values. There are
some large outliers in the computation times of the distance
and control optimizations, but they infrequently occur, as
indicated by the 99-th percentile values. The values in the
table indicate that the controller can be run at around 10Hz for
five robots. Moreover, if the pairwise distances are computed
parallelly, the controller can be run in real-time. Note that
for N robots, we need to compute N(N + 1)/2 pairwise
distances, the computation time for which grows quadratically
with N . Distributing the distance computation will result in
linear growth of the computation time.

C. Improvements

The following techniques can be used to reduce the com-
putation times of the NCBF formulation.

1) NCBF enforcement region: As seen in the previous sub-
section, pairwise distance computations increase quadratically
with the number of robots. One way to address this issue is
to enforce the NCBF constraint only between those pairs of
robots that are close enough. This bounds the number of NCBF
constraints at any given time and improves the computation
times. With a large enough NCBF enforcement radius, system
safety can be maintained.
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2) Projection of constraints to input space: Note that when
the index set J2(x) = ∅, the formulation (23) becomes
a QP. In this case, we can project the linear constraints
from the (u, z̊, λ̊)-space to the u-space using Fourier-Motzkin
Elimination (FME) [53, Sec. 3.1]. Thus instead of combining
all the constraints from each pair of robots, as described in
Rem. 6, we can compute the projected constraints and solve
the resulting QP entirely in the input space. This results in a
decrease in the number of variables in the safety optimization
from O(N2) to O(N).

IX. CONCLUSION

In this paper, we presented a general framework for
non-conservative obstacle avoidance between strictly convex-
shaped regions as well as between polytopic-shaped regions
using the KKT solutions of their minimum distance optimiza-
tion problems. We showed that our method’s control input can
be computed using a QP for systems with control affine dy-
namics, enabling real-time implementation. We validated our
algorithm with real-time obstacle avoidance tasks for multi-
robot systems with strictly convex-shaped or polytopic robots.
We also established theoretical results on the smoothness of
the minimum distance function and the KKT solutions of
the minimum distance optimization problem, using which we
proved system safety.

APPENDIX

PROOFS FOR STRICTLY CONVEX SETS

A. Proof of Lem. 2

Since the Minkowski sum of convex, compact sets is also
convex and compact, the optimization problem (8) is equiv-
alent to (9). So (9) is a convex optimization problem with a
strictly convex cost function and compact, non-empty feasible
set. Thus there exists a unique minimizer s∗ of (9), such that
h(x) = ∥s∗∥22 = ∥z∗i − z∗j∥22, for all optimal solutions z∗.

Now let Ci(xi) be strictly convex and (z∗i1, z∗j1) and
(z∗i2, z∗j2) be two different optimal solutions. Since Ci(xi)∩
Cj(xj) = ∅, z∗i1 and z∗i2 lie on the boundary of Ci(xi)
(and similarly for j). By uniqueness of s∗, z∗i1 − z∗j1 =
z∗i2−z∗j2 = s∗. Since the set of optimal solutions for convex
optimization problems is convex, ((z∗i1 + z∗i2)/2, (z∗j1 +
z∗j2)/2) is also optimal, i.e. they correspond to the minimum
distance between Ci(xi) and Cj(xj). However, this implies
that (z∗i1 + z∗i2)/2 lies on the boundary of Ci(xi), which is
not possible since Ci(xi) is strictly convex. Thus (8) has a
unique optimal solution z∗.

B. Proof of Lem. 3

We first state the Maximum Theorem, rewritten in the
context of the minimum distance between sets, which is then
used to prove the continuity property.

Theorem 4. (Maximum Theorem) [55, Pg. 306] Let ρij : Z×
X → R be a continuous function and Cij : X → 2Z be a
compact-valued map such that Cij(x) ̸= ∅ ∀x ∈ X . Define
the function ρ∗ij : X → R as,

ρ∗ij(x) := inf
s∈Z

{ρij(s, x) : s ∈ Cij(x)}, (38)

and the set of minimizers as,
C∗ij(x) := argmin

s∈Z
{ρij(s, x) : s ∈ Cij(x)}. (39)

If Cij is lower and upper semi-continuous, then ρ∗ij is
continuous and C∗ij is upper semi-continuous, non-empty, and
compact-valued.

Let Z = Rl, and for some s ∈ Z and x ∈ X , let
ρij(s, x) = ∥s∥22, which is a continuous function. Define
Cij(x) = Ci(xi) − Cj(xj), which is compact, convex, non-
empty, and upper and lower semi-continuous (since Ci and Cj

are upper and lower semi-continuous). Then the optimization
problem (38) is the same as (9), and ρ∗ij(x) = h(x) and
C∗ij(x) = {s∗(x)}, which is a singleton set for all x by
Lem. 2. All the conditions for the maximum theorem are met,
and thus h is continuous for all x ∈ X and C∗ij is upper
semi-continuous.

Note that upper semi-continuity for a singleton set-valued
function mapping to 2R

l

is equivalent to the continuity of the
function mapping to Rl [45, Sidebar 7]. So, by the maximum
theorem, s∗ is continuous for all x ∈ X .

If Ci(xi) is strictly convex, we can perform a similar
computation. Let Z = Rl × Rl, and for some z ∈ Z;x ∈ X ,
ρij(z, x) = ∥zi − zj∥22, which is continuous. Define Cij(x) =
(Ci(xi), Cj(xj)), which is lower and upper semi-continuous,
non-empty, and compact-valued by assumption. Then (38) is
equivalent to (8) and C∗ij(x) = {(z∗i(x), z∗j(x))}, which
is a singleton set in a neighbourhood of x by Lem. 2 and
continuity of h. Since all conditions for the maximum theorem
are satisfied, C∗ij is upper semi-continuous and thus (z∗i, z∗j)
is a continuous function of x ∈ S.

C. Proof of Lem. 4

Consider the minimum distance optimization problem (8)
with the convex sets as defined by (10), and let Z∗(x) be the
set of all primal optimal solutions of (8). Since Ci(xi) and
Cj(xj) are bounded, Z∗(x) is also bounded and non-empty
(by Lem. 3). Choose at any x ∈ X , by Assumption 2.c, W ⊇
Z∗(x) such that W is open, convex, and bounded. The cost
function of the optimization problem (8) is ∥zi−zj∥22, which is
quadratic and thus Lipschitz continuous on X×W , since W is
bounded. Finally, by Assumption 2.c, Ai

k(·, zi) and Aj
k(·, zj)

are Lipschitz continuous around x for each z ∈ W and k, with
a Lipschitz constant independent of z ∈ W . By [47, Thm. 1],
h(x) is Lipschitz continuous around x.

D. Proof of Lem. 5

The KKT conditions are necessary and sufficient conditions
for the optimality of (12), under the Assumptions 3.a, 3.b, and
3.d. Since there is a unique primal optimal solution, denoted by
z∗(x), for (12), there is at least one KKT solution (z∗(x), λ∗)
which satisfies the KKT conditions (14). In particular, the KKT
solution satisfies the zero gradient condition (14a), which can
be expanded using (13) as[

∇zA
iT 0l×ri

0l×rj ∇zA
jT

]
(x, z∗(x))︸ ︷︷ ︸

=∇zA(x,z∗(x))T

[
λ∗iT

λ∗jT

]
=

[
−2s∗(x)
2s∗(x)

]
. (40)
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If Ci(xi) ∩ Cj(xj) = ∅, the minimum distance between
the two sets is greater than zero. So, z∗i(x) ̸= z∗j(x) and
s∗(x) ̸= 0. From (40), since the RHS is not zero, λ∗i

ki > 0 and
λ∗j
kj > 0 for some ki ∈ [ri] and kj ∈ [rj ].
The Hessian of L with respect to z is,

∇2
zL(x, z

∗(x), λ∗) =

[
2I −2I
−2I 2I

]
+ (41)[∑ri

m=1 λ
∗i
m∇2

zA
i
m 0

0
∑rj

n=1 λ
∗j
n ∇2

zA
j
n

]
(x, z∗(x)).

Using λ∗ ≥ 0 and the strong convexity Assumption 3.b,
ri∑

m=1

λ∗i
m∇2

zA
i
m(x, z∗(x)) ⪰ λ∗i

ki∇2
zA

i
ki(x, z∗(x)) ≻ 0.

So, the first term in (41) is positive semi-definite,
and the second term is positive definite, meaning that
∇2

zL(x, z
∗(x), λ∗) ≻ 0. Therefore, (15) is satisfied, and

SSOSC holds at x.

E. Proof of Thm. 2

We first prove two preliminary results to prove Thm. 2. The
following lemma, which is similar to [51, Lem. 1], shows that
the set of constraints (23e)-(23g) for any state x ∈ X has
fewer constraints than for a point in its vicinity. We show this
using the index sets J0,J1, and J2.

Lemma 11. Consider a sequence {x(p)} → x. Then, ∃P ∈ N
such that ∀p ≥ P ,

J1(x) ⊆ J1(x(p)), (42a)
J0(x)

c ⊆ J0(x(p))
c, (42b)

J2(x) ⊆ J2,ϵ(x) ⊆ J2,ϵ(x(p)). (42c)

Proof. First, we conclude a fact about continuous functions.
Let γ : X → R be a continuous function, and let γ(x) =
ϵ1 < ϵ. By continuity of γ, limp→∞ γ(x(p)) = γ(x). Choosing
ϵ2 < ϵ− ϵ1, we obtain P ∈ N such that ∀p ≥ P ,

|γ(x(p))− γ(x)| = |γ(x(p))− ϵ1| < ϵ2 < ϵ− ϵ1.

So, ∀p ≥ P , γ(x(p)) < ϵ.
The set of indices J1 is such that λ∗

k > 0 ∀k ∈ J1. Since
λ∗ is continuous, (42a) follows. Similarly, J c

0 ∋ k is the
set of indices such that Ak(z

∗) < 0, and (42b) also holds,
by continuity of z∗ and Ak. J2(x) ⊆ J2,ϵ(x) ∀ϵ > 0 by
definition and, similar to (42a) and (42b), (42c) is true because
of continuity of λ∗, z∗, and A.

Next, we prove some general results about optimization
problems, adopted from [1, App. 1].

Lemma 12. Let O be an optimization problem as: ϕ∗(θ) =
maxv{ϕ(θ, v) : v ∈ Γ(θ)}, with Γ(θ) = {v : γk(θ, v) ≤
0, k ∈ J (θ)}, where J is some index set dependent on θ.
Let ϕ and γk be continuous, and Γ(θ) be uniformly bounded
and non-empty. Define a corresponding optimization problem
Ō as: ϕ̄∗(θ) = maxv{ϕ(θ, v) : v ∈ Γ̄(θ)}, with Γ̄(θ) = {v :
γk(θ, v) ≤ 0, k ∈ J̄ }, where J̄ ⊆ J (θ) ∀θ. Also let Γ̄(θ) be
uniformly bounded. Then,

(a) ϕ̄∗(θ) ≥ ϕ∗(θ) ∀θ.
(b) Let {θ(p)} → θ. Then, ϕ̄∗(θ) ≥ lim supp→∞ ϕ̄∗(θ(p)).

Proof. Note that Γ̄(θ) ̸= ∅ ∀θ since Γ̄(θ) ⊇ Γ(θ) ̸= ∅, which
holds because Γ̄(θ) has fewer constraints than Γ(θ).
(a) The optimization problems O and Ō share the same cost

function, and Γ̄(θ) ⊇ Γ(θ). So, ϕ̄∗(θ) ≥ ϕ∗(θ) ∀θ.
(b) Γ̄(θ) is uniformly bounded and ϕ is a continuous func-

tion. So, the sequence {ϕ̄∗(θ(p))} is bounded. Choose a
subsequence {ϕ̄∗(θ(pk))} such that limk→∞ ϕ̄∗(θ(pk)) =
lim supp→∞ ϕ̄∗(θ(p)). Since Γ̄(θ) is closed (it is the
preimage of a closed set under the continuous function
γJ̄ ) and bounded, we can choose a bounded sequence
of optimal solutions {σ(pk)} such that ϕ(θ(pk), σ(pk)) =
ϕ̄∗(θ(pk)). {σ(pk)} is a bounded sequence and hence we
can select a converging subsequence, also represented by
{σ(pk)}, such that {σ(pk)} → σ. By continuity of γj ,

γj(θ, σ) = lim
k→∞

γj(θ(pk), σ(pk)) ≤ 0 ∀j ∈ J̄ ,

i.e. σ ∈ Γ̄(θ). Finally, by continuity of ϕ,
ϕ̄∗(θ) ≥ ϕ(θ, σ) = lim

k→∞
ϕ(θ(pk), σ(pk)),

= lim
k→∞

ϕ̄∗(θ(pk)) = lim sup
p→∞

ϕ̄∗(θ(p)).

We can now prove the safety result, Thm. 2.

Proof of Theorem 2. Let Fu(x) be the feasible set of control
inputs of (23) for a given x. By the feasibility assumption,
Fu(x) ̸= ∅. Fu(x) represents the set of control inputs, at a
given state x, that guarantees collision avoidance. Let u be a
control law such that u(x) ∈ Fu(x) ∀x ∈ X . Since u can be a
discontinuous function, the closed loop trajectory is computed,
using the Filippov operator (4), as ẋi(t) ∈ F [f i+giui](xi(t)).
Thus, for safety we need to ensure that F [u](x) ⊆ Fu(x),
i.e. the set of control inputs obtained after using the Filippov
operator still satisfies (23).

The overview of the proof is as follows: First, given any
control law u(x) satisfying u(x) ⊆ Fu(x) ∀x ∈ X , we
show that F [u](x) ⊆ Fu(x) ∀x ∈ X . Next, we show that
if F [u](x) ⊆ Fu(x), then safety is guaranteed, i.e. there is no
collision between the robots.

Consider a measurable control law u : X → U such that
u(x) ∈ Fu(x).
1) F [u](x) ⊆ Fu(x) ∀x ∈ X :

We use Property 2 to prove this. Consider sequences
{x(p)} → x and {u(x(p))} → u. If we can show that
u ∈ Fu(x), then by Property 2, F [u](x) ⊆ Fu(x). Consider
the following optimization problem, O(x, y, u):
g(x, y, u) = argmax

{z̊,̊λ}
2(z∗i(x)− z∗j(x))(̊zi−z̊j) (43a)

s.t. x̊ = f(x) + g(x)u, (43b)

∇2
zLz̊ + λ̊∇zA+∇x∇zLx̊ = 0, (43c)

∇zAkz̊ = −∇xAkx̊, k ∈ J1(y), (43d)
∇zAkz̊ ≤ −∇xAkx̊, k ∈ J2,ϵ(y),

λ̊k = 0, k ∈ J0(y)
c, λ̊k ≥ 0, k ∈ J2,ϵ(y), (43e)

λ̊k(∇zAkz̊ +∇xAkx̊) = 0, k ∈ J2,ϵ(y), (43f)

∥z̊∥ ≤ M, ∥̊λ∥ ≤ M, (43g)
u ∈ U . (43h)

The cost, (43a), of (43) corresponds to the LHS of (23b),
whereas the constraints (43b)-(43h) correspond to (23c)-(23i).
Note that the variable y is used as an argument for the index
sets J0,J1, and J2 in (43d)-(43f). Since u(x(p)) is feasible at
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x(p), we have that g(x(p), x(p), u(x(p))) ≥ −α · h(x(p)). Note
that u is feasible at x if g(x, x, u) ≥ −α ·h(x), which is what
we want to prove.

By Lem. 11, ∃P ∈ N such that ∀p ≥ P , (42) holds.
We truncate the sequences {x(p)} and {u(x(p))} for p < P ,
for convenience. Also note that the costs and constraints in
(43) are continuous by Assumption 3.a, and continuity of z∗

and λ∗. Since the optimization problem O(x(p), x(p), u(x(p)))
contains constraints with an index set, it can be related to
the optimization problem O in Lem. 12. Similarly, by (42),
O(x(p), x, u(x(p))) can be related to Ō in Lem. 12. The
variable θ corresponds to (x, u) and v corresponds to (̊z, λ̊).
Constraint (43g) ensures that Γ(θ) is uniformly bounded, while
feasibility of (23) ensures non-empty Γ(θ). Using Lem. 12,
g(x, x, u) ≥ lim sup

p→∞
g(x(p), x, u(x(p))) (by Lem. 12.b),

≥ lim sup
p→∞

g(x(p), x(p), u(x(p))) (by Lem. 12.a),

≥ lim sup
p→∞

−α · h(x(p)) = −α · h(x).

So, u is feasible at x, i.e. u ∈ Fu(x). By Property 2,
F [u](x) ⊆ Fu(x) ∀x ∈ X .
2) The NCBF constraint (7) is satisfied at all times:

Let u(x) ∈ Fu(x) be any measurable feedback control law
obtained using (23). The closed loop trajectory is obtained as
a Filippov solution x(t) for t ∈ [0, T ], satisfying ẋ(t) ∈ F [f+
gu](x(t)) for almost all t. By Property 1, F [f + gu](x(t)) =
f(x(t))+ g(x(t))F [u](x(t)). Thus, the Filippov solution x(t)
is such that ẋ(t) = f(x(t))+ g(x(t))ū for almost all t, where
ū ∈ Fu(x(t)), meaning ∃(̊z, λ̊) such that (ū, z̊, λ̊) is feasible
for (23).

Note that, by (42c), if (̊z, λ̊) satisfies (23d)-(23g) then it
also satisfies (21). By Thm. 1, z̊ is the right derivative of z∗

in the direction x̊ which, by (23c), equals ẋ(t). Using (19)
and (23b), and noting that h(t) is absolutely continuous (see
above Lem. 1),

ḣ(t) = 2(z∗i(t)− z∗j(t))(̊zi − z̊j) ≥ −α · h(t),
for almost all t ∈ [0, T ]. By Lem. 1, since x(0) ∈ S, h(t) >
0 ∀t ∈ [0, T ], i.e. safety is maintained.

PROOFS FOR POLYTOPIC SETS

F. Proof of Lem. 9

We first prove that a unique dual optimal solution exists to
(26), then show that it is differentiable almost always. We also
simplify the notation Ai

J i
0 (t)

(t) to Ai
J i

0
(t)

1) Uniqueness of the dual optimal solution: Since an optimal
solution to (25) always exists, an optimal solution to (26)
also exists. For any t ∈ [0, T ], choose z̄∗ ∈ Z∗(t) such
that J i(xi(t), z̄∗i) = J i(t) and J j(xj(t), z̄∗j) = J j(t). By
definition of z̄∗ and J (t),

Ai
[ri]\J i(t)z̄∗i < bi[ri]\J i(t), (44)

Aj
[rj ]\J j (t)z̄

∗j < bj[rj ]\J j (t).

For z̄∗ to be an optimal solution, there must exist a λ̄∗

satisfying the KKT conditions (28). From (28b) and (44),
λ̄∗i
[ri]\J i(t) = 0, λ̄∗j

[rj ]\J j(t) = 0. (45)
The remaining components of λ̄∗ must satisfy, from (28a),

λ̄∗i
J i(t)A

i
J i(t)=− 2s∗T (t), λ̄∗j

J j(t)A
j
J j (t)=2s∗T (t). (46)

From the linear independence of Ci(xi(t)) and Cj(xj(t))
(Assumption 4.b), both Ai

J i(t) and Ai
J i(t) have full row-rank,

and thus can be inverted. The non-zero components of the dual
optimal solution λ̄∗ can be computed, using (46), as

λ̄∗i
J i(t)=− 2s∗T (t)Ai†

J i(t), λ̄∗j
J j(t)=2s∗T (t)Aj†

J j (t), (47)
where (·)† represents pseudo-inverse. The zero components of
the optimal dual solution from (45) can be appended to (47) to
obtain λ̄∗. Note that λ̄∗ is the unique solution corresponding to
the primal optimal solution z̄∗. Since z̄∗ has the least number
of active constraints among all primal solutions in Z∗(t),
λ̄∗ must be the unique solution of (26), corresponding to all
primal solutions. We denote λ̄∗ simply as λ∗(t).
2) Right-differentiability of the dual optimal solution: Let
t be a time when Assumption 5 holds, i.e., Affi(τ) and
Affj(τ) have constant dimension for τ ∈ [t, t + ϵ). Using
J i(xi(τ), z̄∗i(τ)) = J i

0 (τ) and Assumption 4.b, we can see
that Ai

J i
0
(τ) has full row-rank for τ ∈ [t, t+ ϵ) (and similarly

for j). The dimension of the affine space Affi(τ) is equal to
the nullity of Ai

J i
0
(τ). Thus, the constant dimension of Affi(τ)

implies that Ai
J i

0
(τ) has a constant rank, which, by linear

independence of its rows, means that Ai
J i

0
(τ) has a constant

number of rows (= |J i
0 (τ)|). Since Affi(τ) and Affj(τ) have

constant dimensions for τ ∈ [t, t+ ϵ) they can be represented
equivalently as

Affi(τ) := {z̃i(τ) +N i(τ)yi : yi ∈ R|J i
0 (τ)|}, (48)

Affj(τ) := {z̃j(τ) +N j(τ)yj : yj ∈ R|J j
0 (τ)|},

where z̃i(τ) (z̃j(τ)) is some point on Affi(τ) (Affj(τ)), and
N i(τ) (N j(τ)) represents basis vectors on Affi(τ) (Affj(τ)),
for τ ∈ [t, t + ϵ1) and ϵ1 ∈ (0, ϵ). By Assumption 4.a and
Assumption 5, z̃i(τ), z̃j(τ), N i(τ), and N j(τ) can be chosen
to be continuously differentiable for τ ∈ [t, t + ϵ1). Also
Assumption 5 implies that N i(τ), N j(τ) have constant ranks,
and [−N i(τ), N j(τ)]T has a constant nullity for τ ∈ [t, t+ϵ1),
which additionally implies that [−N i(τ), N j(τ)] = N(τ) has
constant rank for τ ∈ [t, t+ ϵ1).

The separating vector s∗(τ) is the unique vector from
Affi(τ) to Affj(τ) that is perpendicular to both of them. These
three constraints (that define s∗(τ) and establish orthogonality
of s∗(τ) to Affi(τ) and Affj(τ)) can be written in the form
of a system of linear equalities as,

z̃i(τ) +N i(τ)yi − (z̃j(τ) +N j(τ)yj) = s,

−N iT (τ)s = 0, N jT (τ)s = 0,
which can be written in a matrix form as, I −N i(τ) N j(τ)
−N iT (τ) 0 0
N jT (τ) 0 0

 s
yi

yj

=

z̃i(τ)−z̃j(τ)
0
0

 . (49)

The LHS matrix has constant rank for τ ∈ [t, t + ϵ1),
since rank(N(τ)) = rank(NT (τ)N(τ)). By Lem. 3, at least
one solution exists to (49). Therefore, by inverting a suitable
sub-matrix, we can find a continuously differentiable vector
[s̄T (τ), ȳiT (τ), ȳjT (τ)]T that solves (49). Moreover, s∗(τ)
is the unique vector that solves (49). Next, we can solve
for the dual optimal solutions using (47). By the continuous
differentiability of Ai, Aj , and s∗ in the interval [t, t + ϵ1),
the dual optimal solutions are continuously differentiable in
[t, t+ ϵ1). Thus, the dual optimal solution λ∗(t) is continuous
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and right-differentiable for almost all t ∈ [0, T ].

G. Proof of Lem. 10
Let (λ̇i, λ̇j) be any feasible solution to (31) for some t ∈

[0, T ]. We want to integrate the constraints of (31) to find
dual solutions (λ̄i(τ), λ̄j(τ)), τ ∈ [t, t+ ϵ), which satisfy the
feasibility constraints of the dual QP (26), i.e.

(λ̄i(t), λ̄j(t)) = (λ∗i(t), λ∗j(t)), (50)

(λ̄i(τ), λ̄j(τ)) is dual feasible for (26),
d

dτ
(λ̄i, λ̄j)

∣∣∣∣
τ=t+

= (λ̇i, λ̇j).

In order to find a solution of (50), we first define
λ̄i(τ) = λ∗i(t) + (τ − t)λ̇i, (51)

λ̄j(τ) = λ∗j(t) + (τ − t)λ̇j + e(τ), (52)
where τ ∈ [t, t+ ϵ), for ϵ > 0 such that λ̄i(τ), λ̄j(τ)−e(τ) ≥
0, ∀τ ∈ [t, t+ ϵ). e(τ) will be chosen to satisfy the feasibility
constraints of the dual QP (26). Let

s̄(τ) = λ̄i(τ)Ai(τ) + (λ̄j(τ)− e(τ))Aj(τ).

We can think of s̄(τ) as a separating vector between polytopes
Ci(τ) and Cj(τ). Note that s̄(τ) is a continuously differen-
tiable function of τ . Next we show that e(τ) can be chosen
such that (λ̄i(τ), λ̄j(τ)) satisfies (50). By Lem. 9, e(τ) can
be chosen in an optimal manner, such that it satisfies

e(τ)Aj(τ) = −s̄(τ), e(τ) ≥ 0, e(t) = 0.

Additionally, by considering different invertible submatrices
of Aj(τ) and by continuous differentiability of s̄(τ), e(τ) is
right-differentiable at τ = t and ė(t+) = 0 (see [50, Thm. 3]).
Using (51) and the above definition of e(τ), (λ̄i(τ), λ̄j(τ))
satisfies (50).

So, (λ̄i(τ), λ̄j(τ)) is a dual feasible solution and has cost
less than h(τ), i.e. Λ(τ, λ̄i(τ), λ̄j(τ)) ≤ h(τ), ∀τ ∈ [t, t+ ϵ),
and Λ(t, λ̄i(t), λ̄j(t)) = h(t). Differentiating the cost yields,

ḣ(t) ≥ Λ̇(t, λ∗i(t), λ∗j(t), λ̇i, λ̇j),

for all feasible (λ̇i, λ̇j), and thus ḣ(t) ≥ g(t) for almost all
t∈[0, T ].

H. Proof of Thm. 3
Let Fu(x) be the feasible set of control inputs of (35) for

a given x. The overview of the proof is similar to that in
Thm. 2: First, given any control law u(x) satisfying u(x) ∈
Fu(x) ∀x ∈ X , we show that F [u](x) ⊆ Fu(x) ∀x ∈ X .
Next, we show that if F [u](x) ⊆ Fu(x), then safety is guar-
anteed. Similar to (43), the following optimization problem is
used to prove the first part:
g(x, y, u) =max

{λ̇}
Λ̇(t, λ∗(x), λ̇, u)

s.t. λ̇iAi(x) + λ∗i(x)(LfiA
i(x) + LgiA

i(x)u)

+ λ∗j(x)(LfjA
j(x) + LgjA

j(x)u) = −λ̇jAj(x)

λ̇i
k ≥ 0 if λ∗i

k (y)<ϵ, λ̇j
k ≥ 0 if λ∗j

k (y)<ϵ,

|λ̇i| ≤ M, |λ̇j | ≤ M.

The rest of the proof is the same as that of Thm. 2 and has
been omitted for brevity.
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