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Abstract—In this paper, we propose a variation-based method
to linearize the nonlinear dynamics of robotic systems, whose
configuration spaces contain the manifolds S2 and SO(3),
along dynamically-feasible reference trajectories. The proposed
variation-based linearization results in an implicitly time-varying
linear system, representing the error dynamics, that is globally
valid. We illustrate this method through three different systems,
a 3D pendulum, a spherical pendulum, and a quadrotor with
a suspended load, whose dynamics evolve on SO(3), S2, and
SE(3) × S2 respectively. We show that for these systems, the
resulting time-varying linear system obtained as the linearization
about a reference trajectory is controllable for all possible
reference trajectories. Finally, a Linear Quadratic Regulator
(LQR)-based controller is designed to attenuate the error so as to
locally exponentially stabilize tracking of a reference trajectory
for the nonlinear system. Several simulations results are provided
to validate the effectiveness of this method.

I. INTRODUCTION

Many robotic systems evolve on nonlinear manifolds, such
as S1, S2, SO(2), SO(3), SE(2), SE(3). For instance, the
configuration space of a spherical pendulum is S2, of a
quadrotor is SE(3) = SO(3) n R3, and that of a planar n-
link robotic snake is SE(2)×Sn. Moreover, the configuration
spaces of multi-link mechanical systems such as the cart with
multiple pendulums [15] and humanoid robots are product
spaces of S2, SO(3),R3.

Typical dynamical models for studying S2, SO(3) requires
setting up local coordinates, such as Euler angles (roll-pitch-
yaw), which has the problem of singularity, and thus are
not valid globally [27], or global parametrizations that covers
the configuration space multiple times, such as quaternions
[27], that lead to problems in control such as the unwinding
phenomenon [1]. Recent work on coordinate-free dynamical
models has enabled looking at global, singularity-free, and
compact dynamical equations for such systems, enabling de-
sign of nonlinear geometric controllers that provide almost-
global stability [13], [4], [16], [31], [30].

Although geometric control methods can be used to design
almost-global stabilizing controllers, the design is extremely
involved, complex, non-intuitive, highly system dependent,
and does not lend itself well to embedded implementations. We
need a control design method that can track a wide range of
dynamically-feasible trajectories in state space, however still
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Fig. 1: The 3D pendulum, spherical pendulum, and quadrotor
with a cable suspended load are examples of mechanical
systems whose dynamics evolve on complex manifolds.

be simple enough to design for an entire class of systems and
be easily implementable on these physical systems.

For instance, several nonlinear geometric controllers have
been designed for dynamical systems evolving on S2, SO(3),
SE(3), SE(3) × S2, R3 × (SO(3) × S2)n, and so on; see
[16], [12], [31], [17]. These controllers typically implement
a PD-type feedback control in the geometric context, where
configuration error functions and transport maps are used to
compute the position and velocity errors [3]. To deal with
model uncertainty, an integral term is added in [12]. These
controllers offer almost-global stability properties, where al-
most any configuration error can be stabilized by the controller.
However, designing these type of controllers is extremely
dependent on the structure of the dynamical equations of
motion, with the design being complex and non-intuitive.
Moreover, these controllers might not be easily implemented
on physical systems.

In contrast, linear control design techniques are system-
independent, with well-established methods, for instance the
Linear Quadratic Regulator (LQR). Nonlinear systems have
been linearized about reference trajectories to result in locally-
valid linear time-varying systems that can then be stabilized
to achieve tracking of the reference trajectories, albeit with
a smaller domain of attraction. Using results that establish
a feedback equivalance between time-varying linear systems
and time-invariant linear systems [2], we can also reduce the
problem to a linear time-invariant control problem [28]. These
linearization methods include Jacobian linearization, feedback
linearization, input output linearization, and partial feedback
linearization [10], [25], [29].

Powerful as it is in most applications, this type of traditional
linearization is problematic when dealing with complex sys-
tems that evolve on non-Euclidean manifolds such as SO(3)
and S2. Since globally-valid parametrizations do not exist



for these non-flat manifolds, the issue of singularity arises
naturally in the linearization process. Employing multiple
coordinates would require a highly involved control design that
needs to switch between the local charts of these manifolds.
Furthermore, as shown in [18], classical linearization is not
feedback-invariant under proper coordinate transformation.

Faced with these drawbacks of the traditional Jacobian
linearization, recent research has come up with the idea of
geometric Jacobian theory [33], [23], [15], [14], [7]. The
key idea of this method is to approximate the error on
these manifolds by the corresponding variation. Then derive a
variation dynamics based on the original system model and
utilize it for feedback. For instance, [33] shows a frame-
work of this geometric Jacobian linearization method on a
general manifold. Variation-based linearization about a static-
equilibrium has been studied in [15], [7], where a chain of
pendulum is connected to either a cart, or a quadrotor. In
particular, by taking variation about a given static-equilibrium
in the state space, a 2nd-order linear time-invariant system
(LTI) representing the error dynamics is derived and some
discussions about the controllability are given. Similarly, [14]
exploits a similar idea to linearize the closed-loop system
dynamics with a given geometric control law that closes the
loop.

While the previous work is focused on obtaining a time-
invariant linearization about a static-equilibrium, we are inter-
ested in tracking time-varying reference trajectories. Although
some preliminary work along these lines exist [23], [33],
the framework provided is abstract, and does not offer a
concrete way to analytically determine the variation-based
linear dynamics, as well as the controllability of the resulting
linear dynamics for any reference trajectory.

The main contributions of this paper with respect to prior
work are:

1) A variation-based linearization method for linearazing
dynamics of systems whose configuration is the product
space of S2, SO(3) and Rn such that the resulting linear
model is valid globally, compact, and singularity free.

2) Analytical computation of the constraint and the con-
trollable subspaces of the linearized time-varying sys-
tem without requiring explicitly choosing the reference
trajectory as a function of time.

3) Demonstrating that for systems that evolve on SO(3),
S2, Rn and their product spaces, the resulting families
of time-varying linear dynamics are controllable for all
possible reference trajectories about which the original
nonlinear system is linearized.

4) A method to design a linear LQR-based controller, that
is valid globally and is singularity-free, to track the
reference trajectories asymptotically for common robotic
systems that evolve on product spaces of SO(3), S2, and
Rn.

The rest of the paper is structured as follows. Section
II provides some mathematical preliminaries about variation
on S2, SO(3), Section III shows how to get the variation
dynamics for a specific system along a reference trajectory

in details, Section IV provides examples for three systems of
this type, Section V proposes a linear control design based on
the variation dynamics, Section VI presents some simulation
results and relevant discussions, Section VII briefly presents
some potential applications for robotics, and Section VIII
provides some concluding remarks.

II. MATHEMATICAL PRELIMINARY

A. Notation

For a matrix A ∈ Rn×m, we will use R(A) and N (A)
to indicate the range and nullspace of A respectively. If A is
time-varying, then the respective subspaces are time-varying
as well. The symbol In is used to represent the identity matrix
of size n, and the symbol 0n×m is used to denote a matrix of
zeros of size n×m. The hat map ·̂ : R3 → so(3) is defined by
the condition that x̂y = x× y, for all x, y ∈ R3, and so(3) is
the space of skew-symmetric matrices. We will also define the
inverse of the hat map, called the vee map, ∨ : so(3) → R3,
such that x̂∨ = x, ∀x ∈ R3. Finally, the exponential map
exp : so(3) → SO(3) maps a skew-symmetric matrix to a
rotation matrix.

B. Linear Time-Varying Systems

A general linear time-varying system is given as

ẋ = A(t)x+B(t)u,

where x ∈ Rn, u ∈ Rm, A ∈ C∞(Rn×n) and B ∈
C∞(Rm×n). Let’s define a linear operator A k = ( ddt +A(t))k

(similar to the right operator in [9]) as follows,

A 0(B(t)) := B(t),

A (B(t)) :=
d

dt
B(t) +A(t)B(t),

A k(B(t)) := A (A k−1(B(t)).

Then a condition that implies controllability of the above linear
time-varying system is, [2],

∀t, rank(B,A B, · · · ,A n−1B) = n.

C. Variations on Manifolds

To linearize along a reference trajectory on a manifold, we
need to take variations with respect to the reference trajectory.
We do this through variational vector fields [21], such that
the perturbed trajectory is also on the manifold. Here the
variation is referred to as an infinitesimal variation which
could be roughly treated as a linear approximation of the
distance between two points on a manifold. For a more formal
explanation, we refer to Chapter 5-7 in [20].

By exploiting the specific variation expressions on SO(3)
and S2, we are able to parameterize the error directly based
on rotation matrices and unit vectors. In this specific error
representation, the variation-based linearized dynamics can be
derived from the original nonlinear dynamics. We can then
design a controller based on the variation-based linearized
dynamics which is locally valid on the nonlinear system.



Thus, we will address the following three questions below:
what are the error states, what type of constraints should be
satisfied on these error states, and finally in order to perform
state feedback, how can we design a controller based on the
current error state. We will address the first question below,
based on [14], and the other questions in the subsequent
sections.

1) Variation in SO(3): In SO(3) := {R ∈ R3×3 | RTR =
I, det(R) = +1}, the infinitesimal variation with respect to a
reference Rd(t) ∈ SO(3) is given by [14],

δR(t) =
d

dε

∣∣∣∣
ε=0

Rd exp(εη̂) = Rd(t)η̂(t),

where η ∈ R3. The corresponding infinitesimal change in body
angular velocities can be given as:

δΩ(t) = Ω̂d(t)η(t) + η̇(t). (1)

So if we assume that the actual rotation matrix R(t) is
close enough to the desired rotation Rd(t), the state s =
[η(t), δΩ(t)]T can treated as a linear approximation of the
errors between the desired and actual state of the system on
SO(3). Note that η(t) and δΩ(t) are dynamically coupled
through the relationship specified in (1).

Given R(t), Rd(t) as the actual and reference trajectory, the
actual errors between these two trajectories are given below
[3] :

eR(t) = 1
2 (RTd (t)R(t)−RT (t)Rd(t))

∨,
eΩ(t) = Ω(t)− (RT (t)Rd(t))Ωd(t),

where

Ω(t) = RT (t)Ṙ(t), Ωd(t) = RTd (t)Ṙd(t),

and the map Ωd 7→ RTRdΩd is called the transport map which
allows comparison between tangent vectors at different points.
Here we assume that this linear error s is small enough so that
they coincide with the actual error. Thus it holds that

s =

[
η
δΩ

]
≈
[
eR
eΩ

]
=

[
1
2 (RTd (t)R(t)−RT (t)Rd(t))

∨

Ω(t)− (RT (t)Rd(t))Ωd(t)

]
, (2)

which we would use for feedback control on SO(3) in Section
V.

2) Variation in S2: In S2 := {q ∈ R3 | q · q = 1}, the
infinitesimal variation with respect to a reference qd(t) ∈ S2

is given by [14],

δq(t) =
d

dε

∣∣∣∣
ε=0

exp(εξ̂(t))qd(t) = ξ̂(t)qd(t),

where ξ ∈ R3, s.t., ξ ·qd = 0. The corresponding infinitesimal
change in angular velocity is denoted as δω(t), with the
angular velocity defined as ω = q × q̇.

From [14], the constraints imposed on ξ and δω can be
given below as:

ξ · qd = 0, (ξ × qd) · ωd + qd · δω = 0, (3)

The first constraint comes from the variation expression. The
second constraint can be derived based on the fact that ω ·q =

0. Then the variation of this term δ(ω·q) = δω·qd+ωd·δq = 0.
It follows that ωd · (ξ × qd) + qd · δω = 0.

Assuming that the actual direction q(t) is close enough to
the desired direction qd(t) again, the approximated error can
be specified as s = [ξ(t), δω(t)]T under constraint (3).

For S2, the actual error between q(t), qd(t) is given as

eq(t) = q̂d(t)q(t), eω = ω(t)− (−q̂2)ωd(t),

with ωd 7→ −q̂2ωd being the transport map.
Applying the same assumption, we would use the following

formula for feedback control on S2 in Section V:

s =

[
ξ
δω

]
≈
[
eq
eω

]
=

[
q̂d(t)q(t)

ω(t)− (−q̂2)ωd(t)

]
. (4)

III. SYMBOLIC VARIATION-BASED LINEARIZATION ON
PRODUCT SPACE OF S2 AND SO(3)

Given a system with configuration space X = X1 ×X2 ×
· · · ×Xn where Xi (i = 1, 2, · · · , n) is one of the following
three manifolds R3,S2, SO(3). We list its state variable in
three separate groups,

R3 : (x1, ẋ1, · · · , xq, ẋq) (translational dynamics)

S2 : (q1, ω1, · · · , qk, ωk) (joint dynamics)
SO(3) : (R1,Ω1, · · · , Rl,Ωl) (orientational dynamics)

where each xi, ẋi ∈ R3 represents a rigid body CoM’s position
and velocity, each qi ∈ S2, ωi ∈ R3 reflects the relative
position and angular velocity between connecting rigid bodys,
and each Ri ∈ SO(3),Ωi ∈ R3 are the rotation matrix and
body-fixed angular velocity of a single rigid body.

The control input for this system is denoted by u ∈ Rm.
Given a dynamically-feasible reference trajectory xd(t) with
the reference input ud(t) to follow this trajectory, the following
paragraph shows how to derive the variation dynamics around
it in a symbolic way.

Assumptions of Variation-based Methods:
1) The system dynamics is of 2nd order: This means that

the control input u would only appear in the time deriva-
tive of ẋi, ωj ,Ωp where i ∈ [1, q], j ∈ [1, k], p ∈ [1, l].

2) The system is control affine with respect to u.
3) The dynamic model of the system only consists of

vector addition, dot product, cross product and matrix
multiplication with a matrix or vector.

According to Assumption (1),(2), the system dynamics could
be written out explicitly as:

d

dt
xi =ẋi,

d

dt
ẋi = fi +Aiu, i = 1, 2, · · · , q,

d

dt
qj = ωj × qj ,

d

dt
ωj = gj +Bju, j = 1, 2, · · · , k,

d

dt
Rp = RpΩ̂p,

d

dt
Ωp = hp + Cpu, p = 1, 2, · · · , l,

where each fi, gj , hp ∈ R3, Ai, Bj , Cp ∈ R3×m that are state-
dependent vector and matrix functions. Note that the above



assumptions are not restrictive and apply to most mechanical
systems, including the 3D pendulum, the spherical pendulum,
and the quadrotor with a suspended load that we consider here.

Steps for Generating the Variation-based Linear Dynamics:
• Step 1: We start by taking variation on both sides of

the above system dynamics. On the left hand side, we
simply add a δ in front of each time-derivative symbol.
On the right hand side, we apply the following formulas
recursively to get the variation of the functions fi, gj , hp:

δ(x+ y) = δx+ δy, δ(x× y) = δx× yd + xd × δy,
δ(x · y) = δx · yd + xd · δy, δ(R1x) = δR1xd +R1dδx,

δ(R1R2) = δR1 ·R2d +R1dδR2,

where x, y ∈ R3 and R1, R2 ∈ R3×3, and δ represents
the variation. For example, the variation of ẋ = x×(Ry)
will result in a variation dynamics as:

δẋ = δ(x× (Ry)) = xd × δ(Ry) + δx×Rdyd
= xd × (δRyd +Rdδy) + δx×Rdyd.

• Step 2: For the control input u, the formulas below are
applied to obtain:

δ(Aiu) = δAiud +Aidδu, δ(Bju) = δBjud +Bjdδu,

δ(Cpu) = δCpud + Cpdδu,

where i ∈ [1, q], j ∈ [1, k], p ∈ [1, l], and the variation
δAi, δBj , δCk are according to Step 1. Here the variable
δu is the control input for which a linear controller will
be designed in Section V.
Remark 1: Recall that in Section II we use the symbol
δ to represent the 1st order approximation of the actual
error on manifold. The formulas presented here are just
based on Chain rule for matrix-valued functions. Recall
that from Taylor’s formula, the difference of a function
f : Rn → R has the expression:

f(x)− f(xd) = ∇f(xd) · (x− xd)︸ ︷︷ ︸
δx

+o(||x− xd||)

=⇒ δf = ∇f(xd) · δx,

which is exactly the case when the variable is a vector.
But here what we consider as variables here could also
include matrix.

• Step 3: The resulting variation terms will be in terms
of ηj , δΩj for SO(3), and ξp, δωp for S2, as shown in
Section II. These can be rearranged into a linear system,
which forms the variation-based linear dynamics.

Remark 2: It must be noted that this process is carried
out symbolically, without specifying an explicit reference
trajectory. As we will see, the resulting linear dynamics
will be in terms of a symbolic reference trajectory, enabling
making conclusions on the controllability properies of the
linear system without explicitly choosing a specific reference
trajectory.

IV. EXAMPLES OF VARIATION-BASED LINEARIZATION

The method described in the previous section develops
the variation-based linearization of a nonlinear system about
a reference trajectory. Here we will illustrate the method
through three concrete examples: A 3D pendulum, a spherical
pendulum, and a quadrotor with a cable-suspended load (see
Figure 1). In general, the variation dynamics can be written
as the linear system below:

ṡ = A(xd(t))s+B(xd(t))δu, (5)
C(xd(t))s = 0, (6)

where s = {δxi, δẋi, ξj , δωj , ηp, δΩp} is the variation for each
component introduced in Section III, δu ∈ Rm is the linear
control input, and C ∈ Rk×N reflects any constraint that is
introduced due to the geometric structure of the manifold.

The linear system produced by the variation-based lineariza-
tion method represents the linearized dynamics of the errors
with respect to the desired reference trajectory about which
the nonlinear system was linearized. As can be seen above,
the linear system depends on the desired reference trajectory.
As we will see, we will design linear controllers for this
linearized system to drive the error states s(t) to zero, which in
turn will result in tracking the desired reference trajectory for
the nonlinear system. However, before we do that, since the
system matrices and thus the controllable subspace depend on
the desired reference trajectory, we need answer a fundamental
question: For what desired trajectories is the variation-based
linearization of the nonlinear system controllable? Or, in other
words, do there exist desired reference trajectories that render
the the above linear time-varying system uncontrollable?

Finally, if there exists constraints, i.e., C 6≡ 0 in (6), then we
need to check if state trajectories that respect the constraints
are controllable. To do this we introduce the concept of
controllability under state constraints.

Definition 1: State-Constrained Controllability: A linear
system ṡ = A(t)s+B(t)u with state constraints C(t)s = 0 is
said to be state-constrained controllable, i.e., controllable un-
der the state constraints, if its constraint subspace is invariant
and is covered by the controllable subspace.

If a system that is state-constrained controllable as per the
definition above, then any state that respects the constraints can
be driven to the origin while guaranteeing that the constraint
will be feasible for all time. Note that this definition is different
to the constrained controllability definition in literature, [32],
[22], wherein the input (and not the state) is constrained. We
will see the above better through the examples below.

A. 3D Pendulum

A 3D pendulum comprises of a rigid body that is attached
to a frictionless pivot and subject to gravity. With the state
variable x = (R,Ω) ∈ SO(3)×R3, the system dynamics can
be shown as (see [14] for details):

Ṙ = RΩ̂,

JΩ̇ + Ω× JΩ = −mgρ×RT e3 + u.



Here J ∈ R3×3 is the inertia matrix of the pendulum about the
pivot, R ∈ SO(3) the rotation matrix of this body representing
its orientation with respect to the inertial frame, g is the scalar
gravity constant and ρ ∈ R3 the displacement vector from the
pendulum’s pivot to its center of mass in its body-fixed frame.

Taking variation on both sides about the desired reference
trajectory (Rd,Ωd), we get the following variation dynamics:

δṘ = δRΩ̂d +RdδΩ̂,

JδΩ̇ = − δΩ× JΩd − Ωd × JδΩ
−mgρ× δRT e3 + δu,

Note that since the model here is simple enough, Steps 1,2,
of Section II-C are combined together. Using the variation
in SO(3) from Section II-C as δR = Rdη̂, η ∈ R3,
and substituting for δR, δṘ in the above dynamics, we can
simplify the above equation into a linear system below:

d

dt

[
η
δΩ

]
=

[
−Ω̂d I3

−mgρ̂R̂Td e3 J−1(ĴΩd − Ω̂dJ)

] [
η
δΩ

]
+

[
03×3

I3

]
δu,

which is of the form (5)-(6), with A & B obtained from above,
with C = 0, and the state s as defined in (2).

Remark 3: Note that this is an implicitly time-varying lin-
ear system, with the system matrices (A,B,C) only dependent
on the desired reference trajectory. As we will see, the system
properties, like controllability, and invariant subspaces (with
respect to the dynamics) are also dependent on the desired
reference trajectory.

We have the following result.
Proposition 1: The linear time-varying system obtained as

the linearization of the nonlinear 3D pendulum system about
a desired reference trajectory is controllable for all desired
trajectories.

Proof: We need to show that
rank

[
B A B · · · A n−1B

]
= n, where the linear

operator A is as defined in Section II-B, and n = 6. In
particular, we have[

B A B
]

=

[
03×3 I3
I3 J−1(JΩ̂d − Ω̂dJ)

]
,

which has rank n = 6 for all desired trajectories (Rd,Ωd), im-
plying that the above system is controllable for all trajectories.

Remark 4: It’s remarkable that we can analytically verify
the controllability of a time-varying system resulting from
linearization of a nonlinear system along a trajectory, espe-
cially without explicitly specifying the trajectory as a function
of time. This is only possible because of the coordinate-free
formulation and the variation-based linearization.

B. Spherical Pendulum

A spherical pendulum comprises of a mass attached to a
fixed point through a suspended cable. The state of this system

is x = (q, ω) ∈ S2 × R3 with the dynamics:

q̇ = ω × q,
mlω̇ = q × (f −mge3).

Here q ∈ S2 is a unit vector that specifies the attitude of the
spherical pendulum, ω ∈ R3 is the angular velocity of the
spherical pendulum, m is the mass, l is the length, g is the
scalar acceleration due to gravity, e3 is the third directional
vector, and f is the controlled force exerted on the spherical
pendulum.

Suppose we are given a smooth reference trajectory (qd, ωd)
to track. Based on Chain rule, taking variation around the
reference qd, ωd yields the following variation dynamics,

δq̇ = δω × qd + ωd × δq,
mlδω̇ = δq × (fd −mge3) + qd × δf.

Substituting for the variation expression δq = ξ × qd, ξ ∈
R3, ξ·qd = 0 on S2 (from Section II-C), and its time-derivative
δq̇ yields the following error dynamics:

d

dt

[
ξ
δω

]
=

[
qdq

T
d ω̂d I3 − qdqTd

̂(fd −mge3)q̂d/ml 03×3

] [
ξ
δω

]
+

[
03×3

q̂d/ml

]
δf,

with the constraint on the states,[
qTd 01×3

−ωTd q̂d qTd

] [
ξ
δω

]
= 0.

This is once again of the form (5)-(6), with A,B, and C
defined from above and with the state s as defined in (4).

Note that the above system is a constrained linear time-
varying system. Traditional analysis would require forming
the zero dynamics of this system, as in [9], which is fairly
involved. As we will see next, the variation-based linear
system obtained by the linearization along a desired reference
trajectory is controllable for any reference trajectory that
satisfies the constraints.

Proposition 2: The linear-time varying system obtained as
the linearization of the nonlinear spherical pendulum system
about a desired reference trajectory is state-constrained con-
trollable, i.e., it’s controllable for all desired trajectories that
respect the constraints.

Proof: We will demonstrate this by establishing that
the system is state-constrained controllable. We will do this
by showing that the constraint space is time invariant, i.e.,
d
dt (Cs(t)) ≡ 0, and that the controllable subspace covers
the constraint space, i.e., R(

[
B A B · · · A n−1B

]
) ⊃

N (C). We will do this through the following lemmas.
Lemma 1: The constraint space of the variation-based lin-

earized error dynamics of the spherical pendulum is time
invariant, i.e., d

dt (Cs(t)) ≡ 0.
Proof: We have,

d

dt
(Cs) = (CA+ Ċ)s+ CBδu.



Here, note that CB ≡ 0, since qTd q̂d ≡ 0. Moreover,

(CA+ Ċ)s = q̇Td ξ − qTd δω
= (ωd × qd) · ξ − qTd δω
= − (−ωTd q̂dξ + qTd δω)

= 0,

where the last equality follows from the (second) constraint
on the variational linearization of the spherical pendulum. It
then follows that d

dt (Cs) ≡ 0.
Remark 5: From the above lemma, the value Cs(t) is

conserved, i.e., if the initial condition satisfies Cs(t0) = 0,
then Cs(t) = Cs(t0) = 0, ∀t ≥ t0. Thus, as long as the
initial condition starts in the constraint space, the system’s
trajectory is the same as the unconstrained one that evolves
according to ṡ = A(xd(t))s+B(xd(t))δu. So we could put
the constraint aside and treat this system as an unconstrained
one.

Lemma 2: The Nullspace of the constraint matrix is given
by the column span of the matrix N , and the orthogonal
complement of the nullspace of the constraint matrix is given
by the column span of N⊥, where

N =

[
0 0 ω̃ q̂dω̃
ω̃ q̂dω̃ 0 −qd

]
, N⊥ =

[
qd q̂dω̃
0 qd

]
,

where,

ω̃ =

{
ωd, ωd 6= 0,

κ, s.t. qTd κ = 0, ωd = 0.

Proof: We can check that CN = 0, CN⊥ 6= 0, and
NTN⊥ = 0. In these computations, we make use of the fact
that qTd ωd = 0. Also note that N is a 6 × 4 matrix and N⊥

is a 6 × 2 matrix. In particular, due to the above identities,
the columns of N,N⊥ form a full set of basis for R6, i.e.,
colspan(

[
N N⊥

]
) = R6.

Remark 6: It’s remarkable that we can analytically write
down the nullspace of a time-varying matrix, that resulted
from linearization along a trajectory, without specifying the
trajectory explicitly as a function of time.

Lemma 3: The controllable subspace of the linearization
of the nonlinear spherical pendulum system includes the
nullspace of the constraint matrix for all desired trajectories.

Proof: We need to show that
R(
[
B A B · · · A n−1B

]
) ⊃ N (C), where the

linear operator A is as defined in Section II-B,
n = 6, and N (C) = colspan(N). We will show that
R(
[
B A B

]
) ⊃ N (C). In particular, we have[

B A B
]

=

[
03×3 −q̂d/ml
−q̂d/ml −̂̂ωdqd/ml

]
.

Furthermore, since colspan(
[
N N⊥

]
) = R6, we have

R(
[
B A B

]
) = colspan(

[
B A B

] [
N N⊥

]
). By car-

rying out the matrix multiplication, we can easily show
that R(

[
B A B

]
) ⊃ N (C). In particular, we note that[

B A B
]
N⊥ = 0, and colspan(

[
B A B

]
N) ⊃ N (C).

Remark 7: Since the linearized error should always stay
within the nullspace of the constraint matrix according to our
derivation, results established by the previous lemma guarantee
that the origin can be reached from any point that stays in
the nullspace, i.e dynamically feasible. Thus the variational
linearization of the spherical pendulum is controllable under
state-constraints.

C. Single Quadrotor UAV with a Cable-Suspended Load

After applying this technique to two very simple mechanical
systems, we now consider a slightly more complicated system
that comprises a quadrotor UAV with a cable-suspended
pointmass load, analyzed in [31]. The system state is x =
{xL, vL, q, ω,RQ,ΩQ} ∈ R6 × TS2 × TSO(3) with system
dynamics given by [31],

ẋL = vL,

(mQ +mL)(v̇L + ge3) = (q · fRe3 −mQl(q̇ · q̇))q,
q̇ = ω × q,

mQlω̇ = −q × fRe3,

Ṙ = RΩ̂,

JQΩ̇ + Ω× JQΩ = M.

The variation-based linearized error dynamics can be derived
as (see Appendix. A):

d

dt


δxL
δvL
ξ
δω
η
δΩ

 =


0 I3 0 0 0 0
0 0 A23 A24 A25 0
0 0 A33 A34 0 0
0 0 A43 0 A45 0

0 0 0 0 −Ω̂d I3
0 0 0 0 0 A66




δxL
δvL
ξ
δω
η
δΩ



+


0 0
b21 0
0 0
b41 0
0 0
0 B62


[
δf
δM

]
, (7)

with the constraint matrix

C =

[
01×6 qTd 01×3 01×6

01×6 −ωTd q̂d qTd 01×6

]
,

where each term is defined as,

A23 = − 1

mQ +mL
[(qd · fdRde3 −mQL(q̇d · q̇d))I3

+ fdqd(Rde3)T ]q̂d

A24 =
2mQL

mQ +mL
qdq̇

T
d q̂d, A25 = − fd

mL +mQ
qdq

T
d Rdê3

A33 = qdq
T
d ω̂d, A34 = I3 − qdqTd

b21 =
1

mL +mQ
qdq

T
d Rde3, A43 = − fd

mQL
R̂de3q̂d

A45 =
fd
mQL

q̂dRdê3, b41 = −q̂dRde3

A66 = J−1
Q (ĴQΩd − Ω̂dJQ), B62 = J−1

Q .



Proving the constrained controllability of this system using
direct method is intractable since we need to take higher order
time-derivatives for both A and B.

V. LINEAR CONTROLLER DESIGN FOR VARIATION-BASED
LINEARIZED SYSTEM

Having presented the variation-based linearization dynamics
for there different example systems evolving on SO(3),S2,
and SE(3) × S2 respectively, we will now develop a LQR-
based controller to track desired reference trajectories for
these nonlinear systems. Recall that from results in classical
control, controllers designed on the linearized model guaran-
tee local exponential stability when applied on the original
nonlinear system. Since the variation-based linearization is a
linear approximation of the nonlinear system, linear controllers
designed using the linear time-varying system work on the
nonlinear system with large domains of attraction.

Since the variation-based linearization system is a time-
varying system, we propose designing a time-varying LQR
controller. We must note that for the spherical pendulum and
the quadrotor with suspended load systems, the linearized
system is subject to state constraints, i.e., some entries in s
depend implicitly on other states. To address this, one would
need to design the LQR controller on a reduced system that
has an independent set of unconstrained states. However, as we
have seen in the previous section, these constraints are time-
invariant, and the controllable subspace covers the constraint
subspace. We can thus carry out the LQR control design
directly on the constrained system, with the requirement that
initial condition starts in the constraint subspace.

Finite-Horizon Linear Quadratic Regulator Design:

We design a time-varying LQR controller for the variation-
based linearized dynamics. We begin with a desired dy-
namically feasible reference trajectory, xd, and a nominal
control input, ud, that achieves the reference motion. The
nonlinear system that evolves on manifolds is linearized along
this trajectory using the variation-based linearization method
presented in the prior sections to obtain a time-varying linear
system. A finite horizon LQR controller design is carried
out on this time-varying system. Figure 2 illustrates a block
diagram of the control.

We begin with the state s(t) of the variation-based linearized
system. This state represents the linearized geometric error
and can be computed using the formulas (2) and (4) in
Section II. We choose a time horizon T and pick matrices
Q1 = QT1 ≥ 0 ∈ Rn×n, Q2 = QT2 > 0 ∈ Rm×m as the
weights on the states s(t), and the controls δu(t). Here n
represents the dimensions of the states and m the dimensions
of the inputs. We also choose PT = PTT ≥ 0 ∈ Rn×n as the
weight on the terminal state s(T ).

Next, the continous-time Ricatti equation below is integrated
backwards in the time,

−Ṗ (t) = Q1 − P (t)B(t)Q−1
2 B(t)TP (t)+

A(t)TP (t) + P (t)A(t),

Fig. 2: Block diagram representing the time-varying LQR
controller, designed on the variation-based linearized system,
and applied to the original nonlinear system evolving on
manifolds.

starting from the terminal condition P (T ) = PT . The control
applied to the nonlinear system is computed as,

u(t) = ud(t) +K(t)s(t),

where the gain matrix K(t) = −Q−1
2 B(t)TP (t).

Remark 8: Note that once the proposed variation-based
linearization is carried out on the nonlinear system evolving
on manifolds, the resulting linearized dynamics is essentially
a linear time-varying system, and standard control design
techniques from linear control theory can be carried out. In
particular, the linear quadratic regulator (LQR) is an optimal
control technique applicable to linear time-varying systems
[19]. The corresponding feedback gain for the LQR is
the solution of the continuous Riccati equation, and it only
depends on the linearized dynamics (which depend on the
reference trajectory), the weighting matricies and the time
horizon. Thus, once we fix a specific reference trajectory, the
corresponding LQR gain matrix can be computed offline and
stored in a lookup-table.

Remark 9: We employ a finite-horizon LQR controller here
since in most robotic applications a motion planner only
produces a finite-horizon reference trajectory. Alternatively,
an infinite-horizon LQR can also be implemented, assuming
we have the complete reference trajectory and the linearized
dynamics is controllable (we have explicitly shown control-
lability of the variation-based linearized 3D and spherical
pendulum systems for all possible reference trajectories.)

As we will see in the next section, since the linear control
design is carried out on the variation-based linearization, it’s
free of singularities. Moreover, this method also admits a
potentially large domain of attraction. We will demonstrate
these features on all three examples considered in this paper
- the 3D pendulum, the spherical pendulum, and a quadrotor
with a cable-suspended load.



VI. SIMULATION RESULTS

We use the variation-based linearization and controllers pre-
sented in the previous sections to perform several simulations
to test the effectiveness of our proposed method. Additional
results are also provided for comparison to show the robustness
of this method. An interesting fact about all the systems
studied here is that all of them are differentially flat, [6],
wherein knowing the time-varying trajectory of a set of flat
outputs enables us to analytically compute the time trajectories
of the entire state as well as the control input that results
in this state trajectory through higher order time derivatives
of the flat output. This enables planning dynamically-feasible
reference trajectories very easily. It must be noted that the flat
outputs need not be just a subset of the states, but rather can
be a function of the states, the inputs, and higher order time
derivatives of the inputs. We now present simulation results
for these three systems presented in the paper.

A. 3D Pendulum

The rotation matrix, Rd, corresponding to the rigid body
orientation, forms a set of flat outputs for this system since the
angular velocity can be computed from Ṙd and the control can
be computed from the time derivative of the angular velocity
and the system parameters. We use the system parameters
l = 1, ρ = 0.5e3, J = diag(0.1006, 0.1006, 0.0127),m =
0.2827, and chose the flat output as,

Rd(t) =

 cosω0t sinω0t 0
− sinω0t cosω0t 0

0 0 1

 , ω0 = 1.5.

The following matrices were used to design the LQR con-
troller, Q1 = diag(2, 2, 2, 5, 5, 5), Q2 = 0.5I3, PT = 2.5I6.
The initial condition for simulation is specified as

R0 = diag(1,−1,−1), Ω0 = [−1.5, 0.8, 1.0]T .

This corresponds to a maximum possible error in orientation.
As we will see, the linear controller has a large domain of
attraction. Figure 3 shows the simulation results for the 3D
pendulum, illustrating tracking of the reference trajectory. The
errors eR, eΩ in the figure are errors on SO(3), computed as,
[16],

eR =
1

2
(RTdR−RTRd)∨, eΩ = Ω−RTRdΩd.

The configuration error is computed as,

ΨR = trace(I −RTdR)/2,

with ΨR = 0 when R = Rd, and ΨR = 2 when there is a
180◦ error between R and Rd. As can be seen from the figure,
the controller is able to stabilize large initial errors in attitude.
Here we demonstrate the controller recovering from the largest
possible attitude error with ΨR = 2. However, we must
note that although the linear controller results in exponential
stability on the nonlinear system for small (local) errors, the
controller only results in asymptotic stability for large (global)
errors. This is evident in the plot of the configuration error

Fig. 3: Tracking errors obtained by simulating the variation-
based linearization controller for the 3D pendulum system
described in Section VI-A. In particular, the vector error
function for the position and velocities, eR, eΩ, and the
configuration error function, ΨR, are shown as functions of
time. Here we set the initial configuration error ΨR = 2, the
maximum possible orientation error, and the linear controller
is still able to asymptotically track the reference trajectory.

ΨR in Figure 3. Further, note that the initial configuration
error ΨR = 2 corresponds to one of the equilibrium points
for the open-loop 3D pendulum with eR = 0. The controller
is able to recover from this initial error, albeit slowly, due to
the feedforward component of the control.

B. Spherical Pendulum

As mentioned in Section IV-B, the spherical pendulum
system we are considering consists of a mass attached to a
fixed point through a suspended cable. It turns out that the
flat output for this system is the tension force vector in the
cable. This flat output is a function of both the state and
the control input on the system. The tension vector is a flat
output since the cable orientation specified by qd ∈ S2 can
be obtained from the tension vector, the angular velocity can
be obtained from qd and it’s time-derivative, and finally the
control input can be obtained from the time-derivative of the
angular velocity and the system properties. We specify the
following flat output to generate the reference trajectory for



Fig. 4: Tracking errors obtained by simulating the variation-
based linearization controller for the spherical pendulum sys-
tem, as described in Section VI-B, is shown. In particular, the
vector error function for the position and velocities, eq , eω , and
the configuration error function, Ψq , are shown as functions of
time. In addition, the desired trajectory is shown on the unit
sphere with the actual trajectory tracking the desired.

tracking:

Td(t) = 5[cos
π

6
cos 1.5t, cos

π

6
sin 1.5t, sin

π

6
]T ,

with the initial conditions q0 = [−
√

2/2, 0,−
√

2/2]T , ω0 =
[0, 1.5, 0]T . For the simulation, we select the following gain
matrices are used, Q1 = diag(50, 50, 50, 15, 15, 15), Q2 =
0.25I3 and P = I6. The error functions eq, eω,Ψq are errors
on S2, computed as, [17],

eq = q̂dq, eω = ω − (−q̂2)ωd, Ψq = 1− q · qd.

Fig. 4 shows relevant tracking results of the LQR controller
designed on the variation-based linearization and applied to the
spherical pendulum system. As can be seen from the figure,
stability can be guaranteed using our method even for the cases
with very large initial error.

C. Single Quadrotor UAV with a Cable-Suspended Load

This quadrotor with a cable-suspended load system is also
differentially flat, with the load position xL and quadrotor yaw
φ as flat outputs, see [31] for more details. We thus specify

TABLE I: Initial Conditions for Simulation

Initial
State

Trial 1 Trial 2 Trial 3

xL0 [0, 5,−1.5]T [0, 0, 0]T [−1, 0, 1]T

vL0
[0, 0, 0]T [0,−1,−1]T [0, 0, 0]T

q0 [0, 0,−1]T [0;
√

3/2,−0.5]T [
√

2/4,
√

6/4,
√

2/2]T

ω0 [0, 0, 0]T [−0.5, 0, 0]T [0, 0, 0]T

RQ0 diag(1,−1,−1) I3 I3

ΩQ0 [0, 0, 0]T [1.5, 0, 1]T [0, 0, 0]T

the following flat output to generate the reference trajectory
and nominal input,

xLd(t) = [cos t, sin t, 0.5t]T , φd(t) ≡ 0.

For the LQR control design, the weighing matrices are set as

Q1 =

Q11 0 0
0 Q22 0
0 0 Q33

 , where,

Q11 = 0.5 · I6, Q22 = I3, Q33 = 0.75I9,

Q2 = 0.2I4, PT = 0.01 · I18.

We evaluate the performance of the controller in three trials by
specifying different initial conditions for the 18-dimensional
state, as tabulated in Table. I. Figure 5 illustrates the conver-
gence to the reference trajectory starting at the three initial
conditions. Note that, for trial 1, the quadrotor is initially
inverted, and the controller is still able to track the specified
reference trajectory, illustrating that the linear controller has
a large domain of attraction. Figure 6 depicts the tracking
performance of the controller for the three initial conditions.
As can be seen, in all the cases, the translational error in
the quadrotor position, and the rotational errors for both the
quadrotor orientation and the cable attitude go to zero. This
illustrates the validity of the proposed method for higher-
dimensional systems and demonstrates the large domain of
attraction that is possible through a linear controller.

D. Robustness Test on the Quadrotor-Load System

The stability properties of the linear control design based
on the variation-based linearization have been shown in the
previous simulation examples. We next test the robustness of
the proposed method by subjecting the controller to model
uncertainty by varying the mass of the load. Fig. 7 illustrates
the effects of increasing the mass of the load by 50% and
decreasing the mass by 10%. In both cases, we test the
controller for the same initial conditions considered in Trials
I-III in Table I. As can be seen, this method is robust to
the considered model uncertainties since it keeps the error
bounded. The robustness can potentially be further improved
by applying linear robust control techniques, [8], designed
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Fig. 5: Load trajectory plot obtained by simulating the
variation-based linearization controller for the quadrotor with
a cable suspended load, as described in Section VI-C, for the
three initial conditions is shown. The initial conditions are
denoted by bold points in the figure. For each initial condition,
the variation-based linearization controller is able to drive the
load to the desired trajectory.

on the variation-based linearized system and applied to the
nonlinear system.

VII. POTENTIAL ROBOTIC APPLICATIONS

The proposed method of variation-based linearization has
several potential applications in robotics, such as motion plan-
ning, filtering, and control [5], [26], [24], [11]. As presented
in this paper, this method can be used to implement linear
controllers for systems that vary on manifolds while preserving
the global validness, singularity-free, and compact properties
of the linear model. Furthermore, this method can also be used
for deriving linear time-varying models of robotic systems
for the purpose of estimation through extended Kalman filters
(EKF) directly on the S2 and SO(3) manifolds, see [24].

VIII. CONCLUSIONS

This paper has presented a variation-based method to lin-
earize a nonlinear system, whose dynamics evolve on complex
manifolds that contain SO(3) and S2, along a desired refer-
ence trajectory. The resulting linear system is implicitly time
varying. Three example systems, the 3D pendulum, spherical
pendulum and a quadrotor with a suspended load, are studied,
and the corresponding linearized error dynamics about a
reference trajectory are developed. For the first two examples,
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Fig. 6: Tracking errors obtained by simulating the variation-
based controller for the quadrotor with a cable suspended load,
as described in Section VI-C, for the initial condition specified
by Trial III is shown. In particular, the translational position
errors, exL

, and vector errors for the quadrotor orientation, eR,
and load orientation, eq , are shown as functions of time.

we show that the families of time-varying linearizations are
controllable for all possible desired trajectories. Finally, a
time-varying LQR controller is developed and several tra-
jectory tracking results for the nonlinear systems are shown.
Simulation tests indicate that the regions of attraction of these
controllers are fairly large.

APPENDIX

A. Error Dynamics Derivation for the Quadrotor with a
Suspended Load

In Sections IV-A, IV-B, we derived the variation-based
linearization of the 3D and spherical pendulums respectively.
Here we provide a detailed derivation of the variation-based
linearization of the quadrotor with a cable-suspended load
system about a desired reference trajectory. First, symbolically
taking the variation of the dynamics of the quadrotor with a
cable-suspended load, specified in (IV-C), yields,

δẋL = δvL,

(mQ +mL)δv̇L = [δq · fdRde3 + qd · (δfRde3 + fdδRe3)

− 2mQL(q̇d · δq̇)]qd
+ (qd · fdRde3 −mQL(q̇d · q̇d))δq,



(a) (b)

Fig. 7: Robustness results of the proposed controller for the quadrotor with a load system with model uncertainty. (a) The
mass of the load is increased by 50%. Since the feedforward force is incorrect, asymptotic tracking is not realized. However,
as can be seen, the trajectory for each trial remains close to the reference. This implies the boundedness of the error and
thus robustness of this method. (b) The mass of the load is decreased by 10%. Here too we can see the boundedness of the
error. However, as we continue to reduce the mass of the load further, Trial I becomes unstable and continues to drift away
while Trials II and III still have bounded errors. Since Trial I starts with the quadrotor inverted, it’s more sensitive to model
uncertainty.

δq̇ = δω × qd + ωd × δq,
mQLδω̇ =− δq × fdRde3 − q̂d(δfRde3 + fdδRe3),

δṘ = RdδΩ̂ + δRΩ̂d,

JQδΩ̇ = δM − δΩ× JQΩd − Ωd × JQδΩ.

Rearranging each term, the error dynamics can be simplified
into:

δẋL = δvL,

(mQ +mL)δv̇L = [(qd · fdRde3 −mQL(q̇d · q̇d))I3
+ qd(fdRde3)T ]δq − 2mQL(qdq̇

T
d )δq̇

+ fdδRe3 + (qTd Rde3)δf,

δq̇ = ω̂dδq − q̂dδω,

mQLδω̇ =f̂dRde3δq − q̂dfdδRe3 − q̂dRde3δf,

δṘ = RdδΩ̂ + δRΩ̂d,

JQδΩ̇ = (ĴQΩd − Ω̂dJQ)δΩ + δM.

Now, reusing the conclusions already attained for the 3D
pendulum and spherical pendulum, we can further simplify
these equations to obtain,

δẋL = δvL,

(mQ +mL)δv̇L = − [(qd · fdRde3 −mQL(q̇d · q̇d))I3
+ qd(fdRde3)T ]q̂dξ

− 2mQLqdq̇
T
d (−ω̂dq̂dξ − q̂dδω)

− fdRdê3η + (qTd Rde3)δf,

ξ̇ = qdq
T
d (ωd × ξ) + (I3 − qdqTd )δω,

mQLδω̇ = − f̂dRde3q̂dξ + q̂dfdRdê3η − q̂dRde3δf,

η̇ = − Ω̂dη + I3δΩ,

JQδΩ̇ = (ĴQΩd − Ω̂dJQ)δΩ + δM.

Also, using the vector triple product and the fact that ωd ·qd =
0, we have,

ω̂dq̂dξ = (ξ · ωd)qd − (ωd · qd)ξ = (ξ · ωd)qd.

Right multiply the above equation by q̇Td on both sides, and
recognizing that qd · q̇d = 0, we have,

q̇Td ω̂dq̂dξ = q̇Td qd(ξ · ωd) = (qd · q̇d)(ξ · ωd) = 0.

We can then finally write down the linearized error dynamics
for the quadrotor with a cable-suspended load as the following:

δẋL = δvL,



(mQ +mL)δv̇L = − {[(qd · fdRde3 −mQL(q̇d · q̇d))I3
+ qd(fdRde3)T ]q̂d}ξ + (2mQLqdq̇

T
d q̂d)δω

− fdRdê3η + (qTd Rde3)δf,

ξ̇ = (qdq
T
d ω̂d)ξ + (I3 − qdqTd )δω,

mQLδω̇ = − f̂dRde3q̂dξ + q̂dfdRdê3η − q̂dRde3δf,

η̇ = − Ω̂dη + I3δΩ,

JQδΩ̇ = (ĴQΩd − Ω̂dJQ)δΩ + δM,

which is of the form (5)-(6), with the state s =[
δxL δvLξ δω η δΩ

]T
, and constraint qd · ξ ≡ 0.

Recognizing that this constraint is equivalent to qd · ξ =
d
dt (qd · ξ) = 0, we can write this in matrix form as Cs = 0,
where

C =

[
01×6 qTd 01×3 01×6

01×6 −ωTd q̂d qTd 01×6

]
.
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