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Abstract Assistive teleoperation aims to help operators con-
trol robotic systems with ease. In this work, we present a
novel adaptive teleoperation approach that is amenable to
mobile systems using motion primitives for long-duration
teleoperation, such as exploration using mobile vehicles or
walking for humanoid systems. We first describe teleopera-
tion using motion primitives, which are dynamically feasible
and safe local trajectories based on a kinematic or dynamic
model. We take a predict-and-adapt approach to assistive
teleoperation, whereby adaptation is based on the predicted
user intent. By representing the operator as an optimizing
controller, a probabilistic distribution can be constructed for
the available future actions based on some reward function.
Adaptation is provided in the form of subsampling, which
tailors the set of available actions based on the likelihood
of action selection. We describe the framework for general
systems and delineate the extrapolation to ground, air, and
legged mobile robots, and demonstrate generalizability of
this framework on two systems via simulation and experimen-
tation; namely, a quadrotor micro air vehicle, and a simulated
3D humanoid system. Both systems show provably better
performance in teleoperation by measures of behavioral en-
tropy.
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1 Introduction

We present a novel task-agnostic user-independent adaptive
teleoperation framework for mobile robots using motion
primitives. Teleoperated mobile robots are often used in dy-
namic environments, subject to fluctuations in dynamics. For
long-duration maneuvers such as exploration using mobile
vehicles and walking for humanoid systems, information re-
garding the environment and operator proficiency is often
not available; and the task is usually not well defined. Our
framework provides a novel approach in assisting operators
in teleoperation that is task-agnostic as it does not require
the operator to provide a well-defined task in the form of a
defined goal or descriptive behavior; and user-independent
as it does not require prior information on the operator’s
skill level and teleoperation style. The proposed approach
emphasizes three key properties: 1) generalizability of adap-
tive teleoperation to mobile systems that are amenable to
motion primitives, while preserving feasibility and safety; 2)
task-agnostic in inferring operator intent in order to provide
predictive assistance in teleoperation, and 3) retention of full
control for the operator during assistance.

This paper extends the core result of [60] to systems to
which motion primitive based methods are readily applied.
First, we elaborate the trajectory-based teleoperation scheme
that robustly and reliably allows joystick-based control of
robots with continuous and hybrid dynamics using motion
primitives. We additionally show that motion primitives can
be constructed with known and unknown dynamics of the
robot. Second, we describe adaptative teleoperation using
motion primitives. User intent is represented by probabilis-
tic distribution over the set of available actions, which is
translated into assistance by adapting the available range of
motion for the operator at the next time step. The proposed
strategy is generalizable to systems that are amenable to con-
tinuous input motion primitives. By providing a mapping
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from inputs to a set of possible motion primitives, we move
the user intent inference problem from the input space to
the state space. Fig. 1 provides an illustrative diagram of the
proposed approach.

Teleoperation. In direct teleoperation of mobile robots, oper-
ators issue inputs, such as linear and angular velocities, via an
external input device to the robot. The corresponding input
is tracked by the controllers of the robot, without regard for
the feasibility and safety of the input. As mobile robots are
often operating in dynamic environments with disturbances,
the operator is required to be vigilant, reactive, and precise
in issuing correct inputs in order to keep the robot safe. How-
ever, it is well known that humans are imperfect controllers
that are subject to time delays of 140-200 milliseconds [38],
and also are prone to errors due to physiological stress and
fatigue [5, 38] that could introduce instability in the system.
Thus teleoperation in a dynamic environment is difficult and
stress-inducing for the operator, and may pose danger to the
robot and its surroundings.

Humans are, however, recognizably superior as integrated
planners and high-level controllers, traits highly desirable in
long-duration tasks such as exploration or driving in cluttered,
dynamic environments [18]. Humans are more proficient
at processing high-resolution visual information than the
current state-of-the-art perception systems for navigation, and
are able to identify goals and plan trajectories more efficiently
than most of the available processing power available on
mobile platforms. We recognize human’s ability to naturally
optimize and conduct motion planning in teleoperation [10]
while learning the dynamics of the system over time [38],
and leverage this property in our adaptive framework.

To mitigate human error and to allow the operator plan
the robot trajectories with certainty, we present a novel ab-
straction of system-specific inputs, or actions, into the state
space. Given an action and a kinematic or dynamic model, we
map the input using the dynamics into a single motion primi-
tive. Motion primitives are well-known tools in planning for
manipulation, gait, and mobile systems [8, 24, 48]. In this
work, we leverage this technique for teleoperation. Given all
of the degrees-of-freedom (DOF) one can control using a
given external input device, we define the action space as the
dense discretization of the input for each DOF, which is di-
rectly mapped to a set of motion primitives. For systems with
a known kinematic or dynamic model, the motion primitives
are, in fact, equivalent to input-based teleoperation as one can
forward propagate the model for the selected action; however,
any kinematic model that does not violate non-holonomic
assumptions may be used instead of the full dynamics of the
robot. By construction, the direct correspondence between
the action space and the state space allows teleoperation to
occur directly in the state space of the robot. Motion primitive
based teleoperation allows the operator to solely act in the

role of the planner, alleviating the operator from having to
provide high frequency and reactive inputs in the presence of
disturbances. In this paper, we will present motion primitives
for ground vehicles and quadrotor air vehicles, as well as for
a 3D humanoid model.

Intent Inference. The notion of intent vastly differs in the con-
text of assistive technologies, as well as inference methods in
shared autonomy problems. In [36], Kulic̀ and Croft define in-
tent as binary variables based on user traits. McLachlan et al.
define intent as direct system inputs [39], similarly with [58].
Wang et al. represent intent as a latent variable in a probabilis-
tic model [57]. Task-based intent definitions are observed in
[16, 23], and gait modes defined for different walking speeds
and standing is defined in [54, 55, 33, 32]. Goal prediction
is a common representation of user intent [1, 6, 17], simi-
larly with spatial trajectories [11, 13, 26, 35]. Methods based
on Inverse Reinforcement Learning [15, 28, 45] require the
explicit definition of a set of discrete goals, but optimize a
goal-dependent cost function in order to predict a specific
goal. Many of these inference and assistance methods train
user intent models offline, and query the model online, and
often are limited to classes of known tasks and learn models
for these specific classes. We focus on user-independent, on-
line approaches for assisted control that allow for adaptive
teleoperation independent of prior knowledge of the operator.

We take inspiration from [9] and represent the user as an
optimal controller. Consequently, user intent is modeled as a
reward function. We assume that the user optimizes a reward
function over time, and issues an action that most closely re-
flects the optimal reward. This choice of intent representation
allows assistance to be formulated for perpetual tasks, such
as navigation and exploration for ground and aerial vehicles,
and gait movements for humanoid systems.

Assistance via Adaptation. A variety of mathematical frame-
works have been proposed for assistance. We restrict the
discussion of assistance to mathematical frameworks that
aid the user in achieving their intended goal, and disregard
discussions on interface-specific assistance (i.e. haptic feed-
back), as we assume that full observability of the state is
provided to the operator by means of sufficient visual feed-
back. In manipulation, assistance is most notably given in the
form of arbitration [1, 28, 27, 45], although methods such
as snapping to the closest goal [34] and potential field [2]
have also been used. For mobile systems, similar arbitration
methods have been used [3, 16, 19], although Bayesian meth-
ods [11, 12] and formulating Partially Observable Markov
Decision Processes (POMDPs) [11, 31] have been applied.
Furthermore, trajectory manipulation assistance is proposed
in [6, 23]. For gait systems, assistance has been provided
in hardware-level controller designs, and few assistance ap-
proaches have been offered for adaptation to high-level user
intent [30].
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Fig. 1: An illustrative graphic of the proposed approach. The user begins each trial with access to an uniformly dense motion primitive library (MPL)
that varies only in angular velocity. Over time, our algorithm updates the belief distribution over the set of motion primitives with respect to the
operator’s intent. At each input time t, a subset of the motion primitives is sampled with respect to the belief distribution. The operator input maps to
a motion primitive from the subsampled set via a selector function.

In this work, we introduce a novel assistance methodol-
ogy by moderating the available range of motion according to
the predicted directional intent via sampling. By inferring di-
rectional intent, the proposed method achieves task-agnostic
in that it does not require prior knowledge in the form of a de-
fined goal or descriptive behavior1 that the operator intended
for it to perform. Contrary to other methods, limitation of the
available motion primitive set still allows the user to retain
control over the robot. The implicit assumption here is that
a human’s criterion of optimality will be satisfied with some
bound around the quantifiably optimal value; thus restriction
of the allowable set of motion primitives will actively aid the
user. By subsampling the available range of motions, we en-
sure that the user’s choice of motion follows the probabilistic
distribution of the directional intent of the operator.

The main contribution of this paper is to extend the adap-
tive teleoperation framework, which was first introduced in
[60], to show application of the proposed methodology to
mobile systems amenable to motion primitives. In this work,
we extend the assistance strategy to include hybrid systems,
such as gaited systems, in addition to continuous-dynamic
quadrotor air vehicles. We elaborate on several choices of
motion primitive based on kinematic and dynamic models
for continuous differential drive systems, quadrotors, and
humanoid systems, and present results for a quadrotor and
bipedal humanoid model. We derive generalizability of the
proposed adaptive teleoperation framework to any system
that is amenable to continuous-input motion primitive based
teleoperation, as shown in this paper via two representa-
tive systems. Furthermore, we compare our approach to two
baseline tests: a naı̈ve filtering method on previous inputs,
and direct velocity-based teleoperation without adaptation.
We evaluate the proposed and baseline approaches using

1 An example of goal-based task definition is a command with a
fixed goal location in the configuration space, such as go to the door. A
description based task is a command that may describe an objective that
is nebulous in the execution required to achieve it; for example, inspect
the building for damages.

behavioral entropy techniques and show provably better per-
formance of the resulting trajectories and adherence to the
user’s directional intent than baseline methods.

This paper proceeds as follows: the framework is in-
troduced in detail in Section 3 with the application to the
quadrotor and humanoid systems. Specifically, we introduce
motion primitives for differential drive robots, quadrotors in
Section 3.1.1 and humanoids in Section 3.1.2, and discuss
intent models and adaptation in Section 3.2. We discuss val-
idation methods and experimental results in Section 4 for
teleoperating a quadrotor and a humanoid in Sections 4.3
and 4.4 respectively. The paper concludes with future work
in Section 5.

2 Related Work

Assistive technologies have primarily been applied to specific
system applications, notably in the field of manipulation and
vehicle control. Most assistive technologies first predict the
intent of the operator, then employ a shared control strategy
to aid the operator in reaching their goal. In this section, we
detail past works in intent prediction and shared autonomy,
and the assumptions that are made with respect to specific
application domains.

Intent Prediction. Prediction methods vary from probabilis-
tic representations to machine learning methods given some
definition of intent. In [58], a direct robot input is inferred
using a physics-based model. For intent modeled as a latent
variable, [57] constructs a probabilistic representation for
predicting measurement and transition models using Gaus-
sian Processes (GP), whereas [53] employs a single latent
variable to represent user behavior trained using an artificial
neural network (ANN). Task-based intent can be inferred
using pre-defined task features [16] or probabilistically using
Gaussian Mixture Autoregression with statistical features
[23]. For trajectory inference, a mixture distribution over a
set of composite trajectories for multiple agents is used in
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[35], whereas a Bayesian trajectory recognition framework
that provides a probabilistic distribution over a set of pos-
sible trajectories to possible goals is used in [11, 13, 26].
If intent is described as a cost function, [29] defines a joint
user-robot cost function which is refined iteratively using
Kullback-Liebler Divergence based on the principle of mini-
mum cross-entropy. Intent defined as goals can be inferred
using a Voronoi diagram combined with local Gaussian Mix-
ture Models [14], using inverse models of system states [6],
using artificial potential fields [17], or using Maximum En-
tropy inverse optimal control (MaxEnt IOC) to construct a
distribution of all possible goal states, assuming the user is ap-
proximately optimizing some cost function for their intended
goal [15, 28, 45]. In controlled settings, intent representation
trends toward goal-based methods, whereas dynamic envi-
ronments typically utilize task or trajectory based methods.

Shared Autonomy. Various methods can be used to pro-
vide control guidance. In the hierarchy of control [51], if the
operator takes on a supervisory role, then the operator can
provide high-level commands by selecting a task or setting
a goal [50], or provide a trajectory shape for a vehicle to
follow [18]. For shared control methods, an intended policy
is usually predicted, and the final system input is a func-
tion of both the predicted policy and the user’s actual policy.
If the policy is in the form of an input, linear arbitration
[15] is a widely used method to allocate control between the
system and the user given a particular arbitration function
[1, 3, 16, 27, 28, 19, 45]. Some examples of arbitration func-
tions are based on uncertainty [40], a max function over prob-
ability [16], or manually tuned [27]. For policies modeled
as a POMDP, the choice of action can either be influenced
by the user input [11, 31], or it could be used to indicate
whether to follow the user’s policy or the predicted policy
[42]. If the predicted policy is a trajectory, [6] generates safe
mini-trajectories for each incremental waypoint while [23]
uses a cooperative motion planner to optimize the robot’s tra-
jectory to the forecasted one. [12] describes three Bayesian
approaches for providing navigational assistance: a Maxi-
mum Likelihood (ML) approach that chooses the trajectory
that maximizes the user model, a Maximum A Posteriori
(MAP) approach that maximizes the posterior probability,
and a greedy POMDP approach for multi-model estimation.
Assistance approaches vary in terms of the level of control ab-
straction from the actual user input, from distinct arbitration
to the user input acting as a prior in Bayesian methods.

3 Adaptive Teleoperation Framework

The adaptive teleoperation framework is presented in this
section for general mobile robots. The framework proceeds
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Fig. 2: System diagram of the proposed adaptive framework. The oper-
ator issues an input from a joystick and selects a motion primitive as
described by the input selector. While the robot follows the motion prim-
itive, the choice of motion primitive is used in the adaptation framework
to generate a subsampled set of the full underlying motion primitive
library that tailors better towards the user’s intent. At the next time step,
the joystick action is mapped to a motion primitive in the subsampled
set. Relevant notations can be found in Table 1.

Table 1: Notations and Definitions

aτ select action at timestep τ
γanτ (t) or motion primitive correlated with action an at

γnτ (t) timestep τ , evaluated at time t, 0 < t ≤ T
Γτ motion primitive library at timestep τ
Γ̄ subsampled motion primitive library
wn probability of motion primitive n being selected
T fixed time duration for length of motion primitives

as follows: Operators control the vehicle with an external
control device. Inputs are mapped to motion primitives, and
the user-issued input selects a motion primitive which the
robot follows. We define a user intent model over the space of
motion primitives with the operator acting as an optimizing
controller. Using the inference model, we provide assistance
in the form of adaptation by subsampling the set of available
motion primitives. However, a key assumption of the follow-
ing framework is that the operator is not adversarial. This is
to say, the operator will always act in favor of their intended
motion and will not attempt to circumvent assistance.

The system diagram of the framework is shown in Fig. 2.
This section begins with a discussion of teleoperation using
motion primitives in Sect. 3.1 and discuss motion primitive
generation for continuous and hybrid systems. Then, we de-
fine the user intent model in Sect. 3.2. Adaptive teleoperation
using the inferred user intent is presented in Sect. 3.3.

3.1 Motion Primitive Based Teleoperation

We define an action to be a set of inputs provided via an
external input device. For q input dimensions, an action is
denoted as a = {a1, . . . , aq}. It is assumed that the external
input device used to teleoperate the robot is continuous, i.e.
a joystick interface rather than directional buttons that in-
crease the input value at a fixed discretization. Furthermore,
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we assume that each of the input domain ai is convex. For
the continuous input, we discretize the input values in each
dimension to obtain the action space, which consists of q sets
of N finite actions.

For each action, a motion primitive maps the action
space to the state space γa : Rq → Rs where s is the
dimension of the state. The span of the action set gener-
ates a motion primitive library (MPL), which is a group
of motion primitives parameterized by an action set, and
denoted by Γ = {γai}, i = 1, . . . , N , with N actions,
{ai}, i = 1, . . . , N . Hence, an MPL will contain q ×N mo-
tion primitives, and is treated as an indexed set of motion
primitives parameterized by the action space. We further de-
fine the set of MPL to be a motion primitive library collection,
which is denoted by {Γj}, j = 1, . . . ,M . The simplest class
of motion primitives are obtained by forward propagating
the kinematics (or dynamics) of the robot. If the kinematic
model is known, then a motion primitive can be defined as the
position and higher order derivatives obtained by propagating
the selected action by some constant amount of time, T . In
this case, teleoperation using this model can be shown to be
equivalent to input-based teleoperation. An example of this
is the unicycle model for differential drive robots, discussed
in Sect. 3.1.1. However, if the kinematics or dynamics of the
robot are not known or cannot easily be forward propagated,
any choice of motion primitives can be used given the robot’s
dynamical constraints and non-holonomic properties (if any)
are not violated.

Between sequential inputs, continuity and smoothness
are enforced in the transition from one motion primitive
to another. If the user provides an input at time tf , where
0 < tf ≤ T , then γt(tf ) = γt+1(0) for position and higher
derivatives of the sequential motion primitives. As unsmooth
transitions between motion primitives may saturate motor
limitations, the design of the transitions is crucial for pro-
viding teleoperation safety. Furthermore, motion primitives
enable teleoperation in the presence of disturbances, as vari-
ous disturbance rejection strategies can be incorporated into
the vehicle controller to keep the vehicle stable and ensure
the vehicle adheres to the issued motion primitive which
is a local trajectory. In addition, teleoperation safety can
further be guaranteed by performing obstacle avoidance by
pruning motion primitives given a local map, which is not dis-
cussed in this paper. A method of constructing dynamically
feasible ground and aerial motion primitives is presented in
Section 3.1.1, and gait libraries are presented in Section 3.1.2.

3.1.1 Motion Primitives for Vehicles

Forward-arc motion primitives are a type of parameterized
motion primitive for ground vehicles. These are created by
propagating the dynamics of a unicycle model with a constant
linear and angular velocity for a specified amount of time, T

[47]. The motion primitives are given by the solution to the
unicycle model (1) and its higher order derivatives:

xt+T = xt +

 vxt
ωt

(sin(ωtT + θt)− sin(θt))
vxt
ωt

(cos(θt)− cos(ωtT + θt))

ωtT

 , (1)

where xt = [xt, yt, θt]
T represents the pose of a ground

vehicle at time t in the body frame, and vxt, ωt are the lin-
ear and angular velocities of the vehicle at time t in the
body frame, respectively. The action space is given by uni-
formly dense sets of actions, denoted as the following: Vx =

{vxi}, i = 1, . . . , Nvx , Ω = {ωj}, j = 1, . . . , Nω. A single
motion primitive at each time t is denoted by γt = {at, T}
where at = {vxt, ωt} and T is some fixed duration indi-
cating the length of the motion primitive. Note that the op-
erator has the ability to generate a new input at any time
tf for 0 < tf ≤ T . Thus if no new input is received, then
at+1 = at and Γt+1 = Γt.

For differential drive ground vehicles, these motion prim-
itives are equivalent to input-based teleoperation. However,
we choose to extend these motion primitives to aerial robots
by incorporating linear dynamics for the vertical velocity. For
a quadrotor air vehicle, the forward arc motion primitives
become (2) and its higher order derivatives:

xt+T = xt +


vxt
ωt

(sin(ωtT + θt)− sin(θt))
vxt
ωt

(cos(θt)− cos(ωtT + θt))

vztT

ωtT

 , (2)

where xt = [xt, yt, zt, θt]
T is the pose of the aerial robot

with θt being the yaw of the vehicle. The additional input
dimension has action space Vz = {vzk}, k = 1, . . . , Nvz
for vertical velocity. The corresponding action then becomes
at = {vxt, vzt, ωt}. For ground vehicles, the heading of the
vehicle is fixed to the yaw of the vehicle by nature. Although
aerial platforms such as quadrotors can independently control
heading from yaw, we maintain the use of a unicycle model
by ensuring that the heading is equivalent to the yaw of the
vehicle, as humans naturally optimize for curved trajectories
in robot control [10] with heading aligned with the zero yaw
angle.

From Eq. (1), it is evident that forward-arc motion prim-
itives preserve continuity up to velocity in concatenating
consecutive motion primitives, as it is the solution to the
kinematic model of ground vehicles. To apply these mo-
tion primitives for quadrotor vehicles, we need to preserve
the smoothness between consecutive motion primitives. For
quadrotors, smoothness usually requires continuity up to jerk
[41]. In our scenario, we require smoothness up to accelera-
tion and assume it is sufficient for teleoperation. This is to say,
trajectories must be continuous in jerk but may be nonsmooth.
To address continuity in concatenating motion primitives, we
pre-compute a motion primitive library collection, which con-
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(a)

(b)

γ t=1
γ t=2

γ t=3

γ t=4

Γ t=1= {γ i}N ω

Γ t=2= {γ i}N ω

Γ t=3= {γ i}N ω

Γ t=4= {γ i}N ω

(c)

Fig. 3: (a) A motion primitive library generated for a 2D unicycle
model. For easier visualization, only discretizations in angular velocity
ω are shown. (b) 3D motion primitive library with variations in angular
velocity ω and vertical velocity vz . (c) A trajectory formulated over
four time steps. The selected motion primitives at each time step (in
red) form a single trajectory.

tains a set of motion primitive libraries with various initial
conditions {x0, ẋ0, ẍ0} in the body frame. These initial con-
ditions are obtained by discretizing all possible higher order
derivatives; for our case, we consider continuity in velocity
and acceleration with other higher orders held at zero. Each
MPL in the collection computes a unique transition from the
initial condition to the final condition of the MPL, which
specifies a linear and angular velocity. This is to say, at tran-
sition time tf of timestep t, the final condition of timestep t
uniquely identifies a MPL from the MPL collection such that
at timestep t+ 1, [xt ẋt ẍt](tf ) = [xt+1 ẋt+1 ẍt+1](0).

An example of the forward-arc MPL is shown in Fig. 3a-
3b for ground and air vehicles, respectively. Figure 3c depicts
the MPL selected at each time t with the initial condition
matching that of the current robot state. The set of each
selected motion primitive at each time t forms a smooth tra-
jectory in a fixed frame.

3.1.2 Motion Primitives for Gait Systems

We utilize a hybrid dynamical model of flat-footed walking
for a 3D humanoid robot, and its associated Poincaré map, to
generate a set of motion primitives for walking along differ-
ent heading angles. The hybrid model consists of alternating
phases of a continuous single-support (swing) phase and an
instantaneous, double-support (impact) phase. The hybrid
dynamical model of this system is given by:

Σ :

{
ẋ = f(x) + g(x)u, x /∈ S,
x+ = ∆(x−), x ∈ S,

(3)

where x = (q, q̇)T is the state of the robot, and q ∈ Q =

R3×SO(3)×R15 is the configuration of the robot, u ∈ R15

are the control inputs, which are the joint torques, and x+

and x− are the pre- and post-impact states respectively. The
switching surface S is defined as the set of states (q, q̇)T

where the transition from single-support to double-support
takes place and is defined as,

S = {(q, q̇) ∈ T Q | pvsw(q) = 0, ṗvsw(q) < 0}, (4)

where pvsw is the vertical position of the swing foot and T Q
denotes the tangent space of Q.

To begin defining motion primitives for the humanoid
system, we use Hybrid Zero Dynamics (HZD) [21, 59, 25].
A set of outputs y(x, α, β) ∈ R15 is defined for the hybrid
system in (3) and an input-output linearizing controller drives
these outputs to zero exponentially. Here, x is the state of
the robot as defined in (3); and parameters α, β, are sets
of Bézier Polynomial coefficients that parametrize the de-
sired outputs, which encode the desired walking behavior,
including step length, step width, forward walking speed,
and heading angle. The parameters α are obtained through
a constrained nonlinear program that searches for periodic
solutions x∗ of the closed-loop system in (3) (See [25] for
details). The parameters β correspond to heading angles of
the humanoid. In particular, β = 0 corresponds to walking
along a straight line.

Similar to motion primitive generation for vehicles, we
define the action space to be of the heading angle, ak =

{ψ[k]}. The corresponding action space is given by Ψ =

{ψj}, j = 1, . . . , Nψ , with the constraintψj ∈ [ψmin ψmax].
To generate a library of dynamically feasible gaits, Γ ,

corresponding to ψ, the input-output linearizing controller
is integrated with a Poincaré map based stride-to-stride con-
troller [52, 7, 44]. The Poincaré map, P , is a composition of
the swing-phase and impact dynamics (3) and transfers the
state of the robot one walking step ahead, as follows:

x[k + 1] = P (x[k], β[k]). (5)

The state of the robot at step k, x[k], consists of the robot’s po-
sition, orientation, and joint angles. Computing the Poincaré
map analytically is difficult, but the linearized Poincaré map
can be numerically obtained [7]. The linearized Poincaré map
is defined as,

δx[k + 1] = Aδx[k] + Bβ[k], (6)

where δx := x− x∗ and β[k] is a linear feedback controller:

β[k] = −Kδ · (x[k]− x(ψ[k])) . (7)

The gain Kδ can be obtained using the Discrete Time Lin-
ear Quadratic Regulator (DLQR) method for the linearized
Poincaré map, and x(ψ[k]) is the state of the robot corre-
sponding to the desired heading angle at step k. The pseudo-
algorithm for motion primitive generation for humanoid sys-
tems is provided in Table 2.

The Poincaré map based controller allows the abstraction
of continuous-time joint control and the hybrid dynamics
of the system in the motion-primitive generation process.
This enables a parameterization of the motion primitives



Online Adaptive Teleoperation via Motion Primitives for Mobile Robots 7

(a) (b)

Fig. 4: (a) Some illustrative motion primitives for different desired heading angles (starting from zero heading). Green lines indicate the center of
mass trajectories when the right foot is the stance foot, and grey lines indicate the center of mass trajectories when the left foot is the stance foot.(b)
A trajectory formulated over 50 walking steps. The selected motion primitive at each walking step (in red) form a trajectory.

(a)

(b)

Fig. 5: Simulation of the 3D bipedal system with 21 joints. (a) Snapshots of a single walking step achieved using the Hybrid Zero Dynamics control
framework. (b) Snapshots of the simulated robot walking on a circular path.

by the heading angle, forgoing independent joint control.
Fig. 4a shows the path traversed by the robot for different
desired heading angles while Fig. 5b shows snapshots of the
robot walking on a circular path, both using the event-based
controller described above.

3.2 User Intent Model and Inference

We assume that the operator inherently optimizes a reward
function, but the action selected at each time step does not
optimally reflect this function. This is the notion of “good-
enough” – that humans operate within some region of opti-
mality but do not always select a single optimal action [37].
In this particular problem, the operator issues action a at
each input time t, which is in some neighborhood of a?, the

Table 2: Pseudo-algorithm of the motion primitive generation for hu-
manoid sytems

1. Compute (using trajectory optimization) the gait pa-
rameters α such that the solution of the closed-loop
system in (3) is periodic. (See [25, 22, 21]).

2. Numerically compute the linearized Poincaré map
around the periodic solution x∗ such that δx =
Aδx + Bβ (See [7]).

3. Compute the gain-matrix Kδ by solving the discrete-
time Riccati equation (this is the DLQR method and
the matrix Kδ can be obtained).

4. Compute the parameter β[k] for the desired heading
angle ψk. (See (7)).

5. The continuous-time HZD controller then drives the
outputs y (x, α, β[k]) to zeros exponentially.

optimal action that satisfies:

a? = argmax
a

Rt(γ
a) ≈ argmax

a

Q∑
i

αitφ
i
t(γ

a), (8)
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where φi’s are basis functions defined with respect to quantifi-
able natural human behavior, for a total of Q basis functions.
We assume the reward function is composed of linear basis
terms. Thus, the inference problem is the prediction of the
underlying reward function, R̂t =

∑Q
i α̂

iφit, from the series
of noisy user inputs {a1,a2, . . . ,at−1}.

Using this model, we infer the user’s behavior as the
solution to the following optimization problem:

γ̂t+1 = argmax
γa
t+1

Rt(γt−m:t, γ
a
t+1)

= argmax
γa
t+1

Q∑
i

αiφit(γt−m:t, γ
a
t+1),

(9)

where γt−m:t represents a trajectory formed by the past m
motion primitives at time t, and γt+1 ∈ Γt+1. Equation (9) is
the key assumption that reflects the notion of “good-enough,”
which allows us to define assistance that inherently reflects
this property.

Given an estimate of the user’s reward function, we can
iteratively update the probability of a motion primitive being
selected at the next time iteration. The prediction update is
provided in Eq. (10). Given an initial uniform distribution
over the set of motion primitives, one can update the probabil-
ity of the n-th motion primitive being chosen at the next time
step given the probability of the reward based on a segment
of the previous trajectory:

p(γnt+1|γt−m:t, R̂t) =
p(R̂t|γt−m:t, γ

n
t+1)p(γnt+1|γt−m:t)

p(R̂t|γt−m:t)

= η p(R̂t|γt−m:t, γ
n
t+1)p(γnt+1|γt−m:t)

(10)

where the past trajectory is denoted by γt−m:t, which is the
past m selected motion primitives as observed at time t,
and the distribution p(R̂|γt−m:t, γt+1) estimates the reward
function of the user, as introduced in Sect. 3.2, with η being
the normalization weight.

3.2.1 Reward bases

For mobile robots, the operator acts as a high level trajectory
planner. To this end, we define several bases that are intrinsic
to human motion planning, inspired by [35, 43]. As the oper-
ator issues inputs over time, the inputs are made to follow a
trajectory that is more conducive to human motions; thus a
natural choice of bases is to optimize for what humans deem
to be natural trajectories.

It is entirely possible for bases to only be functions of
past trajectories (called hindsight bases) for the purposes of
intent prediction. However, it is possible to incorporate prior
knowledge, either in the form of a known trajectory or other
environment models such as disturbance or obstacles fields.
Here, we present three hindsight bases for the quadrotor

air vehicle (smoothness, orthogonality, and time), and an
additional distance metric given a desired trajectory to follow
(distance error). These are defined as follows:

Smoothness We define smoothness as the magnitude of change
in the input:

φsmoothness(γt+1, γt−m:t) =

t+1∑
j=t−m+1

‖aj − aj−1‖1 (11)

Orthogonality We penalize any drastic deviation in heading
from the previous trajectory. This is defined using a simple
ratio for three points as follows:

φorthogonality(γt+1, γt−m:t) =
‖pt − pt−m‖ − ‖pt+1 − pt‖

‖pt+1 − pt−m‖
−1

(12)

where each point pτ ∈ R3 is the position at time step τ at
time T obtained from the motion primitive: pτ = γaτ (t = T ).

Time We define the cost of time as the inverse of the linear
body velocity, which allows for inference over the desired
speed of motion:

φtime =
1

vx
(13)

Distance Error If a desired trajectory is provided, the dis-
tance error between the motion primitive and the trajectory
can be calculated by approximating the area or volume for
2D and 3D trajectories respectively [4]. Given two paths
{p1, ..., pn} and {q1, ..., qn}, the distance error between the
two can be defined as:

φdistance =

n∑
i=2

1

2
(‖pi − pi−1‖2 + ‖qi − qi−1‖2) ‖pi − qi‖2 .

(14)

3.2.2 Reward function estimation

The reward function is inferred from a past window of m mo-
tion primitives. The belief distribution of the reward
p(R̂|γt−m:t, γ

n
t+1) is computed over the entire motion primi-

tive library. For this study, we assume that each input dimen-
sion is conditionally independent. The belief distribution is
computed using an online function approximation to estimate
the reward function, R̂t =

∑Q
i α̂

iφit. We employ Locally
Weighted Projection Regression (LWPR), a computationally
efficient online method for local approximations of high di-
mensional nonlinear functions [56] to estimate the reward
function. The incremental algorithm performs global func-
tion approximation by taking a weighted sum of the local
regressors that influence the region.
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Fig. 6: Motion primitives and distribution over the motion primitives at
selected times along a racetrack at timesteps t = 0, t = 5, and t = 150
respectively. The prediction becomes more peaked near the mean of the
predicted motion primitive.

The regression over the reward bases is defined with re-
spect to a linear global reward function, which is estimated
using LWPR. A global LWPR model is sufficient for tasks
with a single intent. However, tasks that may require dy-
namic changes in intent – for example, high-speed driving or
flight with inference over the angular velocity – such tasks
require a more temporally local prediction in order to adjust
to these changes. To continue leveraging the speed of LWPR,
we keep a rolling queue of l LWPR models. At each input
time, a model Mt is popped off the queue and a new model
Mt+l is added to the queue. Each model in the queue is up-
dated with the data received at that time. The prediction at
p(R̂|γt−m:t, γ

n
t+1) is then generated with model Mt. This

is a local batch estimation method for time-varying intent
functions that has shown to be computationally tractable over
the time span of interest. More succinct online regression
methods that are amenable to time varying models and con-
ducive to a small number of data points are an area of interest
and will be addressed in future work.

3.3 Adaptation using the operator intent model

Given a dense set of motion primitives and a probabilistic dis-
tribution over these motion primitives, assistance is provided
by limiting the set of available motion primitives to a subset
adhering to the operator’s intent. By defining a “good-enough”
region of interest around the optima, the set of motion primi-
tives within the region remains safe and feasible, and most
closely reflect the operator intent. We assume that within
some short duration, the operator’s intent does not fluctuate
widely and single instances of input that are outside of the
interest region are unintended by the operator.

We adaptively modify the subset of available motion
primitives from an underlying set of motion primitives such
that the density of the subsampling reflects the reward func-
tion distribution p(R̂|γt−m:t, γt+1). By use of motion primi-
tives, a particular choice of action at at time t is represented
by its parameterized motion primitive γt for some fixed du-
ration T . The key insight here is that we have removed the
dependency of trajectories on the continuous input space,
thus allowing inference to be made over a set of motion prim-

itives, which is the set of local trajectories that is safe and
feasible.

To construct the set of available motion primitives, we
subsample motion primitives using importance sampling. As
such, within the region of interest, fine-grained control of the
action is preserved by the density of motion primitives. The
subsampled set closely adheres to the user’s underlying intent
and circumvents misaligned motions to the user’s interest.

Let the weight of the nth motion primitive be wn =

p(R̂|γt−m:t, γ
n
t+1). Given a motion primitive library Γ of

size N , we sample K motion primitives using the weights
{wn}, n = 1, . . . , N with replacement such that we obtain a
subsampled set:

Γ̄ = {γk} ⊆ Γ, k = 1, . . . ,K, (15)

which is the available set of motion primitives provided to
the operator.

To map the user input to a specific motion primitive in
the subsampled set, a selector function (16) is used to select
the motion primitive with the closest parameterization of the
actual user input ainput in the continuous input case:

γselected = γ{argmin
a

a− ainput} ∈ Γ̄ . (16)

The adaptation methodology is summarized in Algorithm 1.
A visualization of this algorithm is provided in Fig. 6.

Algorithm 1 Algorithm for updating construction of the sub-
sampled set
1: Γt+1 ← {γn}; n = 1, . . . , N ; Γt+1 ∼ U(0, 1)
2: Γ̄t+1 ← ∅
3: for n = 1 : N motion primitives do
4: Calculate weights for each motion primitive wn =
p(R̂|γt−m:t, γnt+1)

5: end for
6: for k = 1 : K do
7: Sample γk ∈ Γt with probability wk with replacement
8: Γ̄t+1 ← Γ̄t+1 + γk

9: end for
10: return Γ̄t+1

4 Experiments

We present simulation and experiment results for a quadrotor
micro-air vehicle and simulation results for a bipedal system.
We introduce a method validation criterion in Section 4.1.
Vehicle experiment results are presented in Section 4.3, and
bipedal results are presented in Section 4.4.
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Fig. 7: The quadrotor and joystick used in the experiment (top) and the
quadrotor in flight (bottom).

4.1 Method Validation

We validate the efficacy of our method versus baseline ap-
proaches using Behavioral Entropy [20], an online, nonin-
trusive measure of workload that characterizes operator ef-
ficiency. Behavioral entropy characterizes the efficiency of
an operator’s interaction with a robot and measures the con-
sistency of an operator with respect to a predictive model
based on the observed behavior. The implication that skilled
or desired behavior is consistent becomes quantifiable in the
form of entropy.

For joystick-based continuous-input systems, Joystick
Steering Entropy (JSE) [46] is a behavioral entropy tech-
nique that uses a Taylor series approximation model. We
evaluate our assistive teleoperation approach as compared
to no adaptation using this metric, and briefly describe JSE
below.

At time t, the error between a second order Taylor ap-
proximation and the actual input is evaluated:

et = ut − ût

ût = ut−1+(ut−1−ut−2)+
1

2
((ut−1−ut−2)−(ut−2−ut−3))

where u ∈ R is the continuous input. A frequency distribu-
tion of the error et is constructed and divided into 9 bins. The
total steering entropy, Hp, for each trial is given by:

Hp =
∑
i

−Pi log9 Pi. (17)

A slight modification to the algorithm is made by padding
the proportion Pi of each bin by ε ≈ 1e-6 in order to avoid
asymptotes:

Pi =
ni∑
i ni

+ ε, i = 1, . . . , 9. (18)

Table 3: LWPR parameters for estimating the reward function for both
scenarios

Dinit 7 wgen 0.3
αinit 250 wcutoff 0.5
meta false penalty 1.0

Table 4: Motion primitive library parameters used in the experiments.

Quadrotor parameters
vxmax 0.5 m/s vxmin -0.5 m/s Nvx 101
vzmax 0.5 m/s vzmin -0.5 m/s Nvz 101
ωmax 3 rad/s ωmin -3 rad/s Nω 101

Gait parameters
ψmax 0.4 rad ψmin -0.4 rad Nψ 101

As efficiency increases, the steering entropy decreases ac-
cordingly.

We further evaluate the correctness of prediction by com-
puting the frequency of inputs over time. We assert that once
the performance is sufficient as deemed by the operator, the
operator will provide inputs less frequently as the generated
motion primitive accurately follows their intent. For mobile
vehicles, we compute the frequency of inputs as number of
inputs received per second, and for the humanoid robot, we
compute the frequency of inputs as the number of inputs
received per walking step.

4.2 Parameters and definitions

The LWPR parameters used in this study are provided in
Table 3. All parameters that are not listed here take on default
values provided by [56]. For both scenarios, we bound the
rate at which inputs are received to 10 Hz. However, real
life bipedal systems typically operate at 1 step per second,
which is slower than typical human walking speeds (1.2 m/s)
[49]. Thus, input rates of 10 Hz are reasonable given that the
operator generates a maximum of 2 inputs per step.

The MPL was generated using the discretization and
range values provided in Table 4. We select velocity bounds
that are conducive for non-aggressive maneuvers for this
study and leave adaptation for aggressive maneuvers as fu-
ture work. We choose a discretization of 0.01 m/s for the
linear and vertical velocities, and 0.06 rad/s (approximately
3.44 deg/s) as the discretization in angular velocity. We find
this discretization to be sufficient for the purposes of this
study and does not interfere with the operator’s intentions.
One could choose an arbitrarily large number of motion
primitives with finer discretizations, however, we find that
this adds to the computational complexity and our choice of
granularity does not pose a hindrance to the teleoperation
performance.
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Fig. 8: Illustrative odometry results for three operators teleoperating a quadrotor one lap around a simulated racetrack (a) without adaptation, (b)
with a low pass filter with α = 0.5, and (c) with adaptation. Adaptation results in the smoothest trajectory while low pass filter causes the operator
to overcorrect due to smoothing effects.
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Fig. 9: Results of a quadrotor completing one lap around a racetrack,
where adaptive teleoperation is compared with a low pass filter with
α = 0.5 and with no adaptation. (a) Joystick steering entropy averaged
over 5 trials for each test case. (b) Frequency of inputs over time.

4.3 Quadrotor Vehicle Experiments and Results

Two scenarios are used to test the proposed framework us-
ing a quadrotor vehicle: a racetrack of size 30 m × 10 m
at a height of 1 m and a lemniscate motion with length of
5 m. The racetrack scenario is used to validate single-intent
long-duration adaptation. Due to the size of the racetrack,
we perform this task in simulation only. To demonstrate our
framework for dynamic intent and the fidelity of our simula-
tion framework, we evaluate the lemniscate motion in both
simulation and in the flight arena (Fig. 7). For simplicity, we
only perform inference over the heading of the robot for all
of the subsequent experiments. This is to say, the motion
primitive library only contains variations in ω.

For all of the subsequent experiments, we compare tele-
operation results using our adaptation framework to that
without adaptation, and we perform additional trials using a
exponential moving average filter with weight α = 0.5.

Racetrack. Operators are asked to teleoperate a simulated
quadrotor vehicle using a joystick and follow the racetrack to
the best of their ability. As the trajectory that the user is trying
to follow is known, this information can be incorporated
into the distance error basis as discussed in Sect. 3.2.1. The
racetrack is tested with 15 trials (five with adaptation, five
without, and five with a low pass filter). All of the trials are
randomized in arbitrary order, and are anonymized to the
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Fig. 10: Results of a quadrotor completing a lemniscate motion, where
adaptive teleoperation is compared with a low pass filter with α = 0.5
and with no adaptation. (a) Joystick steering entropy averaged over 5
trials for each test case. (b) Frequency of inputs over time.

operator. For consistency, we perform the same experiment
with three colleagues at Carnegie Mellon University, not
including the authors. All operators do not have any prior
experience in teleoperating a quadrotor aerial vehicle using
this joystick setup.

The resulting trajectory with adaptation, without adap-
tation, and with the low pass filter is shown in Fig. 8. We
observe that teleoperation with adaptation produces very
smooth trajectories, much smoother than the trajectories with-
out adaptation. Filtered inputs produce trajectories that are
much more controlled than without adaptation, but we ob-
serve that the trajectories demonstrate periodic behaviors.
This is likely due to the lagging effect of the filter: as the
inputs are smoothed over time, this creates a lagging effect
which causes the operators to over-correct their inputs. We
assert that filtering the operator’s inputs over time misrepre-
sents their true intent and causes them to provide control-level
actions instead of providing only navigational inputs.

We further evaluate our method using Joystick Steering
Entropy and frequency of inputs over time, as shown in Fig. 9.
While filtered inputs sometimes exhibit higher entropy due
to the operator’s overcorrection, adaptation consistently pro-
duced lower entropy than without adaptation, and with a
low pass filter, with an average reduction in entropy of 13%.
While a reduction in entropy indicates that the user’s inputs
are smoother, and consequently result in smoother trajec-
tories, we notice that frequency of inputs with adaptative
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Fig. 11: Illustrative odometry results for three operators teleoperating
a quadrotor with a free-form (i.e without pre-defined trajectory) lem-
niscate motion (a) without adaptation, (b) with a low pass filter with
α = 0.5, and (c) with adaptation. Adaptation results in the smoothest
trajectory while low-pass filtering causes the operator to overcorrect
due to smoothing effects.

teleoperation is consistently lower than with filtered input or
without adaptation as observed in Fig. 9b. This is a key im-
provement in adaptation as users provide less frequent inputs
when the behavior of the robot is aligned with the intended
behavior.

Lemniscate. For this scenario, a specific trajectory was not
provided to the operator. Instead, the operator is asked to
teleoperate a quadrotor vehicle via joystick to perform a
free-hand lemniscate motion in simulation and in the flight
arena. As no prior trajectory is provided, predictions are
based purely on the hindsight bases as defined in Sect. 3.2.1.
This experiment uses the incremental adaptive approach out-
lined in Sect. 3.2.2.

We first observe the resulting trajectory as shown in
Fig. 11. We observe slightly smoother performance with
adaptation (Fig. 11c) than without (Fig. 11a), and similar
overcorrecting behavior for the filtered input is again evident.
However, we observe the performance with adaptation is not
as smooth as what was observed with the racetrack scenario.
We attribute this to the fast changes in directional intent that
may cause high variance in the incremental prediction.

Joystick steering entropy and frequency of inputs are also
evaluated, as shown in Fig. 10a. As with the racetrack sce-
nario, we notice that while filtered inputs and teleoperation
without adaptation show fluctuating entropies, teleoperation
with adaptation shows slightly lower entropy but the reduc-
tion is less than expected. We posit that this is a result of
the high variance with the incremental prediction, which we
will address as future work in Sect. 5. Frequency of inputs
also is reduced over time and is lower than that with filtered
input and without adaptation, however the margin between
the average frequency of inputs of adaptive teleoperation and
non-adaptive teleoperation is much smaller than that of the
racetrack scenario.

The adaptation process is shown for three different runs
of the lemniscate with adaptation in Fig. 13. The raw input
is compared to the predicted mean of the input, where we
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Fig. 13: Odometry (left) and mean of prediction (right) for three of the
experimental trials for the lemniscate experiment. The actual input (red)
is compared to the mean of predicted distribution (blue) with light blue
highlighting upper and lower bounds based on the covariance. Near
regions of rapid user input changes, variance increases and the mean
adjusts to the new prediction.

observe a smoothing of the user input. In addition, we notice
that near regions of rapid user input changes, variance of the
prediction increases and decreases accordingly as the mean
adjusts over time.

We now validate the number of motion primitives. From
the trajectories in the above scenarios, the choice of discretiz-
ing 101 motion primitives seemed reasonable and conducive
to good performance. Furthermore, we visualize the sampled
motion primitives over time for several trials, as shown in
Fig. 17a and Fig. 17b. For the racetrack scenario, we observe
that the number of subsampled motion primitives quickly de-
creases over time. The lemniscate result is more interesting.
We see that as directional intent changes, the number of sub-
sampled motion primitives increases suddenly and converges
again.

4.4 Bipedal Experiments and Results

For the humanoid robot, we consider two scenarios: walking
on a circular track of radius 20m and a sinusoidal path of
frequency 1m−1 and amplitude 1.5m. Operators were asked
to follow the desired trajectory as closely as possible in a sim-
ulation environment, using a joystick to control the heading
angle and with visual feedback of the robot’s base frame pose.
We compare teleoperation using our adaptation framework
to teleoperation without adaptation, and we perform an addi-
tional trial using a moving average filter with weight α = 0.5.
In both scenarios, the desired trajectory was provided to the
operators. A total of fifteen trials (five with adaptation, five
without adaptation, and five with a moving average filter)
were conducted for each scenario across three different op-
erators from Carnegie Mellon University. All of the trials
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Fig. 12: Illustrative odometry results for three operators teleoperating humanoid robot on a circular trajectory (a) without adaptation, (b) with a low
pass filter with α = 0.5, and (c) with adaptation.
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Fig. 14: Results of a humanoid robot completing one lap around a
circular track, where adaptive teleoperation is compared with a low pass
filter with α = 0.5 and with no adaptation. (a) joystick steering entropy
averaged over 5 trials for each test case. (b) and frequency of inputs
over time.

are randomized in arbitrary order, and are anonymized to the
operator.

Circular Track. The resulting trajectories with adaptation,
without adaptation, and with the low-pass filter are shown
in Fig. 12. Similar to the racetrack trajectory for the aerial
vehicle, we observe much smoother trajectories for teleop-
eration with adaptation. While the resulting trajectory for
teleoperation with the low-pass filter is slightly smoother
than without adaptation, the overcorrecting behavior is not as
prominent as was the case with the aerial vehicle, potentially
due to the slower speed at which the humanoid operates at.

A reduction in Joystick Steering Entropy is observed for
teleoperation with adaption as compared to without adap-
tation as well as with the low-pass filter (Fig. 14a). We
also observe a lower input frequency across multiple trials
(Fig. 14b).

Sinusoidal Track. Similar to previous experiments, qualita-
tive observations indicate smoother trajectories for teleopera-
tion with adaptation as seen in Fig. 16. The over-correcting
behavior with the low-pass filter is more prominent, as rapid
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Fig. 15: Results of a humanoid robot traversing a sinusoidal track, where
adaptive teleoperation is compared with a low pass filter with α = 0.5
and with no adaptation. (a) joystick steering entropy averaged over 5
trials for each test case. (b) and frequency of inputs over time.

changes demand users change their joystick inputs often.
As with previous experiments, joystick steering entropies
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Fig. 16: Illustrative odometry results for three operators teleoperating
a humanoid robot on a sinusoidal trajectory (a) without adaptation, (b)
with a low pass filter with α = 0.5, and (c) with adaptation.

are lower for teleoperation with adaptation, while teleoper-
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ation without adaptation and with the low-pass filter show
fluctuating behaviors (Fig. 15a). Frequency of inputs is also
consistently lower across multiple trials for teleoperation
with adaptation (Fig. 15b).

For both scenarios, the number of sampled motion primi-
tives over time for several trials consistently does not exceed
the initial number of motion primitives chosen, as shown in
Fig. 17c and Fig. 17d.

5 Conclusion and Future Work

In this work, we showed generalizability of the adaptive
teleoperation framework first presented in [60] to mobile
systems, and demonstrated provably better performance than
naı̈ve baseline methods. We experimentally test our frame-
work via teleoperation of a quadrotor air vehicle and a 3D
bipedal model. The proposed approach demonstrated lower
behavioral entropy, indicating increased performance. Fur-
thermore, we demonstrated the correctness of our prediction
algorithm to the underlying operator intent by showing a
reduction in the frequency of inputs over time.

Applications involving teleoperation present a rich op-
portunity in testing the proposed framework. This method of
intent inference and adaptation can be applied to exoskeleton
control using torso angles in assistive robotics for constrained
operators. Assisted driving is another area that may leverage
our framework to alleviate errors resulting from fatigue from
drivers and aid inexperienced drivers to mitigate fatal errors.

Our adaptive teleoperation provides a robust platform
for future work in investigating shared control and intent
inference. As we have presented a methodology that can be
used when environmental information is not available, we
plan to investigate the addition of local environment mod-
els via online environment model generation techniques to
influence local planning using motion primitives given the
system. Furthermore, we plan to investigate our methodology
of predictive assistance in various scenarios and evaluate its
efficacy. We introduced adaptation with respect to dynamic
intent via directional changes; however, we aim to character-
ize dynamic intent detection and prediction more precisely
for unknown and dynamic environments.
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Fig. 17: Subsampling of motion primitives over time for quadrotor teleoperation in the (a) racetrack and (b) lemniscate scenario, and bipedal
teleoperation in the (c) sinusoidal and (d) circle scenario. Three random trials are shown for adaptation over angular velocity. This illustrates that a
reasonable and non-restricting discretization of the motion primitive is sufficient for constructing the motion primitive library.
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G, Brussel HV, Nuttin M (2010) Adaptable navigational assistance
for intelligent wheelchairs by means of an implicit personalized
user model. Robotics and Autonomous Systems 58(8):963–977

54. Varol HA, Goldfarb M (2007) Real-time intent recognition for a
powered knee and ankle transfemoral prosthesis. In: Rehabilitation
Robotics, 2007. ICORR 2007. IEEE 10th International Conference
on, IEEE, pp 16–23

55. Varol HA, Sup F, Goldfarb M (2010) Multiclass real-time intent
recognition of a powered lower limb prosthesis. IEEE Transactions
on Biomedical Engineering 57(3):542–551

56. Vijayakumar S, D’Souza A, Schaal S (2005) Incremental Online
Learning in High Dimensions. Neural Computation 17(12):2602–
2634
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